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1 Introduction and background

One of the most interesting features of field theories with conserved charges is the possi-

bility of non-topological solitons, in particular Q-balls [2–7].1 Q-balls are localized field

configurations that are stable simply because they are a more energy efficient way of hold-

ing charge than a collection of asymptotically free quanta. Such objects have been shown

to occur very generally in field theory. Indeed the charge Q can be global (the simplest

case) or local [3, 4] and the corresponding symmetry (which is spontaneously broken in

their interior) can be either abelian or non-abelian.

For certain types of potential, the energy deficit or binding energy grows with charge,

so that Q-balls can in principle be large macroscopic objects, and naturally there has been

much interest in their cosmological implications and their impact on scenarios beyond

the Standard Model [11, 12].2 For example, Q balls have been proposed as dark matter

candidates [13, 14] in particular in gauge mediated SUSY breaking models [15–18]. Ex-

perimental searches for Q-balls have also been proposed and carried out. For these, the

possible electric charge a Q-ball may carry obviously plays a central role in determining

their experimental signature. For instance, neutral Q-balls can be detected by Super-

Kamiokande [15, 19, 20] by probing proton absorption. Conversely charged Q-balls could

be seen directly in detectors such as MACRO [15, 21].

Given this interest, it is important to determine the ubiquity of Q-balls in scenarios

of physics at the most fundamental scales. In this paper we study Q-lumps in various

stringy settings, including configurations with extra dimensions, namely charged bulks,

and wrapped branes. Our main result, in section 5, is the explicit construction of stable

1For an early review see ref. [1] and references therein.
2For early references see refs. [8–10].
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Q-ball solutions on systems of Dp-branes, in which the scalar fields in the solutions describe

their displacements. It is well known that the Dp-branes can be spread over a 2-sphere by

turning on a background field, forming so-called dielectric branes [22]. The global minimum

of a dielectric brane has a non-commutative form, with the vacuum falling into an N ×N
irreducible representation of SU(2). However, in this minimum there are additional non-

abelian symmetries that can be broken by reducible representations of SU(2). We show

that the resulting charges support Q-balls, with the N Dp-branes relaxing to the standard

dielectric form outside the Q-ball, but assuming a more complicated dielectric configuration

at its centre, in which the 2-sphere itself is diffuse. Remarkably, even in the simplest case

the dielectric brane potential has the correct coefficients for the Q-ball configuration to be

energetically stable.

As well as presenting this construction we will, as a warm-up exercise, look at a num-

ber of additional issues that make Q-balls in extra dimensional setups a somewhat more

complex problem than in 4 dimensional field theory. The first is that generally they will

be wrapped on compact dimensions of various size. The extent of the Q-ball can therefore

be limited, forcing the configurations to be anisotropic. The second issue, is that the Q-

balls carry a Kaluza-Klein momentum in the extra dimensions which is quantized. Thus

one expects to find a tower of Q-balls, corresponding to Kaluza-Klein excitations. In the

limit of large compactification, one naturally expects the momentum to become continuous

corresponding to the Q-balls moving freely in the extra-dimensions.

We shall look at these issues by way of introduction to Q-balls in the following two

sections, using a U(1) model in 5 space time dimensions with one compact space dimension

(i.e. corresponding to a Q-ball on a wrapped 4-brane). We first discuss, in section 2,

the large volume limit of Q-balls for complex fields carrying both global charge, Q, and

Kaluza-Klein momentum of a single compact extra dimension, P5. The solutions are found

to have rather natural O(3) and O(4) symmetric limits depending on the size of the extra

dimension. We find that the momentum modes correspond to an infinite set of Kaluza-

Klein excitations of the lowest lying Q-ball; the spectrum has a tower of P5 momenta,

P5 = Q
(
p+

n

R

)
n ∈ Z , (1.1)

where Q is the global charge, p is the lowest mode and R is the compactification radius. The

states with non-zero n can be thought of as Kaluza-Klein excitation of the lowest mode. If

p = 0 the lowest mode is precisely the usual D = 4 Q-ball, albeit possibly constrained by

compact extra dimensions, while p 6= 0 corresponds to giving this state additional mass by

the Scherk-Schwarz mechanism [23].

In section 3 we discuss Q-balls in a special logarithmic potential that allows us to reduce

the task of finding a Q-ball solution to the canonical one-dimensional problem, showing

in detail a Q-ball going from O(4) to O(3) symmetric configurations, and demonstrating

the energetic preference of the surface tension term for large radii and more symmetric

configurations. Finally in section 4 we discuss the non-abelian Q-ball solutions that are

shown generally to exist on dielectric branes.
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2 Warm up; large Q-balls in small boxes

In order to see how Q-balls behave with finite dimensions, consider the large charge limit

of a Q-ball in 5 space-time dimensions. In this limit one neglects the surface effects. (In

the following section we discuss these using a particular logarithmic potential.)

The specific set-up is as follows. We shall take a single scalar field in M4 × S1. The

Minkowski dimensions we call x, and the dimension that is compactified on S1 we call

y, with y and y + 2πR identified. Almost certainly the discussion will hold also for the

untwisted sector of orbifolded extra dimensions, and as will become clear the qualitative

behaviour would most likely be the same in non-flat compactifications.

The action can be written as

S =

∫
d3xdydt

(
∂αφ

∗∂αφ− U5(φφ∗)

)
. (2.1)

Reparameterization invariance leads to the following conserved charges;

E =

∫
d3xdy

(
∂tφ
∗∂tφ+ ∂iφ

∗∂iφ+ ∂yφ
∗∂yφ+ U5(φφ∗)

)
Pi =

∫
d3xdy

(
∂tφ
∗∂iφ+ ∂iφ

∗∂tφ

)
P5 =

∫
d3xdy

(
∂tφ
∗∂yφ+ ∂yφ

∗∂tφ

)
, (2.2)

where i = 1, 2, 3. In addition, assume invariance under a global U(1) transformation,

φ→ eiαφ, so that there is a conserved charge,

Q =
1

i

∫
d3xdy φ∗

↔
∂ t φ. (2.3)

By assumption the origin is a global minimum of U5 and the global U(1) symmetry is

unbroken there. As mentioned in the Introduction, in more general cases the transformation

could be that of any compact group, and the Q-ball could be constructed from a local as

well as a global symmetry. These extensions will be discussed in more detail later when

we come to consider dielectric brane configurations.

Since we seek a solution that is localized in the x coordinates the global minimum in

energy must have U(1) symmetry restored at large radius for any y. Hence it is convenient

to separate out the time dependent U(1) phase;

φ(x, y, t) = ϕ(x, y, t)eiθ(y,t), (2.4)

where ϕ and θ are real. The equations of motion now give us two relations,

ϕ∂2θ + 2∂θ∂ϕ = 0

∂2ϕ− (∂θ)2ϕ = −1

2

∂U5

∂ϕ
. (2.5)

By analogy with standard Q-balls we now choose θ to be linear, parameterizing it with α

and ω;

θ = α(t+ ωy). (2.6)
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The equations of motion then require

ϕ = ϕ(y + ωt) (2.7)

and

(1− ω2)∂2
5ϕ+ ∂2

i ϕ =
1

2

∂Û

∂ϕ
(2.8)

where

Û = U5 − (1− ω2)α2ϕ2. (2.9)

The Q-ball solution then corresponds to the usual problem of a real field rolling in the

inverted potential −Û where y and xi replace time.

For completeness let us find the same result using the, perhaps more familiar, method

which deduces the solution by minimising the energy of a generic field configuration whilst

fixing the charges using Lagrange multipliers. That is we minimise the expression [1]

εω,ω′ = E + ω

{
P5 −

∫
d3xdy

(
∂tφ
∗∂yφ+ ∂yφ

∗∂tφ
)}

+ ω′
(
Q− 1

i

∫
d3xdy φ∗

↔
∂ t φ

)
(2.10)

for a given ω and ω′, and then minimise in ω, ω′. First completing the square in the kinetic

terms gives

εω,ω′ =

∫
d3xdy

(∣∣∣∣ω∂yφ− ∂tφ+ iω′φ

∣∣∣∣2 + (1− ω2)

∣∣∣∣∂yφ− iωω′

1− ω2
φ

∣∣∣∣2
)

+

∫
d3xdy

(
∂iφ
∗∂iφ+ Ûωω′(φφ

∗)

)
+ ωP5 + ω′Q , (2.11)

where

Ûωω′(φφ
∗) = U5(φφ∗)− ω′2

(1− ω2)
φφ∗. (2.12)

Now θ only appears in the first integral as∫
d3xdy

(∣∣∣∣iϕ (ω∂yθ − ∂tθ + ω′
)
)+ω∂yϕ−∂tϕ

∣∣∣∣2 +(1−ω2)

∣∣∣∣|∂yϕ− iϕ(∂yθ − ωω′

1− ω2

) ∣∣∣∣2) .
(2.13)

The energy is minimised where the imaginary contributions vanish, which independently

determines θ,

θ(y, t) =
ω′

1− ω2
(ωy + t), (2.14)

and in addition,

ϕ = ϕ(y + ωt). (2.15)

As one might have expected, the solutions with non-zero P5 are going to be “lumps”

travelling in the y direction with speed ω. The energy is now

εω,ω′ =

∫
d3xdy

(
(∂yϕ)2 + (∂iϕ)2 + Ûωω′(ϕ

2)

)
+ ωP5 + ω′Q, (2.16)
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Figure 1. A Q-ball condensing as the bulk radius increases. Here the centre of the Q-ball is

offset by 1/2 a bulk radius. Figure 1e is close to the solution for an infinite radius. Figure 1a

is slightly larger than the radius corresponding to the “natural” frequency of oscillation in the

upturned potential. For a transverse radius smaller than a certain critical value, the only solution

is trivial in the compact direction (i.e. constant in y). The slight squashing in the compactified

direction is Lorentz contraction due to the non-zero P5.

and clearly extremizing this gives the same equation of motion as before if we identify

α = ω′/(1− ω2). The physical interpretation is that the boost factor (squared) 1/(1− ω2)

is a result of both Lorentz contraction and time dilation in the phase factor, that will

ultimately feed into the charge Q.

We can now proceed to the large and small (in a sense to be defined shortly) limits

of compactification radius, R. In the large R limit the ϕ configuration that minimises ε is

approximately the same as that in the decompactified space. The variation of ϕ proceeds

as for tunneling in d = 4 Euclidean space dimensions in the potential Ûωω′ . In this limit the

symmetry of the problem dictates that, for the stationary (ω = 0) Q-ball, we have a fully

O(4) symmetric solution and so the minimum is the action S4[ϕ] of the bounce solution.

Since ϕ is a function of y + ωt, the factor (1 − ω2) includes a Lorentz contraction which

squashes the solution in the y direction. Clearly for the O(4) limit to apply, R should be

much greater than the radius of this solution (which we shall call r4).

– 5 –
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In the opposite limit, where R < r4, the (∂yϕ)2 term makes any significant variation

of ϕ in the interval y ∈ [0, 2πR] very costly in energy. In this limit we can therefore take

ϕ(x, y) = ϕ(x) and write

εω,ω′ = 2πR

∫
d3x

(
(∂iϕ)2 + Ûωω′(ϕ

2)

)
+ ωP5 + ω′Q. (2.17)

Now the variation of ϕ proceeds as for tunneling in d = 3 Euclidean dimensions in the

potential Ûωω′ , and the minimum energy is the action S3[ϕ] of the relevant bounce solution.

An example of the two limits, which we will be discussing in detail in the following sections,

is shown in figure 1.

Consider now the large volume solution, where the field is approximately constant, ϕ0,

inside a 4-volume V4 (whose form depends on whether we are considering the large or small

R limit). In this case we find

Q =
2ω′

1− ω2
V4ϕ

2
0

P5 =
2ωω′2

(1− ω2)2
V4ϕ

2
0 (2.18)

and

E = V4Ũ +
1

4

Q2

V4ϕ2
0

, (2.19)

where

Ũ = U5(ϕ2
0) +

P 2
5

Q2
ϕ2

0. (2.20)

Note that P5/Q = ω′ω/(1− ω2) so that eq. (2.20) should be compared with

φ(x, y, t) = ϕ(x, y) exp

(
i
P5

Q

(
y +

t

ω

))
. (2.21)

Hence Ũ is the potential after applying the Scherk-Schwarz mechanism to the field φ [23].

One can now minimise the energy with respect to V4 to find

E = Q

√
Ũ

ϕ2
0

, (2.22)

where ϕ0 is the field value that minimises E. Since the volume is proportional to Q, the

point where R becomes relatively small is determined by Q:

Q ≈ 4πR4
√
Ũϕ2

0. (2.23)

Note that the potential Ûωω′ is the same for the large and small R solutions (from now on

we will drop the ωω′ suffix), and actually the energy is independent of R.

We can see this in an interesting scaling limit of the thin wall approximation, given by

ω′ � 1 ; ω2 = 1−O(ω′) . (2.24)

– 6 –
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Without the intervention of P5 small ω′ would always imply small Q-balls, but because of

the simultaneous second limit we have

Q ∼ P5 ∼ V4ϕ
2
0 , (2.25)

and at the same time Û = U − O(ω′), thereby maintaining the thin-wall requirement of

Û(ϕ0) ≈ 0. We conclude that in this limit the potential at ϕ0 only needs to be shifted down

by a parametrically small amount in order to develop a Q-ball solution, which nevertheless

has large Q. In more physical terms, the squared boost factor 1/(1−ω2) is able to keep Q

and P5 large even though ω′ is small. In this limit the energy is given by

E =
P 2

5

Q2
V ϕ2

0 +
1

4

Q2

V ϕ2
0

+O(ω′) , (2.26)

which is minimised when

Vmin =
Q2

2P5ϕ2
0

+O(ω′) . (2.27)

We conclude that there is an energetically optimal volume for the Q-ball to occupy given

by the parameters on the right of this equation, but the Q-ball can achieve this minimal

volume for any radius of compact dimension R because there is no surface tension term in

the energy. Note that substituting back in we find that the energy of this configuration is

E = P5 +O(ω′); i.e. the 4-dimensional rest-mass is made up almost entirely of P5 in this

limit, while the 5-dimensional rest-mass is negligible in this limit.

Returning to the generic case, we still need to show stability of the Q-ball with respect

to decay into a collection of Kaluza-Klein modes. Decay is allowed into Q Kaluza-Klein

modes i = 1 . . . Q, with total momentum
∑

i P5i = P5, and total rest mass

EKK−modes =

Q∑
i

√
1

2
µ2 + P 2

5i, (2.28)

where µ2 = ∂2U/∂ϕ2. A simple geometric argument shows that this expression is minimised

when the P5 momentum is equally distributed amongst the Kaluza-Klein modes, P5i =

P5/Q. Stability therefore requires

EKK−modes = Q

√
1

2
µ2 +

P 2
5

Q2
> E = Q

√
Ũ

ϕ2
0

(2.29)

or

µ2 >
2U

ϕ2
0

. (2.30)

This is precisely the condition for a Q-ball to exist in the 4 dimensional theory. Hence the

Q-balls with additional integer global Q-charge can be simply understood as the Kaluza-

Klein ladder of the lowest lying Q-ball.3 This can be trivially seen from eqs. (2.20), (2.22)

which gives

E2(P5) = E2(0) + P 2
5 (2.31)

3We should remark that our findings contradict those of ref. [24] which concluded that different stability

conditions and types of Q-balls can result. That analysis began with a decomposition of the action into

– 7 –
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so that in the thin wall limit the Kaluza-Klein momentum P5 can be boosted away to

leave the rest-mass of the Q-ball in a non-compact volume: the large Q-ball is blind to

the compactness of the extra dimension. The momentum P5 is naturally decomposed into

Kaluza-Klein modes as

P5 = Q
(
p+

n

R

)
(2.32)

where n is an integer parametrising the Kaluza-Klein tower, whilst the non-integer p rep-

resents the Scherk-Schwarz phase with

φ(x, y + 2πR) = eipφ(x, y). (2.33)

The interpretation of the phase p is that it is the non-integer momentum per unit charge.

Similar solutions can be found for a global unitary symmetry as we shall later see for

Q-balls on dielectric branes. In the more general cases we have to replace the phase by a

time dependent unitary rotation, but the rest of the analysis will go through unchanged.

2.1 Generalization to d compact dimensions

The treatment above can be straightforwardly extended to multi-dimensional compact flat

spaces. Consider a toroidal compactification on an untilted torus with d compact radii Ra
where a = 1 · · · d. Then eq. (2.10) becomes

εω,ω′ = E+ω ·
{
P −

∫
d3xddy

(
∂tφ
∗∇dφ+∇dφ∗∂tφ

)}
+ω′

(
Q− 1

i

∫
d3xddy φ∗

↔
∂ t φ

)
,

(2.34)

where ω = {ωa} and P are now d-vectors. The square in the kinetic terms is completed as

εω,ω′ =

∫
d3xddy

( ∣∣ω · ∇dφ− ∂tφ+ iω′φ
∣∣2

+(δab − ωaωb)
(
∂aφ−

iωaω
′

1− ω.ω
φ

)(
∂bφ
∗ +

iωbω
′

1− ω.ω
φ∗
)

+∂iφ
∗∂iφ+ Û(φφ∗)

)
+ ω · P + ω′Q , (2.35)

where

Û(φφ∗) = U4+d(φφ
∗)− ω′2

(1− ω · ω)
φφ∗. (2.36)

As long as ω ·ω < 1 so that the “dual metric” is positive definite, the previous arguments

go through unchanged, and the energy is minimised where

θ(y, t) =
ω′

1− ω · ω
(ω · y + t), (2.37)

Fourier modes, arriving at an infinite and intractable set of coupled differential equations for the Kaluza-

Klein modes. However, the interactions among the different modes must be consistent with the fact that

they come from higher dimensional interactions. Once this constraint is taken into account the stability

condition must be as above. There is in effect one and only one kind of Q-ball however one chooses to

squash it into extra dimensions, and at least in the large charge limit there are for example no special

bounds on the mass per unit charge associated with the finite compactification radius.

– 8 –
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and

ϕ = ϕ(ω · (y + ωt)). (2.38)

Inserting these into the constraints with the large volume solution minimised at ϕ0, explic-

itly gives

Q =
2ω′

1− ω · ω
V3+dϕ

2
0

P =
2ωω′2

(1− ω · ω)2
V3+dϕ

2
0 , (2.39)

with

E = V3+dŨ +
1

4

Q2

V3+dϕ
2
0

(2.40)

where

Ũ = U(ϕ2
0) +

P · P
Q2

ϕ2
0. (2.41)

3 Small Q-balls in even smaller boxes

3.1 An exact solution

In the previous section we saw that Q-balls in the large charge limit are energetically

independent of the size of the compactification, and in the thin wall approximation it is

only the total volume they occupy in the bulk that matters.

In this section, we wish to get some idea of surface effects. We therefore turn to

a logarithmic potential for which exact Q-ball solutions can be found in certain limits;

continuing with the definition φ = ϕeiθ, the particular U(1) invariant potential of interest is

U5 = µ2ϕ2

(
1− log

ϕ2

ϕ2
0

)
+O(ϕn). (3.1)

This potential is particularly interesting for studying surface effects because it admits exact

Q-ball solutions whose ‘surfaces’ constitute the whole Q-ball, whatever the charge. It has

found use in a limited number of related works in the past, most recently [25].

The last term in the potential, O(ϕn) (where n is some large power), is added to lift the

potential at large field values ϕ &
√
eϕ0 thereby ensuring that it satisfies the requirement

that the origin be the global minimum. However, the modified potential for finding the

Q-ball can be written,

Û = µ2ϕ2

(
1− log

ϕ2

ϕ′20

)
+O(ϕn), (3.2)

where

ϕ′0 = e
− ω′2
µ2(1−ω2)ϕ0. (3.3)

Even for modest value of α the potential goes negative at field values that are exponentially

smaller than the values at which ϕn dominates and consequently, for the purposes of finding

the Q-ball solution, the latter is negligible.

– 9 –
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Neglecting this term allows one to solve the equations of motion in eq. (2.8) by separa-

tion of variables. Of course the analysis regarding the phases of φ goes through as before,

but now the solution for its modulus ϕ can be written,

ϕ = ϕ′0Y (y)ΠiXi(xi), (3.4)

giving

Xi = e
1
2

(1−µ2x2
i ) (3.5)

and
Ÿ

Y
= − µ2

1− ω2
log Y 2. (3.6)

The problem is reduced to the one dimensional task represented by this last equation. In

the large radius limit it naturally just gives the expected Lorentz boosted version of the

solutions in the xi directions,

Y → exp

(
1

2
− µ2

2

1

1− ω2
(y + ωt)2

)
. (3.7)

In more general cases it can easily be solved numerically imposing the boundary conditions

of periodicity in y → y+ 2πR. Note that the typical width of the Q-ball in the y-direction,√
1− ω2/µ has the expected Lorentz contraction.

Some examples are shown in figures 1a-e where the compactification radius is increased

from Rµ ≈
√

(1− ω2)/2 to Rµ = 2
√

(1− ω2)/2. In figure 1a the value of the radius

corresponds to the ‘natural’ period; that is Y (y) is oscillating close to Y = 1 in the

upturned potential −Û . The oscillation period is monotonically increasing with amplitude

so that (uniquely for this potential) there is a hard cut-off below which the solution is

completely three dimensional: when Rµ <
√

(1− ω2)/2 there can be no solutions except

the O(3) symmetric trivial one, Y (y) = 1.

As the radius increases so does the amplitude of oscillation in order to maintain the

correct periodicity. Extending the oscillation period (i.e. compactification radius) signifi-

cantly, forces Y to approach the origin of ϕ. In other words, the solution quickly collapses

to the O(4) symmetric one.

At the radius Rµ & 2
√

(1− ω2)/2, there are two available solutions. One is the isolated

O(4) symmetric configuration of figure 1e, and the other is the doubled solution in figures

2a-b. The latter corresponds to Y (y) oscillating twice in the period 2πR. Further expansion

of the radius causes the doubled solution to condense into two isolated Q-balls in the bulk.

However, the doubled solution of figure 2a is energetically unstable to decay into the single

isolated Q-ball with the same charge and P5. Similarly two completely isolated Q-balls of

this type will coalesce into one large one.4 Figures 2a,b show two cases of interest, the first

being the solution with Y ≈ 1 and the second the isolated solution in eq. (3.7).

4Note that these statements are all with the caveat that there are no relative phases between the Q-balls.

In more general cases they can attract or repel and can exchange charge continuously [26, 27]. One would

expect this to be so with compact dimensions as well, although it would be of interest to extend the study

of ref. [26, 27] to this case.
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Figure 2. The second in a family of solutions first appearing at a radius that is twice the critical

radius of the solutions in figure 1. Increasing the radius of this solution results in the condensation

of two isolated balls. Reducing it forces coalescence into one of the single Q-ball solutions in figure 1.

We now present the charges, momentum and energy for these different configurations.

To do so we define

γ = (e
√
π)3ϕ

2
0

µ3

ξ =
ω′

µ
√

1− ω2
. (3.8)

The general expressions are (redefining y + ωt→ y)

Q = 2
ω′

1− ω2

∫
d3xdyϕ2 = 2

ω′

1− ω2
γ

∫
dyY 2 ,

P5 =
ωω′

1− ω2
Q+ 2ω

∫
d3xdy(∂yϕ)2 =

ωω′

1− ω2
Q+ 2ω

µ2

1− ω2
γ

∫
dyY 2 log Y 2 , (3.9)

where in the last line we used eq. (3.6) and integrated by parts for this example. This then

gives for the squeezed and isolated limits respectively

Qsq =
2Rµγ√
1− ω2

ξe−ξ
2

Qis = 2e
√
πγξe−ξ

2
. (3.10)

This determines ξ while ω can be determined by the equations for P5; defining

ω =
1√

1 + ρ2
, (3.11)

the latter lead to

ρ =
Qµξ

P5

ρ =
Qµξ

P5
(1 + 1/2ξ2) , (3.12)
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and we can then parameterize the energy as

Esq = Qsqµ

(
α

µ
+

1

2

µ

α

)
Eis = Qisµ

(
α

µ
+

1

4

µ

α

)
, (3.13)

in the squeezed and isolated cases respectively, where as before α = ω′/(1− ω2).

Notice that the minimum value for the energy of the isolated Q-ball, i.e. Qµ, is less than

that for the squeezed Q-ball
√

2Qµ, indicating that the effect of surface tension is for Q-balls

energetically to favour large radius where they can assume a more symmetric configuration.

To complete this discussion, we should remark that the Q-balls considered in this

example are not unstable to decay into free states despite the fact that E > Qµ. This is

because the parameter µ is not the physical mass of any asymptotic quantum at the origin.

(Formally the mass at the origin is logarithmically infinite so there are no asympotic states

there at all.) Indeed consider the physical system in which Q-balls with such a potential

could appear, namely the F and D-flat directions corresponding to conserved B−L current

in supersymmetry, as was considered in for example ref. [8–10]. The one-loop improved

tree-level potential of this system would typically be of the form

U = µ2ϕ2

(
1− log

ϕ2 +m2

ϕ2
0

)
+O(ϕn), (3.14)

where now ϕ is the scalar denoting the VEV along the flat direction. The scale
√
ϕ2 +m2

is the approximate renormalisation scale due to the field ϕ giving a mass to for example

squarks and sleptons along the flat direction, and the scale m would therefore naturally

correspond to the scale of supersymmetry breaking which would in a typical supersymmet-

ric phenomenology be of order µ itself. Provided ϕ0 � m the Q-ball analysis goes through

unchanged upto corrections of order O(m2/ϕ2
0), while the mass-squared of the asymptotic

states at the origin, µ2
(
1 + logϕ2

0/m
2
)
, is now regulated by the infra-red cut-off m, and is

parametrically larger than µ2.

3.2 The thick wall/small charge approximation

We can also consider more general “small” Q-balls which would be more appropriate for

the Q-balls on dielectric branes we discuss later. Following ref. [5] our task is to minimise

εω,ω′ =

∫
d3xdy

(
(∂yϕ)2 + (∂iϕ)2 + Ûωω′(ϕ

2)

)
(3.15)

for fixed ω and ω′, where in the thick wall limit we keep only the first two terms in an

expansion of the potential,

Ûωω′ =
µ′2

2
ϕ2 −Aϕ3 + . . . , (3.16)

and the effective mass-squared is

µ′2 = µ2 − ω′2

1− ω2
. (3.17)

Note that in a 5D theory, µ has mass-dimension 1, but A has mass-dimension 1/2.
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The bounce action can be related by a simple rescaling to the bounce action for the

rescaled potential Vψ = 1
2ψ

2 − ψ3 which can be computed numerically in certain cases [5].

The rescaling is of the form ψ = ϕA/µ′2 and x̂ = µ′x, ŷ = µ′
√

1− ω2y, so that the typical

isolated solution would have O(4) symmetry and width ∼ 1 in the rescaled units, and

again we infer squeezed solutions for Rµ′
√

1− ω2 < 1. It is not possible to obtain the

solution in full generality, however we can again restrict ourselves to either squeezed (O(3)

symmetric) or isolated (O(4) symmetric) solutions as in ref. [28]. Considering the former

for definiteness gives Sψ = 4.85 and an energy of

εω,ω′ = Sψ
2πRµ′3

A2
+ ω′Q+ ωP5 . (3.18)

Minimising in ω and ω′ gives

Q =
3Sψ
A2

ω′min

1− ω2
min

2πRµ′min

P5 =
ωmin ω

′
min

1− ω2
min

Q , (3.19)

with of course the second relation following from eq. (3.9). The energy can then be written

E = Qµ

(
α

µ
+

1

3

µ

α
− 1

3

ω′

µ

)
. (3.20)

The usual thick-wall solution of [5] has w ≡ 0 and hence

E = Qµ

(
2

3

ω′

µ
+

1

3

µ

ω′

)
.

This gives E > 2
√

2
3 Qµ so the mass cannot be made arbitrarily small with respect to a

collection of asymptotic quanta of the same charge. With non-zero P5 a similar situation

obtains, but with non-zero ω acting to increase the mass, such that

E >
2
√

2 + ω2

3
Qµ. (3.21)

We conclude that thick-wall Q-balls with ω > 1/2 are always unstable to decay.

4 Q-branes

4.1 Background: the dielectric brane potential

We now turn to our particular application of the previous discussion, Q-balls as deforma-

tions of stacks of Dp-branes.

Let us briefly recap the Lagrangian for this system. As is well known, the massless

modes of the open string form a supersymmetric U(1) gauge theory with a vector Aµ, µ =

0, 1, . . . , p, 9 − p “collective coordinate” scalars Φi, i = p + 1, . . . , 9 and their fermionic

partners. The dynamics of a single Dp-brane is described by the DBI-action

SDBI = −Tp
∫
dp+1σe−φs

√
det
(

[G+ 2πα′B]µν + 2πα′Fµν

)
+ µp

∫ ∑
C(n) ∧ e2πα′(B+F ) ,

(4.1)
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where Tp, µp are respectively the tension and the RR charge of the Dp-brane, C(n) is

the n + 1-form RR potential and φd is the string theory dilaton. We denote by [. . .] the

pull-back of spacetime tensors to the Dp worldvolume; for example

[G]µν = Gµν + 4πα′Gi(µ∂ν)Φ
i + 4πα′Gij∂µΦi∂νΦj . (4.2)

A collection of N coincident Dp-branes supports a supersymmetric U(N) gauge theory

with gauge field Aµ, and scalars Φi in the adjoint of U(N). The latter act as the collective

coordinates of the branes. The action which describes the dynamics of such a collection of

coincident Dp-branes is not completely known. For example, replacing the abelian U(1) in

the action (4.1) and taking the symmetrized trace over the gauge group as was suggested

in [29, 30] does not capture the full infrared dynamics [31], and in fact additional commu-

tators of the field-strength are neeeded at sixth order [32]. Some progress can be made

especially for the structure of the Chern-Simons term, the second term in (4.1), in the non-

abelian case [22]. By using T-duality arguments, Myers showed that a Dp-brane couples not

only to the p+ 1-form RR potential but also to the RR potential with form degree higher

than p+ 1 [22]. A collection of N D0-branes for example in an electric RR four-form flux

develops a dipole moment under the three-form potential. This is a “dielectric” property

of the Dp-branes similar to the dielectric properties of neutral materials in electric fields.

Indeed, in general, the Chern-Simons term for N coincident Dp-branes is modified to [22]

SSC = µp

∫
Tr
(
ei2πα

′iΦiΦ
∑(

C(n) ∧ e2πα′(B+F )
))

, (4.3)

where iΦ denotes the interior product by Φi if the latter is considered as a vector in the

transverse space. The existence of these additional couplings in turn modifies the scalar

potential of the world-volume theory. In the case of N Dp-branes, for flat world-volume

metric and vanishing RR and B-fields, the DBI-action, in lowest order in α′, turns out to be

SDBI =

∫
dp+1σ

[
−4π2α′2Tpe

−φs Tr

(
DµΦiDµΦi +

1

4
FµνF

µν

)
− V

]
, (4.4)

where the scalar potential is

V = −Tpe−φsπ2α′2Tr([ΦA,ΦB])2 . (4.5)

Then by turning on an electric p + 3-form potential C01...pAB , an additional coupling of

the Dp-brane appears as can be seen from the Chern-Simons term (4.3), so that the total

potential turns out to be

V = −Tpe−φsπ2α′2Tr([ΦA,ΦB])2 − i

3
4π2α′2µpTr(ΦAΦBΦC)fABC , (4.6)

where fABC = 1
(p+1)!ε

µ0...µp(∂ACµ0...µpBC + cyclic).

4.2 Q-balls on dielectric branes

Now let us consider simple Q-ball configurations on such dielectric branes. For definiteness

we will take N coincident D3-branes; as the collective coordinate of the D3-branes plays
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the role of the (non-abelian) internal Q-charge, the Q-lumps will describe the physical

displacement of the D-branes within the compact dimensions, with the D3-branes oriented

so their internal Neumann dimensions fill space-time. The results extend trivially to other

Dp-branes.

Generally speaking, non-abelian Q-ball solutions can be found in theories that have

scalar fields φab in a real M ×M matrix representation of some non-abelian symmetry

group [4, 6]. We should remark that the latter will turn out to be a subgroup of the U(N)

gauge symmetry described by the Dp-branes so that the result will be gauged Q-balls rather

than global. As discussed in [3] such objects are subject to a further constraint on their

size coming from Coulomb repulsion of the charge which distributes itself over the surface

of what is effectively a superconductor; however we will work in the small coupling limit

in which this effect is negligible and the solutions are the same as the global ones.

In the absence of gauge fields VEVs then, the action to lowest order after appropriate

field redefinitions is

S =

∫
d3+dxdt

(
1

2
(∂φ)2 − U(φ)

)
, (4.7)

where U(φ) is the scalar potential, and traces over the M ×M matrix indices are implied.

Generalising the results of the earlier sections, reparameterization invariance leads to the

following conserved energies and momenta;

E =

∫
d3+dx

(
1

2
(∂tφ)2 +

1

2
(∂iφ)2 + U(φ)

)
Pi =

∫
d3+dx ∂tφ∂iφ , (4.8)

where i = 1, . . . 3 + d, again traces are inferred, and we are assuming canonical kinetic

terms. The conserved charges of the non-abelian symmetry are

Qk =
1

i

∫
d3+dx ∂tφ

[
T k, φ

]
, (4.9)

where T k are the relevant generators. To each charge we can associate a Lagrange multi-

plier, ωk, so that we must minimise the expression

εωk = E + ωk

(
Qk − 1

i

∫
d3+dx ∂tφ

[
T k, φ

])
. (4.10)

Completing the square and minimising as before we find

φ = eiωkT
ktϕ(x) e−iωkT

kt

εωk =

∫
d3+dx

(
1

2
(∂iϕ)2 + Ûωk(ϕ)

)
+ ωkQ

k, (4.11)

where

Û = U +
1

2
Tr
(
ωk

[
T k, ϕ

])2
, (4.12)

and of course now ϕ is also M ×M matrix-valued. Note that we could have found the

same result by using the equations of motion, as we did for the U(1) case discussed earlier.
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So far the discussion applies completely generally for non-abelian Q-balls. Our task now

is to find a local minimum of the dielectric potential that preserves such a global non-abelian

symmetry, and to determine U(φ) there. To do this let us turn on a background field,

fABC = fεABC , (4.13)

where we will take the ΦA
ab to be three N ×N matrix-valued fields transforming under the

U(N), with A = 1 . . . 3, a, b = 1 . . . N . As before, A labels the three arbitrarily chosen

extra dimensions in which we turn on the background field. As an ansatz, let the three

fields ΦA fall into an irreducible SU(2) multiplet as follows:

ΦA(t, x) = β φ̂(t, x)⊗ αA , (4.14)

where the αA form an N/M ×N/M irreducible representation of SU(2), φ̂(t, x) is an arbi-

trary M ×M real matrix and β−1 = 2πα′T
1/2
p e−φs/2 is a parameter that ensures canonical

kinetic terms for φ̂. In particular we have that

[αA, αB] = 2iεABCα
C , (4.15)

and

Tr(αAαB) =
n

3
(n2 − 1)δAB, n = N/M . (4.16)

Inserting this ansatz into eq. (4.6) and using the BPS condition for the tension and RR

charge of the Dp-branes, Tp = µp, we find that V becomes

V = 8π2Tpe
−φsα′2β4n(n2 − 1)

(
Trφ̂4 +

f̂

3
Trφ̂3

)
, (4.17)

where f̂ = feφs/β. A local minimum exists at

〈φ̂〉 = φ0IM , (4.18)

where φ0 = −f̂/4 and IM is the M ×M unit matrix. This is the usual dielectric mini-

mum, representing a configuration in which the N D3-branes are bound to the surface of

a D5-brane (forming a sphere in the non-space-time dimensions with radius r0 = π
2α
′f̂N).

We may then define the D-brane displacements with respect to the shifted centres of

mass of the blocks of M D-branes as

φ̂(t, x) = − f̂
4
IM + φ(t, x) . (4.19)

The M × M matrix-valued field φ(t, x), corresponding to the displacement around the

minimum, is precisely our desired non-abelian Q-ball field. Substituting into V gives a

potential for it of the form (ignoring a vacuum energy term)

U(φ) =
1

2
µ2Trφ2 +

g

3!
Trφ3 +

λ

4!
Trφ4 , (4.20)

where

µ2 =
f̂2λ

96
, g = − f̂λ

6
, (4.21)
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Figure 3. The original dielectric potential U (upper), and the potential around its minimum Û

(lower) for non-abelian Q-ball deformations.

and

λ =
12n(n2 − 1)eφs

π2Tpα′2
. (4.22)

Note that λ has engineering dimension 3 − p as required for the action defined over the

p + 1 dimensional world volume. Clearly eq. (4.20) is invariant under transformations

φ → eiΩφe−iΩ, where Ω are elements of GL(M,R), and we may therefore contemplate

precisely the same Q-ball solutions as described above. Although the general case can be

worked out, let us consider the simplest case in which Ω are elements of SO(3) (indeed

minimal stable Q-balls are all unitarily equivalent to the SO(3) Q-ball [4]),

φ(t, x) = eiωkTktϕ(x)e−iωkTkt , (4.23)

where ϕ(x) is in the adjoint of SO(3), and Tk (k = 1, 2, 3) are SO(3) generators in the

fundamental representation. The potentials U and Û are shown in figure 3. This case was

explicitly worked out in [4, 6], with the result that the necessary and sufficient condition

for the existence of Q-balls [4] is

1 ≤ g2

µ2λ
< 9. (4.24)

The lower bound is the energetic condition for the existence of the Q-balls (ensuring that

the Q-ball will not decay into free mesons), whereas the upper bound is the condition that

the cubic coupling is not very large so that φ = 0 is the global minimum. For the case at

hand we have
g2

µ2λ
=

8

3
, (4.25)

and thus eq. (4.24) is satisfied. Therefore, dielectric branes support stable Q-balls in their

world-volume.

Given this, it is interesting to ask what their mass can be. Adopting the small Q-

ball approximation, eq. (3.21) gives E > 2
√

2
3 Qµ if we, for simplicity, take the lump to be

non-relativistic in the compact dimensions, ω � 1. In this limit our 5 dimensional system
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(which would correspond to dielectric D4 branes wrapped on a dimension of size 2πR)

would give Q-balls with a mass less than Qµ = 81πSψ
ω′R
λ , so the minimum Q-ball mass is

proportional to the compactification radius measured in units of the Compton wavelength

1/ω′. As we saw this number can in principle be less than unity. (Precisely how small it

can be depends on the complicated dynamics of the Q-charge exchange which is beyond the

scope of this paper to discuss, but would require further studies along the lines of [25–27].)

In addition λ scales as n3 and can therefore be large. We conclude that such fundamental

Q-balls could be significantly less massive than the fundamental scale.
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