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The argument in this paper, supported by literature, evidence, illustrations and simu-

lations, is as follows. The general standard of social science research still needs

improvement, even after a number of attempts have been made to improve it. The

most recent attempt in the UK is the Quantitative Methods Initiative, based on wid-

ening the appeal of social science that involves numbers. However, before any initia-

tive like this could be successful what is envisaged as ‘quantitative’ methods needs to

be radically altered to make it simpler and more logical. All work based on standard

errors—significance testing, confidence intervals, power calculations, multilevel mod-

elling and so on—requires complete random samples/groups as a mathematical

necessity. Since complete random samples are so rare in social science, work based

on standard errors is largely irrelevant and should not define what ‘quantitative’

methods are. The paper then shows that the logic of significance testing, power and

confidence intervals does not work anyway (even with a perfect random sample).

Also, estimated standard errors are often inaccurate, and that inaccuracy propagates

into the calculation of test statistics. The inaccuracy is worsened by missing data and

sometimes even more so by attempting to compensate for that missing data. The

ensuing results cannot be trusted. Once released from consideration of probability

distributions and the like, ‘quantitative’ methods can be further simplified. The con-

sequence would be a social science in which the logic of working with numbers would

be the same as the logic of working with any other kind of data. This would then have

formative implications for so-called ‘qualitative’ methods and leads to the realisation

that there are, in fact, just methods. The things that make good research or trustwor-

thy results are the same, and independent of the methods used—rigorous design, pre-

specification as far as possible, full reporting, full consideration of missing data and

lost cases, and setting out the complete logical argument from research findings to

implications.

Capacity-building and the Quantitative Methods Initiative

In the UK, there is a long-standing concern about the quality and utility of social

science research (McIntyre & McIntyre, 2000; Gorard, 2004, Platt, 2012). The same

concerns appear in many other countries. In education, for example, US journal

*School of Education, Durham University, Leazes’s Road, Durham DT1 1TA, UK. Email: s.a.c.

gorard@durham.ac.uk

© 2015 British Educational Research Association

Review of Education
Vol. 3, No. 1, February 2015, pp. 72–96

DOI: 10.1002/rev3.3041



editors and others have long reported that very few published papers were really wor-

thy of acceptance. Wandt et al. (1965) deemed most published studies to be trivial or

invalid, and often both. The key issues were lack of appropriate study design, incor-

rect methods of analysis and lack of reporting assumptions or limitations. Forty years

later, Ioannidis (2005, p. 1) reported concerns that most current published research

findings in medicine, science and social science are simply false. ‘For many current

scientific fields, claimed research findings may often be simply accurate measures of

the prevailing bias.’

A number of attempts have been made to improve research capacity and so raise

the standard of research. A range of funding partners—including the Higher Educa-

tion Funding Council for England, the British Academy, the Nuffield Foundation

and the Economic and Social Research Council—have decided that a key problem is

the lack of ‘quantitative’ research. They have launched a joint national Quantitative

Methods (QM) Initiative for social science (e.g. http://www.esrc.ac.uk/research/

skills-training-development/qmi/index.aspx). The focus is on the development of new

methods courses, teaching resources, new training opportunities, work placements,

scholarships and the embedding of ‘quantitative’ evidence in substantive courses for

all social scientists. The model underlying all of this activity and expenditure is that

‘quantitative’ work in social science is good, especially in economics and psychology,

but that it is not always well taught and there is not enough of it outside those two

disciplines.

Some of this diagnosis may be correct, although it is possible that the problems of

social science are as much to do with lack of design, genuine curiosity and research

integrity as to do with lack of number. Some of the solutions may also be necessary

but they will probably not be sufficient. This paper shows that what is being taught as

‘quantitative’ methods is currently too often wrong and even more often needlessly

complex. It is these confusing approaches more than anything that are driving

researchers away from the relatively simple use of measurements and frequencies in

their work (Cooper & Shore, 2008; Hampel, 1997; Murtonen & Lehtinen, 2003;

Watts, 1991). Traditional ‘quantitative’ methods are more part of the problem than

any promise of solution and ‘the research enterprise may be distorted by statistical

technique, not helped’ by it (Berk & Freedman, 2001, p. 2). In psychology, an area of

social science exempted from the QM initiative as already having enough sound QM

work, it seems that data fiddling, publication bias and false positives abound (Sim-

mons et al., 2011, p. 1360). It is ‘unacceptably easy . . . to accumulate (and report)

statistically significant evidence for a false hypothesis’ and, of course, non-significant

results are routinely unpublished and so deleted from the record, across all areas of

research (Pigott et al., 2013).

An alternative approach is to simplify what it means to use numbers in research, to

stress that the underlying logic is the same for the analysis of any kind of data

whether numeric or not, and only then try to improve uptake through the pedagogy

and persuasion of something like the QM Initiative (but with a less divisive name).

This paper is based on experiences of leading the Economic and Social Research

Council (ESRC) Research Capacity-building Network and subsequent activities

within the ESRC Researcher Development Initiative, culminating in a recent project

for the QM Initiative. Funders have repeatedly assumed that improvement in
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research will come about mainly through innovation in, or the wider utilisation of,

complex or highly technical methods. However, there is very little evidence that the

existing problems diagnosed by stakeholders and the literature critical of existing

research that does not use numbers (above) are susceptible to solution merely by a

change in the fashion of methods. The paper proposes instead the simplification

(and correction) of methods of data collection and analysis as far as possible, much

greater clarification of research as an argument based on genuine attempts to com-

municate each step, greater emphasis on prior study design and research integrity.

Only then does the creation of new teaching resources and approaches make sense.

Teaching new researchers things that most of them would never need, or that mostly

do not work as intended anyway, or that have traditionally been made overly com-

plex to disguise limitations and flaws, is absurd, and this is so however innovative or

charismatic the teaching is made to be. The paper explains and illustrates each of

these points and concludes with a proposed way forward to enhance research quality

in which the red herrings of ‘qualitative’ and ‘quantitative’ should not feature.

The real standard error

A typical course in, or resource for, learning ‘quantitative’ methods will be based on

random sampling theory and its derivatives. These techniques for conventional statis-

tical inferences (based on formulas for the standard error of the mean, t-tests and so

on) depend upon the strict assumption of random sampling (Berk & Freedman,

2001). What does this mean, in theory and in practice?

The term ‘standard error’ is, like many things in statistics, ambiguous (see

below). In theory, the standard error of the mean refers to the standard deviation

of the distribution of the means of a specific measurement from a huge number of

repeated random samples of the same size from a known finite population (Peers,

1996). The specific measurement can be any value or characteristic associated

with each member of the population (such as their height for a population of peo-

ple, or the numbers of rooms in each house for a population of houses). Put

another way, if we know the values (or scores) for a fixed population then we can

estimate the distribution of means that we would obtain from many random sam-

ples of size N. The standard deviation of that sampling distribution, for any real

positive value of N, is given the special name ‘standard error’. Standard errors can

be calculated for values and parameters other than the mean, but for simplicity

this paper focuses on the mean (and the points made would be true about the

standard errors for other parameters as well).

Altman and Bland (2005, p. 903) explain it in this way:

When we calculate the sample mean we are usually interested not in the mean of this par-

ticular sample, but in the mean for individuals of this type—in statistical terms, of the pop-

ulation from which the sample comes. We usually collect data in order to generalise from

them and so use the sample mean as an estimate of the mean for the whole population.

Now the sample mean will vary from sample to sample; the way this variation occurs is

described by the “sampling distribution” of the mean. We can estimate how much sample

means will vary from the standard deviation of this sampling distribution, which we call

the standard error (SE) of the estimate of the mean.
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The calculation of this true standard error (SE) thus requires considerable prior

knowledge. It requires knowledge of the identity of every member of the population.

In fact, this is the definition of a ‘population’ in this context. The ‘population’ refers

to all members (cases) that are independent of each other (such as people or houses),

each of which has an equal chance of being picked for a random sample during ran-

dom selection. The required knowledge of the population also includes the measure-

ment or value that is to be sampled, for every case (such as the person’s height or the

number of rooms in each house). A case selected at random that has no relevant mea-

surement or value cannot be used to help compute the SE and so must be discarded,

otherwise, not every case has a chance to be included when calculating the mean, and

this will bias the sample. It would be like having a standard pack of 52 playing cards

with a few cards so disfigured that it is not possible to say what they are. Drawing any

valid card from this deck is no longer a 1/52 chance. Either, the unreadable cards

must be discarded and the deck (population) redefined to be only those cards (cases)

for which we have perfect knowledge, or else we must accept that any sample will not

be random, and so a SE cannot be calculated and would not make sense anyway

(see below).

The calculation of the true SE is based on complete knowledge of all relevant val-

ues for the population and the generation of large numbers of complete random sam-

ples. These samples must be random and the selection probabilities must remain the

same from sample to sample in the repeated re-sampling that is needed to create the

SE. This is part of how the SE is defined, and random sampling is inherent in its

mathematical computation and in the algorithm in any software used to calculate the

true SE. As Berk and Freedman (2001, p. 2) state ‘This is not a matter of debate or

opinion; it is a matter of mathematical necessity’. This means it is important to under-

stand what a random sample is.

What is a random sample?

A ‘random sample’ is a subset of cases from the known complete population (see

above), selected by chance in such a way as to be completely unpredictable. The

chance element can be produced by observing radioactive decay, using specialist soft-

ware or even Microsoft Office, via a random number table, or a mechanical process

like a card shuffling machine. Strictly speaking, these all produce pseudo-random

numbers because they are generated by a process of some kind, but they are all that is

possible in reality. A true random sample should also permit the occurrence of the

same case more than once (like drawing a card from a pack of 52, replacing the card

and drawing another at random). The chance of such repetition occurring depends

upon what proportion of the population is in the sample. If the population is large in

relation to the sample this issue of permitting repetition within a sample may not mat-

ter much in practice, but it is important to remember that sampling without the possi-

bility of repetition (of the card or whatever) is not really random sampling. It is

important because compromises like this, however small, mount up. So far, we must

accept that a ‘random’ sample is really pseudo-random, and that if it was drawn with-

out the possibility of repetition then it is slightly less random again (if there is such a

thing).
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More importantly, a random sample must be complete in two senses. It must

include every case that was selected from the population by chance. There can be no

non-response, refusal or dropout in a random sample (by definition—again this is not

a matter of opinion or belief) and every case selected must have a known measure-

ment or value of the characteristic of interest (height, number of rooms or whatever).

There must be no missing values. As before, these issues are assumed in the definition

and computation of the SE, and are a matter of mathematical necessity.

Imagine the process of dealing a hand of 13 playing cards. If the cards are properly

shuffled, we can say that the hand is random. If the deal involved picking 15 cards

and then returning two low cards to the pack, the resulting hand is not random even

though it has 13 randomly dealt cards. Similarly, dealing 13 cards and then replacing

two low cards by two others drawn randomly from the pack would not yield a random

hand. This is so, even though all 13 cards in the eventual hand had been drawn ran-

domly. A random sample, despite being an ideal, is a simple thing and any deviation

from random sampling must inevitably lead to a sample that is not random.

Problems of non-response

A situation where cases are selected for a random sample but some do not actually

participate or do not provide responses for a key variable, also leads to a non-random

sample. There may be non-response, refusal, untraceable cases, errors in the sam-

pling frame and unreadable or undecipherable data. If cases from a random sample

drop out or do not provide responses for a key variable after a research study has

started, the resulting sample is also non-random. Again, this attrition may be due to

refusal, mortality, mobility, or undecipherable data at a later stage. In general, the lar-

ger the study, the more data it collects and the longer it lasts, the more likely it is to

have substantial missing data. Many commentators suggest that 100% participation,

of the kind required by statistical theory (to calculate the SE), is unheard of in prac-

tice (Cuddeback et al., 2004). For example, Lindner et al. (2001) examined all of the

articles published in the Journal of Agricultural Education, 1990–1999. All empirical

reports had issues of non-response (even though most made no mention of the threat

that this caused).

All non-response, of all of the kinds outlined above, creates a potential for bias in

the results from the remaining cases (Peress, 2010). It is most unlikely that the cases

dropping out from a random sample are randomly distributed and that is part of the

reason why it is no longer a ‘random’ sample (Hansen & Hurwitz, 1946; Sheikh &

Mattingly, 1981). Data based only on the achieved respondents is almost certainly

biased, as can be demonstrated when population or administrative data are compared

with (necessarily) incomplete surveys of the same cases, or where different studies

have selected exactly the same ‘sample’ but then have different response rates (Dolton

et al., 2000). Non-response can have a ‘dramatic impact’ on the data, leads to ‘puz-

zingly different results’ (Behaghel et al., 2009, p. 1) and any bias in the substantive

results caused by missing data generally cannot be corrected by any technical means

(Cuddeback et al., 2004). There is no clear evidence that an estimate of propensity to

respond (based on how many requests need to be made, or how late the response is)

can be used to generate valid data similar to the cases that do not respond. As is
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shown later, neither can missing data be accurately replaced by using the evidence

that has been collected. In fact, attempts at such replacement often make the bias

worse. Weights can only be used post hoc to correct for variables for which all true

population values are known, making weighting pointless, and weighting a sample in

this way clearly cannot correct the values of other variables for which the true popula-

tion value is not known (Peress, 2010). It is crucial to recall that missing data of any

kind must be assumed to be biased, as has been demonstrated repeatedly in practice,

rather than occurring at random.

The impact of such bias can be illustrated via a simulation. When calculating an

effect size, for example, it is important to consider how likely it is that any ‘effect’

could appear owing to chance and the volatility of small numbers. A simulation used

1000 samples, each of 100 cases. Each case is a random integer in the range 0–9
(treating 0 as an integer). The first sample of 100 cases can be envisaged as the treat-

ment group in an imaginary experiment and the second sample of 100 cases as the

control. The third sample can be a treatment group and the fourth another control in

a second imaginary experiment. In this way, there are 500 pairs of samples represent-

ing the results of 500 experiments (each with N = 200). The true effect size (calcu-

lated as the difference in means between the two groups in each pair, divided by the

standard deviation for the control group) should be 0. The true mean for the popula-

tion from which the samples were taken is 4.5, and both samples in each pair should

be equivalent, because no experimental treatment has taken place. The simulation

actually generated means from 3.74 to 5.3, with standard deviations from 2.59 to

3.24. The ‘effect’ sizes generated range from –0.39 to +0.35 despite all of the figures

involved being random numbers. This is a caution against accepting relatively small

effect sizes from non-replicated studies.

If (biased) attrition is then simulated by deleting the highest 10% of scores in each

sample of 100 cases, the sample means now range from 2.93 to 4.82. As should be

obvious, missing data can distort findings, in this case by leading to a likely under-

estimate of the population mean when using data from any one sample. The ‘effect’

sizes now range from –0.47 to +0.55. Attrition is capable of creating or strengthening

entirely spurious effects as well as obscuring genuine ones. Given that the What

Works Clearinghouse (WWC) guidelines (http://goo.gl/8o7GqX) state that even

29% attrition is a ‘low’ level as long as the dropout is equal between groups (as it is

precisely here), 10% is rather low in practice. Of course, the bias may not be as

extreme as missing all scores of a similar type, but this simulation shows the consider-

able danger from even what WWC would, ludicrously, consider a very low level of

attrition.

True probabilities and permutations

When we know the relevant values for the complete population, as would be required

to calculate the true standard error, then we have no need of the standard error any-

way. We could calculate the exact probability of obtaining any specified sample of val-

ues through a consideration of combinations and permutations. This would involve

working out every sample of size N that could be drawn from the known population

and counting how many of these had the same value (such as the mean) as the specific
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sample we were interested in. This forms the basis for a ‘permutation’ test, originally

suggested by Fisher, far superior to its alternatives because it always provides the

correct answer rather than an estimate (Ludbrook & Dudley, 1998; Ernst, 2004) and

it has one important area of possible use in practice.

Although t-tests, ANOVA and other statistical approaches are routinely used both

to help decide on differences between groups and to decide whether these differences

are generalisable to the wider population, these two situations are actually very differ-

ent. It is strange that most analysts do not distinguish between them more clearly and

that they feel able to use the same approach such as an independent samples t-test to

address both issues. The permutation test can certainly only be used in one of these

situations.

Imagine a random sample of cases from a real survey that asked people about

themselves and their attitudes. An analyst might divide the sample into those

reporting themselves as male and female, and then compare an attitude score

between these two groups. In this example, the analyst is using a t-test to try to esti-

mate whether the difference in attitudes between the groups also appears in the

population from which the sample was drawn. This is a question of generalisability.

Without knowing the attitudes of the complete population, the analyst cannot con-

duct a combination or permutation calculation to see how often such a difference

would arise and whether they should even be using a t-test in this situation is

addressed below.

Imagine instead, a researcher conducting a randomised controlled trial. They ask

for participants in the trial and then randomly allocate all participants to either the

intervention group or a control group. If they used a t-test at the end of the trial, it

would be used for a very different purpose than above. It would be to try and estimate

how likely it was that the observed difference between the groups would be observed

merely because the two groups were randomised. There is no statistical way of gener-

alising from the volunteers in the trial to any wider population. For the purposes of

the trial, the population is all of the volunteers from whom two random ‘samples’

have been drawn, but here the two random ‘samples’ put together constitute the com-

plete population (in a way that does not happen when a sample is divided post hoc

into two groups such as male and female). Therefore, as long as no participant drops

out, the analyst can use the perfect permutation test to compute exactly how unlikely

it is that the groups eventually differ by as much as they do. In fact, it seems possible

that the whole panoply of statistics was originally devised to deal with the second kind

of situation [randomised controlled trials (RCTs) and similar where the complete

‘population is known’] and was simply abused when applied to the first situation

(generalisation to an unknown population).

One problem that Fisher and others faced was that the permutation test was prag-

matically impossible before the use of electronic calculators and computers. Even

with a small population of 100 cases divided randomly into two groups of 50, there

are 3 9 1093 permutations of the members of the two groups. Even with some short-

cuts, this is a huge number and real-life trials often involve many more than 100 cases.

So, the significance tests and all that follow from them can be envisaged as an

attempted heuristic (compared with the permutation algorithm) from the pre-com-

puter era. They are meant to mimic the permutation test, but were still intended for
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use when all of the conditions met so far applied—so that the complete population

was known and the sample(s) was truly random. They were always intended for trials

and similar research designs. Their problem, as a heuristic, is that they just do not

work.

Problems with significance testing

In practice, the problems with significance testing should not matter because analysts

so seldom work with complete random samples and, without this necessary element,

significance tests should not be conducted anyway.

The fiction that probability statements are meaningful in the absence of random

acts underlying them is preposterous. (Glass, 2014, p. 12)

If a sample is not random or not complete, or the population from which it is drawn

is not known or not complete, then there can be no standard error (see above). This,

in turn, means that anything predicated on a standard error does not make sense—it

cannot exist mathematically—unless it involves true random sampling. Significance

tests, p-values, confidence intervals, power calculations and some complex statistical

models such as multilevel modelling, are all clearly predicated on working with a ran-

dom sample(s). This means that all such techniques are useless in practice for the

simple reason that random samples generally do not exist in real research. Yet signifi-

cance testing still abounds—both in stand-alone form and even more frequently in

the process of modelling such as regression or factor analysis. Analysts are either una-

ware of, or are ignoring, the mathematical assumptions.

The problematic logic of significance tests

The major problem with significance tests intended as heuristics for calculating an

exact probability is that the probabilities they generate are the ‘wrong’ ones. In a two-

sample t-test when the analyst is looking at a difference in means between two groups,

for example, they ask whether this difference is ‘significantly’ different from zero (for

the population from which the samples were drawn). That is, they want to know,

given the two samples they actually achieved, whether these were drawn randomly

from the same population and are therefore estimates of the same population mean.

A significance test assumes from the outset that what is being ‘tested’ is true for the

population and so calculates the probability of obtaining a specific value from the ran-

dom sample achieved (Siegel, 1956). If we designate the null hypothesis that the two

samples are from the same population as H0 and the data obtained from the two sam-

ples as D, then what analysts want is the probability of H0 given D. This is usually

written as the conditional probability p(H0 | D) and it is this probability that is

implied when ‘rejecting’ a null hypothesis of no difference between the means. Ana-

lysts are saying, in effect, that the difference in the data is large enough (or sustained

enough) to reject the idea that both samples come from the same population (i.e. that

the observed difference between the two samples is solely as a result of the vagaries of

random sampling).

Unfortunately, a significance test like a t-test does not calculate this probability or

anything like it. Instead, it calculates p(D|H0)—the probability of obtaining the dif-
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ference between the two samples assuming that they were both drawn from the same

population. The conditional probabilities p(D|H0) and p(H0|D) both contain the

same elements but they are very different. To assume that they are somehow the same

would be like saying the probability of living in London if one owns a flat is the same

as the probability of owning a flat if one is living in London. The two probabilities are

not the same. Nor is either directly computable from the other. Knowing that 20% of

London residents own a flat, for example, does not tell us, without a lot more infor-

mation as well, what percentage of flat owners in the world live in London.

The p-value calculation in a significance test depends on the initial assumption of a

null hypothesis about what is true for the population. As soon as it is allowed that the

null hypothesis may not be true, the calculation goes wrong and the p-value no longer

exists. The actual computation for a significance test in practice involves no real infor-

mation about the population and this means that the same sample from two very dif-

ferent populations would yield the same p-values. A sample mean of 50 would, quite

absurdly, produce the same p-value if the population mean were really 40, 50, 60 or

70, etc. This is because the population value is not known (else there would be no

point in conducting the significance test) and the entire calculation is based only on

the achieved sample value.

To illustrate the common misunderstanding of this, consider a simplified situation

(Gorard, 2014a). There is a bag, containing 100 well-shuffled balls of identical size

and the balls are known to be of only two colours. A sample of 10 balls is selected at

random from the bag. This sample contains seven red balls and three blue balls. The

analytical question to be addressed is: how likely is it that this observed difference in

the balance of the colours between the two samples is also true of the original 100

balls in each bag? The situation is clearly analogous to many analyses reported in

social science research. The bag of balls is the population from which a sample is

selected randomly. A moment’s thought shows that it is not possible to say anything

very much about the other 90 balls in the bag. The remaining 90 might all be red or

all blue, or any share of red and blue in between. There is no way any probabilistic

calculation can be used to work it out. Yet the purpose of a significance test analysis

here is to find out, via sampling, something about the balance of colours in the bag.

Without knowing what is in the bag there is no way of assessing how improbable it is

that the sample has ended up with seven red balls. Once this impossibility is realised,

the pointlessness of significance testing becomes clear.

What a significance test does instead is to make an artificial assumption about

what is in the bag. Here the null hypothesis might be that the bag contains 50 balls

of each colour at the outset. Knowing this, it becomes relatively easy to calculate

the chances of picking seven reds and three blue in a random sample of 10 balls. If

this probability is small (traditionally less than one in 20, or 0.05) it is customary to

claim this as evidence that the bag must have contained an unbalanced set of balls

at the outset. This claim is obviously nonsense. The mere assumption of the null

hypothesis tells us nothing about what is actually in the bag. For example, imagine

that the bag started with 80 red balls and 20 blues. The sample is drawn as above

and contains seven reds. The significance test approach assumes that there are 50

reds in the bag and calculates a probability of getting seven in a sample of 10 balls.

This probability will clearly be incorrect in reality because the balls are less bal-
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anced in fact than the null assumption requires. Now imagine that the sample is still

the same but that the bag had 80 blue balls and only 20 red originally. The signifi-

cance test approach again assumes that there are 50 reds in each bag and calculates

the same probability of getting seven red balls. This probability will also be clearly

incorrect because the balls are less balanced than the null assumption requires, but

now in the opposite direction. More absurdly, this second probability must be the

same as the first one since they are both calculated in the same way on the same

assumption. So the significance test would give exactly the same probability of hav-

ing drawn seven reds in a random sample from a bag of 80% reds as from a bag of

20% reds. This absurdity happens because the test takes no account of the actual

proportion of each colour in the population. It cannot, since finding out that bal-

ance is supposed to be the purpose of the analysis.

Of course the probability of getting seven reds from a bag containing 80 reds is dif-

ferent, a priori, to the probability of getting seven reds from a bag containing 20 reds,

but the significance test is conducted post hoc. There is no way of telling what the

remaining population is from the sample alone.

For anyone who has spotted this misunderstanding, there is little doubt that their

use of significance testing would cease (Falk & Greenbaum, 1995). No one wants to

know the probabilistic answer the tests actually provide (about the probability of the

observed data given the assumption) and the test cannot provide the answer analysts

really want (the probability of the assumption being true given the data observed).

This conclusion is not new (Harlow et al., 1997). It has been known for a long time,

perhaps since their earliest adoption, that significance tests do not work as hoped for

and may well be harmful because their results are so widely misinterpreted (Carver,

1978). Significance testing and p-values are easily misunderstood, give misleading

results about the substantive nature of results and are ‘best avoided’ (Lipsey et al.,

2012).

Even if it can be demonstrated that data could or do meet the necessary requirements, the

outputs of inferential statistics do not tell us anything we want to know. (White, 2014,

p. 27)

Standard errors in practice

In practice, rather than the theory of sampling outlined at the start, social scientists

work with a very limited number of samples, often just one sample in each study and,

in practice, they do not know the relevant values or measurements for the complete

population. Instead, they take a sample of cases precisely in order to gather the rele-

vant values for the sample and so estimate the relevant values for the whole popula-

tion. This is where ambiguity about the ‘standard error’ arises, because researchers

cannot then compute the true SE for the population. If they had the relevant values

for the complete population there would be no need for them to draw a sample to

measure. A researcher already in possession of the relevant scores for a population

would not usually want to take a sample from it and, if they did, they would know its

representativeness exactly, without any need for a SE.

In practice, we do not know the values for the population and have only the data

for our one achieved sample. So, a convention has arisen that the ‘standard error’ of
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the entire population can be estimated from the standard deviation of the values in that

one sample. The term ‘standard error’ is therefore also used, confusingly, to refer to

what is only an estimate of the true standard error for the population from which that

random sample is drawn. This estimated standard error for one sample is defined in

statistical texts as the standard deviation of the sample, divided by the square root of

the number of cases in the sample. It is important for what follows to recall that the

estimated standard error for the population is therefore based solely on the values of

one achieved sample, just like a significance test (above). The formula for the esti-

mated standard error (se) makes no reference to the population itself.

Altman and Bland (2005, p. 903) defined the standard error as the ‘standard devia-

tion of the sampling distribution’ (see above), but they immediately move, in the next

sentence and without justification, to stating that:

Another way of considering the standard error is as a measure of the precision of the sam-

ple mean . . .. The standard error of the sample mean depends on both the standard devia-

tion and the sample size, by the simple relation SE = SD/√(sample size).

Cohen et al. (2011, p. 97) put the necessary compromise more clearly:

Strictly speaking, the formula for the standard error of the mean is:

S.E. ¼ SDpop=
p
N

However, as we are usually unable to ascertain the SD of the total population, the standard

deviation of the sample is used instead.

This ambiguous nature of the term standard error, as demonstrated further below,

encapsulates the problems with current use and training in statistics. A perfectly logi-

cal and mathematically correct construct like the standard error is created in theory

based on a situation of perfect knowledge of the population and the reality of being

able to generate very large numbers of fixed-size complete samples at random from

that population. It is logical, but fails in practice. Researchers either know the relevant

population data, in which case sampling is not needed (in fact it would be absurd), or

they do not know the population data in which case they do not know the true stan-

dard error. They also generally have only one sample. From this one sample they try

to achieve the impossible, which is to estimate the true standard error of the popula-

tion, even though they have no idea how representative of the population their one

sample actually is. They then use this estimated standard error to help them try to

decide how representative of the population their one sample is. It is like trying to

measure the accuracy of a ruler, using only the same ruler. This sounds, and indeed

is, invalid. The main problems are as follows.

First, the researcher interested in working with the standard error relevant to their

one sample requires a random sample. As already shown, if the sample is not random

there can be no standard error for it, even if the population values were known and

many other repeated samples of the same size had been drawn from that population

and even if all of these other samples were random. To be random, the sample must

be complete in the sense that the values are known for each case in the sample and

there must be no missing cases (through non-response, dropout, etc.). The researcher

must also know the identity of all other cases in the population and all of these must
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have had a chance of being selected for the complete random sample. Most research-

ers have never been in such a situation and most are never likely to be. Therefore, no

researcher should be working with the estimated standard error in practice.

Second, even if the researcher was in the ideal situation of having a true random

sample, the ‘logic’ of standard errors does not work in practice. Like significance test-

ing, it confuses two very different probabilities. The true standard error is based on

knowing everything and then simply calculating the probability of selecting something

(a subset of everything)—an easy calculation. The researcher estimating a ‘standard

error’ from their one sample, on the other hand, is using the existence of something to

try and estimate everything—an impossible calculation. This confusion between two

very different conditional probabilities then extends to the whole of sampling theory

statistics as used by researchers (Gorard, 2010). Significance tests provide a p-value

that is the probability of the data in the achieved one sample, based on an assumption

(or hypothesis) about the unknown data in the whole population, but the results are

routinely treated as though they were the probability of the assumption being true,

given the data in the achieved sample, even though these two probabilities are clearly

different (see above). The same confusion occurs with confidence intervals and power

calculations. The legitimate mathematical constructs of sampling theory based on the

true standard error are not much help in real-life research, because in real-life the rel-

evant values are only known for one sample and not for other members of the popula-

tion, and because so few researchers have complete random samples anyway.

The dangers of estimating the standard error

The true standard error (SE) for a sampling distribution from a known population is

very different to the estimated standard error (se) for the population based on one

sample. Again, this can be illustrated via a simulation. Imagine that the population is

the set of integers from 0 to 9 (treating 0 as an integer). From this population, 500

samples were drawn, each of 100 random cases. The true mean of the population is

4.5 and the SE of the sampling distribution is around 0.28 (the standard deviation of

the 500 sample means). The achieved means of the 500 samples are normally distrib-

uted, with a lowest value of 3.64 and a highest value of 5.3. Each sample also leads to

an estimate of the standard error (se), defined as the standard deviation of the sample

divided by 10 (square root of N). These range from 0.25 to 0.33 and are uniformly

distributed (meaning that the chances of a sample yielding 0.25 as the se is the same

as the chances of it yielding the correct figure of 0.28). Note that where simulations

were also run with a larger number of samples (1000, for example), or a smaller num-

ber (50, for example), the sampling distribution SE remains the same and the range

of se also remains roughly the same. Naturally, changing the number of samples does

not change the accuracy of any particular se, since each estimated standard error is

based only on information from one sample. Each sample is independent, affecting

the calculated SE but not the se (as is clear from their respective formulae).

In this simulation, using the range of sample means above, the estimates for the

standard error (se) range from 11% or (0.25–0.28)/0.28 below the true figure, to

18% or (0.33–0.28)/0.28, above the true figure. These are very large maximum

proportionate differences in estimating the standard error. They mean that any subse-
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quent calculation using se will necessarily propagate any such differences, so affecting

the eventual results. This is crucial because the standard error is the basis for so much

of traditional statistics, underlying the calculation of power, test statistics in signifi-

cance tests, confidence intervals and the purported advantages of using technical

approaches such as multilevel modelling.

To illustrate the dangers, consider a one-sample t-test. This simple test of signifi-

cance is used for deciding whether one random sample mean comes from a popula-

tion with a known mean (but unknown standard deviation). For example, we know

that the population mean in our simulation with 500 samples of 100 cases each is 4.5.

Suppose we consider one specific sample with a sample mean of 4. This is a reason-

ably close approximation to the population mean and 100 cases is a reasonably large

sample. The test is based on computing the test statistic t and then looking up the crit-

ical value of t in a distribution table linked to degrees of freedom and the level of sig-

nificance required (or the equivalent steps in software such as SPSS). The statistic t is

defined as the difference between the one-sample mean and the proposed null mean

(from the null hypothesis), divided by the standard error. All parametric tests tend to

use se or a combination of such estimated standard errors, to convert observed differ-

ences into multiples of standard errors (similar to computing standardised z-scores).

To see whether any one of the 500 samples created for the simulation above was

‘really’ from the population of random integers, a statistician would take the null

mean of 4.5. If the one-sample mean were 4 then t should be calculated as (4.5–4)/
0.28, using the true standard error SE. This would be 1.79. According to the table of

t (e.g. http://www.sjsu.edu/faculty/gerstman/StatPrimer/t-table.pdf) the critical value

for t, at p-value 0.05 (the standard) and 99 degrees for freedom (N – 1), is just over

1.984 but below 1.99. Since 1.79 is below this critical (absolute) figure, tradition says

the null hypothesis is retained and the sample is assumed to be a fair one from the

population of random integers (which it is).

Unfortunately, the analyst will not know the real standard error for the population,

which is why the formula is always presented as the difference between the sample

mean and the null mean (0.5 in the example), all divided by the estimated standard

error. The simulation produced estimated standard errors as high as 0.33 or as low as

0.25. Thus, t could be calculated as anything from 1.5 or 0.5/0.33 to 2 or 0.5/0.25.

This means that in practice the computed figure for t could be 16% or (1.5–1.79)/
1.79 too small, or 12% or (2–1.79)/1.79 too high. A maximum proportionate differ-

ence of 16% in calculating a test statistic could make a difference to whether the sam-

ple mean was judged significantly different from the null mean or not. Here, since 2 is

larger than the critical value for t, the null hypothesis would be rejected (incorrectly,

as it happens) when the estimated standard error is as low as 0.25.

Note that this 28% (from –16 to +12) possible error range in the result for t is based

on ideal textbook conditions and a complete random sample, with a sample mean

that is in fact a reasonable estimate. This 28% is not concerned with the sampling var-

iation of the mean (which the t test is supposedly assessing). It is additional variation

concerned with estimating the standard error. The simulation illustrates that the

same mean from the same size sample can be judged either significantly or not signifi-

cantly different to the population mean depending on the quality of the estimate of

the true standard error. Note also that the 28% has nothing to do with the alpha level,
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such as 5%, selected as a threshold for a significance test. Any calculation using the

alpha level assumes, without justification as is shown here, that the standard error

estimated from the one sample is correct. The p-value is a measure of uncertainty,

but the measure itself is meant to be exact. Where the measure of uncertainty is itself

uncertain (by up to 16% in this simple realistic example), the judgement of the actual

uncertainty becomes very difficult indeed.

The simulation showed that in practice the one-sample mean could vary from 3.64

to 5.3 (see above). Using the smallest estimate of the standard error and 3.64 as the

smallest sample mean, this means that t could be calculated as large as 0.86/0.25 or

3.44. This means that the computed figure for t could be out by 92% or (3.44–1.79)/
1.79. A proportionate error of anything like 92% in the calculation of t, based on a

perfectly good and complete random sample of 100 cases, means that t is dangerous

to use in practice. Even when used under perfect conditions and as intended, the

propagation of the initial difference in estimating the se from one sample is too much.

The results could be very misleading (but of course never noticed because the true SE

would not be known). Here, both extreme values and many in between would lead to

the ‘incorrect’ rejection of the null hypothesis. Using a poor estimate of the SE from

one sample to judge the quality of the estimate of the mean from one sample does not

work. Working with one sample, post hoc, it is not possible to know whether that

sample is any good or not.

If we then accept that, in practice, a complete random sample is a rare phenome-

non and we allow for some dropout or non-response the situation becomes worse

again. In the simulation, the highest 10% of cases in each sample were deleted, leav-

ing a sample size of 90 for each of the 500 samples. This represents bias in dropout or

non-response, since evidence shows that such missing values are not random in nat-

ure (see above). Of course, the real population mean (4.5) and the SE of the sampling

distribution (0.28) remain the same, but the samples now lead to worse representa-

tions of these true figures (considerable under-estimates). One common approach to

handling such missing data is to compute a replacement value based on the data that

is available. In the simulation, the missing cases were replaced by the mean of their

samples (each of 90 cases now). The true population values still remain the same.

However, the estimated standard errors become lower, now ranging from 0.21 to

0.27, respectively 25% and 4% below 0.28. Every single sample now yields an esti-

mate of the standard error that is too low.

The simulation illustrates that trying to replace missing data often leads to more

problems than it solves (Gorard, 2014b). ‘The standard error measures sampling var-

iability; it does not take bias into account’ (Berk & Freedman, 2001, p. 3) and adjust-

ments made post hoc where the population values are not known are unlikely to

work, and can make many samples worse. The difference from the true SE will carry

forward into any calculation of significance such as those based on t or F, and the

impact will be even more dangerous than when the sample is complete (above). Esti-

mating the se as anything like 25% too low will lead to clearly erroneous claims of sig-

nificance. In this example, again with a null mean of 4.5, t could be calculated as 4.1

or 0.86/0.21 (an extreme, based on the largest difference between the means divided

by the smallest estimated se). This value of t would be 129% or (4.1–1.79)/1.79 larger

than the true value of t for these data. This would mean that our sample mean would
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be judged significantly different from the null mean at a p-value of considerably less

than 0.001. In fact, any sample with a mean outside a range of 4.2 to 4.8 would be

judged, via a t test, to be significantly different from the population with a mean of

4.5, if using 0.25 as the estimated standard error.

Further issues with significance testing

So far, the main problems described with traditional approaches to QM, in the form

of inferential statistics, are that:

• they are mostly irrelevant since researchers seldom work with complete random

samples from a known population anyway;

• the logic of significance tests does not provide researchers will a useful answer;

• they are based on the standard error for the sampling distribution of the popula-

tion, which will never be known in practice, and the inaccuracy in estimating it

from one sample can make test results misleading (even in their own terms).

These should be enough to mean that QM moves away from sampling theory and

its derivatives entirely. Yet, there are plenty more problems, some of which are

outlined here.

There is widespread confusion about the level of the accepted p-value in a signifi-

cance test (usually 5%) in relation to prediction and replication. Imagine sitting down

to a game of Monopoly or something similar, and rolling two dice with a result of a 2

and a 3. Would you assume from that result that the dice were biased towards rolling

2s and 3s? I suspect not. I suspect you would not even notice the outcome and yet it

has an a priori probability of only 1/18 or 5.6%. I suspect you would not consider the

dice biased even if your first roll yielded a 2 and another 2 (probability of only 1/36 or

2.8%). When social scientists conduct significance tests on their data, they use proba-

bilities at about this level of 5% or less to help them decide that an outcome is so unli-

kely that they are justified in assuming that their starting assumption is wrong. In the

Monopoly example, the probabilities are calculated assuming the dice are unbiased.

If around 5% or less is evidence that our starting assumption is wrong then we should

be suspicious of that first roll with a probability of only 1/18 or 1/36, but if 1/18 or

1/36 is not sufficiently unlikely to demand a new set of dice in Monopoly then how

can it be small enough to make important decisions in social science?

The answer lies in prediction and replication. Predicting correctly (beforehand

obviously) that the dice will roll a 2 and a 3 would be much more impressive. Strictly

speaking, this is what the 5.6% probability refers to – while the post hoc probability is
really 100%. Yet researchers and statistical ‘experts’ have largely forgotten this impor-

tant aspect of probability. Analyses and predictions are meant to be part of the design

of a study from the outset. Dredging the data after collection for possible patterns is

something entirely different (Gorard, 2013a). Also, the 5% for a significance test was

always intended to be for a one-off analysis. Nowadays analysts run hundreds or even

thousands of tests, often unknown to them as part of their regression or other model-

ling (where significance tests are conducted for individual independent variables and

for the model as a whole). This is like rolling the dice hundreds of times and then

announcing the first 2 and a 3 result as remarkable. In contrast, if the dice roll a 2 and
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a 3 repeatedly, that is also more impressive. All individual studies must be regarded as

tentative, however strong their evidence, until independently replicated (Frank et al.,

2013).

Any large real dataset divided into two groups by any criterion will yield differences

between the two groups to some extent (unless by infinitesimal chance the two are

identical to any number of decimal places). As Meehl (1967) has shown, any nil-null

hypothesis is extremely unlikely to be true. This simply means that all analyses should

lead to statistically significantly different results in any comparison between groups,

as long as N is large enough. Viewed in this light, a non-significant result is an admis-

sion that the sample size is not sufficient to find the difference that must be there.

The key issue for social science, not of whether there is a difference but whether it is

large enough to pursue, is not addressed at all by significance tests. Since the nil-null

hypothesis is never strictly true, some alternative hypothesis must be true instead.

Given that there are an infinite number of alternate hypotheses, the results of a signifi-

cance test do not help narrow down these alternatives. Genuine analysis requires a

rather different approach (see below).

Having ignored all of these problems, it is no surprise that medicine, science and

social science have experienced decades of ‘vanishing breakthroughs’ or findings that

cannot be repeated and are never useful in practice (Matthews, 1998). As explained

at the start, many published results are false and the chief culprit where numeric

analysis is involved is the nonsense that is significance testing. QM, as currently envis-

aged, is the problem not the solution.

Confidence intervals and power

The problems that make significance tests unworkable have been dealt with at length.

Once they fall, the rest of inferential statistics, as currently practiced, falls as well.

With significance tests no longer used, power as currently defined becomes a red

herring.

‘Statistical power is the probability that if the population ES [effect size] is equal to

delta, a target we specify, our planned experiment will achieve statistical significance

at a stated value of alpha’ (Cumming, 2013, p.17). Therefore, power calculations

would only make any sense if an analyst were planning to conduct a significance test.

Since such tests do not work, it follows that power calculations do not work. We will

not know the true value of delta (the effect size), else we would not need to conduct

the study, but power calculations are circular and highly sensitive to minor variations

in any estimated value such as delta (Gorard, 2013a).

Confidence intervals (CIs) are similarly disguised significance tests, based on the

estimated standard error and with all of the dangers shown above. CIs and p-values

are interchangeable and based on the same assumptions (Cumming, 2013). There-

fore, CIs do not work for the same reasons that significance tests do not work.

A 95% confidence interval, for example, is calculated as the sample statistic (such

as the mean) plus or minus 1.96 times the standard error of the statistic (Peers,

1996). The meaning is intended to be that if many (imaginary) random samples of

the same size were taken from the same population and the CI calculated for each,

then the set of all CIs would contain the population mean 95% of the time. This does

Rethinking ‘quantitative’ methods 87

© 2015 British Educational Research Association



not imply that there is a 95% chance of a one-sample CI containing the population

mean. CIs therefore have the same backwards ‘logic’ as estimated standard errors and

significance tests (modus tollendo tollens), worsened by being recursive in the sense that

their definition incudes itself (Gorard, 2014a).

The ensuing difficulties of comprehension lead to the common errors of using CIs

as though they could handle non-random cases and of interpreting a CI as a range of

likelihood within which a desired parameter will fall. Neither is true (Watts, 1991).

Confidence intervals clearly do not work with non-random cases and missing data

(Gorard, 2014b). Like significance tests their calculation makes no reference to the

population and yet they are routinely presented as being an assessment of how close a

parameter (like a sample mean) is to the unknown population mean. CIs do not work

for the same reasons that significance tests do not work—we do not know the true SE,

the estimated se can be seriously inaccurate and we cannot use this one-sample esti-

mate to decide whether this one sample is a good representation of the population.

CIs are just the estimated standard error in different clothing. Like significance tests

they use an estimate of variation from one sample to estimate how close an estimated

measure (such as a mean) from exactly the same sample is to that measure in the pop-

ulation and, like significance tests, CI calculations can yield exactly the same values

from completely different populations.

For example, imagine that a sample mean was 50, with a specific standard devia-

tion, and that this was drawn from a population with mean 60. The CI would have a

particular range centred around 50. Now imagine that all else remains the same but

that the population mean was actually 70. The CI would remain the same because

the CI is unrelated to the actual population mean. This shows that a CI based on an

estimate of 50 for a real value of 60 would imply the same level of accuracy as for a

real value of 70. In practice, and even when used as intended, CIs convey no useful

information.

Cluster randomised samples

The final substantive issue from traditional statistics dealt with briefly in this paper

concerns the notion of cluster randomised samples (Rhoads, 2014). These are, like

many things in statistics, ambiguous. If samples are drawn at random from a list of

clusters (such as institutions or areas) and then measures are taken from cases within

each cluster, the sample is really a random sample of clusters (Higgins & Green,

2011, chap. 16).N would be the number of clusters sampled, rather than the number

of ‘cases’ contained within all of the clusters, if the sample is considered to be a ran-

dom one. This creates no problem and everything that applies to cases in random

samples (above) also applies to clusters as cases. Cases can be anything, including

observations, texts, people, or institutions. There are a range of other simple

approaches that also work perfectly well for handling problems when dealing with

clustered data (Bland, 2003). Some authorities, including Cochrane (Higgins &

Green, 2011), might express concern that treating clusters as cases reduces ‘power’,

but, as shown above, power as currently defined is not relevant (unless a significance

test is planned).
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Some commentators (below) advocate using the measures taken within each clus-

ter, instead of the cluster, to define theirN. They want a largerN, but to a great extent

which N they use makes no difference in practice to their results. Imagine a rando-

mised controlled trial involving two groups, each group consisting of 10 schools, with

each school having 100 pupils. A test is given to the full 2000 pupils. The average test

score for the 1000 pupils in the first group must be identical to the average test score

for the 10 schools in that group. It does not matter whether N is treated as 10 or

1000. The actual difference in mean test scores between the two groups (the headline

result of the trial) will remain the same.

These writers then worry that using the measures taken within clusters for the cal-

culation of test statistics may lead to an under-estimate of the standard error, because

these measures may be more similar within clusters than would be expected by

chance. Of course, as shown throughout the paper, they should not be using test sta-

tistics anyway. Their cases do not generally occur within clusters like schools, prisons,

regions, or hospitals by chance. So the occurrence of the cases within clusters is not

random, meaning not that the SE is too low but that there is no SE (by definition, see

above). In this situation, a standard error could only exist at the cluster level and only

if the clusters used as cases in a sample had been selected at random with no refusal,

dropout or missing values.

Yet these writers persist, perhaps so that they can use increasingly complex tech-

niques such as multilevel modelling to overcome a problem that does not really exist.

If cases within clusters are selected randomly (as well as the clusters themselves) there

are now two levels of randomisation, but the randomisation within each cluster is

constrained, so the writers present the concept of the intra-cluster correlation. This

means that in power calculations to decide on the required size of a sample, a design

effect is calculated from the intra-cluster correlation and then used to multiply the

required number of cases by. The design effect is defined as 1 + (the number of cases

per cluster – 1) 9 the intra-cluster correlation (Kish, 1965). It is not clear what to do

if, as is likely, the number of cases and the intra-cluster correlations vary between

clusters.

Aside from the fact that significance tests do not make sense and power calcula-

tions do not make sense without them, what is also strange about this design effect

is that it takes no account of the sampling fraction within the clusters. If all of the

cases within each cluster are involved then there is no standard error at the cluster

level, but the design effect takes no notice of that. This means that the design effect

will be considered larger (and so the sample worse in quality) if all cases are used in

each cluster than if only a few are selected at random. Whereas, in truth and all

other things being equal, the population data within clusters must be preferred to

sampled data. Of course, if there is no sampling within each cluster, the design

effect should not be calculated, but the advocates of multilevel modelling say that

cluster effects are present even in such complete population data. Some extreme

commentators, such as Goldstein (2008), therefore want analysts to provide sam-

pling theory derivatives such as confidence intervals for population data, and to try

and justify this, they have used the notion of an infinitely large super-population to

suggest that even populations are merely random samples from some larger
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imaginary super-population. These are the lengths that such writers have to go to in

order to defend their sampling theory practices.

For example, Camilli quotes Goldstein as arguing that statisticians are not really

interested in generalising from a sample to a specified population but to an idealised

super-population spanning space and time. Goldstein claims that ‘social statisticians

are pretty much forced to adopt the notion of a “superpopulation” when attempting

to generalise the results of an analysis’ (Camilli, 1996, p. 7). As Glass counters (also

in Camilli 1996), such imaginary populations are simply the evidence we have from

the sample writ large and necessarily having the same characteristics. This is the com-

plete inverse of statistical inference and makes any attempt to assess sampling errors

erroneous. ‘I think we’re lost when we accept statistical inferences based on data that

weren’t observed, and moreover do not exist conceptually . . . [Goldstein is] . . . play-
ing a game with the language’ (Camilli, 1996, p. 11). These so-called superpopula-

tions are imaginary, data has not been randomly sampled from them (Berk, 2004,

p. 52) and the fact that analysts have regularly invoked them is no justification for

retaining them (Freedman, 2004, p. 989). ‘At the risk of the obvious, inferences to

imaginary populations are also imaginary’ (Berk & Freedman, 2001, pp. 1–2). The

kind of convoluted sophistry proposed by Goldstein and many others is retarding the

progress of social science (Robinson, 2004). Like everything discussed so far, it needs

to be dropped to make QM both correct and incidentally easier for a wider audience

to understand.

What are the alternatives?

Further simplifications

Once released from consideration of probability distributions and the like, ‘quantita-

tive methods’ can then be further simplified. Without being as hard to understand as

significance testing, one of the other things that newcomers report as strange in their

QM training is the formula for the standard deviation. It comes from a time when it

was felt that absolute values were hard to work with. So the standard deviation (SD)

as a measure of dispersion tries to avoid absolute values by squaring and summing the

deviations from the mean, and then taking the square root of the result. However, the

standard deviation does not avoid the use of absolute values in practice. A square root

(for a real number) has a negative and a positive form, yet software like SPSS, and

practice in journal publishing, only reports the absolute value of the square root as the

standard deviation.

Newcomers generally find the average absolute deviation from the mean easier to

understand and to compute. This mean absolute deviation has many other practical

advantages over the SD (Gorard, 2005) and is finding increasing use in areas from

dental age estimation (Acharya, 2014) to computer science (Anand & Narashimha,

2013). Using the mean absolute deviation as a preferred measure of dispersion, it is

then possible to modify other forms of analysis to make them easier to portray and

more robust in face of extreme scores. There is a mean absolute deviation version of

the effect size, correlation coefficient and regression model, for example (Gorard,

2013b, 2015a,b). However, useful though these may be for the future, not all are yet
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ready for widespread use and none of them leads to the kind of simplification that fol-

lows from simply not using significance testing (and all its disguised forms).

Thinking about analysis more clearly

Working with numeric data in social science is at once less complex and more skilled

than most commentators portray. It is less complex and less scary because the most

difficult bits mathematically, that many novices find off-putting, are useless, irrele-

vant, illogical and misleading. Significance tests and everything associated with them

like confidence intervals and the use of p-values in modelling do not work as intended.

No one should use these techniques nor accept their use unproblematically in any-

thing that they read. Avoiding their use is easy enough to do. When reading the work

of others who have used such techniques, these elements can be ignored, and their

evidence and argument judged on their own merits. For example, if a researcher has

used a p-value from a significance test to decide whether to pursue a difference in

scores between two groups, the p-value should be ignored (Gorard, 2014a). Instead,

the study design, scale, bias, data quality, accuracy of scoring, variability of response

and, above all, the meaning of the numbers involved can help decide whether this dif-

ference is noteworthy or not. There is no technical or statistical way to do this. It

requires judgement, making the task at once less complex and more skilled than most com-

mentators portray (Gorard, 2006).

An obvious question then is what analysts can do instead, in terms of analysis or

computation. There are a number of techniques that might help in portraying to oth-

ers the grounds for any judgement. These include simple tables, graphs, percentages,

proportions, averages, mean absolute deviations, effect sizes, odds ratios, attainment

gaps, regression coefficients, correlation coefficients and various indices of inequality.

All should be used to clarify an important point for the reader (no undigested SPSS

output please). Useful examples of this approach, using SPSS without significance

tests, appear in the video tutorials by Patrick White (https://www.youtube.com/user/

patrickkwhite).

Missing data could be handled using the permutation test (above) but replacing all

the missing data with the ‘least attractive’ score in the same group/arm. The least

attractive score could the one that is most counterfactual to the overall finding. If the

result survives this hard test it must be robust. Put another way, robustness can be

assessed as the proportion of cases that would have to be replaced with counterfactual

data to invalidate the finding (Frank et al., 2013). This approach has been simplified,

explained and illustrated as the number of counterfactual cases needed to disturb a

finding (Gorard & Gorard, 2015). It is also useful to separate thinking about the

scale, strength or trustworthiness of the findings (an activity internal to the study)

from whether the findings might be more generally true (which is always more

speculative).

All of these approaches could be useful and many involve nothing more than ele-

mentary arithmetic. They do not require sampling distributions, probability density

functions, or standard errors (these can be left to mathematicians). The data obtained

in any study can also be treated as a population in its own right and inference dis-

carded. However, these techniques do not provide a ‘push-button’ answer. There is
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no ‘push-button’ answer, any more than there is when analysing non-numeric data.

What analysts should do instead is what they would have done if they had never heard

of significance tests, confidence intervals and the like.

It is also worth reminding readers that even if they worked as intended, CIs and

p-values could not address measurement error, missing data or bias. Using popula-

tion data avoids the uncertainty of random sampling. Otherwise, the larger a sample

(or number of cases) is, the more secure the findings will be. The better the sample is,

in terms of random selection/allocation and full response, the more secure the find-

ings will be. The more accurate the measurements are, the more secure the findings

will be and the larger the estimated mean is in proportion to the sample standard devi-

ation (or the simpler mean absolute deviation) then the more secure the findings will

be. There is no technical way of synthesising all of these factors to provide an overall

estimate of quality. The only approach to numeric analysis of this sort is judgement.

It requires considerable skill, and is best approached with great clarity and with any

arguments laid out as simply as possible. Gorard (2014c) provides a ‘sieve’ that can

be easily used to consider the study research design, scale, attrition, data quality and

other threats to the validity of a research result, synthesising these various factors into

an overall judgement. The impact of using such an approach more generally would

be a social science in which the logic of working with numbers would be the same as

the logic of working with any other kind of data.

Conclusions

Much of the panoply of traditional statistics is inappropriate for real-life research

where samples are so seldom truly random or normally distributed, where non-

response and dropout always occur, and the use of population data is growing in prev-

alence. Even under ideal circumstances the logic of significance testing, p-values,

standard errors and confidence intervals does not provide analysts with the answers

they seek. All such approaches are generally useless and should be abandoned. This

yields several immediate benefits. Learning about ‘quantitative’ research becomes

much easier and less daunting for those who feel that it does not make sense, but can-

not express why, and so tend to avoid all use of numbers instead. It becomes clearer

that the underlying logic of analysing data is the same whatever format that data takes.

This has many implications for those purporting to be ‘qualitative’ researchers, in

areas such as scale, transparency and warrant. Real analysis is harder than the tradi-

tional ‘push-button’ approach to any work with numbers in social science. It is simple

conceptually but hard because it requires skill, judgement, clarity and integrity.

There is a tradition of trying to draw a distinction between so-called ‘quantitative’

and ‘qualitative’ research when conducting and reporting on data analyses. This is

scientifically misleading and confusing for new researchers, and the QM initiative is

likely to make this worse, if only in terms of its exclusionary name. There is no partic-

ular difference between analysing data consisting of qualities and data consisting of

measurements. A researcher reporting that 51% of people in a survey agreed with a

statement is saying something very similar to a researcher reporting that many people

in interviews made something like a particular quoted statement. Research measure-

ments are generally of qualities, while analytical statements about qualities are
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generally numeric in form (‘most’, ‘few’, ‘none’). The widespread use of random

sampling theory derivatives such as standard errors, significance tests and confidence

intervals tends to make working with numbers look very different to working with

other forms of data, but as soon as these are removed, as illogical and inappropriate in

real-life research, that difference disappears.

All research designs, such as longitudinal, experimental or case study, are inde-

pendent of the method of data collection used within them. A study that con-

tacted the same people as research informants every year for 10 years would be

longitudinal. If it involved a survey of those people it would be longitudinal. If it

involved interviews with those people it would be longitudinal. If it involved col-

lecting existing data such as payslips from those people it would be longitudinal,

or if the people were videoed or their height was measured. If the study did all

of these things combined or different things every year it would still be longitudi-

nal. There are no ‘quantitative’ or ‘qualitative’ designs and, since analysis is

predicated in the design, there are no distinctly ‘quantitative’ or ‘qualitative’

analyses. There is no difference in analysing a set of data dependent upon

whether it was gathered face-to-face, using IT, or on paper. Put another way

there is no more difference between analysing text and analysing numbers than

there is between analysing text and analysing photos or smells. Each may require

some special skills but their overall logic remains the same.

The design elements of any research design, such as selecting the cases to be

involved, allocating them to groups, or planning an intervention, are also all indepen-

dent of the method of data collection used (Gorard, 2013a). If a particular sample

size is needed to make a believable finding about what people state about some phe-

nomenon it does not matter whether those people make the statement to the

researcher via a recording, a form, a computer, or conversationally in passing. All

other things being equal, the larger the sample the stronger and more convincing the

research results will be and, all other things being equal, a random sample will provide

a less-biased estimate of a more general population than any other kind of sample.

Research craft knowledge like this remains valid whatever kind of data is then col-

lected from that sample.

Analytical decisions, once all of the clutter is removed, then tend to become simpler

and more similar across a range of situations. Most of them are of the form ‘how big is

this difference?’, ‘how strong is this pattern or trend?’, or ‘how valid is this excep-

tion?’. There is no technical way of answering any of these questions. For example,

‘how strong is this pattern?’ might depend on the estimated scale, the number of cases

and the variability of the phenomenon being investigated. Such factors can be sum-

marised, such as by an ‘effect’ size, but this does not really answer the question. It

simply converts the question to ‘how important/stable is this effect size?’. There is no

valid standard scale for judging the importance of an effect size. Its importance may

depend also on the costs, benefits and unintended consequences of answering the

question one way or another. Really all that an analyst can do is present the evidence,

and explain clearly and fully why they believe that the evidence leads to the conclu-

sion they make. They need to ‘warrant’ their conclusions, by marshalling logic and

evidence to create a compelling argument that leads to a conclusion and stands up to

critical scrutiny (Gorard, 2002; Phillips, 2014). The software, graphs, frequency
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counts or effect sizes are useful tools for presenting the findings and sorting them out

for analysis. The real analysis is the judgement that follows.
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