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ABSTRACT

Arc magmas erupted at the earth’s surface are commonly more oxidised than
those produced at mid-ocean ridges. Possible explanations for this high oxidation
state are that the transfer of fluids during the subduction process results in
direct oxidation of the sub-arc mantle wedge; or that oxidation is caused by the
effect of later crustal processes, including protracted fractionation and degassing
of volatile-rich magmas. This study sets out to investigate the effect of
disequilibrium crustal processes that may involve coupled changes in H:0
content and Fe oxidation state, by examining the degassing and hydration of
sulphur-free rhyolites. We show that experimentally hydrated melts record
strong increases in Fe3*/XFe with increasing H20 concentration as a result of
changes in water activity. This is relevant for the passage of H,O-undersaturated
melts from the deep crust towards shallow crustal storage regions, and raises the

possibility that vertical variations in fO» might develop within arc crust.
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Conversely, degassing experiments produce an increase in Fe3*/ZFe with
decreasing H20 concentration. In this case the oxidation is explained by loss of H>
as well as H;O into bubbles during decompression, consistent with
thermodynamic modelling, and is relevant for magmas undergoing shallow
degassing en route to the surface. We discuss these results in the context of the
possible controls on fO; during the generation, storage and ascent of magmas in
natural arc settings, in particular considering the timescales of equilibration
relative to observation as this affects the quality of the petrologic record of

magmatic fOo.

INTRODUCTION

A fundamental question in earth sciences concerns the distribution of oxygen
within the solid Earth, its cycling through subduction zones and, through
volcanic degassing, its effects on the atmosphere. In particular, the controls on
the oxidation state of melts as they pass through the mantle and crust are
challenging to constrain. It is clear that transfer of hydrous fluids from the
subducting slab into the mantle is crucial for generating some of the typical
geochemical signatures of subduction zone magmas, such as enrichment in large
ion lithophile elements (LILE) and volatiles. Comparison of Fe3*/ZFe in lavas
arriving at the Earth’s surface shows that arc lavas also tend to be more oxidised
than those produced at mid-ocean ridges or in other settings (e.g. Carmichael
1991; Ballhaus 1993; Lee et al. 2010; Evans et al. 2012). Mantle xenoliths
entrained by arc magmas also appear to be more oxidised than those in other
tectonic environments (e.g. Wood et al. 1990; Brandon & Draper 1996;
Parkinson & Arculus 1999; Frost & McCammon 2008).

It is commonly suggested that increased fO; in arc systems compared with
other tectonic environments is a primary feature related to mass transfer from
the subducting slab to the mantle wedge (e.g. Brandon & Draper 1996; Parkinson
& Arculus 1999; Kelley & Cottrell 2009), either directly through addition of

volatiles, or indirectly if hydrous fluids carry dissolved Fe3* or sulphate (Kelley &
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Cottrell 2009). However, subduction zone magmatism is also characterised by
complex crustal processes that could be expected to exert significant controls on
oxidation state. These processes include magma fractionation, decompression,
degassing and eruption. Arc magmas tend to be volatile rich and may be more
prone to stalling and storage in the crust during ascent; this may increase the
importance of fractionation and degassing in particular. Arc magmas also tend to
crystallise magnetite early during differentiation, and studies based on the
partitioning of redox-sensitive incompatible elements suggest that magmatic
differentiation could be one reason for the higher Fe3*/ZFe of arc lavas (e.g.
Mallman & O’Neill 2009; Lee et al. 2010). Other studies suggest that the influence
of volatiles on fO; could be significant, particularly during crustal processes such
as the degassing of C-O-H-S volatile species during shallow magmatic ascent (e.g.
Sato 1978; Mathez 1984; Candela 1986; Burgisser & Scaillet 2007; Burgisser et
al. 2008; Fiege et al. 2014).

Understanding the relationship between volatiles and the oxidation state
of magmas involves untangling two distinct problems. The first problem is the
fundamental effect of dissolved volatiles, as chemical constituents of the melt, in
determining Fe oxidation state. This is at the heart of whether H20 can itself be
an important oxidising agent, or whether the observed link between H20 and
Fe3*/XFe is possible only by association with oxidised components in slab fluids
(e.g. Lecuyer & Ricard 1996; Parkinson & Arculus 1999). The second problem is
to understand the ways in which crustal processes may affect both melt volatile
concentrations and melt oxidation state. These effects include (i) variations in
equilibrium volatile speciation and Fe redox state with pressure and
temperature, and (ii) factors related to processes such as magmatic degassing;
these factors could be truly disequilibrium (i.e., kinetically inhibited over the
time- and length-scale of interest) or open system (for example, involving

segregation of melt and vapour).

In Part I of this study we present a brief review of literature evidence
relating to the first problem, that of chemical mechanisms linking volatile
dissolution with melt oxidation state, to consider whether volatiles can

fundamentally affect oxidation state via melt chemistry. In Part II, we tackle the
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second problem, presenting new data to explore the effect of disequilibrium or
open system changes in H20 content on the oxidation state of sulphur-free
rhyolite melts and glasses, using a new series of coupled H,0 and Fe3*/ZFe
measurements from existing hydration and decompression experiments. We
discuss the implications of our results for processes operating in natural
magmas, highlighting the need to consider kinetics in these arc systems where
there is ample evidence of disequilibrium at a variety of temporal and spatial

scales.

PART I: A REVIEW OF THE EVIDENCE LINKING VOLATILES, MELT
CHEMISTRY AND OXIDATION STATE

The effects of variations in anhydrous melt composition on ferric-ferrous ratios
at constant fO; are well known (e.g. Paul & Douglas 1965; Sack et al. 1980; Kress
& Carmichael 1991; Toplis 2005), but there has been considerable debate over
the effect of H20, as a chemical component of the melt, on Fe3+/XFe. In particular,
it has been suggested that the same process that causes oxidation when alkalis
are added into silicate melts at constant fO; (e.g. Paul & Douglas 1965) should
also operate during dissolution of volatile species (Fraser 2005; Moretti 2005;
Toplis 2005), by altering the relative activity coefficients of Fe2* and Fe3* species

within the melt.

This relies on the quasi-chemical theory defined by the Lux-Flood
‘basicity’ of different oxide components. This considers equilibrium between
bridging oxygens (09), non-bridging oxygens (0O-) and ‘free oxide’ anions that are
not bonded to the tetrahedral silicate polymer network (0%, Toop & Samis
1962). In this model, the melt is a molten ionic solution dominated by oxide ions
(Flood & Forland 1947; Fraser 1975; Duffy 1993; Ottonello et al 2001; Moretti

2005; Fraser 2005). Interaction between oxygen in different structural positions:
09+ 0% =20 [1]
defines the basicity of the solution. Basic oxides such as alkalis (Naz20 or K:0)

dissociate to supply 02 to the system and hence drive depolymerisation

(breaking of oxo-bridges; equilibrium [1] moves to the RHS) while acidic oxides
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(such as Si0O2) react with 0% to form polymer chains. Amphoteric oxides,
including Fe;03, Al203, H20 and CO; (Fraser 1977), can act as an acid or a base
depending on the composition of the silicate solution (Kushiro 1975). Fe oxide
components in the silicate melt therefore have the following possible reactions

(neglecting acidic behaviour of FeO, Fraser 1975; 2005):

FeO = Fe?* + 02 [basic, 2a]
Fe;03 = 2Fe3* + 30% [basic, 2b]
Fe;03 + 0% = 2FeOy- [acidic, 2c]

where FeQ> is part of the structural network, analogous to AlO4".

Some evidence suggests that the dissolution of H20 in polymerised silicate
melts occurs by a depolymerisation reaction with the tetrahedral network by
breaking of T-O-T bridges to form shorter polymer chains terminated by -OH
(e.g. Stolper 1982; Xue & Kanzaki 2006; Malfait et al. 2014; though also see Kohn
2000), as well as by incorporation of unreacted molecular H;0 (e.g. Burnham
1975; Stolper 1982). This suggests that in these cases, dissolved H20 should also
show basic behaviour, similar to K20 or Naz0 (in addition to the incorporation of

unreacted, molecular water):
H20 + 09 = 20H [basic, 3b]

In strongly basic melts, it was predicted that H20 could also behave as an acidic

oxide (Yokokawa 1986; Fraser 1977; Fraser 2005; Moretti 2005):
H20 + 0% = 20H- [acidic, 3a]

where OH- is “free hydroxyl” that is not bound to the silicate network but
complexed with metal cations. This is supported by 1TH NMR experiments (Xue &
Kanzaki 2004) and may contribute to variations in solubility with silicate melt
composition (Yokokawa 1986). Similar reactions are suggested for dissolution of
CO2, and this is supported by variations in carbon speciation with melt basicity
(Brooker et al. 1999) as well as NMR and Raman spectroscopy studies (Mysen et
al. 2011).

Linking H20 solubility, melt basicity and oxidation state
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In silicate melts, the ratios of multi-valent ions such as Eu3*/Eu?* increase with
increasing melt basicity (a0?) at constant fO; (Morris & Haskin 1974; Tilquin et
al. 1997). This is consistent with thermodynamic constraints if amphoteric
behaviour of Fe oxide components is considered (reactions 2a-c, Fraser 1975),
and explains the observed increase of Fe3*/Fe2* with increasing alkali (or basic
oxide) content of the melt (e.g. Paul & Douglas 1965; Sack et al. 1980; Kress &
Carmichael 1991; Toplis 2005). Increasing the availability of free oxide (0%)
leads to an overall net decrease of aFe;03(m) from reactions 2b and 2c while
simultaneously increasing aFeO (m) from reaction 2a. This produces an overall
increase in Fe3*/XFe at constant fO;, and should also polymerise the melt
structure, because of the contribution of FeO;  to the melt framework (Fraser

1977; Ottonello et al. 2001; Fraser 2005; Moretti 2005).

For volatiles, the same approach predicts that (basic) reaction of H20 with
the silicate melt to form dissolved -OH [3b] should result in a net increase in a0
(and hence increasing Fe3*/XFe) whereas (acidic) formation of free hydroxyl in
very basic melts [3a] results in a net decrease in a0O? (and hence decreased
Fe3*/XFe). Similarly, dissolution of carbon dioxide in basic melts should result in
net decrease in a0%, and thus decreasing Fe3*/ZFe. This provides a testable link
between volatile solution mechanisms and melt oxidation state, which we review

below.

Previous work on Fe3*/Fe?* in hydrous melts

Several previous studies have attempted to discern differences in redox state
between equivalent hydrous and anhydrous melt compositions, with somewhat
equivocal results. Moore et al. (1995) found no effect of H20 on the Fe oxidation
state of hydrous peralkaline rhyolites, supporting an earlier study (Sisson &
Grove 1993) that compared Fe3*/3Fe in hydrous basalts with the anhydrous
predictions of the Kress & Carmichael (1991) model. Botcharnikov et al. (2005)
concluded that Fe3*/3Fe in hydrous ferrobasalt was mainly controlled
experimentally by aH20 (and hence f02) and was within the range predicted by

existing anhydrous models.
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In contrast, Gaillard et al. (2001) showed that addition of up to 6 wt% H>0
has an oxidising effect on metaluminous rhyolite relative to Kress & Carmichael
(1991), but only at lower fO2 conditions (<NNO+1). Gaillard et al. (2003a) also
observed higher Fe3*/3Fe in hydrous vs anhydrous rhyolite and ascribed this to
a decrease in the ratio of activity coefficients (yre203"/yreo) in hydrous melts, or
decreasing arez203" for a given XFe>03 and increasing areo" for a given XFeOL. This
is essentially the same effect as predicted by acid-base theory (as described
above). Schuessler et al. (2008) found that Fe3*/XFe increased with H20 content
at constant fO; in hydrous phonotephrites, which they attributed to the effects of
melt basicity as described by Ottonello et al. (2001) and Moretti (2005). These
principles are also supported by observations of differences in olivine-melt

ng_Mg in hydrous and anhydrous melts (Toplis 2005).

Thus, while the results are still unclear, it does seem possible that H20 has
a resolvable effect on melt Fe3*/ZFe through behaviour that is similar to the
basic metal oxides (e.g. K20). Such an effect is probably minor, but would be most
important in relatively polymerised melts and at high pressures where
variations in oxidation state could affect the compositions of minerals that could
fractionate Fe2* from Fe3*. This would appear to justify further work in the
context of hydrous subduction zone melts. Finally, the basicity approach
highlights that oxidation state should be considered alongside an understanding

of melt chemical species and melt structure.

PART II: EFFECT OF VARYING VOLATILE CONTENTS ON OXIDATION STATE

The second part of this paper specifically addresses how variations in melt
volatile concentrations during crustal processes may affect melt Fe3*/XFe. We
seek to explore two key processes in particular: (i) dehydration or degassing of
volatiles during decompression, and (ii) hydration, due to H,0-undersaturated
magma ascent from high pressures. We present new XANES Fe3*/3Fe analysis
for two sets of existing experimental samples to investigate these processes: a

set of decompression experiments from the study of Mangan & Sisson (2000),
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and a set of partial hydration experiments from Humphreys et al. (2008). A brief

description of the experimental procedures is included below.

Decompression and H20 degassing experiments

Samples of the experimentally degassed Panum Crater Dome obsidian were
taken from the study of Mangan & Sisson (2000; table 1). The starting materials
for these experiments were slabs of obsidian, loaded into Pt capsules together
with excess H20. The samples were superheated at 1000 °C for several hours in
Hf-Zr-Mo cold-seal pressure vessels at 200 MPa, pressurised using Ar gas, then
equilibrated at 900 °C for three days, and finally decompressed isothermally at
0.025 MPa/s to variable final pressure (Pf) and immediately quenched.
Decompression runs lasted 17 to 117 minutes. There was no attempt to buffer
fO2 but rapid H; diffusion through the Pt capsule would have equilibrated the
samples at a high fO; during the initial 3-day heating. Any observed covariance
between H20 loss and Fe3*/ZFe over short lengthscales in the samples must
therefore be related to the short decompression phase of the experiment. The
resulting glasses are variably vesicular, with bubbles nucleating throughout the
capsule in some runs, but only at the margins of the capsule in others (table 1;
Mangan & Sisson 2000). Most of the samples analysed by XANES contained
primarily marginal bubbles. H;0 contents and vesicularity data clearly
demonstrate that bubble nucleation was delayed and did not occur at
equilibrium (Mangan & Sisson 2000), yielding a suite of glasses with
heterogeneous H;0 contents over short lengthscales. The anhydrous
composition of the glass is constant within analytical uncertainty (table 2),
indicating that no other compositional changes to the melt occurred during

degassing.

Partial hydration experiments

To compare the mechanisms of hydration and H,0 degassing, we analysed
partially hydrated Lipari obsidian cores as reported in Humphreys et al. (2008).

The starting materials for these experiments were cylinders of homogeneous
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Lipari obsidian, which were loaded into gold capsules with excess H20, along
with a small amount of finely ground obsidian powder to prevent dissolution of
the glass during the experiment. The capsules were then held at super-liquidus
conditions, 150-200 MPa and 855-905 °C in cold-seal pressure vessel apparatus
pressurised by water. Run times were short (20-80 minutes) and achieved
partial hydration of the glass cylinders (table 1; Humphreys et al. 2008). No
double capsule oxygen buffer control was used during the experiments but the
short run times, low temperatures and use of Au capsules effectively ensure
impermeability to Hz during the experiments (Chou 1986). The anhydrous
composition of the glass is constant within analytical uncertainty (table 2),
indicating that hydration is not associated with any other compositional changes

to the melt.

ANALYTICAL METHODS
X-ray Absorption Near Edge Structure (XANES)

Fe3*/3Fe of experimental glasses were measured using Fe K-edge micro X-ray
Absorption Near Edge Structure (WXANES) spectroscopy on the 118 (Microfocus
Spectroscopy) beamline at the Diamond Light Source, UK. Spectra were recorded
in fluorescence mode and the beam size at the sample was approximately 3 x 5
um. The beamline uses a Si(111) crystal monochromator which gives an energy
resolution (AE/E) of 1.4x10-# (approximately 1 eV at the Fe K-edge); the energy
stability of the beamline is +0.05 eV per day. Fluorescence X-rays were
normalised to the incident beam flux and collected using a 9-element solid state
detector. The energy was calibrated by defining the first peak of the first
derivative of Fe foil to be at 7112 eV (or 7111.1 eV for comparison with older
published literature data, e.g. Wilke et al. 2001). Spectra were recorded from
7028 eV to 7400 eV using a 0.086 eV step over the pre-edge region (7098-7123
eV), 0.259 eV step across the edge (7123-7158 eV) and ~5 eV step to define both
the baseline (7028-7098 eV) and the post-edge region. Initial spectra were
collected up to 7340 eV but this was extended out to 7400 eV in later runs to aid
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the normalisation procedure (see below). Counting times were 2000 msec on all
points. The locations of all points analysed were recorded carefully with
reference to reflected light images of the samples to enable accurate relocation

for later SIMS analyses of the same points.

Fe3*/3Fe measurements were quantified by referencing the centroid
energy of the pre-edge feature to a linear calibration (Figure 1a) constructed
using a suite of anhydrous rhyolite glass standards that were synthesised at 1
atm and a range of f0; (FMQ+0.8 to +6) and Fe3*/3Fe from 0.238 to 0.806
(Cottrell et al. 2009; table 3). The raw spectra were normalised by fitting a
straight line to both the low-energy baseline and the post-edge region, using the
Athena software package (Ravel & Newville 2005). The pre-edge feature in Fe
spectra typically shows two overlapping peaks whose centroid energy is
quantitatively proportional to redox state (e.g. Wilke et al. 2001; Berry et al.
2003; Cottrell et al. 2009). The pre-edge regions of the normalised spectra were
fitted between 7106 and ~7118 eV, using a cubic baseline plus a Gaussian to
define the rising background towards the main K-edge, and two additional
Gaussian peaks to define the pre-edge region (following Berry et al. 2003;
Cottrell et al. 2009).

SIMS and EPMA

Glasses were analysed for 1H*, 7Li*, 12C*, 2°Mg*/2, 1601H*, 19F+, 23Na*, 26Mg*, 30Sj*,
35Cl* and 29K* using the CAMECA ims 4f secondary ion mass spectrometer at the
University of Edinburgh. NIST SRM610 was used as the primary calibration
standard; 39Si+ was the internal standard. Mass 0.7 was used to monitor the
background count rate of the electron multiplier detector. A 10 kV, 2 nA, O
primary beam was accelerated onto the sample with a net impact energy of 14.5
kV. Secondary ions were extracted at +4.5 eV using a 75 V offset. A pre-sputter
period of approximately 2 minutes, with a nominal 15 um rastered beam, was
used to clean the sample surface, during which time the mass spectrometer was
calibrated for the secondary ions. For quantitative analysis, the focused beam
was reduced to ~10 um using a field aperture. H20 contents of the glass were

derived using a daily working curve (figure 1b) of measured 1H*/39Si* vs. H20 in
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well-calibrated hydrous glass standards, following the methods of Blundy &
Cashman (2005). Typical errors in determining H20 are ~8-12% relative. Where
possible, the same points analysed by XANES were targeted for SIMS
measurements. Major element glass compositions were analysed using a 5-
spectrometer Cameca SX-100 electron microprobe at the University of
Cambridge, with a defocused (15 wm), 15 KV, 4 nA electron beam for major
elements and a 10 nA beam for minor elements. Other analytical conditions were

equivalent to those of Humphreys et al. (2006a).

RESULTS

All the samples studied (including XANES standards) are rhyolite glasses with
FeOr ranging from 1.0-5.7 wt%. The resulting XANES spectra show a sharp, clear
pre-edge feature, with a well defined post-edge peak at ~7130 eV, followed by a
deep trough at ~7160 eV and broad, shallow oscillations in the EXAFS region
(figure 2). In common with Berry et al. (2003) and Wilke et al. (2005) we
observe systematic changes to the shape of the spectra with increasing Fe
oxidation state of the standard glasses (figure 2), including: (i) changes to the
shape of the pre-edge feature, (ii) an increase in the energy of the main edge, (iii)
an increase in the height and breadth (and in detail, a change in the shape) of the
post-edge peak, and (iv) a slight increase in the energy of the post-edge trough.
The change in energy of the post-edge trough has the potential to introduce
errors into the dataset during processing if the region ~7160-7260 eV is used to
normalise the spectra. We therefore normalised the spectra to the average
intensity of the far post-edge region (up to 7400 eV), which avoids any of these
uncertainties. Only the shape of the pre-edge feature was used to make

quantitative inferences about the Fe oxidation state of the unknown samples.

The shape of the pre-edge feature is generally quantified by calculating
the centroid energy, C, i.e. the area-weighted average energy of the pre-edge

feature:

Ay Az

C = El 2
A1+A4A, A1+A,

[4]
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where E; is the peak energy of component i, and 4; is the total area (or integrated
intensity) of component i. Average precision on the centroid energy from
uncertainties in the fitting parameters is extremely good, +0.008 eV and far
better than the accuracy, which relies on calibration of the centroid energy with
Fe3*/ZFe. Fully propagated uncertainty for our analyses gave an 80% confidence
interval of ~0.067 for Fe3*/ZFe, but with very high precision. This translates to
AfO, of approximately 0.6 log units. This method assumes similar Fe
coordination in the calibration standards and the unknowns because the
intensities of the pre-edge components can vary with both Fe3*/XFe and iron
coordination (Wilke et al. 2001). All our samples have similar total pre-edge
intensity (figure 3), which suggests no significant change in Fe environment and
indicates an average Fe-coordination number of approximately [5], consistent
with a stable mixture of [4] and [6] environments (Wilke et al. 2001) for both
Fe2* and Fe3*. The most oxidised reference glasses plot at slightly higher total
intensity than the unknowns, which may be a result of slight self-absorption

effects (which has negligible effect on the centroid position, Bajt et al. 1994).

H:20 degassing

The experimentally degassed samples show a range of H20 contents as measured
by ion probe and inferred from greyscale variations (figure 4). Water contents
range from 2.3 to 6.4 wt% H20, with one measurement at 7.2 wt% H:0 (figure
4c; table 4). These values are higher than the volatile contents as measured by
FTIR (1.8 - 5.4 wt% H20, Mangan & Sisson 2000) but span a similar range. The
cause of the discrepancy between the SIMS and FTIR data is unclear; however
the key point for this study is that the glasses show clear relative variations of
H>0 with Fe3*/ZFe. Back-scattered SEM images of individual samples typically
show clear increases in greyscale intensity that correlate well with decreasing
H20 concentration (figure 4b) from the core to the rim of samples with only
marginal bubbles. This indicates progressive diffusive loss of H20 to the margins
of the sample to feed the growing marginal bubbles. Those samples with more
vesicular interiors did not show any clear variations of BSE intensity and

typically showed more limited H,0 variation.
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XANES spectra for these samples have a relatively small range in pre-edge
centroid energy from 7114.05 to 7114.15 eV (table 4). Total pre-edge intensity
increases with increasing centroid energy (figure 3), consistent with previous
observations for silicate glasses (Wilke et al. 2005). The pre-edge centroid
energies for these samples correspond to an overall iron oxidation state,
Fe3*/3Fe of 0.52 to 0.64. Although this variation is small compared to the fully
propagated measurement uncertainty, there are clear relative variations both
between and within samples. There is a correlation between H>0 concentration
and oxidation state, consistent with an increase in Fe3*/ZFe due to degassing of

H20 from the melt.

Hydration

The margins of the Lipari obsidian samples are strongly hydrated, with water
contents approaching the equilibrium values calculated for the experimental run
conditions (4.8-5.6 wt%, Humphreys et al. 2008), while the interiors remain un-
hydrated and record the initial volatile content of the Lipari obsidian starting
material (~0.2 wt% H20; table 5). The variation in H20 contents is clearly visible
as a strong outward decreases in back-scattered SEM intensity (e.g. figure 5a;
Humphreys et al. 2008). The influx of water into the samples was previously
modelled successfully based on established concentration-dependent H:0
diffusivity data (Nowak & Behrens 1997; Zhang & Behrens 2000) and is
consistent with H0 diffusion into the samples over the timescale of the

experiments (Humphreys et al 2008).

XANES spectra for the high-temperature hydrated samples show strong
changes in pre-edge centroid energy from 7113.65 to 7114.1 eV, with one outlier
at 7113.60 eV (table 5), corresponding to Fe3*/ZFe values from 0.04 to 0.60
(figure 5b). In marked contrast to the degassed samples, H,0 concentration
correlates positively with oxidation state, indicating increasing Fe3*/XFe linked
to diffusion of H20 into the sample. This is further demonstrated by the close
correspondence in the shapes of the compositional profiles with distance from

the margin of each chip (Figure 6). These spatial profiles also highlight a small
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but apparently significant (in that it is present in each sample) negative

deviation of Fe3*/XFe at low H20 contents (~0.5-1.5 wt% H0).

INTERPRETATION
Oxidation due to melt hydration

The hydrated samples show clearly that increasing H20 content causes an
increase in the Fe oxidation state (figures 5 and 6). This observation is very
similar to the results of an earlier equilibrium study (Botcharnikov et al. 2005),
which used long run times and an AuPd capsule that is permeable to H; to
control fO2 in the experiments, according to the equilibrium constant for the

dissociation reaction:
H20 (g) = Hz (g) + %2 02 (g) [5]

Keq = (fHz. f021/2) / fH,01 [6]

Although fH; of the fluid was fixed (via a Shaw membrane), variations of XH,0fl
between capsules introduced differences in equilibrium fO; in different
experimental runs (Botcharnikov et al. 2005), because fH20 = aH20 * f°H;0 (and
assuming ideal behaviour, aH,0 ~ XH:0). The actual fO; experienced was

calculated from the imposed fO2 and XH20 (Botcharnikov et al. 2005):
log fO> (actual) = log fO, (imposed) + 2 log XH20 [7]

In our experiments, we assume that the use of an Au capsule (minimally
permeable to Hz at our experimental temperatures, Chou 1986) and very short
run times (20-80 minutes) resulted in approximately constant fH> fluid inside
the experiments (see later). Our experiments were not equilibrated, and
diffusion of H20 from the fluid into the melt resulted in wide variations of XH20
within each quenched glass chip, from water-saturated at the hydrated margin
(~5.5 to 6 wt% H20) to highly undersaturated in the unhydrated core (~0.2 wt%
H20). We can write equivalent reactions to [5-6] that apply for the melt phase,
even though equilibration was incomplete. We therefore calculated the apparent

change in log fO2 (melt) following the approach of Botcharnikov et al. (2005). We
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assumed constant fHz, and used either H20: (the total amount of H20 dissolved in
the melt) or the molecular H20n (estimated from Silver et al. 1990) to calculate
log XH20: or log XH20m, i.e., XH20t = H20t/H20sa: and XH20m = H20m/H20sa.. We
also assumed that the marginal glass is H,0-saturated, i.e. that XH,0¢ = 1 at the
rim, as the rim H20: concentrations agree with solubility models (Humphreys et
al. 2008). Calculated fO; was converted to Fe3*/XFe using the anhydrous
algorithm of Kress & Carmichael (1991) for the major element composition of
the sample and known experimental conditions. Using this approach, the overall
change in Fe3*/3Fe from core to rim in the glass samples is matched by the
predictions based on observed changes in XH;0 (figure 7). The lengthscale of the
changes in Fe3*/XFe is also equivalent to the lengthscale of H,0 diffusion
gradients, modelled using existing H2On diffusivity data (Humphreys et al. 2008),
demonstrating that Fe3*/XFe varies at a rate controlled largely by the diffusivity
of H20m. (figure 6). This implies that Fe oxidation state is dominated by

variations in XH20 during hydration.

However, the shapes of the H20-Fe3*/ZFe profiles do not fit well to the
modelled trend (figure 7), which suggests that Fe oxidation state was only partly
controlled by the disequilibrium changes in XH20. In particular, there is a
significant deviation from the modelled curve to lower Fe3* at low to
intermediate water contents (figure 7). This is in contrast to equilibrium data
(Botcharnikov et al. 2005), which fit the model well (figure 7). The discrepancy
with the equilibrium data cannot be explained by significant changes in average
melt Fe coordination, because the overall intensity of the pre-edge region does
not vary significantly with oxidation state (see figure 3; although this does not

preclude that coordination changes might occur).

Another possibility is that some ‘significant’ diffusion of Hz did occur
across the Au capsule during the course of even these short experiments. As the
experiments were unbuffered it is difficult to quantify these effects but we note
that any H; loss from the capsule fluid would result in anomalously oxidised
sample margins, while H2 gain would result in anomalously reduced sample
margins, relative to predicted values. Instead, Fe3*/XFe at the sample margins is

well matched by the predictions - instead the unhydrated cores of the chips are
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anomalously reduced relative to the predicted curves (Figure 7). Furthermore,
there is no difference in profile shape between the shortest (20 minutes) and
longest experiment (117 minutes), which supports our interpretation that the
experiments approximately represent a closed system. There is also no
difference in the width of the low-Fe3* region between the shortest and longest
experimental runs (figure 6). This suggests that rapid migration of Hz preceding
the H20 diffusion front at high temperature cannot explain the discrepancy

between model and observations (cf. Gaillard et al. 2002; 2003b).

Our best explanation is therefore that, although the interconversion
reaction between H;0 and OH in the silicate melt is rapid at experimental
temperatures (Zhang et al. 1991), reactions involving the Fe species are slower,
or may involve intermediate reactions, at low H0 contents where the melt
viscosity is higher. The effect of this would be that any change in Fe3*/XFe is
offset to higher XH;0 in these disequilibrium experiments. This could also
explain why the longer duration, equilibrium experiments of Botcharnikov et al.
(2005) are more consistent with the shape of the modelled curves (see figure 7).
This interpretation is consistent with the observations that relatively slow redox
equilibration in metaluminous rhyolites may be linked to intermediate changes

in complexing of network-modifying cations (Gaillard et al. 2003c), such as:
NaFe3*0; + 2 Si-OH = 20H + 2Fe2*(5-0-Si [8]
or Hz + 2NaFe3+0; + 2 Si-0-Si = 2NaOH + 4Fe2+(50Si [9]

This emphasises that changes in melt oxidation state are closely linked to
variations in melt chemistry and structure. Melt basicity theory may be a useful
additional tool for investigation of these sorts of coupled changes than simply fO2

measured relative to traditional oxygen buffers.

Oxidation due to H20 degassing

The data from the experimentally degassed rhyolites are scattered but show a
general trend of oxidation by ~0.5 to 1 log unit fO, (Fe3*/ZFe varies from 0.53 to
0.65) as H20 contents decrease from ~7 to ~2 wt% (figure 4c; table 4). During

decompression, the melt became H;0-saturated and nucleated bubbles of a free
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H20 vapour phase. We infer that subsequent re-equilibration of fH, and fH20 in
the vapour bubble occurred through sequestration of Hz from the melt, resulting

in increased Fe3*/XFe through the reaction:
H> (g) + Fe203 (m) = H20 (m) + 2Fe0 (m) [10]

Although the initial fO2 of the melt in these experiments was quite high, as a
result of prolonged equilibration at high pressure in the cold seal apparatus
(Mangan & Sisson 2000), this oxidation pattern is consistent with theoretical
calculations of increasing oxidation state with degassing for sulphur-free melts
(e.g. Mueller 1971; Candela 1986; Burgisser & Scaillet 2007). We used the
approach of Burgisser et al. (2008) to simulate the change in OH partitioning
between gas and melt during pressurisation in a closed system. Each pressure
step results in incremental changes to the species fugacities and their
concentrations in the melt, which are calculated using species solubilities, mass
balance, and reaction [5]. The scale of the observed fO; increase is somewhat less
than that predicted by the model when starting with negligible initial fluid
(figure 4d). This discrepancy is unlikely to be related to significant changes in fH>
during the course of the experiments, because the decompression run times are
very short (17 to 117 minutes). Moreover, the experimental apparatus was
pressurised by Ar gas, so Hz would tend to migrate out through the capsule,
decreasing fH; and leading to more oxidised conditions. Instead, it is more likely

that:

(i) The modelling does not take into account the buffering capacity of FeO in
the melt, which could reduce the absolute increase in oxidation state,
particularly at higher initial fO, (Candela 1986). However, for a melt with
only 1 wt% FeO (as in the case of the Panum Dome rhyolite) this should
account for <0.2 log units change in fO2 (Burgisser & Scaillet 2007).

(ii) The high proportion of fluid in the experimental capsules is buffering the
changes in fO2. The experimental starting materials include ~20 wt% fluid
so there is likely to be substantial excess fluid at the beginning of each
decompression run. When the modelling is repeated with 10 wt% and 20

wt% initial fluid the scale of the fO: increase is substantially reduced
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relative to the run with 0.1 wt% initial fluid (figure 4d), consistent with the

observations.

The other important difference between the experiments and the modelling is
that the experiments were run without equilibration at each pressure step
(Mangan & Sisson 2000); i.e., they represent disequilibrium degassing. The
disequilibrium arises from delayed bubble nucleation, which is offset to lower
pressure than the equilibrium case, but because they were run with a pure H20
fluid there is no effect on the relationship between Fe3*/ZFe and H,0. However,
more significant kinetic factors could arise in multi-component fluids with
significant differences in volatile species diffusivities. This is highlighted in
experiments by Fiege et al. (2014) that showed enhanced transfer of sulphur into
the fluid relative to the melt at high decompression rates, decreasing to
equilibrium values with annealing and producing lower melt Fe3*/ZFe than

predicted by equilibrium (closed-system) models.

DISCUSSION

Our data demonstrate that magma degassing and hydration can both result in
significant melt oxidation coupled to changes in volatile content. On H:0
saturation, the formation of a free H20 vapour phase partitions Hz from the melt
into the vapour and results in melt oxidation. During hydration, oxidation is
caused by changes in water activity. These mechanisms should therefore be
considered as one possible way to explain the high oxidation state observed in
arc magmas (e.g. Carmichael 1991). Both processes have direct relevance for
crustal processes and may be important in different regions of the arc crust
(figure 8). Magma ascent from shallow storage regions is dominated by
degassing of H,0 vapour from the melt, while rise of H20-undersaturated magma
from the deep crust would be associated with increasing water activity.
However, arc magmas are complicated by a general lack of equilibrium
conditions, instead representing different components or sub-systems that may

be in equilibrium at different points in the volcanic system. We therefore need to
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consider what controls fO, and what phases would record it accurately over

varying timescales.

Degassing in natural systems

Arc magma ascent through a conduit and eruption at the surface is associated
with significant volatile degassing (figure 8). Our new data and modelling
demonstrate that degassing of a pure or dominantly H>O-bearing fluid results in
significant melt oxidation. Under closed-system degassing conditions, this can be
moderated by the presence of large volumes of gas. Furthermore, the melt can be
expected to oxidise even if degassing occurs during disequilibrium degassing
(delayed bubble nucleation), provided that the volatile budget is dominated by
H20. In natural systems, we would therefore expect to observe a systematic
deviation between the oxidation state of the melt relative to that of the pre-

eruptive magma (as measured, for example, by 2-oxide equilibria).

Crabtree & Lange (2012) showed that bulk rock Fe3*/3Fe in degassed,
crystal-poor andesites from the Mexican volcanic arc was within error of the pre-
eruptive Fe3*/ZFe of the hydrous melt, as determined by 2-oxide
thermobarometry. This was interpreted to mean that extensive degassing (of up
to 8 wt% H20) during ascent had no measurable effect on magma oxidation state.
Our data indicate that such strong H20 degassing should leave a clear signature of
oxidation in the melt phase. We therefore suggest that the magma may also have
degassed additional multi-valent gas species (e.g. sulphur) that would counteract
the melt oxidation driven by loss of H20 (Burgisser et al. 2008). Alternatively, the
bulk rock measurements of oxidation state in the degassed magmas may have
been insufficiently sensitive to resolve any degassing effects. Direct, in situ
measurements of melt oxidation state (e.g. by XANES) are more likely to resolve

these late-stage changes.

Surface volcanic gas emissions represent the counterpart to the
continuously degassing melt that is erupted (figure 8), but gas fO, measurements
are commonly different from those of their host lavas. This has been interpreted

as the result of oxidation state changes to the melt during degassing (e.g. loss of
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SO from basalt, Anderson & Wright 1972; Helz 2009) or mixing and integration
of multi-component gases released over a range of pressures (Edmonds et al.
2010). In some cases, disequilibrium in the gas phase is evident from lack of
correspondence of fO, estimates using different gas ratios (e.g. H2/H20 cf.
CO/CO2, Hammouya et al. 1998) and probably results from mixing of gas
components with different origins, decoupled from magma ascent (Edmonds et
al. 2010). In other cases the gases appear to be in equilibrium with the lavas (e.g.
Gerlach 1993; Roeder et al. 2003; Gerlach 2004; Roeder et al. 2004) and the
discrepancy may relate to kinetic differences in the response rate of different

redox pairs (Hz-H20 > SO2-H>S > CO-CO2-CH4, Giggenbach 1987).

These problems indicate that where multiple volatile species are present,
the effects of degassing of natural arc magmas on oxidation state are complex,
and strongly influenced by temperature, pressure, degassing kinetics and the
initial fO, (Fiege et al. 2014; Burgisser & Scaillet 2007) as well as the mode of
degassing (open system or closed system). This means that analysis of oxidation
state during degassing of natural melts is unlikely to yield unique
interpretations, although it is clear that arc magma degassing could significantly
affect the oxidation state of the melt. Attaining a real understanding of the effects
of magmatic degassing on oxidation state will probably require direct
measurements of the concentrations and speciation of all major volatiles in the

melt, as well as melt Fe3*/ZFe and the corresponding gas compositions.

Magma ascent from the deep crust

Recent models of arc magma genesis involve prolonged periods of deep (mafic)
magma intrusion, differentiation and partial melting (e.g. Annen et al. 2006),
followed by magma ascent towards upper crustal magma reservoirs where
storage, degassing and mingling may also occur (Humphreys et al. 2008;
Edmonds et al. 2010; Johnson et al. 2010). Our partial hydration experiments
have relevance for the passage of hydrous melts or magmas between the lower
crust and shallow magma storage reservoirs (figure 8). Although magmas
originating from the deep crust are thought to be hydrous, they are highly

unlikely to be Hz0-saturated. This means that melt aH,0 will increase during
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ascent, as the magma gets closer to volatile saturation. By analogy with our
experimental results, such ascent could result in significant oxidation of the melt
under conditions of incomplete diffusive equilibration. Although H>O diffusion is
rapid, we calculate that even in 10,000 years significant diffusion would only be
observed over a distance of only ~20 m at 900 °C (using the diffusivity model
from Nowak & Behrens 1997). This means that incomplete equilibration in
ascending magmas must be carefully considered as a possible source of Fe3*/XFe
heterogeneity. Moreover, this reasoning also suggests that, depending on
timescales, magmas in the middle to lower crust could be substantially more
reducing than those in the upper levels of magma storage, and hence that

crustal-scale variations in fO2 may be possible at subduction zones.

There are already some hints of strong changes in oxidation state during
formation of arc magmas. For example, the cores of a population of plagioclase
phenocrysts in intermediate arc magmas are highly anorthitic and corroded,
consistent with resorption during H20-undersaturated magma ascent
(Humphreys et al. 2006). These cores may contain sulphide inclusions, indicating
that these plagioclase phenocrysts formed in a more reducing environment than
the host magmas, which are typically too oxidising to have stable sulphides. The
presence of Cu-Fe-sulphide inclusions in phenocrysts appears to be a relatively
common feature in intermediate arc magmas (e.g. Shiveluch Volcano, Kamchatka,
Humphreys et al. 2006; Santiaguito, Guatemala, Scott et al. 2013; Satsuma-
Iwojima, Japan, Ueda & Itaya 1981; Mount Pinatubo, Philippines, Pallister et al.
1996; and Popocatepetl, Mexico, Schaaf et al. 2005), and in their cumulates (Lee
et al. 2012). Sulphide crystallisation could reflect a stage of fractionation under
deep, more reducing, low aH»>0 conditions; or alternatively may be coupled to
melt redox changes resulting from magnetite crystallisation (Carmichael &
Ghiorso 1986; Sun et al. 2004; Jenner et al. 2010), resulting in constant or
reducing melt Fe3*/XFe but changing S042-/S2?- (Sun et al. 2004; Moretti & Papale
2004). In any case, these variations in oxidation state could have important

implications for the distribution and transport of metals within the arc crust.

What controls fO; in magmatic systems?
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Although estimates of fO, for many magmas plot close to solid oxygen buffers
(e.g. nickel - nickel oxide, NNO; or quartz-fayalite-magnetite, QFM), these phases
typically do not (co)exist and it is highly unlikely that those solid buffers are
controlling magma fO;; instead they are useful reference lines in T-fO; space.
However, it has been suggested that gas-melt redox equilibria could actually
control magma fO, if there is abundant free vapour present in the magma. For
example, Matthews et al. (1994) suggest that the sulphide-sulphate gas-phase

reaction
SOz (g) + H20 (g) =H2S (g) +3/2 02 (g) [11]

buffered magma fO; at Lascar Volcano, Chile, leading to more oxidised magmas
(relative to the NNO-buffer) as temperature decreases. This mechanism would
require relatively sulphur-rich gases to be present, although the gas-driven
buffer could be very effective because of its rapid response and large valence
change (Matthews et al. 1994). The pattern of increasing divergence from oxide
buffers (e.g. ANNO) with decreasing temperature, in a trend more parallel to the
sulphide-sulphate buffer, is seen at several other volcanoes (figure 9a), including
Augustine, USA (Roman et al. 2006), Shiveluch, Kamchatka (Humphreys et al.
2006), Quizapu, Chile (Ruprecht et al. 2012) and Pinatubo (Pallister et al. 1996).
Data for Mount St Helens, USA as a whole lie parallel to NNO, but individual
samples do not (Blundy et al. 2008), instead plotting parallel to the sulphide-
sulphate buffer (figure 9a).

This suggests that sulphide-sulphate oxygen exchange between the gas
and melt might be a common and effective oxygen buffering mechanism for
shallowly stored magmas. However, the arrays of T-fO; points from coexisting
oxide compositions are also parallel to isopleths of constant hm/ilm (taken from
Buddington & Lindsley 1964; figure 9b). Isopleths of constant mt/iisp in
titanomagnetite are at a slightly steeper angle (figure 9b). Therefore, the oxide
data could also be explained by increased temperature causing increasing tsp
content while hm/ilm remains constant. This is consistent with the slower
diffusion rates in ilm-hm solid solution than in mt-iisp (Hammond & Taylor
1982). A simpler interpretation for these T-fO; trends is therefore that late-stage

heating has resulted in a diffusive increase in ilisp-content of titanomagnetites,
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while adjustment of ilmenite compositions is kinetically inhibited. The increased
temperature could be due to release of latent heat of crystallisation (Blundy et al.
2006) or to mingling with hotter magmas (e.g. Devine et al. 2003; Ruprecht et al.
2012). This is consistent with compositional variations in oxides from Soufriere
Hills Volcano, Montserrat (figure 9b; data from Devine et al. 2003). Ilmenites are
uniform, while titanomagnetites have zoned rims with high TiO2 due to magma
mixing (Devine et al. 2003). The apparent T-fO; data plot along hm-ilm isopleths
and lie parallel to the sulphide-sulphate buffer (figure 9b). Demonstrating fO>
control by gas-melt equilibria such as [11] would require evidence of constant
melt redox ratios for the redox couple of interest, probably through analysis of

suites of melt inclusions.

Disequilibrium between crystals and melt is a ubiquitous feature of
shallow crustal arc magma storage: arc magmas typically comprise components
or sub-systems that may be only in equilibrium at certain points in the volcanic
system (e.g. Pichavant et al. 2007). For minerals, equilibration timescales are
poorly known but probably slow, except for Fe-Ti oxides, which may equilibrate
relatively quickly (i.e., < 5 years at 900 °C for complete equilibration of a 250 um
oxide phenocryst, Freer & Hauptman 1978). This means that fO> calculated from
solid-melt equilibria involving homogeneous Fe-Ti oxide phenocrysts (+ H20)
should be an accurate record (sensor) of stable magma storage conditions in the
shallow system. However, oxides will probably not provide a good record of
earlier or longer-term changes in fO; during fractionation, nor of late-stage
changes during magma ascent. Instead, more slowly equilibrating phenocrysts
such as pyroxene or hornblende, or oxides brought rapidly to the surface in
cumulate nodules, may be more useful as a record of longer term changes;
whereas melt redox couples will be needed to investigate variations immediately

prior to eruption.

SUMMARY
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Direct measurement of coupled changes in melt Fe3*/2Fe and H;0 content in
partially hydrated and degassed experimental rhyolites confirms that significant
changes in oxidation state can occur in response to changes in volatile content.
During hydration, increases in aH>O0 produced strong melt oxidation. This
suggests that ascent of HzO-undersaturated arc magmas from the deep crust
could cause significant oxidation, depending on the timescales required for
equilibration relative to magma storage times. During degassing, oxidation arises
due to loss of H2 together with H20, consistent with theoretical modelling for H.0
fluids. It is therefore possible that significant vertical variations in magma
oxidation state may develop within the arc crust. During the fractionation,
storage and ascent of natural arc magmas, the controls on fO; may be expected to
vary depending on the nature and duration of magma storage, as well as kinetic
factors and the timescales of observation and equilibration. The differing
response times of possible oxygen buffers and/or fO; sensors (such as oxide
pairs) need to be considered alongside the degree of attainment of equilibrium in
the magma. It is clear that attaining a real understanding of the effects of
magmatic degassing on oxidation state will probably require direct
measurements of the concentrations and speciation of all major volatiles in the
melt, as well as melt Fe3*/3Fe and the corresponding gas compositions. In this
respect, melt structure and chemistry should be considered alongside variations

of fO; relative to traditional buffers.
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FIGURES
Figurel

Calibration lines for determining Fe3*/3Fe from XANES centroid energy (a) and
H20 from 1H*/30Si* ion probe measurements (b). In (a) errors in Fe3*/3Fe are
derived from Mossbauer spectroscopy (Cottrell et al. 2009) while uncertainties
in centroid energy are equivalent to the fitting uncertainty. Data are presented as
linear deviation of centroid energy from 7113.6 eV, to facilitate regression. Solid
line: best fit linear regression. Dashed lines: fully propagated uncertainties at
80% confidence limits based on the linear regression. (b) Typical daily ion
microprobe calibration curve for 1H*/30Si* vs H,0 showing best fit linear

regression (solid line) and upper and lower 95% confidence limits (dashed
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lines). Uncertainties in H20 are the errors on independently measured H:0

contents of the standard glasses.

Figure 2

a) Typical normalised, background-corrected XANES spectrum for rhyolite
standard glass. Boxes show parts of the spectrum that show variations with
oxidation state. b) The pre-edge region shows two peaks; the relative importance
of the higher-energy peak increases with increasing Fe3*/ZFe. Each spectrum is
offset by 0.02 on the y-axis. ¢) The energy of the main edge increases
systematically with increasing Fe3*/ZFe (spectra are not offset). d) The energy of
the peak and post-edge trough increases with Fe3*/XFe, though higher energy
resolution in this region is needed to use this feature quantitatively. Each
spectrum is offset by 0.02 on the y-axis. NB. Where additional symbol markers

are used, these represent every fifth data point.

Figure 3

Total pre-edge intensity plotted against pre-edge centroid energy, after Wilke et
al. (2005). Light grey dots and dashed curves represent Fe coordination end-
member positions and mixing lines derived from Wilke et al. (2005). Triangles -
rhyolite glass standards, Cottrell et al. (2009). Squares: partially hydrated Lipari
rhyolite. Circles: high-temperature degassed rhyolites from Mangan & Sisson
(2000). Solid grey curve represents the range of standard glasses presented by
Wilke et al. (2005).

Figure 4

a) Backscattered electron SEM images of representative glass chips from Mangan
& Sisson (2000), in which heterogeneous bubble nucleation at the margins of the
chips was dominant. Scale bar is 1mm. Lower greyscale intensity in the core
indicates higher water contents, as demonstrated by the negative linear

correlation between greyscale and H20 (b). Degassing of H;0 is associated with
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increasing Fe3*/ZFe (c) and fO; relative to the Nickel-Nickel oxide buffer (d).
Errors in (c) relate to ~10% uncertainty in H20 and 80% confidence limits for
Fe3*/3Fe. Note that the analytical precision is smaller than the size of the
individual points. Modelled trends in (d) are theoretical predictions for
degassing of S-free rhyolite following Burgisser et al. (2008), starting at different
initial fO, and with no free fluid (0.1 wt% initial gas, red line) or with 10 wt%
(green) or 20 wt% (black) initial fluid.

Figure 5

Backscattered electron SEM image showing variation of greyscale intensity
related to inward diffusion of H20 into the Lipari glass chips at high temperature
(a), reproduced from Humphreys et al. (2008). (b) Co-variation of Fe3*/ZFe with
H20 content and equivalent fO, variation relative to the NNO buffer.

Representative error bars shown for sample LIPRF5.

Figure 6

Spatial variability of Fe3*/ZFe (grey squares) and H;O (black triangles) with
distance from the margin of each chip hydrated at high temperature. Fe3*/ZFe in
the un-hydrated starting material is marked by a grey band in each figure.
Horizontal error bars in (a) are the estimated maximum uncertainty on spatial
location of each point. Errors in Fe3*/XFe and H;0 are reported in previous

figures.

Figure 7

Variation of Fe3*/XFe and H20 within experimentally hydrated glass chips
(squares). Modelled variation of Fe3*/ZFe based on changing water activity is
shown by the bold lines (calculated from XH;0m) and dashed lines (calculated
from XH:0t). Calculated variations for two different illustrative initial fO:

conditions are shown (black and grey lines and labels).
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Figure 8

Schematic figure showing the possible variations in importance of possible
different fO; control mechanisms in different parts of the volcanic system and

crust, depending on Kkinetics and degree of equilibration. See text for discussion.

Figure 9

Temperature-fO; variations in intermediate arc magmas (a). Different oxygen
buffers are shown in bold black lines (constant sulphide-sulphate ratios) and
grey dashed lines (NNO, NNO+1). Data points are from two-oxide equilibria. Data
sources are Blundy et al (2008) for Mount St Helens, USA; Humphreys et al.
(2006) for Shiveluch Volcano, Kamchatka; Roman et al. (2006) for Augustine,
Aleutians; Crabtree & Lange (2012) for the Mexican arc; Murphy et al. (2000) for
Soufriere Hills, Montserrat; Sparks et al. (2008) for Uturuncu Volcano, Bolivia;
Pallister et al. (1996) for Mount Pinatubo, Philippines; and Matthews et al.
(1994) for Lascar Volcano, Chile. The pale grey arrow shows the data trend from
part (b), which also shows isopleths (thin grey lines) of constant hm-ilm and
Usp-mt composition from Buddington & Lindsley (1969). Black circles in (b) are
data on zoned magnetite grains from Soufriere Hills Volcano, Montserrat (from
Devine et al. 2003) which plot along lines of constant hm-ilm and also lie parallel

to the sulphide-sulphate buffer.
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Table 1 - XANES fit components, calculated centroid and total intensity for rhyolite standards. Fe**/5Fe values are from Mossbauer spectroscopy (Cottrell et al.
2009).

Fe?* component Fe** component
Analysis Fe®* peak Fe* peak Centroid, Total
number Sample location * Width Intensity * location * Width Intensity * eV intensity Fe®*'/zfe

8446 DT31 7113.03 0.058 2.098 0.081 0.059 0.004 7114.51 0.012 1.654 0.015 0.136 0.004 7114.12 0.194 0.63
8447 DT18 7113.90 0.038 2.940 0.044 0.141 0.007 7114.52 0.004 1429 0.013 0.091 0.003 7114.20 0.232 0.66
8448 568_2 7112.81 0.019 1.852 0.033 0.060 0.002 7114.47 0.011 1.622 0.020 0.077 0.002 7113.80 0.137 0.238
8450 DT29 7113.97 0.028 2.741 0.034 0.131 0.004 7114.53 0.005 1.448 0.016 0.097 0.003  7114.27 0.228 0.806
8492 DT39 7112.91 0.024 1.953 0.039 0.073 0.002 7114.50 0.009 1571 0.016 0.110 0.002  7113.93 0.184 0.315
8494 DT46 7113.03 0.039 2.049 0.059 0.069 0.004 7114.50 0.009 1554 0.012 0.139 0.003  7114.07 0.207 0.569



Table 2 - (a) Experimental details for Panum dome rhyolite samples from
Mangan & Sisson (2000). Pf - final pressure. (b) Experimental details for Lipari

obsidian from Humphreys et al. (2008)

Sample
58
63
65
68

Sample
LIPRF2
LIPRF3
LIPRF5
LIPRF7

dP/dt,
MPa/s
0.025
0.025
0.025
0.025

P, MPa
200
200
150
150

Pf, MPa
25
100
31
175

T°C
857
859
899
901

Run time
(min)
117
67
113
17

Run time
(min)
20
80
67
20

Comments
Pervasive bubble cloud
Fringe bubbles only
Pervasive bubble cloud
Fringe bubbles only

Comments



Table 3 - Electron microprobe compositions of starting glass and experimental run products, reported on anhydrous basis. 10
uncertainties are derived from electron microprobe analysis. 'n', number of analyses

Panum dome (Mangan & Sisson 2000) Lipari obsidian (Humphreys et al. 2008) Napa Valley Glass Mountain

Starting Avg run products Starting  Avg run products Avg

material (anhydrous) 1sigma material (anhydrous) 1sigma (anhydrous) 1sigma
SiO; 75.64 76.94 0.52 74.17 74.39 1.6 76.59 0.51
TiO, 0.08 0.06 0.02 0.08 0.08 0.03 0.08 0.02
Al,O03 12.38 12.56 1.05 12.76 12.95 1.08 12.3 1.03
FeO 0.94 1.01 0.26 1.57 1.59 0.45 1.16 0.27
MnO 0.07 0.05 0.11 0.05 0.07 0.11 0.04 0.1
MgO 0.03 0.03 0.05 0.04 0.04 0.01 0.01 0.05
Ca0 0.54 0.54 0.13 0.74 0.75 0.12 0.37 0.11
Na,O 4.17 3.79 0.53 4.24 4.16 0.73 4.4 0.56
K,0 472 494 0.59 5.39 5.49 0.65 4.61 0.56
Cl 0.06 0.07 0.03 0.32 0.31 0.04 0.08 0.03
F 0.16 0.18 0.23
H,O 0.17 0.23 0.25
Total 98.8 99.99 99.75 100.01 99.89

n 33 110 12



2 3
Fe”* component Fe** component

Analysis Fe”* peak Fe** peak Centroid, Total

number Sample location Width Intensity + location + Width + Intensity + eV intensity Fe3+/ZFe wt% H,0 ANNO %

8452 68-3 7112.78 0.044 1.886 0.066 0.043 0.003 7114.42 0.013 1.74 0.018 0.124 0.002 7114.05 0.167 0.529 7.27 2.7 0.55
8453 68-1 7112.74 0.035 1.840 0.055 0.043 0.002 7114.41 0.010 1.77 0.016 0.129 0.002 7114.05 0.172 0.529 6.20 2.8 0.55
8454 68-2 7112.75 0.040 1.808 0.063 0.041 0.003 7114.41 0.011 1.75 0.017 0.134 0.002 7114.08 0.175 0.562 6.42 3.0 0.57
8455 65-1 7112.93 0.067 1.983 0.093 0.047 0.004 7114.46 0.014 1.70 0.017 0.145 0.004 7114.15 0.192 0.643 2.41 3.7 0.69
8456 65-3 7112.85 0.051 1.915 0.076 0.046 0.003 7114.44 0.012 1.68 0.016 0.137 0.003 7114.10 0.183 0.585 3.72 3.2 0.60
8457 65-3A 7112.80 0.050 1.861 0.077 0.043 0.003 7114.42 0.013 1.70 0.018 0.138 0.003 7114.09 0.181 0.575 3.92 3.1 0.59
8458 65-5A 7113.00 0.076 2.089 0.103 0.053 0.005 7114.47 0.015 1.67 0.017 0.137 0.004 7114.12 0.190 0.610 2.49 3.4 0.63
8459 65-7 7112.81 0.050 1.907 0.075 0.046 0.003 7114.42 0.013 1.70 0.018 0.134 0.003 7114.07 0.180 0.545 4.38 29 0.56
8460 65-9 7112.92 0.085 1.976 0.119 0.047 0.005 7114.45 0.018 1.69 0.021 0.144 0.005 7114.14 0.191 0.629 3.92 3.6 0.66
8461 65-8 7112.87 0.052 1.982 0.077 0.049 0.004 7114.44 0.012 1.68 0.016 0.133 0.003 7114.08 0.181 0.558 3.52 3.0 0.57
8462 58-3 7112.96 0.054 2.059 0.076 0.053 0.004 7114.47 0.012 1.67 0.014 0.134 0.003 7114.10 0.187 0.586 2.30 3.2 0.60
8463 58-2 7112.94 0.053 2.025 0.074 0.052 0.004 7114.46 0.012 1.68 0.014 0.135 0.003 7114.10 0.186 0.583 2.31 3.2 0.60
8464 58-1 7112.93 0.053 1.971 0.076 0.049 0.004 7114.46 0.012 1.68 0.015 0.137 0.003 7114.12 0.186 0.603 2.29 3.4 0.62
8465 63-1 7112.83 0.047 1.913 0.070 0.044 0.003 7114.43 0.011 1.71 0.015 0.140 0.003 7114.11 0.185 0.591 4.45 33 0.61
8466 63-3 7112.74 0.038 1.806 0.060 0.041 0.003 7114.40 0.010 1.74 0.016 0.136 0.002 7114.08 0.177 0.559 5.04 3.0 0.57

Table 4 - XANES fit components, calculated centroid and total intensity, and calculated Fe**/sFe for the high-T decompression samples. H,0
contents are measured from SIMS. A NNO is calculated for 900 °C.



2
Fe”* component

3
Fe** component

Distance
from wt%

Analysis Fe” peak Fe** peak Centroid, |Total rim H,0
number [Sample location |t Width | Intensity location |t Width |t Intensity eV intensity |(um) Fe3+/2fe (SIMS)
7272 LIRPF5-1 7112.83|0.0285| 1.7839|0.0494 0.0416| 0.0020{ 7114.55| 0.0078 1.722| 0.013 0.139| 0.002| 7114.11 0.181 0 0.60 5.44
7273 LIPRF5-2 7112.87|0.0303| 1.8349|0.0521 0.0479| 0.0023| 7114.57| 0.0099 1.687| 0.017 0.120| 0.002| 7114.04 0.168 136 0.52 5.00
7274 LIRPF5-3 7112.85|0.0259| 1.8216|0.0454 0.0498| 0.0021| 7114.57| 0.0094 1.696| 0.017 0.113| 0.002| 7114.01 0.163 274 0.47 4.80
7275 LIPRF5-4 7112.8|0.0207| 1.7912|0.0363 0.0510| 0.0018| 7114.53| 0.0083 1.714| 0.016 0.111| 0.002| 7113.95 0.162 387 0.40 4.10
7276 LIPRF5-5 7112.81|0.0209| 1.8227|0.0371 0.0551| 0.0019| 7114.54| 0.0091 1.694| 0.018 0.104| 0.002| 7113.90 0.159 482 0.34 3.50
7277 LIRPF5-6 7112.82|0.0187| 1.7890|0.0329 0.0572| 0.0018| 7114.55| 0.0093 1.698| 0.020 0.096| 0.002| 7113.86 0.153 561 0.30 2.60
7278 LIPRF5-7 7112.85|0.0170| 1.8093|0.0308 0.0673| 0.0019| 7114.56| 0.0119 1.632| 0.025 0.073| 0.002| 7113.70 0.140 638 0.10 1.50
7279 LIPRF5-8 7112.8|0.0144| 1.7891|0.0255 0.0701| 0.0016| 7114.52| 0.0115 1.650| 0.028 0.067| 0.002| 7113.60 0.137 708 -0.02 0.40
7280 LIRPF5-9 7112.82|0.0175| 1.7884|0.0308 0.0658| 0.0019| 7114.54| 0.0117 1.667| 0.027 0.077| 0.002| 7113.71 0.143 778 0.11 0.25
7281 LIPRF7-1 7112.82|0.0365| 1.8057|0.0625 0.0437| 0.0026| 7114.55| 0.0125 1.752| 0.022 0.117| 0.002| 7114.04 0.160 0 0.51 5.20
7282 LIPRF7-2 7112.81|0.0277| 1.8060|0.0480 0.0480| 0.0022| 7114.54| 0.0099 1.724| 0.018 0.118| 0.002| 7114.00 0.167 86 0.46 4.70
7283 LIPRF7-3 7112.8|0.0230| 1.8522|0.0404 0.0519| 0.0019| 7114.54| 0.0086 1.716| 0.015 0.115| 0.002| 7113.96 0.167 171 0.41 3.90
7284 LIPRF7-4 7112.84|0.0211| 1.8498|0.0371 0.0572| 0.0019| 7114.56| 0.0092 1.684| 0.017 0.102| 0.002| 7113.90 0.160 252 0.35 2.10
7285 LIPRF7-5 7112.87|0.0150| 1.8345|0.0271 0.0686| 0.0017| 7114.58| 0.0103 1.621| 0.022 0.071| 0.002| 7113.70 0.140 329 0.10 0.50
7286 LIPRF7-6 7112.84|0.0171| 1.8011|0.0301 0.0649| 0.0018| 7114.56| 0.0108 1.664| 0.024 0.080| 0.002| 7113.75 0.145 394 0.16 0.20
4660 LIPRF2-1 7112.72|0.0231| 1.7718|0.0412 0.0431| 0.0017| 7114.51| 0.0087 1.787| 0.018 0.111| 0.002| 7113.96 0.154 0 0.41 6.10
4662 LIPRF2-2 7112.84|0.0327| 1.8514|0.0556 0.0472| 0.0025| 7114.57| 0.0120 1.737| 0.021 0.108| 0.002| 7114.00 0.156 61 0.46 5.80
4663 LIPRF2-3 7112.83|0.0240| 1.8290|0.0419 0.0502| 0.0020{ 7114.57| 0.0094 1.723| 0.018 0.107| 0.002| 7113.97 0.157 125 0.42 5.00
4664 LIPRF2-4 7112.78|0.0213| 1.8283|0.0369 0.0537| 0.0018| 7114.52| 0.0093 1.728| 0.019 0.102| 0.002| 7113.87 0.156 199 0.31 3.50
4670 LIPRF2-5 7112.84|0.0248| 1.8271|0.0434 0.0582| 0.0023| 7114.57| 0.0126 1.690| 0.026 0.091| 0.003| 7113.84 0.149 225 0.27 2.90
4665 LIPRF2-6 7112.76|0.0176| 1.7885|0.0314 0.0628| 0.0018| 7114.49| 0.0117 1.668| 0.026 0.076| 0.002| 7113.65 0.138 244 0.04 1.50




4666 LIPRF2-7 7112.8/0.0167| 1.8094(0.0299 0.0667| 0.0018| 7114.53| 0.0108| 1.663| 0.025 0.079| 0.002| 7113.69 0.145 303 0.08 0.40
4667 LIPRF2-8 7112.82|0.0199| 1.7933|0.0354 0.0649| 0.0021| 7114.54| 0.0132| 1.665| 0.029 0.077| 0.002| 7113.70 0.142 398 0.10 0.20
4668 LIPRF2-9 7112.88|0.0161| 1.8471|0.0288 0.0671| 0.0017| 7114.59| 0.0103| 1.642| 0.022 0.075| 0.002| 7113.73 0.142 474 0.14 0.20
4671 LIPRF3-1 7112.86|0.0410| 1.8802|0.0669 0.0447| 0.0028| 7114.54| 0.0111| 1.714| 0.017 0.133| 0.002| 7114.07 0.178 0 0.54 5.40
4672 LIPRF3-2 7112.83|0.0361| 1.8774|0.0600 0.0469| 0.0026| 7114.53| 0.0108| 1.722| 0.018 0.126| 0.002| 7114.02 0.173 34 0.49 5.40
4673 LIPRF3-3 7112.81]|0.0289| 1.7642|0.0493 0.0433| 0.0021| 7114.53| 0.0096| 1.744| 0.018 0.123| 0.002| 7114.03 0.166 78 0.50 5.30
4674 LIPRF3-4 7112.85|0.0299| 1.8570|0.0514 0.0492| 0.0023| 7114.57| 0.0104| 1.706| 0.018 0.114| 0.002| 7114.00 0.163 136 0.46 5.00
4675 LIPRF3-5 7112.85|0.0280| 1.8431|0.0486 0.0497| 0.0023| 7114.58| 0.0102| 1.720| 0.018 0.114| 0.002| 7114.01 0.164 171 0.47 4.80
4676 LIPRF3-6 7112.83|0.0277| 1.8342|0.0491 0.0505| 0.0023| 7114.57| 0.0105| 1.711| 0.019 0.111| 0.002| 7113.98 0.162 225 0.43 4.70
4677 LIPRF3-7 7112.83|0.0288| 1.8502|0.0504 0.0521| 0.0024| 7114.54| 0.0112| 1.685| 0.020 0.105| 0.002| 7113.92 0.158 281 0.37 4.70
4678 LIPRF3-8 7112.74|0.0263| 1.7600|0.0472 0.0507| 0.0023 7114.5| 0.0112| 1.729| 0.024 0.108| 0.002| 7113.89 0.159 326 0.33 4.40
4679 LIPRF3-9 7112.78|0.0196| 1.7886|0.0349 0.0548| 0.0018| 7114.51| 0.0094| 1.700| 0.019 0.097| 0.002| 7113.84 0.152 367 0.27 4.40
4680 LIPRF3-10 7112.81]|0.0239| 1.8159|0.0407 0.0575| 0.0022| 7114.53| 0.0123| 1.709| 0.025 0.092| 0.002| 7113.82 0.150 404 0.25 4.00
4681 LIPRF3-11 7112.81|0.0156| 1.7353|0.0271 0.0617| 0.0016| 7114.53| 0.0114| 1.698| 0.027 0.073| 0.002| 7113.69 0.135 454 0.09 3.60
4682 LIPRF3-12 7112.83|0.0161| 1.7828|0.0293 0.0647| 0.0017| 7114.56| 0.0108| 1.647| 0.024 0.075| 0.002| 7113.71 0.140 633 0.11 0.90
Starting
7287 material 7112.81|0.0155| 1.7998|0.0274 0.0657| 0.0017| 7114.54| 0.0103| 1.669| 0.023 0.077| 0.002| 7113.70 0.143 0.10, 0.23

Table 5 - XANES fit components, calculated centroid and total intensity, and calculated Fe**/3Fe for the high-T hydration samples. H,O

contents are measured from SIMS.




2
Fe”* component

2+

3
Fe** component

3+

Fe Fe H,0
Analysis XANES SIMS Distance peak peak Centroid, Total wt% H,0 wt%
number analysis analysis (microns) + [location * Width Intensity location * Intensity eV intensity Fe?"'/ZFe (SIMS)  (greyscale)
4650 NVGM_1 -515 50| 7112.87 0.022 1.853 0.038 0.061 0.002| 7114.59 0.010 0.100 0.002| 7113.89 0.160 0.33 0.27
8486 NVGM_2 -279 50( 7112.85 0.027 1.945 0.044 0.062 0.002| 7114.48 0.010 0.099 0.002| 7113.91 0.161 0.36 0.28
NVGM_3 -64 10| 7112.79 0.027 1.850 0.043 0.053 0.002| 7114.45 0.010 0.110 0.002| 7113.97 0.163 0.29
NVGM_
8482 3 -112 25| 7112.79 0.027 1.850 0.043 0.053 0.002| 7114.45 0.010 0.110 0.002| 7113.97 0.163 0.43 0.68
NVGM_4 -35 10 0.96
NVGM_
8483 4 -80 25( 7112.83 0.026 1.927 0.042 0.055 0.002| 7114.47 0.009 0.109 0.002| 7113.98 0.164 0.44 0.48
NVGM_5 55 10 2.79
NVGM_6 22 10 3.05
NVGM_
8484 6 10 10| 7112.8 0.032 1.873 0.052 0.050 0.002| 7114.46 0.010 0.116 0.002| 7114.02 0.165 0.49 1.9
NVGM_
8485 7 NVGM_7 148 25( 7112.83 0.029 1.939 0.044 0.048 0.002| 7114.46 0.009 0.111 0.002| 7114.03 0.160 0.50 3.33
NVGM_
8487 4A -58 10| 7112.8 0.035 1.887 0.053 0.049 0.003| 7114.45 0.012 0.113 0.003| 7114.01 0.163 0.47 0.64
4651 -300 50( 7112.87 0.017 1.880 0.030 0.060 0.002| 7114.54 0.008 0.095 0.001| 7113.84 0.155 0.27 0.27
4686 -300 50( 7112.88 0.025 1.899 0.044 0.061 0.002| 7114.56 0.010 0.104 0.002| 7113.89 0.164 0.33 0.27
NVGM_
4687 9 30 50( 7112.8 0.034 1.823 0.056 0.041 0.002| 7114.52 0.011 0.117 0.002| 7114.03 0.158 0.49 2.25
NVGM_
4688 8 30 50( 7112.87 0.045 1.895 0.073 0.044 0.003| 7114.57 0.014 0.120 0.003| 7114.06 0.164 0.54 2.53

Table 6 - XANES fit components, calculated centroid and total intensity, and calculated Fe**/sFe for the low-T hydration samples.
H20 contents are measured from SIMS or estimated from greyscale calibrations. Distance is measured relative to a prominent crack in the sample rim (see

figure 7).
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