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Abstract 14 

X-ray micro tomography is increasingly used for the quantitative analysis of the volumes of 15 

features within the 3D images. As with any measurement, there will be error and uncertainty 16 

associated with these measurements. In this paper a method for quantifying both the systematic 17 

and random components of this error in the measured volume is presented. The systematic error 18 

is the offset between the actual and measured volume which is consistent between different 19 

measurements and can therefore be eliminated by appropriate calibration. In XMT measurements 20 

this is often caused by an inappropriate threshold value. The random error is not associated with 21 

any systematic offset in the measured volume and could be caused, for instance, by variations in 22 

the location of the specific object relative to the voxel grid. It can be eliminated by repeated 23 

measurements. It was found that both the systematic and random components of the error are a 24 

strong function of the size of the object measured relative to the voxel size. The relative error in 25 

the volume was found to follow approximately a power law relationship with the volume of the 26 

object, but with an exponent that implied, unexpectedly, that the relative error was proportional 27 

to the radius of the object for small objects, though the exponent did imply that the relative error 28 

was approximately proportional to the surface area of the object for larger objects. In an example 29 

application involving the size of mineral grains in an ore sample, the uncertainty associated with 30 

the random error in the volume is larger than the object itself for objects smaller than about 8 31 

voxels and is greater than 10% for any object smaller than about 260 voxels. A methodology is 32 

presented for reducing the random error by combining the results from either multiple scans of 33 

the same object or scans of multiple similar objects, with an uncertainty of less than 5% requiring 34 

12 objects of 100 voxels or 600 objects of 4 voxels. As the systematic error in a measurement 35 
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cannot be eliminated by combining the results from multiple measurements, this paper introduces 36 

a procedure for using volume standards to reduce the systematic error, especially for smaller 37 

objects where the relative error is larger.  38 

1. Introduction 39 

X-ray micro tomography (XMT) is a popular technique for the non-destructive qualitative and 40 

quantitative investigation of the internal structure of objects. It has been widely applied across 41 

material science (Puncreobutr et al., 2012; Stock, 1999), engineering (Aydoğan et al., 2006); 42 

(Ghorbani et al., 2011; Ketcham and Carlson, 2001) and biological sciences (Yue et al., 2011) to 43 

provide quantitative data about the structure and morphology of 3D objects and features within 44 

them (crystals, pores, fractures etc.).  45 

For the measurement of object or feature volumes from XMT images, each voxel (smallest volume 46 

element, equivalent to a 3D pixel) belonging to a feature or object is obtained using a thresholding 47 

algorithm, and the volume obtained by counting the relevant voxels. However, the boundaries of 48 

features rarely coincide with the boundaries of the regular voxel grid, leading to the “partial 49 

volume effect” at the interface, where voxels have an intermediate bulk composition, and there is 50 

some uncertainty in the exact boundary location (Ketcham and Carlson, 2001; Stock, 1999). 51 

Theoretically the partial volume effect should only affect a narrow (few voxel) region when the 52 

boundary is planar, smooth and sharp, but in certain systems boundaries can be uneven and 53 

diffuse (Figure 1).  54 

 55 

Figure 1. a) A 2D slice through a 3D tomography volume of example data showing mineral grains within an ore particle. b) A 56 
region of interest demonstrating diffuse boundaries. 57 

The choice of thresholding algorithm or threshold value will have a systematic effect on the 58 

measured volume, while variability in the exact location of the object relative to the voxel grid will 59 

cause a random variation in the measured volume. The relative impact on the measured volume 60 

of both these systematic and random errors will be strongly dependent on the size of the object 61 

relative to the voxel size, as the proportion of the volume that is within the uncertain region at the 62 

boundaries of objects will decrease as the object size increases.  63 
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In this paper we describe a procedure for quantifying both the systematic and random 64 

components of this uncertainty in volume. In particular, we describe how to ascertain how many 65 

times an object needs to be scanned (or how many similar objects in the same scan need to be 66 

combined) to achieve a given level of accuracy in the measured volume, assuming that any 67 

systematic error has been eliminated. Repeatability will also be influenced by both the random 68 

and systematic components of the error as the systematic error is likely to change from scan to 69 

scan, while the random component will add uncertainty to the measurement. Although the 70 

methodology presented significantly improved repeatability, for absolute dimensional accuracy 71 

calibration with an appropriate phantom is required. 72 

While our methodology is applicable to a wide range of 3D image analysis applications, the results 73 

obtained will depend to some degree on the sample being studied and the specifics of the scanner 74 

used.  In this paper the example used is the quantification of metal sulphide grain volumes within 75 

an ore particle/rock fragment. The ore particles were scanned using a Nikon Metris Custom Bay 76 

with a 1 mm aluminium filter to reduce the effect of beam hardening, 89 kV energy, 0.708 s 77 

exposure time and 2001 projections. The detector size was 2000×2000 pixels, giving a linear 78 

resolution of approximately 17 microns for the magnification selected. We chose this example as 79 

there are a large number of mineral grains within the image volume and these grains are known to 80 

have a wide volume distribution. For the scan resolution used the mineral grains range from sub-81 

voxel sizes to tens of thousands of voxels, allowing for the effect of the volume of the object to be 82 

studied over many orders of magnitude. 83 

A key requirement of this methodology is the ability to identify the same objects in repeated scans. 84 

An algorithm developed for tracking the dissolution of mineral grains as they undergo leaching is 85 

used for this purpose. The first section of this paper thus gives a short description of this algorithm 86 

as the data generated from it is the source of the statistical analysis. 87 

2. Grain tracking and identification methodology 88 

The procedure for the image processing was: 89 

1. A 3×3×3 median filter was applied to reduce the noise level.  90 

2. The transformation matrix to align subsequence scans to the orientation and location of 91 

the reference scan was calculated and extracted (Studholme et al., 1999). 92 

3. The threshold for distinguishing the ore particles from the air phase was obtained using the 93 

Otsu algorithm (Otsu, 1979), while the metal sulphide grains are distinguished from the ore 94 

matrix using a maximum entropy algorithm (Kapur et al., 1985). The reason for the 95 

different algorithms is that the air and rock have very distinct peaks in the intensity 96 

histogram, while the relatively small volume of metal sulphide present means that there is 97 

no distinct peak in the histogram.  98 

4. The individual grains were then tracked across different images. 99 



 
4 

The algorithm starts by identifying all the mineral grains of interest in the reference image. The 100 

connectivity of the grains are analysed so that each isolated grain is given a unique identifier. On 101 

subsequent images voxels that are identified as mineral grains need to be given the same 102 

identifier number as they had in the original image. This is achieved by using a mask based on the 103 

reference image. This mask is rotated and translated to match the location and orientation of the 104 

ore particle in the subsequent image. This mask is then applied to the mineral grains.  105 

Since the grains do not grow between images, this masking would be all that is required if the 106 

thresholding of the images and the translation and rotation of the mask were perfect. In general 107 

this is not the case and unassigned rims can remain around the masked grains. This problem is 108 

resolved by assigning these rim voxels the identifier of a neighbouring identified voxel. This 109 

process is repeated until all voxels in the intensity range are identified or discarded.    110 

It should be noted that in this algorithm it is the mask that is rotated and translated and not the 111 

data itself. Rotating the data would have an effect on the measured volume of the grains and thus 112 

also the error associated with the volume measurement as the interpolation required to project 113 

the rotated and translated data back onto a grid will cause the boundaries to become even more 114 

diffuse. Translating and rotating the mask will cause slight changes in the size and shape of 115 

masked regions, but this will have virtually no impact on the algorithm as the rims that result from 116 

slight errors in the mask are accounted for in the algorithm. Figure 2 shows an example of a 117 

reference and subsequent image as well as the original and transformed mask. Note that, while 118 

the figure shows a 2D slice, the rotations and translations were all 3D. 119 

 120 

Figure 2 Example of reference label transformation. a) Reference image. b) Image in subsequence scan. c) Label mask for 121 
reference image. d) Transformed reference label after applying 4×4 transformation matrix. The transformation matrix is 122 

calculated using (a) and (b). 123 
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This identification method has a few assumptions and limitations. Firstly, any objects that do not 124 

appear in the initial image but exist in a later scan are not counted. This issue can occur for objects 125 

that are of a size very close to the voxel resolution or due to phantom particles caused by noise in 126 

the image, which can be ameliorated by the use of a median filter. Another potential issue with 127 

this algorithm is if the mask does not overlap any portion of the object in subsequent images. 128 

Again this is only likely for objects that are approximately the same size as the voxel resolution. 129 

Objects that appear in the reference scan, but are not observed in the subsequent scan are 130 

included in the statistics, though objects that are not in the reference scan, but appear in a 131 

subsequent scan are not counted. These objects make up about 5% of the total number of objects 132 

in the subsequent scan, but as there sizes are all close to the scan resolution they account for only 133 

0.05% of the total volume of the identified objects. 134 

3. Error and uncertainty in the volume of scanned objects 135 

Before the volume data can be used with confidence the systematic and random errors in the 136 

measurement need to be understood. Systematic errors are those in which the error is the same 137 

for all similar objects and, for volume measurement, will typically be a function of the size of that 138 

object. Correction of systematic errors is possible using appropriate standards and calibration. 139 

Random errors are those that are not the same for similar objects or between scans and thus add 140 

an uncertainty to measurements that cannot be eliminated by calibration. However, unlike 141 

systematic errors, random errors do not influence the average measured volume if enough 142 

volume measurements have been used. What this paper will demonstrate is a methodology for 143 

determining how many repeat measurements (or measurements of similar objects) need to be 144 

made to reduce the uncertainty caused by the random error to an appropriately small value (what 145 

is considered appropriately small will, of course, depend upon the application). 146 

The systematic error in the grain volume will come about from effects such as an error in the 147 

threshold used, while the random error will come about due to effects such as the change in the 148 

partial volume effect due to the specific location of the mineral grain relative to the voxel grid, 149 

which will change from scan to scan and from grain to grain. 150 

3.1 Sensitivity of measured volume to threshold changes 151 

Global thresholding is a common method to distinguish different phases (Gonzalez et al., 2003), 152 

and the choice of threshold used to distinguish the phases can have a large effect on the volume 153 

measured. Thresholding is an important step in the image quantification and it has a direct 154 

relationship with the uncertainty, especially for smaller grains. Much of this uncertainty arises 155 

from partial volume effect, where the edges of grains are blurred due to the fact that they do not 156 

necessarily align with the voxels. Typically an algorithm is used to choose the threshold to reduce 157 

subjectivity in the identification of the objects within the image, but this does not mean that 158 

systematic errors due to thresholding are eliminated, though, and it might well be appropriate to 159 
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adjust the threshold value to minimise these systematic errors if an accurate, rather than simply 160 

consistent, volume measurement is required. 161 

Local thresholding algorithms can also be used (Gonzalez et al., 2003). While the trends in random 162 

error associated with local algorithms are likely to be similar to those associated with global 163 

methods, as these errors are largely associated with the real uncertainty in the images, the 164 

systematic errors will be very algorithm specific. For this reason this paper concentrates on the 165 

uncertainties and errors associated with global thresholding as these responses are the same 166 

irrespective of which algorithm is used to choose the threshold (the response in the measured 167 

volume brought about by varying the threshold value will be the same irrespective of the 168 

algorithm used to obtain the initial threshold value). 169 

The initial threshold values used to identify the mineral grains were obtained by applying the 170 

maximum entropy global thresholding algorithm to each rock (Kapur et al., 1985). The threshold 171 

was then adjusted from these values and the percentage change in the measured total volume of 172 

all the mineral grains calculated (Figure 3). The shift in threshold value is quantified using the ratio 173 

between absolute shift in the value and the difference between the rock and mineral grain phase 174 

thresholds: 175 

 


% shift

shift

grain rock

T
T

T T
 (1) 176 

where Tgrain is the threshold for the sulphide grains, and Trock is the threshold for rock phase. The 177 

reason for using the change relative to this difference is that the appropriate threshold value must 178 

lie between the intensity of the grains and the matrix.  179 

There is an approximately linear variation in the measured volume as the threshold value is 180 

changed (Figure 3), though the magnitude of the variation changes somewhat from sample to 181 

sample. This variability is probably due to differences in the size distribution of the grains within 182 

the three rocks. 183 
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 184 

Figure 3. The relationship between the change in mineral grain volume and the variation in the threshold value 185 

The sensitivity of a grain’s measured volume to a change in threshold is very dependent on their 186 

size relative to the voxel resolution.  Smaller grains are more sensitive to a change in threshold 187 

because this is mainly a surface effect and smaller grains have a larger specific surface area. 188 

Assuming that a small change in the threshold produces a small change in the location of the 189 

boundary (this analysis does not require that the relationship between the change in the position 190 

of boundary and the threshold be a simple one, only that the change in position is approximately 191 

the same at all boundaries), the fractional change in volume can be expressed as: 192 

 
 

  
12

3
3

V r r
kV r

V r
 (2) 193 

where V is the volume of the grain, r is a linear dimension of the object (proportional to V1/3) and k 194 

is a dimensionless constant. Δr is the change in the position of the boundary, which mainly 195 

depends on the change in the threshold value, but can also depend on the shape and size of grains. 196 

A power law exponent of -1/3 implies that the relative change in volume is inversely proportional 197 

to the grain radius and proportional to its specific surface area. 198 

Plotting ΔV/V against grain volume for different threshold (Figure 4) values shows that the larger 199 

grains (>~35 voxels) follow Equation (2), but that the smaller grains (<~35 voxels) have a more 200 

negative slope, with 2/3/V V kV   ( a power law exponent of -2/3) producing a better fit. An 201 

exponent of -2/3 implies that the change in the volume upon a threshold change scales with the 202 

radius of the grains rather than its area for the smaller grains. This is somewhat unexpected, 203 

though one possible explanation for this is that either the reconstruction algorithm or the imaging 204 

itself is producing more uncertainty in one of the axes than the others. Another possible 205 

explanation is that the apparent shape of some of the objects are strong functions of the 206 

threshold value chosen. This is not much of an issue for convex objects, but is likely to be 207 
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important for more complex objects. For such objects simple thresholding might not be sufficient 208 

and more complex techniques may need to be applied. An example of such a method is de-209 

convolution based on an the assumption that the blurring of the edges takes the form of a point 210 

spread function (Ketcham, 2006; Ketcham and Hildebrandt, 2014). 211 

While the relative change in the average measured grain volume is of a similar magnitude to Tshift 212 

(Figure 3), for individual grains the difference is strongly size dependant (Figure 4).  Since the small 213 

grains are more sensitive to changes in threshold than the larger grains, it is this region of the 214 

curve that is most important.  215 

 216 

Figure 4. The plot of the relative change in grain volume as a function of the volume for two different threshold changes. a) 2.8% 217 
b) 1.4%. The power law relationships for large (-1/3) and small grains (-2/3) are also shown. 218 

In Figure 5, the prefactor in the best fit to smaller grains (less than 100 voxels) for a power law 219 

relationship with an exponent of -2/3 is plotted against the change in the threshold value. Since 220 

the k value and the magnitude of the average change in volume are directly related, there is also a 221 

near linear change in k with the change in the threshold value.  This curve will be used later to 222 

correct the systematic errors (Section 4). 223 
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 224 

Figure 5. Plot of prefactor k as threshold value changes 225 

3.2 Estimation of grain volume uncertainty 226 

While the effect of changing the threshold can be obtained from a single image, repeat scans of 227 

the same volume are required to determine the random component of the error. As the scanned 228 

volume contains a number of ore particles and each ore particle contains thousands of grains, the 229 

identification procedure outlined in Section 2 allows us to look at the variability in the measured 230 

volume of tens of thousands of individual objects. The same analysis can be carried out for 231 

systems containing fewer objects, but in order to generate sufficient statistics on which to base 232 

the analysis, repeated scans of the same objects may need to be carried out. 233 

Taking two images of the same sample volume, the relative error in volume measurement for each 234 

individual grain was calculated.  The grain volumes were then ordered according to size and the 235 

standard deviation in the relative error was calculated for sets of 500 grains of similar volume and 236 

plotted against the mean volume of the set of grains (Figure 6). 237 
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 238 

Figure 6. Standard deviation in the relative error in the grain volume as a function of the grain volume 239 

For a single grain the uncertainty (expressed as the standard deviation of the measurement) in the 240 

size of the grain is as large as the grain itself for any grain less than approximately 8 voxels.  For an 241 

uncertainty of less than 10% the grain needs to be larger than about 260 voxels in volume. Figure 242 

6 shows that there is a power law relationship between the standard deviation in the relative error 243 

and grain volume, with an exponent of close to -2/3, which is consistent with the scaling for the 244 

systematic error1 (Figure 4). This means that the magnitude of the random component of the error 245 

is approximately proportional to the radius of the grain, which is again surprising as the naive 246 

expectation would be that this error would be related to the surface area of the grain.  247 

The uncertainty in the measured volume can be reduced by either repeated scans of the same 248 

object or by combining the results from a number of similar objects. As the uncertainty for an 249 

individual object is a function of the object volume, the number of similar objects, N, of volume V 250 

that need to be combined to achieve an acceptable relative error, , in the measured volume can 251 

be calculated (or, alternatively, N is the number of times that the same object needs to be 252 

scanned): 253 

 
2

2

( )nV
N




  (3) 254 

where  is the prefactor in the relationship between the relative standard deviation in the 255 

measure volume of a single grain and n is the power law exponent. For example, based on the 256 

                                                      

1
 While they have similar volume scalings in this system, there is no fundamental reason why the systematic and 

random components of an error need to have the same dependencies. 
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scans used to produce Figure 6, to reduce the random component of the uncertainty when 257 

measuring volume to less than 5% you would need to combine the measurements from 258 

approximately 600 grains with a volume of 4 voxels, approximately 12 grains with a volume of 100 259 

voxels objects, or one object of 1000 voxels (see Figure 7). This will not account for any genuine 260 

variability in the behaviour of nominally identical objects, and it is important to note that it is only 261 

the random component of the error that is reduced by averaging repeat results. By definition, 262 

combining results will have no impact on any systematic error. Figure 7 can only be used as an 263 

indication of the error expected as the error will depend upon the particular material and its 264 

scanning conditions. 265 

The procedure presented is relatively straight forward, and is recommended whenever precise 266 

quantitative data for the volume or volume change is required.   267 

 268 

Figure 7. Number of repeats required to reduce the random component of the uncertainty (relative standard deviation) in the 269 
volume measurement to a given level as function of the object volume. 270 

4. Obtaining consistent results in the face of systematic errors 271 

It is common practice to use intensity standards (usually introducing the same objects of known 272 

attenuation into all scans) when carrying out XMT measurements, and this is usually sufficient for 273 

samples containing large features with high contrast. In these cases, variations in machine 274 

behaviour or beam energy over time (which is equivalent to variations in the threshold value) will 275 

be small. However for small objects, especially in low contrast materials or when volume changes 276 

can alter the bulk attenuation along the beam path, simple intensity calibration is unlikely to be 277 

sufficient. In this case we recommend having both volume and intensity references, especially for 278 

smaller grains. The number of reference features needs to be sufficient for suitably accurate 279 

volume determination, and the features should not change between scans over a time series 280 

experiment. In our particular example of grain dissolution, an appropriate standard could consist 281 

of an unaltered particle of the ore that is present in all scans. Ideally this procedure will be carried 282 
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out using a phantom containing a sufficient number of features for which the individual volumes 283 

are known, as this will allow not only consistent, but also accurate results. In this specific example 284 

the volumes in the reference image are not known and thus it is only consistency that is achieved 285 

by using this method.   286 

The reason why the correction of systematic errors has been left to last is that it is important to 287 

know which errors or discrepancies can be eliminated by appropriate adjustment of the thresholds 288 

and which errors are random.   289 

The relative difference in volume (ΔV/V) of the grains in two independent scans of the same 290 

volume collected under identical machine settings and analysed using the same thresholding 291 

algorithm (maximum entropy) should be negligible and yet plotting the ΔV/V as a function of grain 292 

volume shows a systematic error in the volume, especially for smaller grains (Figure 8a). The 293 

discrepancy between the 2 scans will contain both systematic and random components and 294 

therefore the random component is reduced by combining measurements from 100 similar sized 295 

grains. This virtually eliminates the random component of the error for the larger particles, but it is 296 

still significant for the smaller particles (below about 100 voxels). 297 

It is expected that much of the systematic difference between the images will be caused by a small 298 

inconsistency in the threshold value and it is the smallest grains that have the largest discrepancy. 299 

The same equation form that fitted the smaller particles in Figure 4 is therefore fitted to this data, 300 

namely a power law relationship with an exponent of -2/3.  301 

Since the expected standard deviation in the average of the 100 grains used to generate each of 302 

the points in Figure 8 is known from Figure 6, the 95% confidence interval for the fitted equation 303 

can be plotted. For the smaller grains virtually all the points fit within this confidence interval, 304 

which would be expected if the assumed form for the data is correct. The difference in volume for 305 

the larger grains lies outside the confidence interval, but the power law relationship with an 306 

exponent of -2/3 is only expected to fit the data for the smaller particles. 307 

If there were no systematic error there should be no trend in the discrepancy and the data should 308 

be scattered around zero, with a larger scatter at smaller sizes. To try and achieve this, the 309 

correction to the threshold required to eliminate the systematic error can be estimated based on 310 

the prefactor k in the fitted power law (Figure 8a). The required change in threshold that 311 

corresponds to this value of k can be obtained from Figure 5. In this case an increase in the relative 312 

threshold value of about 1.5% was required2. The power law relationship between the change in 313 

volume and the volume when the threshold is adjusted means that even this small change has 314 

quite a large effect on the smallest grains. If this change in threshold has the same relative effect 315 

                                                      

2
 The prefactor in the power law fit to the data in Figure 8 (0.3344) is used to read off the required shift in threshold 

from Figure 5 (1.5%). Note that a positive prefactor implies that the measured volume is too large and that the 
threshold for the mineral grains must thus be increased. 
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on the measured volume in the subsequent image as it did on the reference image, then the 316 

systematic error should be eliminated.  317 

 318 

Figure 8. The discrepancy in grain volumes between: a) a reference scan and a repeated scan of the same ore particle before. b) 319 
after threshold correction (+1.5% in relative threshold value). 320 

Figure 8b shows the discrepancy in the volume once this change in threshold has been applied. It 321 

can be seen from the 95% confidence intervals that this correction has resulted in discrepancies in 322 

volume that are consistent with no systematic error in the size of the smallest grains. While the 323 

correction was not based upon the size of the largest grains, the systematic error in their size was 324 

reduced from about 2% before correction to 0.8% after correction.  325 

The correction has virtually no impact on the random component of the error, with the 326 

relationship between the standard deviation in the measured volume and volume itself for the 327 

corrected and uncorrected data being virtually the same (see Figure 6). This indicates that the 328 

random and systematic errors are independent of one another in this system. It also means that 329 

the random error can be accurately assessed without using a size standard as this component of 330 

the error is very insensitive to the specific threshold value used. 331 

5. Conclusions 332 

This paper described methodologies for quantifying, and correcting for, both the systematic and 333 

random contributions to the uncertainty and error in the measurement of the volume of objects 334 

using XMT. In particular, it showed the strong dependency on volume relative to voxel size that 335 

these errors have. To achieve a desired level of uncertainty due to random errors, the results from 336 

repeat scans or scans of similar objects need to be combined. The paper showed how many 337 

objects of a given size needed to be combined, providing a guide for future studies. For instance a 338 

single object of a thousand voxels has an uncertainty of 5% in its volume, while 12 objects of a 339 

hundred voxels would need to be combined to achieve the same level of uncertainty. A 340 
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methodology for eliminating systematic errors based on knowledge of how changes in threshold 341 

effect the measured volume and its dependency upon size was also developed. 342 
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