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X-ray micro-tomography (XMT) is increasingly used for the quantitative analysis of the volumes of
features within the 3D images. As with any measurement, there will be error and uncertainty associated
with these measurements. In this paper a method for quantifying both the systematic and random
components of this error in the measured volume is presented. The systematic error is the offset between
the actual and measured volume which is consistent between different measurements and can therefore
be eliminated by appropriate calibration. In XMT measurements this is often caused by an inappropriate
threshold value. The random error is not associated with any systematic offset in the measured volume
and could be caused, for instance, by variations in the location of the specific object relative to the voxel
grid. It can be eliminated by repeated measurements. It was found that both the systematic and random
components of the error are a strong function of the size of the object measured relative to the voxel size.
The relative error in the volume was found to follow approximately a power law relationship with the
volume of the object, but with an exponent that implied, unexpectedly, that the relative error was
proportional to the radius of the object for small objects, though the exponent did imply that the relative
error was approximately proportional to the surface area of the object for larger objects. In an example
application involving the size of mineral grains in an ore sample, the uncertainty associated with the
random error in the volume is larger than the object itself for objects smaller than about 8 voxels and is
greater than 10% for any object smaller than about 260 voxels. A methodology is presented for reducing
the random error by combining the results from either multiple scans of the same object or scans of
multiple similar objects, with an uncertainty of less than 5% requiring 12 objects of 100 voxels or 600
objects of 4 voxels. As the systematic error in a measurement cannot be eliminated by combining the
results from multiple measurements, this paper introduces a procedure for using volume standards to
reduce the systematic error, especially for smaller objects where the relative error is larger.
& 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

X-ray micro-tomography (XMT) is a popular technique for the
non-destructive qualitative and quantitative investigation of the
internal structure of objects. It has been widely applied across
material science (Puncreobutr et al., 2012; Stock, 1999), en-
gineering (Aydoğan et al., 2006; Ghorbani et al., 2011; Ketcham
and Carlson, 2001) and biological sciences (Yue et al., 2011) to
provide quantitative data about the structure and morphology of
3D objects and features within them (crystals, pores, fractures
etc.).
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For the measurement of object or feature volumes from XMT
images, each voxel (smallest volume element, equivalent to a 3D
pixel) belonging to a feature or object is obtained using a
thresholding algorithm, and the volume obtained by counting the
relevant voxels. However, the boundaries of features rarely coin-
cide with the boundaries of the regular voxel grid, leading to the
“partial volume effect” at the interface, where voxels have an in-
termediate bulk composition, and there is some uncertainty in the
exact boundary location (Ketcham and Carlson, 2001; Stock, 1999).
Theoretically the partial volume effect should only affect a narrow
(few voxel) region when the boundary is planar, smooth and
sharp, but in certain systems boundaries can be uneven and dif-
fuse (Fig. 1).

The choice of thresholding algorithm or threshold value will
have a systematic effect on the measured volume, while variability
in the exact location of the object relative to the voxel grid will
e under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. (a) A 2D slice through a 3D tomography volume of example data showing mineral grains within an ore particle. (b) A region of interest demonstrating diffuse
boundaries.
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cause a random variation in the measured volume. The relative
impact on the measured volume of both these systematic and
random errors will be strongly dependent on the size of the object
relative to the voxel size, as the proportion of the volume that is
within the uncertain region at the boundaries of objects will de-
crease as the object size increases.

In this paper we describe a procedure for quantifying both the
systematic and random components of this uncertainty in volume.
In particular, we describe how to ascertain how many times an
object needs to be scanned (or how many similar objects in the
same scan need to be combined) to achieve a given level of ac-
curacy in the measured volume, assuming that any systematic
error has been eliminated. Repeatability will also be influenced by
both the random and systematic components of the error as the
systematic error is likely to change from scan to scan, while the
random component will add uncertainty to the measurement.
Although the methodology presented significantly improved re-
peatability, for absolute dimensional accuracy calibration with an
appropriate phantom is required.

While our methodology is applicable to a wide range of 3D
image analysis applications, the results obtained will depend to
some degree on the sample being studied and the specifics of the
scanner used. In this paper the example used is the quantification
of metal sulphide grain volumes within an ore particle/rock frag-
ment. The ore particles were scanned using a Nikon Metris 225
XYTH Custom Bay with a 1 mm aluminium filter to reduce the
effect of beam hardening, 89 kV energy, 0.708 s exposure time and
2001 projections. The detector size was 2000�2000 pixels, giving
a linear resolution of approximately 17 μm for the magnification
selected. We chose this example as there are a large number of
mineral grains within the image volume and these grains are
known to have a wide volume distribution. For the scan resolution
used the mineral grains range from sub-voxel sizes to tens of
thousands of voxels, allowing for the effect of the volume of the
object to be studied over many orders of magnitude.

A key requirement of this methodology is the ability to identify
the same objects in repeated scans. An algorithm developed for
tracking the dissolution of mineral grains as they undergo leaching
is used for this purpose. The first section of this paper thus gives a
short description of this algorithm as the data generated from it is
the source of the statistical analysis.
2. Grain tracking and identification methodology

The procedure for the image processing was:
1.
 A 3�3�3 median filter was applied to reduce the noise level.

2.
 The transformation matrix to align subsequent scans to the

orientation and location of the reference scan was calculated
and extracted (Studholme et al., 1999).
3.
 The threshold for distinguishing the ore particles from the air
phase was obtained using the Otsu algorithm (Otsu, 1979),
while the metal sulphide grains are distinguished from the ore
matrix using a maximum entropy algorithm (Kapur et al.,
1985). The reason for the different algorithms is that the air and
rock have very distinct peaks in the intensity histogram, while
the relatively small volume of metal sulphide present means
that there is no distinct peak in the histogram.
4.
 The individual grains were then tracked across different
images.

The algorithm starts by identifying all the mineral grains of
interest in the reference image. The connectivity of the grains are
analysed so that each isolated grain is given a unique identifier. On
subsequent images voxels that are identified as mineral grains
need to be given the same identifier number as they had in the
original image. This is achieved by using a mask based on the
reference image. This mask is rotated and translated to match the
location and orientation of the ore particle in the subsequent
image. This mask is then applied to the mineral grains.

Since the grains do not grow between images, this masking
would be all that is required if the thresholding of the images and
the translation and rotation of the mask were perfect. In general
this is not the case and unassigned rims can remain around the
masked grains. This problem is resolved by assigning these rim
voxels the identifier of a neighbouring identified voxel. This pro-
cess is repeated until all voxels in the intensity range are identified



Fig. 2. Example of reference label transformation. (a) Reference image. (b) Image in subsequence scan. (c) Label mask for reference image. (d) Transformed reference label
after applying 4�4 transformation matrix. The transformation matrix is calculated using (a) and (b).
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or discarded.
It should be noted that in this algorithm it is the mask that is

rotated and translated and not the data itself. Rotating the data
would have an effect on the measured volume of the grains and
thus also the error associated with the volume measurement as
the interpolation required to project the rotated and translated
data back onto a grid will cause the boundaries to become even
more diffuse. Translating and rotating the mask will cause slight
changes in the size and shape of masked regions, but this will have
virtually no impact on the algorithm as the rims that result from
slight errors in the mask are accounted for in the algorithm. Fig. 2
shows an example of a reference and subsequent image as well as
the original and transformed mask. Note that, while the figure
shows a 2D slice, the rotations and translations were all 3D.

This identification method has a few assumptions and limita-
tions. Firstly, any objects that do not appear in the initial image but
exist in a later scan are not counted. This issue can occur for ob-
jects that are of a size very close to the voxel resolution or due to
phantom particles caused by noise in the image, which can be
ameliorated by the use of a median filter. Another potential issue
with this algorithm is if the mask does not overlap any portion of
the object in subsequent images. Again this is only likely for ob-
jects that are approximately the same size as the voxel resolution.
Objects that appear in the reference scan, but are not observed in
the subsequent scan are included in the statistics, though objects
that are not in the reference scan, but appear in a subsequent scan
are not counted. These objects make up about 5% of the total
number of objects in the subsequent scan, but as their sizes are all
close to the scan resolution they account for only 0.05% of the total
volume of the identified objects.
3. Error and uncertainty in the volume of scanned objects

Before the volume data can be used with confidence the sys-
tematic and random errors in the measurement need to be un-
derstood. Systematic errors are those in which the error is the
same for all similar objects and, for volume measurement, will
typically be a function of the size of that object. Correction of
systematic errors is possible using appropriate standards and ca-
libration. Random errors are those that are not the same for si-
milar objects or between scans and thus add an uncertainty to
measurements that cannot be eliminated by calibration. However,
unlike systematic errors, random errors do not influence the
average measured volume if enough volume measurements have
been used. What this paper will demonstrate is a methodology for
determining how many repeat measurements (or measurements
of similar objects) need to be made to reduce the uncertainty
caused by the random error to an appropriately small value (what
is considered appropriately small will, of course, depend upon the
application).

The systematic error in the grain volume will come about from
effects such as an error in the threshold used, while the random
error will come about due to effects such as the change in the
partial volume effect due to the specific location of the mineral
grain relative to the voxel grid, which will change from scan to
scan and from grain to grain.
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3.1. Sensitivity of measured volume to threshold changes

Global thresholding is a common method to distinguish dif-
ferent phases (Gonzalez et al., 2003), and the choice of threshold
used to distinguish the phases can have a large effect on the vo-
lume measured. Thresholding is an important step in the image
quantification and it has a direct relationship with the uncertainty,
especially for smaller grains. Much of this uncertainty arises from
partial volume effect, where the edges of grains are blurred due to
the fact that they do not necessarily align with the voxels. Typi-
cally an algorithm is used to choose the threshold to reduce sub-
jectivity in the identification of the objects within the image, but
this does not mean that systematic errors due to thresholding are
eliminated and it might well be appropriate to adjust the thresh-
old value to minimise these systematic errors if an accurate, rather
than simply consistent, volume measurement is required.

Local thresholding algorithms can also be used (Gonzalez et al.,
2003). While the trends in random error associated with local
algorithms are likely to be similar to those associated with global
methods, as these errors are largely associated with the real un-
certainty in the images, the systematic errors will be very algo-
rithm specific. For this reason this paper concentrates on the un-
certainties and errors associated with global thresholding as these
responses are the same irrespective of which algorithm is used to
choose the threshold (the response in the measured volume
brought about by varying the threshold value will be the same
irrespective of the algorithm used to obtain the initial threshold
value).

The initial threshold values used to identify the mineral grains
were obtained by applying the maximum entropy global thresh-
olding algorithm to each rock (Kapur et al., 1985). The threshold
was then adjusted from these values and the percentage change in
the measured total volume of all the mineral grains calculated
(Fig. 3). The shift in threshold value is quantified using the ratio
between absolute shift in the value and the difference between the
rock and mineral grain phase thresholds:

T
T

T T
%

(1)
shift

shift

grain rock
=

−

where Tgrain is the threshold for the sulphide grains, and Trock is the
threshold for rock phase. The reason for using the change relative
to this difference is that the appropriate threshold value must lie
between the intensity of the grains and the matrix.

There is an approximately linear variation in the measured
Fig. 3. The relationship between the change in mineral grain volume and the
variation in the threshold value.
volume as the threshold value is changed (Fig. 3), though the
magnitude of the variation changes somewhat from sample to
sample. This variability is probably due to differences in the size
distribution of the grains within the three rocks.

The sensitivity of a grain's measured volume to a change in
threshold is very dependent on its size relative to the voxel re-
solution. Smaller grains are more sensitive to a change in thresh-
old because this is mainly a surface effect and smaller grains have
a larger specific surface area. Assuming that a small change in the
threshold produces a small change in the location of the boundary
(this analysis does not require that the relationship between the
change in the position of boundary and the threshold be a simple
one, only that the change in position is approximately the same at
all boundaries), the fractional change in volume can be expressed
as

V
V

r r

r
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where V is the volume of the grain, r is a linear dimension of the
object (proportional to V1/3) and k is a dimensionless constant. Δr
is the change in the position of the boundary, which mainly de-
pends on the change in the threshold value, but can also depend
on the shape and size of the grains. A power law exponent of �1/3
implies that the relative change in volume is inversely propor-
tional to the grain radius and proportional to its specific surface
area.

Plotting ΔV/V against grain volume for different threshold va-
lues (Fig. 4) shows that the larger grains (4�35 voxels) follow Eq.
(2), but that the smaller grains (o�35 voxels) have a more ne-
gative slope, with V V kV/ 2/3Δ = − (a power law exponent of �2/3)
producing a better fit. An exponent of �2/3 implies that the
change in the volume upon a threshold change scales with the
radius of the grain rather than its area for the smaller grains. This
is somewhat unexpected, though possible explanations for this are
that either the reconstruction algorithm or the imaging itself is
producing more uncertainty in one of the axes than the others.
Another possible explanation is that the apparent shapes of some
of the objects are strong functions of the threshold value chosen.
This is not much of an issue for convex objects, but is likely to be
important for more complex objects. For such objects simple
thresholding might not be sufficient and more complex techniques
may need to be applied. An example of such a method is de-
convolution based on an the assumption that the blurring of the
edges takes the form of a point spread function (Ketcham, 2006;
Ketcham and Hildebrandt, 2014).

While the relative change in the average measured grain vo-
lume is of a similar magnitude to Tshift (Fig. 3), for individual grains
the difference is strongly size dependent (Fig. 4). Since the small
grains are more sensitive to changes in threshold than the larger
grains, it is this region of the curve that is most important.

In Fig. 5, the prefactor in the best fit to smaller grains (less than
100 voxels) for a power law relationship with an exponent of �2/3
is plotted against the change in the threshold value. Since the k
value and the magnitude of the average change in volume are
directly related, there is also a near linear change in k with the
change in the threshold value. This curve will be used later to
correct the systematic errors (Section 4).

3.2. Estimation of grain volume uncertainty

While the effect of changing the threshold can be obtained
from a single image, repeat scans of the same volume are required
to determine the random component of the error. As the scanned
volume contains a number of ore particles and each ore particle
contains thousands of grains, the identification procedure outlined



Fig. 4. The plot of the relative change in grain volume as a function of the volume for two different threshold changes: (a) 2.8% and (b) 1.4%. The power law relationships for
large (�1/3) and small grains (�2/3) are also shown.

Fig. 5. Plot of prefactor k as threshold value changes.
Fig. 6. Standard deviation in the relative error in the grain volume as a function of
the grain volume.
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in Section 2 allows us to look at the variability in the measured
volume of tens of thousands of individual objects. The same ana-
lysis can be carried out for systems containing fewer objects, but in
order to generate sufficient statistics on which to base the analysis,
repeated scans of the same objects may need to be carried out.

Taking two images of the same sample volume, the relative
error in volume measurement for each individual grain was cal-
culated. The grain volumes were then ordered according to size
and the standard deviation in the relative error was calculated for
sets of 500 grains of similar volume and plotted against the mean
volume of the set of grains (Fig. 6).

For a single grain the uncertainty (expressed as the standard
deviation of the measurement) in the size of the grain is as large as
the grain itself for any grain less than approximately 8 voxels. For
an uncertainty of less than 10% the grain needs to be larger than
about 260 voxels in volume. Fig. 6 shows that there is a power law
relationship between the standard deviation in the relative error
and grain volume, with an exponent of close to �2/3, which is
consistent with the scaling for the systematic error1 (Fig. 4). This
1 While they have similar volume scalings in this system, there is no funda-
mental reason why the systematic and random components of an error need to
means that the magnitude of the random component of the error
is approximately proportional to the radius of the grain, which is
again surprising as the naive expectation would be that this error
would be related to the surface area of the grain.

The uncertainty in the measured volume can be reduced by
either repeated scans of the same object or by combining the re-
sults from a number of similar objects. As the uncertainty for an
individual object is a function of the object volume, the number of
similar objects, N, of volume V that need to be combined to
achieve an acceptable relative error, ε, in the measured volume
can be calculated (or, alternatively, N is the number of times that
the same object needs to be scanned):

N
V( )

(3)

n 2

2

κ
ε

=

where κ is the prefactor in the relationship between the relative
standard deviation in the measure volume of a single grain and n
(footnote continued)
have the same dependencies.



Fig. 7. Number of repeats required to reduce the random component of the un-
certainty (relative standard deviation) in the volume measurement to a given level
as function of the object volume.
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is the power law exponent. For example, based on the scans used
to produce Fig. 6, to reduce the random component of the
uncertainty when measuring volume to less than 5% you would
need to combine the measurements from approximately 600
grains with a volume of 4 voxels, approximately 12 grains with a
volume of 100 voxels, or one object of 1000 voxels (see Fig. 7). This
will not account for any genuine variability in the behaviour of
nominally identical objects, and it is important to note that it is
only the random component of the error that is reduced by
averaging repeat results. By definition, combining results will have
no impact on any systematic error. Fig. 7 can only be used as an
indication of the number of repeats required as this will depend
upon the particular material and its scanning conditions.

The procedure presented is relatively straightforward, and is
recommended whenever precise quantitative data for the volume
or volume change is required.
4. Obtaining consistent results in the face of systematic errors

It is common practice to use intensity standards (usually
Fig. 8. The discrepancy in grain volumes between: (a) a reference scan and a repeated
relative threshold value).
introducing the same objects of known attenuation into all scans)
when carrying out XMT measurements, and this is usually suffi-
cient for samples containing large features with high contrast. In
these cases, variations in machine behaviour or beam energy over
time (which is equivalent to variations in the threshold value) will
be small. However for small objects, especially in low contrast
materials or when volume changes can alter the bulk attenuation
along the beam path, simple intensity calibration is unlikely to be
sufficient. In this case we recommend having both volume and
intensity references, especially for smaller grains. The number of
reference features needs to be sufficient for suitably accurate vo-
lume determination, and the features should not change between
scans over a time series experiment. In our particular example of
grain dissolution, an appropriate standard could consist of an
unaltered particle of the ore that is present in all scans. Ideally this
procedure will be carried out using a phantom containing a suf-
ficient number of features for which the individual volumes are
known, as this will allow not only consistent, but also accurate
results. In this specific example the volumes in the reference im-
age are not known and thus it is only consistency that is achieved
by using this method.

The reason why the correction of systematic errors has been
left to last is that it is important to know which errors or dis-
crepancies can be eliminated by appropriate adjustment of the
thresholds and which errors are random.

The relative difference in volume (ΔV/V) of the grains in two
independent scans of the same volume collected under identical
machine settings and analysed using the same thresholding al-
gorithm (maximum entropy) should be negligible and yet plotting
theΔV/V as a function of grain volume shows a systematic error in
the volume, especially for smaller grains (Fig. 8a). The discrepancy
between the 2 scans will contain both systematic and random
components and therefore the random component is reduced by
combining measurements from 100 similar sized grains. This vir-
tually eliminates the random component of the error for the larger
particles, but it is still significant for the smaller particles (below
about 100 voxels).

It is expected that much of the systematic difference between
the images will be caused by a small inconsistency in the threshold
value and it is the smallest grains that have the largest dis-
crepancy. The same equation form that fitted the smaller particles
in Fig. 4 is therefore fitted to this data, namely a power law re-
lationship with an exponent of �2/3.
scan of the same ore particle before and (b) after threshold correction (þ1.5% in
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Since the expected standard deviation in the average of the 100
grains used to generate each of the points in Fig. 8 is known from
Fig. 6, the 95% confidence interval for the fitted equation can be
plotted. For the smaller grains virtually all the points fit within this
confidence interval, which would be expected if the assumed form
for the data is correct. The difference in volume for the larger
grains lies outside the confidence interval, but the power law re-
lationship with an exponent of �2/3 is only expected to fit the
data for the smaller particles.

If there were no systematic error there should be no trend in
the discrepancy and the data should be scattered around zero,
with a larger scatter at smaller sizes. To try and achieve this, the
correction to the threshold required to eliminate the systematic
error can be estimated based on the prefactor k in the fitted power
law (Fig. 8a). The required change in threshold that corresponds to
this value of k can be obtained from Fig. 5. In this case an increase
in the relative threshold value of about 1.5% was required.2 The
power law relationship between the change in volume and the
volume when the threshold is adjusted means that even this small
change has quite a large effect on the smallest grains. If this
change in threshold has the same relative effect on the measured
volume in the subsequent image as it did on the reference image,
then the systematic error should be eliminated.

Fig. 8b shows the discrepancy in the volume once this change
in threshold has been applied. It can be seen from the 95% con-
fidence intervals that this correction has resulted in discrepancies
in volume that are consistent with no systematic error in the size
of the smallest grains. While the correction was not based upon
the size of the largest grains, the systematic error in their size was
reduced from about 2% before correction to 0.8% after correction.

The correction has virtually no impact on the random compo-
nent of the error, with the relationship between the standard
deviation in the measured volume and volume itself for the cor-
rected and uncorrected data being virtually the same (see Fig. 6).
This indicates that the random and systematic errors are in-
dependent of one another in this system. It also means that the
random error can be accurately assessed without using a size
standard as this component of the error is very insensitive to the
specific threshold value used.
5. Conclusions

This paper described methodologies for quantifying, and cor-
recting for, both the systematic and random contributions to the
uncertainty and error in the measurement of the volume of objects
using XMT. In particular, it showed the strong dependency on
volume relative to voxel size that these errors have. To achieve a
desired level of uncertainty due to random errors, the results from
2 The prefactor in the power law fit to the data in Fig. 8 (0.3344) is used to read
off the required shift in threshold from Fig. 5 (1.5%). Note that a positive prefactor
implies that the measured volume is too large and that the threshold for the mi-
neral grains must thus be increased.
repeat scans or scans of similar objects need to be combined. The
paper showed how many objects of a given size needed to be
combined, providing a guide for future studies. For instance a
single object of a thousand voxels has an uncertainty of 5% in its
volume, while 12 objects of a hundred voxels would need to be
combined to achieve the same level of uncertainty. A methodology
for eliminating systematic errors based on knowledge of how
changes in threshold affect the measured volume and its de-
pendency upon size was also developed.
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