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Instanton rate theory is used to study tunneling events in a wide range of systems including low-
temperature chemical reactions. Despite many successful applications, the method has never been ob-
tained from first principles, relying instead on the “Im F” premise. In this paper, the same expression
for the rate of barrier penetration at finite temperature is rederived from quantum scattering theory
[W. H. Miller, S. D. Schwartz, and J. W. Tromp, J. Chem. Phys. 79, 4889 (1983)] using a semiclassical
Green’s function formalism. This justifies the instanton approach and provides a route to deriving the
rate of other processes. C 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4943866]

I. INTRODUCTION

Nuclear tunneling can significantly affect chemical
reactivity,1–3 but the most common theoretical methods for
estimating reaction rates4–6 treat the nuclear dynamics using
classical principles, which neglect these important effects.
In large complex systems, quantum dynamics is far more
difficult to simulate than its classical counterpart. However,
using semiclassical considerations, one can describe certain
quantum effects with an efficiency similar to that of a classical
calculation. Here, a first-principles derivation is presented
for semiclassical instanton theory which describes the rate
of quantum-mechanical tunneling through an energy barrier,
such as occurs in low-temperature chemical reactions.

Instanton rate theory is widely used in various scientific
disciplines from subnuclear physics to cosmology.7–11 It is
well established that the instanton describes the correct
physics12 and rates compare favorably with exact quantum
calculations.13–15 However, despite these successes, no first-
principles derivation of instanton rate theory has been
presented up till now. A first-principles derivation is taken
to mean one which starts from an exact expression for the
rate and makes a number of well-controlled approximations.
At no intermediate point should the expression evaluate to an
unphysical result.

The traditional derivation of instanton theory is based
on the premise that the low-temperature rate of decay of a
metastable state, k, is related to the system’s free-energy,
F, by k ≈ −(2/~)Im F.16–18 This formula is not an exact
definition of the rate. In fact, it must be modified at high
temperatures and its application at intermediate temperatures8

is understood simply as an approximate interpolation between
known low and high-temperature limits.19 The imaginary part
of the free-energy can only be obtained at its semiclassical
limit using an analytic continuation of a divergent integral.20

a)Electronic mail: jeremy.richardson@durham.ac.uk. Present address:
Department of Chemistry, Durham University, South Road, Durham,
DH1 3LE, United Kingdom.

It is difficult to see how this concept can apply rigorously
to chemical reactions, which are described by Hermitian
Hamiltonians and have therefore purely real free-energies.21,22

Chemical reaction rates can, however, be rigorously defined
using scattering boundary conditions23 and it is not obvious
how the rate defined in this way is related to the Im F approach.
An alternative (and earlier) formulation of instanton theory by
Miller12,13,24 employs the heuristic Weyl correspondence rule25

in a particular transition-state theory (TST) approximation24 to
the rate. Such TSTs are not unique and the particular form used
here is equivalent to an expression first given by Wigner.26 This
intermediate step is not valid at the low temperatures where
the instanton is applied and can evaluate to give an unphysical
negative rate.27 In both this and the Im F case, however,
semiclassical approximations to the expressions result in the
same instanton rate,28 although neither should be considered
a first-principles derivation.

Recently it has become possible to evaluate these quantum
rates in complex molecular systems using the ring-polymer
instanton (RPI) method.29 This approach locates the instanton
on the full potential-energy surface by searching for stationary
points of the discretized action using multidimensional
optimization techniques. It has been applied successfully to
many problems of interest from reactive scattering to diffusion
on metal surfaces and hydrogen transfers in enzymes.14,15,29,30

Other related approaches are also based on Im F.31–35 Note
that instanton theory describing tunneling splitting between
degenerate minima is not discussed here as its derivation is
already rigorous;7,8,36 the instanton referred to in this paper has
sometimes been called a “bounce” to differentiate it. The RPI
method also plays a significant role in explaining the success
of the ring-polymer molecular dynamics (RPMD) method37

for computing reaction rates in the deep-tunneling regime.27,29

The quantum instanton (QI) approach is also related, although
its applicability is somewhat hampered by the requirement to
locate two optimal dividing surfaces.38,39

Here, a formalism is used based on recently obtained
expressions for semiclassical approximations to the Green’s
functions in the classically forbidden region.40 The same

0021-9606/2016/144(11)/114106/5/$30.00 144, 114106-1 © 2016 AIP Publishing LLC
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approach can be used to derive a golden-rule instanton
approach for nonadiabatic electron-transfer reactions,40,41 and
thus unifies the adiabatic (where the Born-Oppenheimer
approximation is valid) and nonadiabatic limits of reaction
rates into one theory.

II. DERIVATION OF INSTANTON THEORY

Consider the dynamics of an adiabatic chemical
reaction. The Hamiltonian is Ĥ = |p̂|2/2m + V (x̂), where
x = (x1, . . . , x f ) are the Cartesian coordinates of f nuclear
degrees of freedom. These nuclei move on the potential-
energy surface V (x) with conjugate momenta p = (p1, . . . ,pf ).
Without loss of generality, the degrees of freedom have been
mass-weighted such that each has the same mass, m. For
simplicity it will be assumed that the Hamiltonian is neither
translationally nor rotationally invariant, but the following
arguments can easily be generalized for this case.42

An ( f − 1)-dimensional dividing surface, defined by
σ(x) = 0, separates reactants, σ < 0, from products, σ > 0.
The reaction probability at energy E is23

P(E) = 2~2 Tr
�
F̂Im Ĝ(E)F̂Im Ĝ(E)� , (1)

where Ĝ(E) = limη→0+(E + iη − Ĥ)−1 is the Green’s function.
The flux from reactants to products is23,25

F̂ =
i
~

�
Ĥ , θ[σ(x̂)]� = δ[σ(x̂)] p̂σ + p̂†σ δ[σ(x̂)]

2m
, (2)

where p̂σ = ∂σ
∂x̂ · p̂ and θ is the Heaviside step function. The

exact reaction probability is therefore given by

P(E) = ~
2

m2


ρ(x′,x′′)δ[σ(x′)]δ[σ(x′′)]dx′dx′′, (3)

where

ρ(x′,x′′) = ⟨x′|p̂σIm Ĝ(E)|x′′⟩⟨x′′|p̂σIm Ĝ(E)|x′⟩
+ ⟨x′|p̂σIm Ĝ(E) p̂†σ |x′′⟩⟨x′′|Im Ĝ(E)|x′⟩. (4)

P(E) is invariant to σ(x) but it is normally sensible to choose
the dividing surface such that it cuts through the barrier.23

The thermal reaction rate, k, at reciprocal temperature
β = 1/kBT is given by

k Zr =
1

2π~


P(E) e−βE dE, (5)

where Zr is the partition function per unit volume of the
isolated reactants. Although the rate is only rigorously defined
in this way for systems with scattering boundary conditions,
assuming an appropriate separation of time-scales,43 it can
also be applied to condensed-phase reactions.

The formulation presented so far defines the quantum
reaction rate but cannot be applied to complex systems due
to the difficulty of obtaining the exact multidimensional
Green’s functions. Instead, they will be treated by the
semiclassical approximation described in Ref. 40, which
gives the asymptotic result in the ~ → 0 limit.44 This is
an extension of Gutzwiller’s formulation45 to the classically
forbidden region where V (x′),V (x′′) > E. Here the imaginary
part of the semiclassical Green’s functions can be written as

FIG. 1. Schematic showing the instanton orbit modeling tunneling through
a reaction barrier of height V ‡. The orbit is made up of two trajectories that
both start and end at the dividing surface σ = x− x‡ (dashed line) but bounce
either on the left (blue) or right (red) and contribute to Γ− or Γ+, respectively.

a sum over imaginary-time classical trajectories that bounce
at a point where V (x) = E. Imaginary-time trajectories have
equations of motion equivalent to Newtonian dynamics in
an upside-down potential.46 Complex-time trajectories that
enter the classically allowed region can be ignored, as these
add phase oscillations to the Green’s functions and give a
subdominant contribution to the integral in Eq. (5).40

Only trajectories starting and ending at the dividing
surface contribute to Eq. (3). For a tunneling reaction, such
as that depicted in Fig. 1, where the energy is lower than
the barrier height, there will be two bouncing trajectories that
encounter a turning point either on the + or − side of the
dividing surface, where ±σ > 0. Those that bounce more than
once can be ignored, as they have larger actions and therefore
exponentially smaller contributions. The imaginary part of the
Green’s function is then ⟨x′|Im Ĝ(E)|x′′⟩ ≃ Γ− + Γ+, where
the contribution from each trajectory is40

Γ
± ≡ Γ±(x′,x′′,E) = − π

√
D̄±

(2π~)( f +1)/2
e−W̄

±/~. (6)

The abbreviated action is the following line integral along the
respective classical trajectory:

W̄± ≡ W̄±(x′,x′′,E) =
 x(q)=x′

x(q)=x′′
p̄(x) dq, (7)

p̄(x) = 
2m[V (x) − E], (8)

and the prefactors are

D̄± = (−1) f +1

���������

∂2W̄±

∂x′∂x′′
∂2W̄±

∂x′∂E
∂2W̄±

∂E∂x′′
∂2W̄±

∂E2

���������

=
m2

p̄(x′)p̄(x′′) A±, (9)

A± =
�����
− ∂2W̄±

∂Q′∂Q′′
�����
, (10)

where the coordinate system has been transformed from x to
(q,Q),45 defined such that q is parallel to the trajectory and
equal to 0 at the dividing surface, and Q = (Q1, . . . ,Q f −1) are
the perpendicular modes.47

The reaction probability, Eq. (3), requires not only matrix
elements of the Green’s function but also the application of
momentum operators on them. These operators can be written
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in the position basis as p̂j = −i~ ∂
∂ x̂

j
, such that their effect is that

of differentiation of the Green’s function.23 However, because
only the terms of the lowest order in ~ are required for the
semiclassical approximation, the differentiation can be applied
only to the exponential. The operator thus simply multiplies

the Green’s function by ±ip̄(x′) ∂x
′
j

∂q′ (or the equivalent with
double primes), which are the momentum components at the
end points of the trajectory; they are imaginary and the sign
depends on the direction traveled. Within the semiclassical
approximation, therefore, the momentum operators act like
classical variables.

Using the symmetry of Γ±(x′,x′′,E) = Γ±(x′′,x′,E),
ρ(x′,x′′) ≃ i2

(p̄′σΓ− − p̄′σΓ
+)(p̄′′σΓ− − p̄′′σΓ

+)
+ (−p̄′σΓ

−p̄′′σ − p̄′σΓ
+p̄′′σ)(Γ− + Γ+)


(11)

= 4p̄′σ p̄′′σΓ
−
Γ
+, (12)

where p̄′σ =
���
∂σ
∂q′

��� p̄(x′) is the magnitude of the momentum
normal to the dividing surface at the end point x′; the definition
with double primes is equivalent. All terms cancel except the
cross term with trajectories that bounces once on the left and
once on the right. Unlike for the QI method,38 it was not
necessary to introduce a second dividing surface to ensure this
outcome.48 This is because spurious half-instantons, which
cause Wigner’s TST to fail at low temperature,27 cannot form
as trajectories contributing to Im Ĝ(E) are required to bounce.

Therefore, using δ[σ(x)] = δ(q)��� ∂σ∂q
���
−1

, the semiclassical
reaction probability is

PSC(E) = (2π~)1− f


SD

p̄(x′)p̄(x′′)
m2


D̄−D̄+ e−W̄ /~

× δ(q′)δ(q′′) dq′dq′′dQ′dQ′′, (13)

where W̄ = W̄− + W̄+ is the total action along both trajectories.
Performing the integrals over Q′ and Q′′ by the method of
steepest descent (SD) gives

PSC(E) = Z‡ e−W̄ /~, (14)

Z‡ =
√

A−A+

���������

∂2W̄
∂Q′∂Q′

∂2W̄
∂Q′∂Q′′

∂2W̄
∂Q′′∂Q′

∂2W̄
∂Q′′∂Q′′

���������

− 1
2

. (15)

All quantities are evaluated at the stationary point x′ = x′′ = x‡
on the dividing surface where ∂W̄

∂Q′ =
∂W̄
∂Q′′ = 0. Here the

trajectories join smoothly into each other to form a continuous
periodic orbit, known as an instanton.

In the one-dimensional case, the formula reduces to
PSC(E) = e−W̄ /~, which is the well-known WKB result.49 The
supplementary material50 outlines a proof that Z‡ is a particular
generalization of the partition function of the instanton such
that PSC(E) is equivalent to an expression given by Miller in
Ref. 24. The final result is therefore independent of the choice
of dividing surface and requires only that the instanton orbit
intersects the surface at some point. The instanton could be
thought of as defining a dividing region around the barrier.51

Note that the short-time approximation inherent in the
semiclassical Green’s functions is not necessarily valid when
computing microcanonical rates as it cannot describe nuclear

coherences leading, for instance, to discrete densities of
states in a reactant well. The approximation is however
asymptotically correct when energy is integrated over a
smooth distribution such as the thermal distribution considered
next.

The semiclassical thermal rate is found by evaluating the
integral in Eq. (5) by steepest-descent24 to give

kSCZr = (2π~)− 1
2 PSC(E)

(
d2W̄
dE2

)− 1
2

e−βE, (16)

where E solves ∂W̄
∂E
= −β~. As the imaginary time taken by

each trajectory is τ± = − ∂W̄±
∂E

, the total time is β~. The total
derivatives are found using q′ = q′′ = 0 and recognizing that
Q′ and Q′′ are functions of E.

Assuming the barrier approximates the parabola V (x)
= −mω̄2x2 in one degree of freedom near its top, it cannot
support periods less than 2π/ω̄. The instanton approach is
thus only defined for low temperatures when the periodic orbit
exists. Extensions of the approach to treat higher temperatures,
and involving terms with higher orders of ~, have been
suggested.12,34,52

The result can be converted to the Lagrangian formulation
using a Legendre transformation similar to that in Ref. 40.
This is based on the full action,

S̄± ≡ S̄±(x′,x′′, τ±) = W̄±(x′,x′′,E) + Eτ±, (17)

where E is defined such that the trajectories from x′′ to x′
are completed in imaginary time τ±. Using S̄ = S̄− + S̄+, and
d2W̄
dE2 = −~

dβ
dE = −~

� dE
dβ

�−1, Eq. (16) becomes

kSCZr = (2π~2)− 1
2 Z‡

(
−dE

dβ

) 1
2

e−S̄/~, (18)

which was also obtained by Miller,24 or equivalently

kSCZr = (2π~)− 1
2


Σ−Σ+

−Σ
e−S̄/~, (19)

where τ = τ+ = β~ − τ− and, from Ref. 40,

Σ
± =

���������

∂2S̄±

∂Q′∂Q′′
∂2S̄±

∂Q′∂τ±
∂2S̄±

∂τ±∂Q′′
∂2S̄±

∂τ±∂τ±

���������

= (−1) f −1A±
∂2S̄±

∂τ±2 ,

Σ =
d2S̄
dτ2

���������

∂2S̄
∂Q′∂Q′

∂2S̄
∂Q′∂Q′′

∂2S̄
∂Q′′∂Q′

∂2S̄
∂Q′′∂Q′′

���������

=
d2W̄
dE2

���������

∂2W̄
∂Q′∂Q′

∂2W̄
∂Q′∂Q′′

∂2W̄
∂Q′′∂Q′

∂2W̄
∂Q′′∂Q′′

���������

.

Equation (19) can be evaluated numerically using the
RPI algorithms to obtain the instanton and its action29 and
derivatives.41 This may lead to a better strategy for evaluating
instanton rates in multidimensional complex systems than
the standard RPI approach, Eq. (22), for which an N f × N f
matrix must be diagonalized. Other approaches for locating
the instanton orbit are also naturally suggested such as using
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the Hamilton-Jacobi formulation with end points constrained
to bounce41 or modifications of the nudged-elastic-band
method.53,54

III. EQUIVALENCE TO IMF INSTANTON

Following Ref. 28, it can be shown that the semiclassical
result Eq. (19) is equivalent to the RPI rate in the N → ∞
limit29 and hence to the standard instanton rate theories.8,18,19

These are based on the Im F premise,12,16 k Zr ≈ 2
β~

Im Z(β)
and the partition function can be evaluated in ring-polymer
form as

Z(β) ≡ e−βF = Λ−N f


. . .


e−βNUN (x) dx. (20)

Here, the integration is over N ring-polymer beads x
= {x1, . . . ,xN}; βN = β/N , Λ =


2π βN~2/m and the ring-

polymer potential is

UN(x) =
N
i=1

m
2β2

N~
2
|xi − xi+1|2 + V (xi), (21)

where the indices are cyclic such that x0 ≡ xN . This is
a discretization of the path-integral approach to quantum
statistics,55 and in the N → ∞ limit, gives the partition
function exactly.

The imaginary part of the partition function is, however,
not well defined and it can only be obtained using analytic
continuation. In practice, one takes a steepest-descent integral
about the saddle point of UN(x),28,29 but reverses the sign of the
negative eigenvalue and multiplies the integral by a half.7,20

There is also a zero-eigenvalue mode that is integrated out
analytically. This procedure gives the RPI rate,29

kRPIZr =
Λ−1

βN~

N

i=1
|xi − xi−1|2

′

k

�����
1

βN~ηk

�����
e−βNUN ,

(22)

where mη2
k

are the N f eigenvalues of the ring-polymer
Hessian ∇2UN ; the prime indicates that the mode for which
ηk = 0 is not included in the product.

Although Eq. (22) is the form employed in RPI
calculations, equivalent expressions are found by taking the
integrals in a different order.28 Steepest-descent integration of
Eq. (20) over all beads but the two on the dividing surface
gives

Z(β) ≃ 2Λ−2 f


1 |J−| |J+| e−S̄(x
′,x′′)/~ dx′dx′′, (23)

where the factor of 2 appears because of the degeneracy of the
ring-polymer space, as the order of the beads along the orbit
can be reversed. The square Hessian matrices J± are defined
as in Ref. 41 from second-derivatives of UN(x) with respect
to the beads on the ±σ > 0 side of the dividing surface. A
further coordinate transformation, dx′ = dq′dQ′ = q̇′dτ′dQ′,
describes the position along the trajectory using imaginary
time. The instanton orbit folds back on itself so τ′ has a
range of 1

2 β~ and q̇′ = ���
dq′

dτ′
���, which could be estimated using

|xi+1 − xi |/βN~ and the appropriate index i. The equivalent
holds for double primes. Due to the cyclic permutational

symmetry around the ring polymer,29 the integral over one
time variable is simple giving

Z(β) ≃ 2Λ−2 f
 1

2 β~q̇
′q̇′′ |J−| |J+| e−S̄/~ dτdQ′dQ′′, (24)

whereas the second over the remaining τ is completed,
according to the usual Im F procedure, using analytic
continuation of steepest-descent over an imaginary mode
and multiplying by a factor of half,

Im Z(β) ≃
√

2π~
Λ2 f

 1
2 β~q̇

′q̇′′ |J−| |J+|
�����
d2S̄
dτ2

�����

− 1
2

e−S̄/~ dQ′dQ′′.

The remaining integrals over the perpendicular directions are
performed using steepest-descent to give

kRPIZr = (2π~)− 1
2

(
m
βN~

) f q̇2|Σ|−1/2 |J−| |J+| e−S̄/~, (25)

where at the stationary point q̇′ = q̇′′ = q̇. In the N → ∞
limit, this formulation is equivalent to all Im F instanton
rates8,14,15,18,19,28–30 including Eq. (22).

It is now a simple matter to show that Eq. (25) is equivalent
to the first-principles rate derived above from the semiclassical
Green’s functions, i.e., kSC = limN→∞ kRPI. From Eq. (9), and
using a number of relations stated in Refs. 40 and 41, the
necessary equations are

(−1) f +1
Σ
±/q̇2 =

�����
− ∂2S̄±

∂x′∂x′′
�����
=

(
m
βN~

) f

|J±|−1. (26)

IV. CONCLUSIONS

In summary, the instanton method for computing
the rate of tunneling through a barrier on a Born-
Oppenheimer potential-energy surface has been rederived
from a semiclassical limit of exact scattering theory.23

In contrast to this, previous derivations have employed
semiclassical approximations to either the Im F premise19 or a
transition-state theory approximation.24 The final form found
here is, however, equivalent to the usual instanton expression,
although the derivation is more rigorous. The semiclassical in-
stanton appears from the reaction probability at a given energy
before temperature has been introduced. This is in contrast
with other path-integral rate theories based on the Boltzmann
operator.21,27,31–33,37,56 Real-time dynamical information does
not contribute, as is appropriate for a complex dissipative
system where nuclear coherence is washed out. However,
unlike TST or QI methods,21,27,31–33,38,39,56 the instanton rate
remains independent of the dividing surface so long as the
instanton orbit intersects it. In light of this new derivation,
applications of instanton methods can be better understood and
the development of new RPMD and QI approaches advanced.
Generalizations of the new derivation provide a new route to
solving novel problems such as nonadiabatic reaction rates.40
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