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Abstract  20 

 21 

Gold mineralization in the Klipwal Shear Zone (KSZ) at the Klipwal Gold 22 

Mine is confined to laminated quartz-carbonate lodes, stringers and associated 23 

alteration in sandstone and siltstone of the Delfkom Formation in the upper Mozaan 24 

Group of the Mesoarchaean Pongola Supergroup. The moderately dipping brittle-25 

ductile KSZ strikes N-S with an oblique-reverse, sinistral sense of shear. The 26 

deformational events that are recognized include an early compressional phase that 27 

produced anastomosing shears defined by shear fabrics with numerous shear-parallel 28 

laminated quartz-carbonate fault-fill veins and, in places, extensional quartz vein 29 

stockworks, and a late brittle reactivation phase that produced fault breccias, 30 

displacing earlier extensional veins. Three closely spaced economic reefs (lodes) are 31 

developed: the main R-reef constitutes the KSZ, while the J- and H- reefs represent 32 

footwall splays. Alteration comprises chlorite, muscovite, epidote, feldspar and 33 

carbonates along with pyrite, arsenopyrite and chalcopyrite  pyrrhotite. An inner 34 
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alteration zone is dominated by laminated quartz-carbonate veins with alternating 35 

quartz-carbonate-rich and muscovite-chlorite-rich laminae whereas the proximal zone 36 

is characterized by alteration halos of K-feldspar, albite, epidote, chlorite and 37 

muscovite along with carbonates and associated quartz veins. Chlorite thermometry 38 

from the inner and proximal zone yielded temperatures of 267 to 312 °C. 39 

Arsenopyrite compositions provide temperatures in the same range, 255 to 318 °C. 40 

Fluid inclusion microthermometry and Raman spectrometry of quartz veins in the 41 

mineralized reefs reveal the presence of metamorphogenic aqueous-gaseous fluid with 42 

an average salinity of 6.5 wt. % NaCl equiv. Fluid compositions and estimated P–T 43 

range (1.1 to 2.5 kbar at 255 to 318 °C) are typical of orogenic gold deposits. 44 

Devolatilization during the regional facies metamorphism of the Pongola Supergroup 45 

is considered the likely fluid forming event with fluid flow focused into a 46 

‘compressional-jog’ of the KSZ. Shear-induced pressure fluctuations generated phase 47 

separation of the initial aqueous gaseous fluid producing a gaseous and low saline 48 

aqueous fluid. This, together with fluid–rock interaction, and a decrease in fO2 lead to 49 

sulphide and gold precipitation at Klipwal. Re-Os data from six sulfide samples 50 

constrain the age of sulfide precipitation and, by inference, gold mineralization, to 51 

2563 ± 84 Ma, with an initial 
187

Os/
188

Os = 0.29 ± 0.08 (MSWD = 0.38). This age is 52 

distinctly younger than the post-Pongola granites (28632721 Ma) ruling out the 53 

association of granite emplacement with mineralization. This would suggest that 54 

mineralization is linked to the regional D3 folding event which reactivated the KSZ 55 

after emplacement of the post-Pongola granites and that final brittle, post-56 

mineralization reactivation is related to Karoo-age faulting. Low initial Os values 57 

suggest that ore fluid interacted with mafic rocks, leaching non-radiogenic Os, the 58 

likely source being the deeper-seated Nsuze Group volcanics and/or the greenstone 59 

belts that underlie the Pongola Supergroup.  60 

 61 

Keywords: Orogenic gold deposits, Fluid inclusions, Klipwal, Kaapvaal craton, South 62 

Africa 63 

 64 

Introduction  65 

 66 

Orogenic gold mineralization constitutes an important class of deposits, collectively 67 

representing a significant world gold resource (about 25000 t gold; Goldfarb et al. 68 
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2005). Although these ores are associated with deformed metamorphic terrains of 69 

almost all ages (Kerrich and Cassidy 1994) they mostly occur in the Archaean 70 

greenstone belts of Australia, Canada, Africa, India and Brazil, the Proterozoic belts 71 

of West Africa, and to a lesser extent, in Mesozoic and Cenozoic provinces (Kerrich 72 

and Cassidy 1994; Goldfarb et al. 2001; Groves et al 2003; Hagemann and Brown 73 

2000).  They are characterized by a strong structural control, distinct alteration 74 

assemblages, ore mineralogy, ore fluid composition, and occur in a range of host 75 

lithologies (Groves et al. 1998; McCuaig and Kerrich 1998; Goldfarb et al. 2001; 76 

Groves et al. 2003). These include greenstones (metamorphosed from low greenschist 77 

facies to granulite facies), banded iron-formations, ultramafic rocks, sedimentary 78 

rocks and granitoids (McCuaig and Kerrich 1998, and references therein). Among all 79 

these, sedimentary rock-hosted orogenic lode gold deposits form an important and 80 

distinctive class (Bierlein and Crowe 2000).  81 

Although the sedimentary rock-hosted deposits are well known from the 82 

Phanerozoic there are only a handful from the Archaean, which in many ways are 83 

similar in mineralization and structural style, alteration and ore mineralogy to the 84 

Phanerozoic counterparts. These deposits, also called slate belt-hosted gold deposits, 85 

are developed in mineralized shear zones in thick marine sedimentary sequences 86 

commonly underlain by bimodal volcanics generated during spreading, arc formation, 87 

plate collision and subduction (Goldfarb et al. 1998). They are associated with major 88 

translithospheric structures or compressional to transpressional-transtensional shear 89 

zones, similar to the Archaean orogenic gold deposits (Bierlein and Crowe 2000; 90 

Lawley et al. 2013). 91 

Sedimentary rock-hosted orogenic gold deposits are reported from a number 92 

of Phanerozoic accretionary terrains, notably the Pacific rim: the North American 93 

Cordillera, far east Russia, northeastern China, eastern Australia and New Zealand 94 

(Fig. 1 in Goldfarb et al. 1998; Bierlein and Crowe 2000). Some of the major gold- 95 

bearing districts in the eastern and western part of the Pacific rim include the 96 

Hodgkinson gold field in the Hodgkinson–Broken River Fold Belt and Ballarat in the 97 

Lachlan Fold Belt from eastern Australia (Phillips and Hughes 1996; Peters et al 98 

1990); the Alaska–Juneau, Treadwell, Kensington mines in the Juneau gold belt in the 99 

North American Cordillera (Goldfarb et al. 1991; Miller et al. 1995), the Omchak 100 

goldfield in the Yana-Kolyma belt in northeastern Russia (Nokleberg et al. 1994; 101 
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Nokleberg et al. 1996), and the Reefton goldfield in eastern New Zealand (Cooper and 102 

Tulloch 1992; Goldfarb et al. 1995).  103 

The sedimentary rock-hosted lode gold deposits in eastern Australia are 104 

similar in some aspects to the Klipwal gold deposit described here. Gold-bearing 105 

quartz veins in the Hodgkinson gold field, Queensland Australia, are found in low-106 

grade metasediments with restricted hydrothermal alteration halos. Mineralization is 107 

concentrated in brittle to brittle-ductile shear zones that occur within reactivated 108 

second-generation fold axial planes (Peters et al. 1990). Geological characteristics, 109 

isotopic data, alteration mineralogy, and fluid inclusion studies show that upward 110 

migrating homogeneous metamorphic or distal magmatic fluids were responsible for 111 

the gold mineralization (Peters et al. 1990).  The Ballarat East gold field is located in 112 

close proximity to the Avoca fault (Fairmaid et al. 2011) with gold hosted in large 113 

fault-related quartz veins that are stacked in arrays associated with west-dipping 114 

reverse faults. Evidence of mixing metamorphogenic fluid with sedimentary 115 

formation waters is documented by Fairmaid et al. (2011). The sources of gold are 116 

considered to include the underlying Cambrian volcanic rocks, surrounding Paleozoic 117 

sediments and Proterozoic continental crust. 118 

In South Africa, the Mesoarchaean volcano-sedimentary sequence of the 119 

Pongola Supergroup, exposed in the southeastern part of the Kaapvaal craton (Fig. 120 

1a), is considered contemporaneous with the Witwatersrand Supergroup and similarly 121 

contains paleo-placer Au-U conglomerate occurrences (Bullen et al. 1994). In 122 

addition to Witwatersrand type paleo-placer deposits, the Pongola Supergroup hosts a 123 

number of epigenetic, structurally controlled orogenic-style lode gold deposits (Fig. 124 

1b). These include the Wonder Mine situated in the Bumbeni Shear Zone, the Klipwal 125 

Gold Mine (KGM) on the Klipwal Shear Zone (KSZ) and Ngotshe Mine located a 126 

few hundred meters east of the KSZ (Bullen et al. 1994). As opposed to the Pongola 127 

paleo-placer deposits the lode gold deposits have until recently continuously produced 128 

gold, especially from the Klipwal Gold Mine (Bullen et al. 1994; Gold 1993; Gold 129 

2006). Presently the mine is not in operation. 130 

Here we present a detailed description of the geology of the Klipwal gold 131 

deposit, its alteration mineralogy, P-T conditions of mineralization deduced from 132 

chlorite and arsenopyrite geothermometry and fluid inclusion studies on mineralized 133 

zones (reefs). In addition, we present Re-Os compositions of pyrite and arsenopyrite 134 

from the ore and report on the timing of gold mineralization. The Klipwal Gold Mine 135 



 

 

5 

(KGM) is located in KwaZulu-Natal Province of South Africa, about 15 km south of 136 

the Swaziland border, between the towns of Piet Retief and Pongola (Figs. 1a, b). 137 

Mining operations commenced during the late nineteenth century with a total gold 138 

production of 5.7 tons by 2003. A total of 1.18 million tons of ore were mined 139 

between 1981 and 2003, and from these, at least 5.3 tons of gold were recovered at a 140 

grade of 4.5 g/t. Mining operations extended fifteen levels to a depth of 454 m. This 141 

study is based mainly on samples collected from levels six through to ten.  142 

 143 

Regional geological setting 144 

 145 

The Pongola Supergroup is preserved as two structural basins, the extensive Pongola 146 

basin in the north and the smaller Nkandla basin in the south, separated by the 147 

Babanango structural high within a stabilized segment of the southeastern Kaapvaal 148 

craton (Matthews 1990; Gold 1993; Gold and Von Veh 1995; Gold 2006). The basins 149 

comprise a lower volcano-sedimentary sequence, the Nsuze Group and an upper 150 

dominantly sedimentary sequence, the Mozaan Group. The Nsuze Group is 151 

characterized by 4.6 km of mafic and subordinate felsic volcanic rocks with minor 152 

calcareous and siliciclastic sedimentary units. The overlying Mozaan Group, with a 153 

maximum thickness of 5 km, comprises arenaceous and iron-rich argillaceous 154 

sediments with minor banded ironstones. The Mozaan Group hosts both the placer 155 

and lode gold deposits, with the KSZ the most important, displacing interbedded 156 

sandstone, mudstone, ferruginous siltstone and two diamictite units of the Delfkom 157 

Formation of the Odwaleni Subgroup (Fig. 1c). 158 

 159 

Structure 160 

 161 

The Pongola Supergroup in the central and main Pongola basin is gently deformed 162 

and typically metamorphosed under sub-greenschist to greenschist facies conditions, 163 

with the exception of high-grade occurrences in Swaziland where granulite facies 164 

conditions had been reached locally (Wilson and Jackson 1988; Gold and Von Veh 165 

1995; Saggerson and Turner 1995, Mukasa et al. 2013; Horvath et al. 2014). Gold and 166 

Von Veh (1995) in accordance with Matthews (1990) proposed three regional 167 

deformational events (D1, D2 and D3) affecting the main Pongola basin (Fig. 1). D1 is 168 

represented by early NNW-directed thrusts, reverse faults and shear zones, including 169 
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the KSZ (Fig. 1). During D1, ENE-trending F1 folds developed contemporaneously 170 

with NNW-directed thrusting. Following D1 compressional tectonics, the area was 171 

affected by NW-SE extension (D2) associated with the emplacement of mafic dykes 172 

and sills. This was followed by D3 NE-SW-directed compression which produced 173 

major northwesterly trending, open upright F3 folds that deformed the early D1 shears 174 

and refolded the ENE-trending F1 folds forming a dome-and-basin interference 175 

pattern (Gold and Von Veh 1995). Between D2 and D3 a number of granitoid plutons 176 

intruded into the Pongola Supergroup, collectively known as the post-Pongola 177 

granites (Gold 2006).  178 

The KSZ is interpreted by Gold (2006) as a D1 structure. It forms a major 179 

shear zone extending approximately N-S for about 20 km, characterized by a 180 

moderately dipping brittle-ductile shear plane that displays oblique-reverse sinistral 181 

sense of shear. The shear zone shows anastomosing shear fabrics with numerous 182 

shear-parallel laminated quartz-carbonate veins and, in places, a quartz-vein 183 

stockwork. There is also evidence of late brittle reactivation of the shear plane (Gold 184 

2006). 185 

 186 

Geochronology of granitoids 187 

 188 

The ages of deformation and low-grade regional metamorphism remain poorly 189 

constrained due to the lack of reliable age data, whereas the geochronology of 190 

basement rocks to the Pongola Supergroup and the post-Pongola granites is well 191 

established. The basement granitoid rocks of the Anhalt granitoid suite intruded into 192 

3300 Ma old greenstone remnants (such as the Nondweni greenstone fragment) in the 193 

southeastern Kaapvaal craton (Farrow et al. 1990; Hunter et al. 1992; Robb et al. 194 

2006). These granitoids range in age from 3290 to 3028 Ma (Rb-Sr: Barton et al. 195 

1983; Farrow et al. 1990; Matthews et al. 1989; U-Pb: Kamo and Davis 1994). The 196 

pre-Pongola Tsawela gneiss on the northern side of the Pongola basin formed at 197 

3428±22 Ma (U-Pb single zircon: Mukasa et al. 2013).  The Nsuze Group volcanic 198 

rocks, which non-conformably overlie the basement, were erupted between 29843 199 

Ma (U-Pb single zircon: Hegner et al. 1993) and 294022 Ma (U-Pb: Hegner et al. 200 

1984). On the basis of new U-Pb zircon age data, Mukasa et al. (2013) established the 201 

period of deposition for the Pongola sequence rocks. Accordingly, the oldest Nsuze 202 

group volcanic layers date at 2980 10 Ma, which is similar to the previously 203 
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published ages, and the uppermost sedimentary layers of the Mozaan group have an 204 

age of 2954±9 Ma. The post-Pongola granitoids (cf. Fig. 1b) were emplaced over a 205 

period of about 150 Ma, between 2863 and 2721 Ma. The Godlwayo granite has been 206 

dated at 28638 Ma (Reimold et al. 1993), the Nzimane granite in the Hlabisa area at 207 

27393 Ma (Thomas et al. 1995) and the Spekboom granite at 27002730 Ma 208 

(Reimold et al. 1993). Maphalala and Kröner (1993) obtained an age of 2722  6 Ma 209 

for the Kwetta Granite. All these ages were obtained from single zircon Pb-210 

evaporation method. Mukasa et al. (2013) constrained the emplacement ages for 211 

Kwetta and Mswati granites, using U-Pb zircon studies, at 2721 10 Ma and 27237 212 

Ma respectively. 213 

 214 

Geology of the Klipwal Gold Mine 215 

 216 

Wall rocks, structures and distribution of the reefs 217 

 218 

The Klipwal Shear Zone cuts the Delfkom Formation of the upper Mozaan Group 219 

which comprises interbedded sandstone, siltstone, mudstone, diamictite and 220 

associated mafic and ultramafic intrusives, possibly related to the ca. 2.8 Ga 221 

Usushwana intrusive event. Gold mineralization at the KGM is centered on a convex-222 

westward flexure in the KSZ (Fig. 1c). At least three closely spaced economic reefs 223 

are developed (Fig. 2a). The main R-reef constitutes the master shear zone while the 224 

J- and H- reefs are lodes that occupy footwall splays of varying dip. The fourth Quartz 225 

(Q)- reef is less extensive and developed as a footwall splay of the R-reef in the upper 226 

levels (Fig. 2a). The Q-reef and a major portion of the R-reef are mostly mined out. 227 

The R-reef is a curvy-planar structure dipping steeply (about 70°) in the upper levels, 228 

while gradually changing to a gentle dip at deeper levels, to as little as 35°. The most 229 

pervasive fabric observed within the KSZ is an N-S trending shear foliation which is 230 

best observed underground as it is poorly exposed on the surface. The observed 231 

structures constitute an early-formed set indicating compression, which includes the 232 

main shear zone, its mylonitic wall rocks, fault-fill veins and sub-horizontal 233 

extensional veins. A late phase of brittle faulting of the extensional veins produced a 234 

fault breccia. Poles to the major shear foliation show a point maximum corresponding 235 

to a mean strike of 014° and a dip angle of 50°E. The bulk of the variation in shear 236 

foliation orientation is within a dip direction interval from about E to ESE, and a dip 237 
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angle range between shallow and moderately steep angles. Some deviation of the 238 

shallow-dipping sections to more southerly dips and a corresponding clockwise 239 

rotation of the strike are evident in the plot of Figure 2b. The relatively well-defined 240 

pole maximum in Figure 2b, however, partly reflects a bias in the readings being 241 

taken at underground levels accessible for this study. This effectively reduces the 242 

spread of the dip and strike data expected over the entire fault structure. 243 

Old mine excavations of the Q-reef at the surface show that the footwall 244 

comprises altered siltstone (quartz–chlorite–carbonate±muscovite–schist) and 245 

sandstone (metapsammite) in the hanging wall (Fig. 3a). Henceforth, these two rocks 246 

are named chlorite-carbonate schist and metapsammite, respectively. Although the 247 

shear fabric is not often observed on surface, reactivation of the shear plane is evident 248 

from slickensides (Fig. 3b). Shear-related folds, with a NW trending axial planar 249 

fabric, are observed in the siltstone (Fig. 3c). Strongly foliated sandstone occurs in 250 

close proximity to the shear zone (Fig. 3d).  251 

The R-reef comprises a 0.5–5.5 m wide, strongly foliated zone, containing 252 

numerous shear-parallel fault-fill laminated quartz veins that range in thickness from 253 

less than 1 cm to a few meters (Fig. 4a). The N-S trending foliation in the R-reef 254 

forms mylonitic fabrics and locally preserves S-C fabrics indicating a horizontal offset 255 

with a sinistral sense of shear (Figs. 4a, b). Shear lenses comprising smoky quartz 256 

grains are observed in the mylonites (Fig. 4b). In places, an array of thin subhorizontal 257 

extensional veins are observed in the R-reef (Fig. 4c). The contact between the R-reef 258 

and its hanging-wall shows evidence of late brittle reactivation indicated by clay-rich 259 

fault gouge and/or breccia (Fig. 4d). The fault breccia consists of fragments of fault-260 

fill quartz veins as well as country rocks. Sub-horizontal extensional veins are 261 

displaced by the later brittle faults (Fig. 4e).  262 

The H-reefs form a number of footwall splays that developed from the R-reef, 263 

linking across to a sequence of reefs known as the J-reefs (Fig. 2a).  The H-reefs are 264 

similar to the R-reef in that they are also characterized by brittle-ductile shears, but 265 

were not reactivated to the same extent during later brittle faulting. The fabric in the 266 

quartz veins is less pervasive, and fault breccia is absent (Fig. 4f). A crosscut at level 267 

10 (~350m from shaft surface) from the main R-reef, provided an opportunity to 268 

access the H- and J-reef shear zones and quartz veins underground (Fig. 5). These 269 

reefs cut across a range of footwall lithologies such as metapsammite, least-altered 270 
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sandstone and chlorite-carbonate schist that strike sub-parallel to, and dip at shallower 271 

angles than, the R-reef (Fig. 5).  272 

J-reefs represent footwall mineralization of the H-reef shears (Hilliard 2007) 273 

where the H-reef shears cut and displace the contact between least-altered sandstone 274 

and chlorite–carbonate schist (Figs. 2a and 5). J-reef ores typically extend for a 275 

distance of between 10 and 50 m representing the amount of displacement along the 276 

H-reef. Juxtaposition of the sandstone against siltstone along the H-reef shears is 277 

considered a critical controlling factor in J-reef development.  278 

 279 

Alteration mineralogy 280 

 281 

Petrographic studies reveal an inner and a proximal alteration zones centered on the 282 

KSZ. The inner zone is dominated by laminated quartz-carbonate veins with 283 

alternating quartz-carbonate and muscovite-chlorite-rich layers. The proximal zone is 284 

characterized by an alteration halo of K-feldspar, albite and chlorite, along with 285 

carbonate and associated quartz veins surrounding the inner zone.  286 

About 30 m away from the KSZ, in the upper level, sandstone in the least 287 

altered zone comprises quartz grains with less K-feldspar, plagioclase, muscovite 288 

(Fig. 6a) and minor heavy minerals such as zircon, ilmenite and titanite. The clastic 289 

components are cemented by quartz. K-feldspar and plagioclase are unaltered (Fig. 290 

6a). A weak S1 foliation is defined by muscovite (Fig. 6a) that is considered to have 291 

formed during the development of the KSZ. Siltstone in the least altered zone is 292 

characteristically weakly foliated with the schistosity being defined by chlorite and 293 

muscovite (Fig. 6b). 294 

In the proximal zone the altered metapsammite consists of microcline, 295 

dolomite and magnesite, indicating potassic and carbonate alteration (Figs. 6c, d). 296 

Minor chlorite and quartz are also observed in the rock as alteration products, and 297 

albitic plagioclase is intensely altered to muscovite (Fig. 6d). Chlorite–carbonate 298 

schist in the proximal zone is derived from hydrothermal alteration and deformation 299 

of siltstone along the shear zone, producing a strong fabric defined by chlorite and 300 

muscovite (Figs. 6e, f). Other minerals in this rock include epidote and quartz.  301 

The inner alteration zone comprises auriferous laminated quartz-carbonate veins. 302 

Alternating laminae in these veins consist predominantly of quartz-carbonate and 303 

muscovite-chlorite (Fig. 7a). Carbonates in the veins include dolomite, magnesite and 304 
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siderite. A sinistral sense of shear is observed at thin-section scale with the 305 

development of an SC fabric in the muscovite-chlorite lamina (Fig. 7b). The fine-306 

grained texture and strong foliation indicate that the rocks experienced mylonitization 307 

and dynamic recrystallization in the shear zone. Matrix quartz grains display bulging 308 

and recrystallized grain boundaries, with some grains displaying subgrain rotation and 309 

formation of core-and-mantle structures (Figs. 7a, b, c). These textures indicate plastic 310 

deformation at low temperatures (about 300°C; Stipp et al. 2002) and correspond to 311 

sub-greenschist facies conditions. Shear lenses consisting of quartz grains are 312 

observed in the mylonitic matrix (Fig. 7d). Broken fragments of quartz vein clasts and 313 

mylonitic clasts are very well preserved in the fault breccia (Fig. 7e). Antitaxial quartz 314 

“strain fringes” within the mylonites (Fig. 7f, g) grew on rigid pyrite and arsenopyrite 315 

grains. In addition to quartz, these strain fringes sometimes contain chlorite. The 316 

‘jigsaw-puzzle’ type brittle fractures in the sulfide grains are evident of hydraulic 317 

breccia and these fractures are filled with quartz and chlorite (Fig. 7f). Silicate 318 

inclusion trails within sulfides occur parallel to the matrix shear foliation (Fig. 7g, h) 319 

which suggest that either sulfides overgrowing an existing, unmodified early S1 320 

foliation in the D3 event, or on a reactivated S1-S3 foliation, potentially during D3. In 321 

both cases, the sulfide growth is associated with syn-D3.  As D3 is a reactivation, 322 

presumably makes small angle between S1 and S3, it is difficult to distinguish these 323 

two fabrics. 324 

  325 

Analytical techniques  326 

 327 

Selected thin sections were analyzed for chlorite compositions using the CAMECA 328 

SX-100 electron probe micro-analyzer (EPMA) at the DST-EPMA National facility, 329 

Department of Geology and Geophysics, IIT Kharagpur. Operating conditions for 330 

chlorite analysis were 15 kV acceleration voltages with 20 nA beam currents. The 331 

counting time was 20 to 30 s. The beam diameter was set at 1 m. For analysis of 332 

pyrite and arsenopyrite an acceleration potential of 20 kV was used. Beam currents of 333 

200 nA and 20 nA for was used for pyrite and arsenopyrite respectively. The counting 334 

time for Fe and S was 20s and for As 40s. Appropriate natural and synthetic minerals 335 

were used for standardization. Raw data were corrected with the help of PAP 336 

correction program by Pouchou and Pichoir (1984). Back scattered electron (BSE) 337 
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imaging was acquired using JEOL JSM 6490 SEM at the Department of Geology and 338 

Geophysics, IIT Kharagpur.  339 

Nine doubly polished wafers of 200 m thickness were prepared for fluid 340 

inclusion petrographic study. Microthermometric runs were conducted on five 341 

samples with the help of a Fluid Inc. adapted USGS gas flow microscopic heating-342 

freezing stage, fitted on a Leica Laborlux D petrological microscope housed at 343 

Geological Sciences, University of Kwazulu-Natal, Durban. The unit operates in the 344 

temperature range of 195 C to 700 C, and is periodically calibrated using distilled 345 

water-ice bath (0 C) and pure CO2 inclusions (56.6 C). Phase changes were 346 

observed during heating. Fluid salinity and density values were calculated and 347 

isochores were constructed using the FLUIDS software package (Bakker 2003). For 348 

type-I inclusions the DENSITY program in package CLATHRATES (Bakker 1997) 349 

was used. Equation of state (EOS) of Duan et al. (1992a, b) and Bakker (1999) was 350 

used for salinity and density calculation and isochore construction respectively. For 351 

type-II inclusions, EOS of Jacobs and Kerrich (1980) was used for calculating 352 

density, and for isochore construction Belonoshko and Saxena (1991) was used. For 353 

type-III inclusions Thiéry et al. (1994) and Duan et al (1992a) were used for 354 

calculation of density and isochore respectively. For type-IV inclusions Bodnar 355 

(1993) was used to calculate salinity and Zhang and Frants (1987) for density. A 356 

Renishaw RM1000B laser Raman probe, attached to a Leica microscope, at the 357 

Department of Geology and Geophysics, IIT Kharagpur was used to analyze fluid 358 

inclusions. The system is equipped with edge filters to block the Rayleigh lines, 359 

confocal configuration, thermoelectrically cooled CCD detector, air-cooled laser, and 360 

associated software to acquire and evaluate the spectral data. Irradiation was by the 361 

514.5 nm line of a continuous wave Ar-ion laser, which delivered  8 mW laser 362 

power at the sample surface. The acquisition time was 60 seconds. The first order 363 

Raman band of silicon at 520 cm
1 

was used for routine calibration. The 364 

reproducibility of the Raman wave number was set up to be  1 cm
1

. Equation (2) of 365 

Burke (2001) is used for quantitative analysis of gas species (XCO2 and XCH4) from the 366 

respective peak areas. Raman results were also compared to the graphical methods of 367 

Thiéry et al. (1994). The observed maximum uncertainty in species composition is 368 

below 5% between these two methods.  369 

For Re-Os analysis, sulfide minerals (pyrite and arsenopyrite) were prepared 370 

using traditional methods, crushing without metal contact, heavy liquids, FRANTZ 371 
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magnetic separation and hand picking. Re and Os abundance and isotope 372 

compositions were determined using isotope dilution negative ion thermal mass 373 

spectrometry (Selby et al. 2009). In brief, approximately ~400 mg of 374 

pyrite/arsenopyrite were dissolved with a known amount of mixed tracer solution 375 

(
185

Re, 
190

Os) in 8 ml of inverse aqua regia (1:3 mix of HCl and HNO3) in a carius 376 

tube at 220˚C for 48 hrs. Osmium was isolated and purified from the acid solution 377 

using chloroform solvent extraction (CHCl3) and micro-distillation methods. Rhenium 378 

was isolated using solvent extraction (NaOH-acetone; Cumming et al. 2013) and 379 

anion chromatography. Full procedural blanks were 0.1 ± 0.1 and 6.2 ± 5.4 ppt (1 SD; 380 

n = 2) for Os and Re, respectively, with an 
187

Os/
188

Os of 0.25 ± 0.02. 381 

The in-house solution standards (Re std; DROsS) analyzed during the period of these 382 

are 0.59773 ± 0.002 and 0.16093 ± 0.0002 (n = 2), respectively, which are identical to 383 

those previously reported (Cumming et al. 2012 and references therein). 384 

 385 

Chlorite geothermometry  386 

 387 

Chlorite compositions have been used for temperature estimation and this was done 388 

by: (1) empirical calibrations based on tetrahedral Al content and amount of 389 

octahedral vacancy (Cathelineau and Nieva 1985; Zang and Fyfe 1995), and (2) 390 

thermodynamic formulation,  using intra-crystalline exchange reactions between the 391 

chlorite phase components and their temperature-pressure dependence (Vidal et al. 392 

2001; 2005). In  the latter  thermodynamic model four end members are considered: 393 

clinochlore [Si3Al2Mg5O10(OH)8], daphnite [Si3Al2Fe5O10(OH)8], Mg-amesite 394 

[Si2Al4Mg4O10(OH)8] and sudoite [Si3Al4(Mg,Fe)2O10(OH)8]. These end members 395 

are necessary to model the (i) tschermak (TK), (ii) Fe-Mg (FM), and (iii) 396 

dioctahedral-trioctahedral (DT) substitutions in chlorite. Temperatures of chlorite 397 

formation in alteration and ore zones (reefs) have been calculated from the equations 398 

of state of three intra-crystalline equilibria (eqns. 1 through 3), at a pressure of 2 kbar. 399 

The chosen pressure is justified from the fluid inclusion studies discussed below.     400 

 401 

16daph + 15sud = 20Fe-am + 6clin + 35qtz + 20H2O   (1) 402 

2clin + 3Mg-sud = 4Mg-am + 7qtz + 4H2O     (2) 403 

4daph + 6Mg-sud = 5Fe-am + 3Mg-am + 14qtz + 8H2O   (3) 404 

  405 
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Two samples each from the R- and J- reefs were selected for electron 406 

microprobe analysis. Representative chlorite analyses, their structural formulae and 407 

estimated temperatures are given in Table 1. Average temperatures, estimated using 408 

the empirical calibrations fall in the range of 267301C. Similarly, average 409 

temperatures, computed using reactions (1) through (3) are in the ranges of 410 

268312C. Hence, both approaches furnished comparable temperatures, with 411 

reasonable standard deviations. However, it should be noted that whenever the 412 

estimated temperature values are high, the calculated XFe
3+

 values are too low. In 413 

order to reduce the temperature, aH2O is decreased to as low as 0.2. This is mainly 414 

because a decrease of XFe
3+

 leads to a related decrease of octahedral Al and vacancy 415 

with increase in octahedral summation, consequently leading to an increase in the 416 

estimated temperature (Vidal et al. 2005; 2006). Similarly a decrease in aH2O leads to 417 

a decrease in the equilibrium constants of reactions (1) through (3) and therefore 418 

decreases the estimated temperature. A decrease in fluid content in the rock suggest 419 

periods of reduced fluid flow due to closure of the fractures during interseismic stage 420 

(Sibson, 2001). In the present case, reduced aH2O values were used to make the 421 

temperatures compatible with those obtained by empirical calibrations.  422 

 423 

Ore mineralogy  424 

 425 

In the inner zone, the dominant sulfide minerals are, in decreasing order of 426 

abundance, pyrite and arsenopyrite, with minor chalcopyrite, pyrrhotite and galena. In 427 

the proximal zone pyrite, arsenopyrite, chalcopyrite, pyrrhotite, and sphalerite occur. 428 

Ilmenite, rutile, and titanite occur in both zones. Ore mineral aggregates are aligned 429 

along the sheared and mylonitized fabric. Texturally, three types of pyrite and two 430 

types of arsenopyrite are present (Figs. 8a and 9). Pyrite-I ranges in size between 431 

100m and 1mm. It forms porphyroblasts with the shear foliation wrapping around 432 

them (Figs. 7g, h, 8a and 9). Euhedral grains of pyrite-I contain numerous randomly 433 

to preferentially oriented silicate inclusions mimic matrix foliation (Figs. 7g, h and 434 

8b). Sulfides such as chalcopyrite, pyrrhotite and galena and gold also occur as 435 

inclusions (Figs. 8c, d). Pyrite-II, which overgrew pyrite-I, has also euhedral grain 436 

boundaries and is almost free of silicate inclusions (Figs. 8a, d) but contains 437 

inclusions of other sulfides such as chalcopyrite, arsenopyrite-II and pyrrhotite (Fig. 438 
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8d). Pyrite-III has a characteristic irregular outline with or without silicate inclusions 439 

and occurs as elongated grains aligned either along the shear foliation or overgrowing 440 

this deformation fabric (Fig. 8a). Pyrite-I contains up to 2.8 wt % As and may be 441 

referred to as arsenian pyrite (cf. Large et al. 2009). SEM-back scattered electron 442 

(BSE) images show that these pyrites are weakly zoned with respect to As showing 443 

As-poor cores (Fig. 8e). Pyrite-II shows concentric As-rich and As-poor zones (Figs. 444 

8f, g) but also irregular As zoning patterns (Fig. 8h). Arsenopyrite-I is represented by 445 

large euhedral grains with abundant randomly oriented silicate inclusions and may 446 

contain inclusions of pyrite-II (Fig. 8b). Arsenopyrite-II is euhedral to subhedral in 447 

shape, smaller in size and free of any silicate inclusions (Figs. 8c, d). Arsenopyrite-II 448 

in places overgrows pyrite-I (Fig. 8c). Gold occurs mostly in association with sulfides 449 

and occasionally as free gold grains in quartz veins. Gold grains are generally 1020 450 

m in size and occasionally as large as 100 m. Gold occurs as  451 

(1) inclusions within pyrite-I, at the interface with other sulfides like chalcopyrite 452 

with pyrite (Fig. 10a),  453 

(2) inclusions within pyrite-I without other sulfide inclusions (Fig. 10b),  454 

(3) inclusions within arsenopyrite-II (Fig. 10c), and   455 

(4) free gold in the silicate matrix in close proximity to sulfides and chlorite (Fig. 456 

10d).  457 

 458 

Arsenopyrite geothermometry 459 

 460 

As described earlier, arsenopyrite- I and II occur in association with pyrite in the 461 

proximal and inner alteration zones. The temperature of formation can be inferred 462 

from arsenic contents of arsenopyrite as described in Kretschmar and Scott (1976) and 463 

Sharp et al. (1985). In selected samples (KU10A and KU16) arsenopyrite grains were 464 

analyzed by electron microprobe. Representative analytical data and the deduced 465 

temperatures are summarized in Table 2. In sulfur rich assemblage (arsenopyrite with 466 

pyrite and/or pyrrhotite) arsenopyrite may contain less than 30 atomic % arsenic due 467 

to non-equilibrium feature reflecting the kinetics of growth of arsenopyrite and local 468 

fluctuations in fS2/fAs2 (Kretschmar and Scott 1976). Temperature values were inferred 469 

up to 28.4 atomic % arsenic. The estimated temperatures vary from 255 C to 470 

318C, while the corresponding logfS2 falls in the range of –9.9 to –12, comparing 471 

well to the temperatures obtained from chlorite geothermometry. 472 
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 473 

Fluid inclusion studies 474 

 475 

Fluid inclusion studies, involving inclusion petrography, microthermometry and 476 

Raman spectroscopy in quartz veins from all reefs were carried out. A total of nine 477 

doubly polished wafer sections were prepared for examination and five samples (two 478 

from R- and J-reefs and one sample from H-reef) were selected for 479 

microthermometry. The choice of these samples was based on the availability of 480 

workable inclusions within suitable Group of Synchronous Inclusions (GSI, cf. Touret 481 

2001). Grains that showed indications of dynamic recrystallization and inclusions 482 

showing stretching or leakage were carefully avoided.   483 

Inclusions are generally small in size ranging from less than 2 µm to 10 µm. 484 

Inclusions occurring as isolated, clustered and as intra-granular trails were considered 485 

as primary and pseudo secondary, respectively, and selected for microthermometric 486 

runs.  Inclusions were classified on the basis of disposition and phase content in 487 

ambient laboratory conditions, and grouped into four types. Type-I aqueous gaseous 488 

inclusions contain a dark gas-rich bubble surrounded by aqueous liquid (Fig. 11a). 489 

The volume percent of gaseous phase varies from 40 to 90 % (Table 3). At times 490 

inclusion walls are decrepitated due to high internal pressure while heating the 491 

inclusions. Type-II and type-III inclusions are monophase gaseous inclusions in which 492 

type-II inclusions exclusively contain pure methane as a gas phase (Figs. 11b, c). 493 

Type-III inclusions contain a gas mixture of CO2 and CH4 with varying proportions 494 

(XCH4 up to 0.31; Table 3) (Figs. 11b, d). Type-IV inclusions are low salinity aqueous 495 

biphase inclusions (Fig. 11e) that frequently occur within the same clusters as type-II 496 

and III inclusions (Fig. 11f) and in places they also occur as intra-granular trails. 497 

Vapor occupies 10 to 20 % of volume in type-IV inclusions. 498 

For type-I inclusions complete microthermometry data could be obtained on 499 

only 21 inclusions (12 from R-reef and 9 from J-reef; Table 3). The temperature of 500 

CO2 melting (Tm,CO2) varies from -57.8 to -63.2 °C and the temperature of CO2 vapor 501 

homogenization (Th,CO2) varies from -15.5 to +7.8 °C. Clathrate melting (Tm,Cl) varies 502 

from +7.8 to +14.8 C. Temperature of total homogenization (Th,tot) varies from 272 to 503 

367 °C. For some of the inclusions decrepitation temperatures were recorded and the 504 

final homogenization was into a gaseous phase. The temperature of CH4 vapor 505 

homogenization (Th,CH4) for type-II inclusions varies from -94.3 to -84.3 °C (Fig. 506 
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12a). The temperature of CH4 melting (Tm,CH4) could not be measured because the 507 

stage only cools to -196 °C using liquid nitrogen as cooling agent. For type-III 508 

inclusions the observed variation in Tm,CO2: was -63.9 to -56.6 °C (Fig.12b). Th,CO2 509 

varied from -20.1 to +18.3 °C (Fig.12c). From Raman spectrometric analyses CH4 510 

(Fig. 11d) is the only gas identified in these inclusions apart from CO2. For type-IV 511 

inclusions temperatures of last ice melting (Tm,ice) varied from -16.1 to +0.2 °C (Fig. 512 

12d) and final liquid vapor homogenization (Th,tot) was into liquid phase with values 513 

ranged from 115 to 302 °C (Fig. 12e). 514 

The average calculated salinity for type-IV inclusions is 6.5±4.3 (wt% NaCl 515 

equiv.). The isochore intersection geobarometric method described by Roedder and 516 

Bodnar (1980) was adopted to estimate the entrapment P-T conditions of the 517 

inclusions.  Coexisting carbonic (type-III) and aqueous (type-IV) inclusions occurring 518 

in the same GSI are considered as coeval inclusions (Fig. 11f). The assumption is that 519 

these inclusions were entrapped simultaneously and no post-entrapment modifications 520 

of the inclusions had taken place. Two intersection points, from the isochores of these 521 

inclusion types, IS-1 (275 °C and 1.8 kbar) and IS-2 (287 °C and 1.5 kbar) furnished 522 

P-T values (Fig 13). In addition, pressure values were further inferred from the 523 

intersection of the isochores with chlorite (CT) and arsenopyrite (AT) 524 

geothermometry (Fig 13). This intersection additionally furnished a pressure range of 525 

1.1 to 2.5 kbar with the thermometry by the two above independent approaches 526 

yielding comparable P-T values. This further supports the use of the isochore 527 

intersection method.  528 

 529 

Re–Os geochronology 530 

 531 

Two samples from each of the three mineralized reefs were selected for Re-Os 532 

analysis to determine the age of sulfide and gold mineralization. The samples were 533 

collected from the fault-fill laminated quartz veins in the inner zone that contains a 534 

profuse amount of sulfides in very close association with the gold mineralization. The 535 

Re-Os data for the six samples are presented in Table 4. The pyrite and arsenopyrite 536 

grains contain between ~0.2 and 4.7 ppb Re and 32 and 240 ppt Os. A significant 537 

portion of the Os budget comprises 
192

Os (7.7 to 45 ppt). The 
187

Re/
188

Os values are 538 

low and range from ~19 to 210. These values positively correlate with the 
187

Os/
188

Os 539 

from ~1.11 to 9.44. Regression of the Re-Os data including rho using isoplot v. 4.15 540 
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(Ludwig, 1980) and the 
187

Re decay (1.666 e
-11

 a
-1

; Smoliar et al. 1996) yield a Model 541 

1 Re-Os age of 2563 ± 84 Ma (MSWD = 0.38), with a relatively unradiogenic initial 542 

187
Os/

188
Os value of 0.29 ± 0.08 (Fig. 14). 543 

 544 

Discussion and conclusions  545 

 546 

Regional and mine scale structures  547 

 548 

Although three regional-scale deformation events (D1, D2, and D3) have been 549 

described (Gold and Von Veh 1995 and Gold 2006), only an earlier set of ductile-550 

brittle structures and a final brittle deformation are recognized in the mine. Since 551 

mineralization postdates the emplacement of the post-Pongola granites which 552 

occurred between D2 and D3, the initial development of the shear zone is considered 553 

to have developed during D1 with mineralization occurring during D3 involving 554 

folding and shear zone reactivation. D1 generated the initial KSZ geometry (R-reef) 555 

and footwall splay (H-reef) during NNW-oriented thrusting. The D2 event, which is 556 

regionally related to the emplacement of mafic dykes and sills and which was 557 

followed by the emplacement of the post-Pongola granites, is not recognized in the 558 

mine as forming any distinct meso- or microscale structures. 559 

The area south-west of Swaziland, where the Mozaan Group is most 560 

extensively developed and which includes the Klipwal mine, is characterized by the 561 

lowest-grade metamorphic imprint of all the exposed Pongola Supergroup. This 562 

region was classified as "unmetamorphosed" by Saggerson and Turner (1995), 563 

although it should more appropriately be referred to as "very-low grade metamorphic" 564 

with no evidence that regional metamorphism ever exceeded lowermost greenschist 565 

facies during any of the deformational events. If the original KSZ formed during D1, 566 

under very-low grade metamorphic conditions, the subsequent reactivation of 567 

structures and mineralization during the regional D3 event occurred under similar 568 

temperature conditions, making the two events difficult to distinguish. Nevertheless, 569 

microstructural evidence confirms post-D1 ductile deformation. As sulfide growth 570 

generally postdates the early-formed (D1) shear zone, the sulfides can be used as 571 

microstructural markers with respect to ductile overprinting of D1 structures during 572 

D3. Critical evidence includes the preservation of an early-formed foliation as 573 

inclusion trails within sulfides, and sulfide-matrix relationships (strain fringes, 574 
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foliation wrapping around sulfides, while late-formed sufides overgrew the foliation; 575 

Figs. 7g, h, 8a and 9). Thus, the period of sulfide growth overlaps to a large extent 576 

with D3 deformation.  577 

The thermobarometric data extracted from the mineralized rocks, as well as 578 

the related structures, are considered to represent the metamorphic-structural D3 579 

overprint as supported by the consistency of the data between silicate equilibria and 580 

sulfides. Mineralization was related to a substantial influx of fluids during D3. Fluid 581 

pathways exploited the D3-modified and reactivated KSZ and its related vein systems 582 

as well as lithological contacts, becoming sites of sulfide-gold precipitation. The 583 

actual origin of the mineralizing fluid remains to be discussed, but late fluid 584 

infiltration can be recognized on a regional scale. Saggerson and Turner (1995) note 585 

that post-peak hydrous alteration of metamorphic mineral assemblages is widespread 586 

in the Pongola Supergroup. The final (post-D3) brittle effects on the shear zone 587 

produced fault breccia comprising fragments of quartz veins, mineralized domains 588 

and mylonitic wall rocks (Fig. 4d). This event is most likely part of the regional Karoo 589 

extensional faulting related to the breakup of Gondwana. 590 

The J-reef with higher gold grades was developed at the contact between 591 

metapsammite and chlorite-carbonate schist (Figs. 2a and 5). Hence the original 592 

lithological discontinuity provided a fluid conduit for J-reef mineralization. On the 593 

regional scale, the KSZ strikes approximately N–S. However, at the KGM there is a 594 

change in direction from the N–S to a NNE–SSW orientation (Fig.1c). This change in 595 

the shear zone geometry, is considered to be a result of the regional D3 folding event 596 

which produced a convex westward flexure in the KSZ and generated a 597 

‘compressional jog’ through which regional fluid flow was driven (cf. Cox et al. 2001; 598 

Sibson, 2001).  599 

The shear zone contains profuse laminated quartz veins that are developed as 600 

fault-fill veins (Fig 4a) due to formation of microfractures along the shear planes. 601 

Microfracturing, along grain boundaries, is the dominant mechanism for the formation 602 

of grain scale porosities in the ductile regime (Knipe and McCaig 1994; McCaig 603 

1997; Mancktelow et al. 1998; Kolb et al. 2004). These microfractures generate 604 

fracture porosity and increase fluid permeability along the shear zone (Cox et al. 605 

2001), increasing pervasive fluid flow through the shear zone. Fractures provided the   606 

open space for rapid flow of the gold-bearing ore fluids.  The ‘jigsaw-puzzle’ type 607 

brittle fracturing with angular fragments observed in sulfide grains (Fig. 8f) are 608 
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interpreted to represent hydraulic breccias which point to hydraulic fracturing, as a 609 

mechanism for fracture formation, as described by Robert et al. (1995); Kisters et al. 610 

(2000) and Kolb et al. (2004).  611 

 612 

Extensional veins and pressure fluctuation 613 

 614 

Oblique or sub-horizontal extensional vein arrays are also observed in association 615 

with the shear zone and fault-fill veins (Fig. 4c). These veins represent hydraulic 616 

extension fractures, which opened during vein filling episodes by fluid pressures (Pf) 617 

in excess of the lithostatic pressure (i.e., Pf  3 + T, where T = tensile strength of the 618 

rock) (Robert and Brown 1986). Extensional fractures typically develop parallel to 1 619 

when 3 (3 = 3 – Pf) equals or exceeds the tensile strength of the rock. This 620 

situation is only possible under conditions of low differential stress. Hence, 621 

extensional fracturing (possible at negative values of 3) can only be attainable by 622 

elevated fluid pressure in the inferred compressional environments of formation of 623 

orogenic gold deposits (Sibson et al. 1988; Sibson 2001; Robert and Poulsen 2001).  624 

Kolb et al. (2004) demonstrated the effect of change in shear zone geometry 625 

for economic gold mineralization in the world class Hutti gold mine in the Hutti-626 

Muski greenstone belt, eastern Dharwar craton, India.  Mishra and Pal (2008) reported 627 

oblique sigmoidal extensional veins, similar to the subhorizontal extensional veins in 628 

the KSZ in the Hira-Buddini mine from the same Hutti-Muski greenstone belt. These 629 

veins were formed by hydraulic fracturing during brittle-ductile shearing. At the Val 630 

d’Or lode gold deposits at Quebec Canada, Bouillier and Robert (1992) established 631 

that successive cycles of opening and collapse in subhorizontal extension veins 632 

correlated with opening and slip on high-angle shear veins. They interpreted these 633 

observations to be a result of fluid pressure fluctuations in successive coseismic-634 

interseismic cycles (McCuig and Kerrich 1998). Formation of laminated quartz veins 635 

requires episodes in which fluid pressure exceeds the local normal stress on the fault. 636 

Hence, a crack-seal and/or a fault valve mechanism are interpreted to have operated at 637 

KGM during the mineralization event producing the laminated veins.  638 

Fluid inclusion density variation further supports pressure fluctuation during 639 

gold mineralization. The wide distribution in Th,CO2 values of Type-III inclusions 640 

indicates a significant variation in density (Table 3), which is attributed to fluctuation 641 

in fluid composition and/or pressure. In order to determine the exclusive effect of 642 
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pressure, Tm,CO2–Th,CO2 plots (Fig. 12f) were prepared for inclusions with maximum 643 

lowering in Tm,CO2 up to −57 °C, i.e., pure CO2. The plot shows significant variation 644 

of Th,CO2 for a near-constant Tm,CO2, implying fluid pressure fluctuations at the time of 645 

entrapment (cf. Dugdale and Hagemann, 2001).  646 

Crystal plastic deformation microstructures are observed in the quartz grains 647 

but are absent in feldspar grains, which suggests that the deformation occurred at 648 

greenschist facies conditions (Scholz, 1988). Dynamic recrystallization structures of 649 

quartz grains shows bulged and recrystallized grain boundaries, subgrain rotation and 650 

core-mantle structures indicative of pressure solution and intracrystalline plastic 651 

deformation at temperatures of about 300°C (Stipp et al. 2002). The alteration mineral 652 

assemblage consisting of chlorite-muscovite-carbonates±epidote-quartz-pyrite-653 

arsenopyrite surrounding the shear zone in the host rocks is characteristic of low to 654 

sub-greenschist facies conditions. Estimates from fluid inclusion isochore 655 

intersections coupled with the chlorite and arsenopyrite thermometry (Fig. 13) further 656 

confirm that the P-T conditions (255318C and 1.1 to 2.5 kbar) were at sub-657 

greenschist facies. These temperatures and the observed alteration mineralogy in the 658 

proximal and inner zone are consistent with the typical mesozonal orogenic gold 659 

deposits elsewhere (McCuaig and Kerrich 1998; Groves et al. 1998; Goldfarb et al. 660 

2001; Groves et al. 2003; Elmer et al. 2006).  661 

 662 

Ore fluid composition  663 

 664 

Irrespective of the host rock, metamorphism and age, the observed fluid composition 665 

in orogenic gold deposits shows a very narrow range which is in general aqueous-666 

gaseous, low saline metamorphic and/or distant magmatic (Mikcuki 1998; McCuiag 667 

and Kerrich 1998). For the Klipwal deposit, fluid inclusion studies reveal that the 668 

original mineralizing fluid composition is H2O-CO2-CH4-low salinity (~6 wt.% NaCl 669 

equiv.). This is comparable with orogenic gold deposits around the world (Table 5) in 670 

general, and sedimentary rock-hosted, Phanerozoic counter-parts in the Pacific Rim 671 

(North American Cordellera, Paleozoic-Mesozoic orogenic belts in Asia and in 672 

eastern New Zealand) in particular (Bierlein and Crowe 2000). 673 

 674 

Mechanisms of mineralization  675 

 676 
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At Klipwal, gold mineralization is localized in a brittle-ductile, oblique-reverse, 677 

sinistral shear zone and associated fault splays. Gold is confined to laminated quartz 678 

veins within the sheared host rocks and also occurs in the alteration halo. It is 679 

postulated that the initial, auriferous, sulfur-rich, low salinity H2O-CO2-CH4 fluid was 680 

transported to near-surface levels via a deep-rooted brittle-ductile shear zone, located 681 

at the contact of contrasting lithologic units and at a westward flexure of the KSZ, 682 

which acted as the favorable site for high-volume fluid flow. Pressure cycling (Robert 683 

et al. 1995) or the fault-valve mechanism (Sibson et al. 1988; Sibson 2001) is 684 

indicated by the presence of coexisting aqueous and carbonic inclusions that show 685 

wide variations in density (Fig. 12f). Although P-T values obtained by inclusion 686 

thermobarometry coupled with chlorite and arsenopyrite geothermometry (1.1 to 2.5 687 

kbar and 265 to 315°C) are comparable with the P-T window of the orogenic gold 688 

deposits (Table 5), there is convincing evidence of near-isothermal pressure 689 

fluctuation (about 1.4 kbar). Pressure fluctuation facilitated phase separation of 690 

gaseous and aqueous fluid (Wilkinson and Johnston, 1996; Mikucki, 1998) resulting 691 

in a decrease in total sulfur content of the ore fluid, and leading to precipitation of free 692 

gold in quartz veins along with chlorite. Fluid-wall rock interaction, on the other 693 

hand, was responsible for the association of gold with sulfides where a decrease in fO2 694 

occurred (cf. Mikucki 1998). The presence of type-II pure CH4 bearing inclusions and 695 

type-III CH4-rich inclusions in close association with CO2-rich carbonic inclusions is 696 

evidence for a decrease or fluctuation in ambient fO2 conditions.  697 

 698 

Timing of mineralization and source of ore fluid  699 

 700 

The relative timing of mineralization is important for identifying the source of ore 701 

fluid and gold. Two possible models have been proposed for the source of gold-702 

bearing hydrothermal fluid. These include (1) prograde metamorphic devolatilization 703 

of host rocks; (2) magmatic fluid originating from extensive regional or specific 704 

granitic intrusions (Hagemann and Cassidy 2000 and references therein; Tomkins 705 

2013). Archaean orogenic lode gold mineralization, in general, is formed at a late 706 

stage in the tectono-magmatic evolution of the host terrane. Most of these gold-quartz 707 

lode veins are formed after peak metamorphism of the immediately surrounding host 708 

rocks, in greenschist facies deposits (Groves et al. 1998; Ridley and Diamond 2000; 709 

Goldfarb et al. 2001; Groves et al. 2003).  710 
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At Klipwal, the pyrite and arsenopyrite Re-Os data provide the timing of gold 711 

mineralization at 256384 Ma. The initial Os isotope composition (
187

Os/
188

Osi) from 712 

these sulfide grains can be used to infer the source of sulfides and by inference ore 713 

fluid and gold. In general, the mantle has relatively low amounts of Re, when 714 

compared with crustal rocks, with respect to Os concentration (Kirk et al. 2002).  This 715 

is because crustal rocks are the products of partial melting of the mantle and 716 

potentially re-melted products of previously formed crust. During partial melting Re 717 

partitions more readily into the melt and as a result crustal rocks have higher Re/Os 718 

values and thus rapidly evolve to develop elevated 
187

Os/
188

Os ratios (Kirk et al. 2002; 719 

Kirk et al. 2003). The low non-radiogenic initial 
187

Os/
188

Osi (0.29 ± 0.08) value 720 

determined from the Re-Os data (Fig. 14) suggests that the sulfides and, by inference, 721 

gold were originally derived from more primitive sources (cf. Reisberg et al 1991; 722 

Selby 2007; Moreli et al. 2007), the most likely being mafic volcanic rocks in the 723 

underlying Nsuze Group or mafic-ultramafic greenstone belts, such as the Nodweni 724 

greenstone belt, which released non-radiogenic Os.  725 

The post-Pongola granitic intrusions (between 2863 and 2721 Ma) had been 726 

considered as a potential source of the ore fluid for the Klipwal mineralization. 727 

However, fluid inclusion studies provided no evidence of magmatic fluid components 728 

and Re-Os sulfide geochronology, even with the large error attached to the age date 729 

(256384 Ma) shows that mineralization is much younger than the post-Pongola 730 

granitic intrusions. Hence, there is no basis for relating these granites to gold 731 

mineralization.  732 

Instead, we propose that devolatilization during metamorphism of the Pongola 733 

volcano-sedimentary sequence and perhaps deeper-seated greenstones of the 734 

Kaapvaal basement, previously metamorphosed at sub-greenschist to greenschist 735 

facies conditions, generated the required amounts of fluid. At sufficiently deep levels, 736 

a second phase of metamorphism at higher temperatures would cause dehydration of 737 

these rocks, with fluids migrating upwards and overprinting successively higher-level 738 

rocks, whatever their original metamorphic grade. These fluids may have mixed with 739 

mantle components or interacted with mafic to ultramafic rocks at depth, carrying 740 

metals to shallow crustal levels with fluid flow locally focused into the Klipwal shear 741 

zone, precipitating gold-quartz and carbonate veins. 742 

 743 

 744 
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Fig. 1. (a) Locality map showing position of the main Pongola basin in South Africa. 1127 

(b) Regional geological map of the Pongola basin showing major structural features 1128 

(modified after Gold 2006). (c) Geological map of the Klipwal Gold Mine showing 1129 

the Klipwal Shear Zone within rocks of the Mozaan Group (modified after Gold and 1130 

Von Veh 1995). PR: Piet Retief; P: Pongola. 1131 

 1132 

Fig. 2. (a) Subsurface geological cross section across the Klipwal Shear Zone showing 1133 

disposition of various reefs and alteration halos (modified after Hilliard 2007). (b) 1134 

Poles to the shear zone foliation; equal area lower hemisphere projection. See text for 1135 

discussion. 1136 

 1137 

Fig. 3. Field photographs from Klipwal mine area (a) showing old mine excavation 1138 

with siltstone in footwall and sandstone in the hanging wall. (b) Slickensides (dashed 1139 

lines) on the siltstone surfaces. (c) Shear related fold with NW trending axial planar 1140 

fabric (broken line). (d) Sheared and mylonitized fabric in sandstone.  1141 

 1142 

Fig. 4. Underground mine photographs showing different features of shear zone, 1143 

laminated fault-fill quartz veins and alteration zones. (a) Laminated quartz vein in the 1144 

inner zone preserving S-C fabric with sinistral sense of shear. (b) Oblique S-C fabric 1145 

with sinistral sense of shear in the wall rock mylonites along with quartz shear lenses. 1146 
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(c) Sub-horizontal extension vein arrays associated with fault-fill vein in the shear 1147 

zone. (d) Fault gouge in the R-reef showing fault breccia with fragments of host rocks 1148 

and quartz veins and mylonites. (e) Extensional veins are displaced by the later faults. 1149 

(f) H-reef fault-fill quartz vein and mylonitic shear zone contact with absence of fault 1150 

breccia.  1151 

 1152 

Fig. 5. Geological map along a crosscut from the main drive (R-reef) at level 10 1153 

which cuts across H- and J- reefs.  Stars denote the sample locations. The map shows 1154 

underground geology, alteration halos around the reefs and the attitude of shear 1155 

foliation in the quartz veins.  1156 

 1157 

Fig. 6. Photomicrographs showing mineralogical and structural features of least 1158 

altered and altered host rocks in the proximal zone. Photographs a to d, f: + Pol; e: 1159 

plane-polarized light. See text for discussion. Mineral abbreviations are after Kretz 1160 

(1983). Car: carbonates. 1161 

 1162 

Fig. 7. Photomicrographs showing the mineralogical and structural features of the 1163 

auriferous laminated quartz veins in the inner zone. (a) Alternating laminae consisting 1164 

of quartz + dolomite and muscovite + chlorite. (b) S-C fabric within the lamina 1165 

showing sinistral sense of shear. (c) Plastic deformation structures in quartz grains. (d) 1166 

Quartz shear lens within the mylonites. (e) Fragments of quartz vein with brittle 1167 

fractures and mylonite clasts in fault breccia. (f) Brittle fractures in the arsenopyrite 1168 

and pyrite grains are filled with quartz and chlorite; quartz strain fringes with chlorite. 1169 

(g) Silicate inclusion trails within sulfides showing relationship between sulfide 1170 

growth and shear foliation. (h) Sketch of (g) for clear illustration. All photographs are 1171 

taken under + Pol, except (e and g). See text for discussion. Mineral abbreviations are 1172 

after Kretz (1983). 1173 

 1174 

Fig. 8. Reflected light photomicrographs and BSE images showing different types of 1175 

pyrites. (a) Three textural types of pyrite. (b) Coexisting pyrite-I and arsenopyrite-I 1176 

along with pyrite-II inclusions within arsenopyrite-I. (c) Gold (Au) and chalcopyrite 1177 

inclusions within pyrite-I with arsenopyrite-II at pyrite-I boundary. (d) Chalcopyrite, 1178 

pyrrhotite and arsenopyrite-II inclusions within pyrite-II. (e) Euhedral pyrite-I grains 1179 

with silicate inclusions and As-poor zone (dotted line). (f) Pyrite-II overgrows on 1180 

pyrite-I (dotted line). (g) Concentric As-poor and As-rich zones in pyrite-II. (h) 1181 

Irregular As zoning in pyrite-II. All photographs were taken in plane-polarized light. 1182 

Mineral abbreviations are after Kretz (1983). 1183 

 1184 

Fig. 9. Summary of different textural types of pyrite and arsenopyrite, in the inner and 1185 

proximal alteration zone, with schematic sketches. Mineral abbreviations are after 1186 

Kretz (1983) 1187 

 1188 

Fig. 10. Reflected light photomicrographs in plane-polarized light showing occurrence 1189 

of gold in the Klipwal deposit. (a) Gold (Au) inclusions within pyrite-I at the contact 1190 

of chalcopyrite grain. (b) Gold as isolated inclusion within pyrite-I. (c) Inclusion of 1191 

gold grain within arsenopyrite-II. (d) Free gold grain in quartz matrix, sharing the 1192 

grain boundary with chlorite (Chl). Mineral abbreviations are after Kretz (1983). 1193 
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Fig. 11. Representative photomicrographs and Raman spectra of different fluid 1195 

inclusion types. (a) Isolated type-I inclusion. (b) Occurrence of type-II and type-III 1196 

inclusions in the same 3-dimenstioanl cluster. (c) Representative Raman spectrum of 1197 

type-II inclusions showing CH4 peak at 2912 cm
-1

. (d) Raman spectrum of type-III 1198 

inclusions showing CO2 doublets (at 1283 and 1388 cm
-1

) and presence of CH4 (at 1199 

2913 cm
-1

). (e) Intra-granular trail of type-IV inclusions. (f) Coexisting type-III (C) 1200 

and type-IV (A) inclusions in one group of synchronous inclusions (GSI).  1201 

 1202 

Fig. 12. Histogram plots of fluid inclusion microthermometric data. (a) Temperatures 1203 

of CH4 vapor homogenization of type-II inclusions, (b) Temperatures CO2 ice melting 1204 

and (c) Homogenization of type-III inclusions, (d) Last ice melting and (e) Liquid 1205 

vapor homogenization temperatures of type-IV inclusions, (f) Th,CO2 versus Tm,CO2 1206 

plot for pure CO2 type-III inclusions showing density variation. 1207 

 1208 

Fig. 13. Isochore plot constructed using the minimum and maximum densities of each 1209 

type of inclusions. Figures indicate the density values (in g/cm
3
) for respective 1210 

inclusions. P-T estimation by (i) intersecting isochores of type-III (solid lines) and 1211 

type-IV (dashed lines) inclusions (ii) intersection of chlorite thermometer (CT) and 1212 

(iii) arsenopyrite thermometer (AT) with the isochores. The box illustrates the P-T 1213 

domain of gold mineralization at Klipwal. IS-1 and IS-2 denotes isochore intersection.     1214 

 1215 

Fig. 14. 
187

Re/
188

Os vs. 
187

Os/
188

Os isochron plot for pyrite and arsenopyrite grains 1216 

from the ore zone. See text for discussion.  1217 
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 R-reef 

Sample No KU4B 

Analysis No     mat-1     mat-2     mat-4     mat-5      py-6      py-7      py-8      py-9     py-10    mat-11    mat-12    mat-13    mat-16 

SiO2 25.62 25.25 25.38 25.51 25.08 26.04 25.21 25.38 25.52 25.78 25.48 26.65 26.82 

Al2O3 20.88 20.49 20.89 20.17 20.59 20.56 20.48 20.55 20.42 20.75 20.64 18.96 19.42 

FeO 27.85 29.21 27.81 27.12 27.74 28.80 28.33 28.97 27.34 28.11 28.10 28.20 28.53 

MnO 0.10 0.10 0.11 0.20 0.14 0.00 0.17 0.17 0.13 0.15 0.05 0.11 0.07 

MgO 13.63 12.92 13.02 13.47 12.70 13.39 13.17 13.28 13.65 13.65 13.29 14.13 14.04 

Total 88.08 87.97 87.21 86.47 86.25 88.79 87.36 88.35 87.06 88.44 87.56 88.05 88.88 

Cations              

Si  2.70 2.67 2.72 2.69 2.67 2.69 2.67 2.67 2.69 2.70 2.67 2.73 2.74 

Al    2.60 2.55 2.64 2.51 2.59 2.50 2.56 2.54 2.53 2.56 2.55 2.29 2.34 

Fe(tot.)  2.46 2.58 2.49 2.39 2.47 2.48 2.51 2.54 2.41 2.46 2.47 2.42 2.43 

Mn 0.01 0.01 0.01 0.02 0.01 0.00 0.02 0.02 0.01 0.01 0.00 0.01 0.01 

Mg    2.14 2.03 2.08 2.12 2.02 2.06 2.08 2.08 2.14 2.13 2.08 2.16 2.14 

Total  9.91 9.84 9.93 9.73 9.76 9.73 9.83 9.85 9.78 9.87 9.78 9.61 9.65 

              

T1 (tetrahedral  

      Al: CN85) 293 300 290 295 300 297 300 301 296 293 299 287 286 

T2 (octahedral  

      vacancy: CN85) 270 263 273 250 253 249 262 263 256 266 256 236 240 

T3 (tetrahedral  

     Al & Fe/(Fe+Mg):  ZF95) 276 269 276 279 276 285 297 272 287 279 282 278 300 

Avg. T °C 280 278 280 275 276 277 286 279 280 280 279 267 276 

SD 12 20 9 23 23 25 21 20 21 14 22 27 31 

Eq. (1)  286 300 287 304 308 312 300 309 300 287 309 300 278 

Eq. (2) 317 303 328 292 300 299 306 312 299 308 301 279 269 

Eq. (3) 300 300 305 299 306 306 302 310 300 297 306 291 276 

Avg.T °C (T4)  V01&05 301 301 307 298 305 306 302 310 300 297 305 290 274 

SD 16 2 20 6 4 7 3 1 1 11 4 10 5 

a(H2O) 0.3 0.5 0.2 0.9 0.8 1.0 0.5 0.5 0.8 0.5 0.8 0.6 1.0 

Table. 1. Representative electron probe microanalytical data, structural formulae and estimated temperatures of chlorite from the alteration zones.  
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 R-reef 

Sample No KU4G 

Analysis No    vein-1 vein-2    vein-3    vein-4    vein-5    vein-6    vein-7    vein-8    vein-9   vein-10    mat-11    mat-12    mat-13 

   

mat-

14 

   

mat-

15 

SiO2 24.25 24.23 24.33 24.16 24.23 24.18 24.27 24.49 24.70 24.50 24.37 24.85 24.60 24.38 22.93 

Al2O3 18.46 18.81 18.82 18.35 18.87 18.72 18.82 18.61 18.51 18.37 18.96 19.33 18.38 18.93 18.03 

FeO 36.32 36.69 36.91 36.25 36.49 36.50 36.50 36.32 36.45 36.62 36.68 36.78 37.15 36.44 35.33 

MnO 0.13 0.04 0.01 0.08 0.09 0.08 0.11 0.12 0.09 0.19 0.06 0.16 0.05 0.00 0.33 

MgO 7.78 7.62 7.56 7.79 7.74 7.67 7.68 7.97 8.06 7.90 7.75 8.26 7.59 7.90 7.36 

Total 86.94 87.39 87.63 86.63 87.42 87.15 87.38 87.51 87.81 87.58 87.82 89.38 87.77 87.65 83.98 

Cations                

Si  2.67 2.67 2.67 2.68 2.66 2.67 2.67 2.67 2.68 2.68 2.67 2.66 2.68 2.67 2.67 

Al    2.39 2.44 2.44 2.40 2.45 2.44 2.44 2.39 2.37 2.37 2.45 2.44 2.36 2.45 2.47 

Fe(tot.)  3.34 3.38 3.39 3.37 3.36 3.37 3.36 3.32 3.31 3.35 3.36 3.30 3.39 3.34 3.44 

Mn 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.00 0.00 0.03 

Mg    1.28 1.25 1.24 1.29 1.27 1.26 1.26 1.30 1.31 1.29 1.27 1.32 1.23 1.29 1.28 

Total 9.69 9.74 9.74 9.75 9.74 9.75 9.74 9.69 9.68 9.69 9.75 9.74 9.68 9.75 9.89 

                

T1 (tetrahedral  

      Al: CN85) 301 300 299 297 301 300 300 299 297 299 300 301 297 300 300 

T2 (octahedral  

      vacancy: CN85) 245 251 251 252 251 252 251 246 244 245 252 251 244 252 269 

T3 (tetrahedral  

     Al& Fe/(Fe+Mg): ZF95) 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 

Avg. T °C 283 285 285 285 286 286 286 285 284 285 288 288 285 289 295 

SD 33 29 30 29 30 30 31 34 35 35 32 33 37 33 24 

Eq. (1)  314 314 306 301 320 317 314 321 311 316 308 312 310 311 286 

Eq. (2) 286 298 292 292 302 300 299 292 290 292 292 298 288 296 301 

Eq. (3) 301 306 300 298 313 311 307 308 301 306 301 306 300 305 292 

Avg.T °C (T4)  V01&05 301 306 299 297 312 309 307 307 300 305 300 305 299 304 293 

SD 14 8 7 5 9 9 8 14 10 12 8 7 11 8 8 

a(H2O) 0.8 1.0 1.0 1.0 1.0 1.0 1.0 0.9 1.0 0.9 0.9 0.9 1.0 1.0 0.3 
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 J reef 

Sample No KU12B 

Analysis No 1 2 3 5 7 

SiO2 25.49 23.94 25.64 24.69 24.89 

Al2O3 18.44 21.41 18.52 20.78 19.80 

FeO 33.87 33.70 33.09 34.06 34.24 

MnO 0.00 0.02 0.13 0.00 0.00 

MgO 9.40 7.97 9.65 7.75 8.90 

Total 87.20 87.04 87.03 87.28 87.83 

Cations      

Si  2.74 2.66 2.84 2.68 2.68 

Al    2.33 2.80 2.41 2.65 2.52 

Fe(tot.)  3.04 3.13 3.06 3.09 3.09 

Mn 0.00 0.00 0.01 0.00 0.00 

Mg    1.50 1.32 1.59 1.25 1.43 

Total 9.62 9.92 9.92 9.67 9.72 

      

T1 (tetrahedral  

      Al: CN85) 286 302 265 299 297 

T2 (octahedral  

      vacancy: CN85) 236 272 271 242 248 

T3 (tetrahedral  

     Al& Fe/(Fe+Mg): ZF95) 318 319 320 321 322 

Avg. T °C 280 298 286 288 289 

SD 41 24 30 41 38 

Eq. (1)  279 277 247 299 291 

Eq. (2) 264 296 323 274 279 

Eq. (3) 273 284 277 288 285 

Avg.T °C (T4)  V01&05 272 286 282 287 285 

SD 7 9 38 13 6 

a(H2O) 1.0 0.2 1.0 1.0 1.0 



4 

 

 

 

 

Note: CN85: Cathelineau and Nieva (1985); ZF95: Zang and Fyfe (1995); V01&05: Vidal et al. (2001) and (2005) 
 

 
 

 

 

 

 J reef 

Sample No KUJ1 

Analysis No 1 2 3 4 5 6 7 8 9 10 11 12 

SiO2 26.03 25.86 25.94 25.55 26.59 26.39 26.30 25.81 26.01 25.94 25.77 25.99 

Al2O3 20.51 20.71 20.65 20.60 20.35 20.01 20.03 20.77 21.40 20.15 21.18 21.03 

FeO 24.81 25.42 26.21 26.40 26.07 25.89 26.43 25.18 25.88 25.99 26.07 25.26 

MnO 0.00 0.05 0.05 0.05 0.00 0.06 0.11 0.00 0.00 0.16 0.04 0.00 

MgO 15.11 15.06 15.10 14.61 15.31 15.38 15.17 15.22 15.11 15.26 15.06 15.20 

Total 86.46 87.10 87.95 87.21 88.32 87.73 88.04 86.98 88.40 87.50 88.12 87.48 

Cations             

Si  2.70 2.68 2.72 2.68 2.71 2.70 2.70 2.71 2.70 2.72 2.69 2.69 

Al    2.51 2.53 2.55 2.55 2.45 2.41 2.42 2.57 2.62 2.49 2.61 2.57 

Fe(tot.)  2.15 2.21 2.30 2.32 2.22 2.22 2.27 2.21 2.25 2.28 2.28 2.19 

Mn 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.01 0.00 0.00 

Mg    2.34 2.33 2.36 2.28 2.33 2.35 2.32 2.38 2.34 2.39 2.35 2.35 

Total 9.70 9.76 9.93 9.83 9.71 9.69 9.72 9.88 9.92 9.90 9.93 9.79 

             

T1 (tetrahedral  

      Al: CN85) 293 297 290 298 291 293 294 291 293 289 295 295 

T2 (octahedral  

      vacancy: CN85) 247 253 273 262 247 245 249 267 271 270 273 257 

T3 (tetrahedral  

     Al& Fe/(Fe+Mg): ZF95) 324 325 326 327 328 329 330 331 332 333 334 335 

Avg. T °C 288 292 296 296 289 289 291 297 299 297 301 296 

SD 39 36 27 33 41 43 41 33 31 33 31 39 

Eq. (1)  300 278 287 283 269 281 277 282 297 262 299 274 

Eq. (2) 287 276 325 296 268 268 275 307 323 299 327 279 

Eq. (3) 295 277 304 289 268 276 276 292 307 277 311 276 

Avg.T °C (T4)  V01&05 294 277 305 289 268 275 276 294 309 279 312 276 

SD 6 1 19 6 1 6 1 13 13 19 14 3 

a(H2O) 1.0 0.6 0.2 0.4 0.8 0.7 0.7 0.5 0.3 0.3 0.3 0.2 



Sample No KU10A 

Analysis No 2 3 4 8 11 12 13 14 16 17 18 22 23 25 26 27 28 30 31 

Fe 36.12 36.26 36.47 36.63 36.65 36.77 36.37 36.26 36.35 36.47 36.82 36.55 36.55 36.72 36.14 36.67 36.82 36.33 36.57 

As 41.46 40.85 41.06 41.08 41.55 41.20 41.77 40.85 42.10 42.09 41.05 41.28 41.75 41.61 42.45 41.29 41.10 41.16 40.99 

S 22.72 22.68 22.90 22.80 22.52 22.59 22.40 22.90 22.34 22.22 22.74 22.55 22.39 22.45 21.97 22.86 22.95 22.75 22.84 

Co 0.04 0.00 0.00 0.04 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.01 

Ni 0.11 0.00 0.00 0.00 0.11 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Cu 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Zn 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 

Ga 0.00 0.00 0.01 0.00 0.03 0.01 0.00 0.01 0.03 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Se 0.16 0.18 0.10 0.18 0.18 0.15 0.12 0.17 0.18 0.13 0.13 0.14 0.14 0.15 0.13 0.22 0.15 0.17 0.15 

Ag 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 

Au 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.04 

Total 100.61 99.98 100.54 100.78 101.05 100.73 100.73 100.19 101.03 100.92 100.76 100.58 100.83 100.92 100.69 101.05 101.03 100.42 100.61 

As % 28.9 28.6 28.6 28.6 28.9 28.7 29.2 28.5 29.4 29.4 28.6 28.8 29.1 29.0 29.8 28.6 28.5 28.7 28.5 

T (°C) 277 265 265 265 277 267 291 260 300 300 265 272 286 282 318 265 260 267 260 

 

 

 

 

Sample No KU16 

Analysis No 3 4 5 6 8 10 11 13 16 17 19 

Fe 36.02 35.91 36.23 35.86 36.35 36.31 36.34 35.54 36.24 36.14 36.43 

As 41.40 41.11 41.10 41.20 41.19 40.85 40.89 40.74 41.54 40.91 40.85 

S 22.29 22.57 22.59 22.51 22.54 22.75 22.54 22.71 22.13 22.69 22.64 

Co 0.00 0.02 0.00 0.01 0.00 0.01 0.01 0.01 0.00 0.00 0.00 

Ni 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Cu 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Zn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Ga 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.02 0.04 

Se 0.13 0.15 0.13 0.17 0.15 0.17 0.13 0.09 0.17 0.16 0.16 

Ag 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Au 0.00 0.00 0.04 0.00 0.00 0.03 0.00 0.00 0.00 0.04 0.03 

Total 99.84 99.77 100.09 99.75 100.23 100.12 99.93 99.08 100.08 99.97 100.14 

As % 29.0 28.8 28.7 28.8 28.7 28.4 28.5 28.6 29.1 28.5 28.4 

T (°C) 282 272 262 272 262 255 260 265 286 260 255 

 

Table. 2. Selected electron probe microanalytical data of arsenopyrite from alteration zones along with results of arsenopyrite thermometry after Kretschmar 

and Scot (1976) and Sharp et al. (1985). 

Table



 

Sample No 

(Reef) 

Type n Tm,CO2 (°C) Th,CO2 (°C) Th,CH4 (°C) Tm,Cl (°C) Tm,ice (°C) Th (°C) Th,tot (°C) X(CO2) X(CH4) Vg(%) Density (g/cm
3
) 

Klip-1 

(R-reef) 
I 12 -62.5 to -57.8 -12.6 to 7.8  9.2 to 13.5   299 to 367 0.25 to 0.75 0.03 to0.25 40 to 90 0.356 to 0.805 

II 31   -92.8 to -84.3      0.00 1.00  0.221 to 0.275 

III 33 -62.8 to -56.6   -13.1 to 9.1      0.73 to 1.0 0.27 to 0.0  0.663 to 0.971 

IV 22     -16.1 to -0.2 115 to 292     0.799 to 1.048 

KU16 

(R-reef) 
II 20   -94.3 to -85.2         0.230 to 0.281 

III 25 -63.5 to-56.8  -15.5 to 18.3      0.69 to 1   0 to 0.31  0.690 to 1.010 

IV 19     -4.6 to -1.9 172 to 299     0.794 to 0.947 

KU10A 

(J-reef) 
I 9 -63.2 to -58.2 -15.2 to 0.5  7.8 to 14.8   272 to 345  0.71 to 0.95 0.05 to 0.29 70 to 90 0.352 to 0.713 

II 12   -91.9 to -84.8        0.226 to 0.271 

III 17 -63.9 to -60.0 -20.1 to 0.2         0.642 to 0.831 

IV 15     -10.3 to -0.3 205 to 302     0.803 to 0.935 

KU12D 

(J-reef) 
II 25   -94.2 to -85.4        0.232 to 0.280 

III 19 -60.2 to -56.7 -13.5 to 13.4       0.86 to 1.0 0.0 to 0.14  0.437 to 1.001 

IV 15     -12.2 to -2.0 157 to 222     0.901 to 0.982 

KU9C 

(H-reef) 
II 15   -92.5 to -84.9        0.227 to 0.273 

III 20 -63.0 to -57.2 -14.8 to 13.0      0.72 to 0.99 0.01 to 0.29  0.645 to 0.972 

IV 17     -12.5 to -0.5 130 to 250     0.831 to 1.022 

Table. 3. Summary of fluid inclusion microthermometric data. 

Table



 

Sample No Location Mineral Re (ppb) ± Os (ppt) ± 
192

Os (ppt) ± 
187

Re/
188

Os ± 
187

Os/
188

Os ± rho 

              

RO432-2_KUJI_Apy J-Reef Arsenopyrite 0.9 0.1 73.4 2.4 20.3 1.4 84.1 8.1 3.9337 0.3161 0.626 

RO432-3_KUJI_Py J-Reef Pyrite 0.2 0.1 56.6 1.7 20.7 1.5 18.7 5.7 1.1147 0.0905 0.193 

RO458-1_KU11_Py H-Reef Pyrite 0.4 0.0 106.6 2.2 38.3 1.6 22.4 1.2 1.2645 0.0725 0.552 

RO458-2_KU11_Apy H-Reef Arsenopyrite 1.6 0.0 154.1 3.9 44.4 1.8 70.6 3.0 3.4446 0.1967 0.692 

RO458-3_KU16_Py R-Reef Pyrite 0.5 0.0 32.5 1.0 7.7 0.4 128.1 8.1 5.7947 0.3978 0.715 

RO458-4_KU16_Apy R-Reef Arsenopyrite 4.7 0.0 240.4 8.0 44.8 1.8 210.4 8.6 9.4437 0.5389 0.708 

Table 4. Re-Os pyrite and arsenopyrite data. 

Note: Uncertainties are reported at the 2σ level. 
187

Os/
188

Os uncertainties are at 2SE. All data are blank corrected, blanks for Os and 

Re were 0.1 ± 0.1 and 6.2 ± 5.4 ppt respectively, with an average 
187

Os/
188

Os value of 0.25 ± 0.02 (1 SD, n = 2). 

 

Table



 

Age 
Gold fields/ 

deposits 
Cratons/regions 

Fluid 

composition 

Salinity 

(wt.% NaCl 

equiv.) 

Mineralizing P-T 

conditions 
References 

Early 

Paleocene –

Early 

Eocene 

Alaska–Juneau, 

Treadwell 

Kensington 

 

Juneau gold belt, 

SE Alaska 

 
H2O-CO2-

CH4-NaCl 

NA 
250 to 350°C and 

0.75 to 3 kbar 
Goldfarb et al. (1993) 

Siluro-

Devonian 

Hodgkinson gold 

field 
NE Austraila, 3 to 11 

270 to 355°C and 

~1 kbar 

Peters et al. (1990); Bierlein 

and Crowe (2000) 

Cambro-

Orodovician 

Lachlan gold 

field 
SE Australia NA 250 to 350°C 

Gao and Kwak (1995a, b); 

Ramsay et al. (1998) 

Late –

Middle 

Archaean 

Willuna gold 

camp 

Yilgarn Craton, 

western Australia 

 

H2O-CO2-

CH4-NaCl 

with 

varying 

CO2-CH4 

ratio 

2.9±2.1 
300±30°C and 

0.55 to 1.4 kbar 

Hagemann et al. (1994, 

1996) 

Kalgoorlie camp, 

Golden Mile 
NA 

264 to 360°C and 

1.5 to 2.3 kbar. 

Ho (1987); Ho et al. (1990); 

Hagemann and Cassidy 

(2000) 

Mount Charlotte 

deposit 
 5  

Hagemann and Cassidy 

(2000); Mernagh (1996) 

Hollinger-

McIntyre deposit 
Abitibi sub-

province at 

Timmins district, 

Canada 

H2O-CO2-

CH4-NaCl 
NA 277±48°C 

Smith et al. (1984); Spooner 

et al. (1987) 

Sigma-Lamaque,    

Val d’Or 

H2O-CO2-

CH4-NaCl 

with 1530 

mole % 

CO2 

<10 1.8 to 2.6 kbar 

Hagemann and Brown 

(1996); Robert and Kelly 

(1987) 

Barberton 

greenstone belt 

Kappval Craton, 

South Africa 

H2O-CO2-

CH4-NaCl 
NA 

300°C and 1 

kbar. 
de Ronde et al. (1992) 

Kolar gold field 

Eastern Dharwar 

Craton, India 

H2O-CO2-

NaCl 
7  

205 to 280°C and 

0.7 to 1.8 kbar 

Mishra and Panigraghi 

(1999) 

Hutti gold mine, 

Hutti-Muski 

greenstone belt H2O-CO2-

CH4-NaCl 

 

3.9–13.5 
280–320°C and 

1.0 to 1.7 kbar 

Pal and Mishra (2002); 

Mishra and Pal (2008) 

Hira-Buddini 

mine,  Hutti-

Muski greenstone 

belt 

0.5 to 22.7 
550°C

1
  

320°C
2
 

1
Krienitz et al. (2008) 

2
Mishra and Pal (2008) 

 

Ramagiri gold 

field 

Dominantly 

carbonic 

fluids 

low-salinity 
1.45 kbar/240°C to 

1.7 kbar/267°C; 
Sinha (1997) 

Jonnagiri 

Deposit, 

Jonnagiri 

greenstone belt 

H2O-CO2-

CH4-NaCl 
~5 

263 – 323C and 

1.4 to 2.5 kbar 

Saravanan et al. (2009); 

Chinnasamy and Mishra 

(2013) 

Table. 5. Summery of ore fluid compositions and P-T conditions of gold mineralization in major orogenic 

gold deposits around the world. 

Note: NA= Not available  

Table




