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ABSTRACT
We develop two general methods to infer the gravitational potential of a system using steady-
state tracers, i.e. tracers with a time-independent phase-space distribution. Combined with the
phase-space continuity equation, the time independence implies a universal orbital probability
density function (oPDF) dP(λ|orbit) ∝ dt, where λ is the coordinate of the particle along the
orbit. The oPDF is equivalent to Jeans theorem, and is the key physical ingredient behind
most dynamical modelling of steady-state tracers. In the case of a spherical potential, we
develop a likelihood estimator that fits analytical potentials to the system and a non-parametric
method (‘phase-mark’) that reconstructs the potential profile, both assuming only the oPDF.
The methods involve no extra assumptions about the tracer distribution function and can be
applied to tracers with any arbitrary distribution of orbits, with possible extension to non-
spherical potentials. The methods are tested on Monte Carlo samples of steady-state tracers
in dark matter haloes to show that they are unbiased as well as efficient. A fully documented
C/PYTHON code implementing our method is freely available at a GitHub repository linked from
http://icc.dur.ac.uk/data/#oPDF.

Key words: methods: data analysis – Galaxy: fundamental parameters – galaxies: haloes –
galaxies: kinematics and dynamics – dark matter.

1 IN T RO D U C T I O N

Since dark matter does not emit or absorb electromagnetic radia-
tion, gravitational modelling is of fundamental importance to the
determination of the dark matter distribution. Such modelling can
be performed using either gravitational lensing (e.g. Bartelmann
2010; Han et al. 2015a) or the dynamics of tracers (e.g. stars or
galaxies; see Courteau et al. 2014 for a recent review on galaxy
mass inferences).

One straightforward way to perform dynamical modelling is to fit
a proposed phase-space distribution function (DF) to the observed
positions and velocities of tracer particles. Thanks to Jeans theorem
(see e.g. Binney & Tremaine 2008), which states that functions of
the integrals of motion, J, are solutions of the Boltzmann equation,
one can simply consider DFs of the form f (J). Under certain con-
ditions, one can invert the observed density profile, ρ = ∫

f (J)d3v,
of the tracer to construct a specific family of f (J) (e.g. Eddington
1916; Osipkov 1979; Merritt 1985; Cuddeford 1991, hereafter re-
ferred to as density profile inversion). The density profile inversion
depends on the potential of the halo, and the resulting f is thus
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potential dependent. However, some further assumptions about the
functional form of f (J) are required to perform the inversion. These
assumptions are typically motivated either empirically (e.g. Wojtak
et al. 2008; Williams & Evans 2015b) or by mathematical simplicity
(e.g. Evans & An 2006). When proposing the DFs, one is free to
choose the integrals of motion, to be either classical integrals such
as energy and angular momentum or the more theoretically appeal-
ing actions (see e.g. Posti et al. 2015; Williams & Evans 2015a, for
such recent models on halo stars).

In Wilkinson & Evans (1999) and Wang et al. (2015), solutions
of the form f (E, L) = f (E)L−2β were used to constrain the potential
of the Galactic halo, where E and L are the energy and angular
momentum of tracer particles. In particular, Wang et al. (2015)
applied the f (E, L) method to mock stellar haloes (Cooper et al.
2010) constructed from the Aquarius simulations of � cold dark
matter (�CDM) galactic haloes (Springel et al. 2008) and found
significant biases in the fitted masses. These biases suggest that
the proposed f (E, L) DF does not describe well the observed phase-
space distribution of the mock stars. However, it is not clear whether
the discrepancy is due to departures from dynamical equilibrium by
the stars within the halo potential, or to the lack of generality in the
proposed f (E, L) functional form used to describe the distribution
(e.g. Binney & Mamon 1982). In the former case, the stars would
represent an intrinsically biased tracer, and the modelling of their
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distribution would not give the correct potential. In the latter case,
one can still hope to find a DF that fits the observed distribution with
the correct potential once the extra assumptions in the functional
form of f (E, L) are relaxed or removed.

A method requiring no assumptions on the form of f (E, L) is
achievable, which is what we develop in this work. The starting
point of our method is the definition of tracer. We define a tracer
as a population of objects whose phase-space DF does not evolve
with time (i.e. is in a steady state), so that modelling their DF at an
arbitrary time is generally possible and useful. It immediately fol-
lows from this definition that the probability of observing a particle
at a position on its orbit is proportional to the time it spends near
that position, i.e. dP|orbit ∝ dt. Formally, this can be shown to be a
result of phase-space continuity (Section 2.2). We give a thorough
description on this orbital probability density function (oPDF) in
Section 2, with further discussion in Section 6.1.

This simple relation actually contains all the information required
to model the potential of the system. We demonstrate this by con-
structing explicit estimators for the potential from the oPDF in
Section 4. Expressed in action-angle coordinates, where the an-
gles evolve uniformly over time, the steady-state distribution is a
uniform distribution in angle, also known as the orbital roulette
(Beloborodov & Levin 2004, hereafter BL04). Two minimum dis-
tance estimators have been proposed in BL04 to infer the potential
using the uniform angle distribution. Unfortunately, when applied
to a �CDM halo potential, we find that these phase angle estima-
tors only probe the gravity at (or equivalently, the halo mass inside)
a tracer-specific characteristic radius of the Navarro–Frenk–White
(NFW; Navarro, Frenk & White 1996, 1997) type potential, result-
ing in a high degeneracy in the mass (M) and concentration (c)
parameters of the halo potential.

Expressed in the radial coordinate, the steady-state distribution
translates into an orbit-dependent DF in r. For any given potential,
one can then predict a radial distribution for the tracer according
to the occurrence of orbits in the data. A likelihood estimator can
be constructed by comparing the observed radial distribution to the
predicted distribution. This radial likelihood estimator is largely
able to break the degeneracy in M–c and provides a good constraint
on the halo potential profile over a much larger radial range. This
parametric likelihood estimator is described in Section 4.2.

Alternatively, the degeneracy in the phase angle estimators can
be utilized to break the degeneracy itself. In particular, the degen-
eracy in the mean-phase estimator is so strong that it provides no
constraint on the halo mass profile anywhere except at the char-
acteristic radius, leaving the shape of the halo mass profile uncon-
strained. Such a degeneracy can be broken by applying the estimator
multiple times to subsamples of the tracer in different radial ranges,
thus constraining simultaneously the halo mass at different charac-
teristic radii. At the same time, the perfect degeneracy means that
profiles of any shape can be adopted to fit for the characteristic
mass. Fitting two profiles of different shapes with the mean-phase
estimator, we can find out the characteristic mass point by locating
the point where the two mass profiles intersect. This leads to our
non-parametric potential profile reconstruction method, in which
we fit two elementary one-parameter profiles with the mean-phase
estimator to ‘mark out’ the characteristic mass point in each radial
bin. This ‘phase-mark’ method is detailed in Section 5.

The oPDF describes the conditional distribution of a particle in
phase space given its orbit. Coupled with assumptions on the prior
distribution of orbits, one can recover a full phase-space DF apply-
ing Bayes’ theorem. In Section 6.3.1, we will show that these DFs
are fully compatible with those constructed from a density profile

inversion. Such a DF can then be used to fit the observed distribu-
tion of the tracer to infer the potential, which is the approach taken
by conventional DF methods. If the assumptions on the distribution
of orbits are correct, then the DF method is fully compatible with
ours. However, our method still works even if these assumptions
fail, while the validity of the DF methods is intrinsically limited by
the validity of these assumptions.

There are some DF methods based on more general assumptions
about the distribution of orbits. For example, Bovy, Murray & Hogg
(2010) generalized the roulette distribution to a Bayesian likelihood
estimator by combining the uniform distribution of action-angles
with the distribution of orbital parameters (e.g. (E, L)). The latter
is modelled parametrically or with histograms, and the parameters
of the distribution of orbits are further marginalized over some
assumed priors. They applied their method to infer the potential of
the Solar system using the planets as tracers. Magorrian (2014) also
proposed a Bayesian method by modelling the distribution of orbits
non-parametrically with an arbitrary number of Gaussians in action
space, and then marginalizing over the proposed prior distribution
of the normalization, location and width of the Gaussians. These
methods are still not assumption-free, because a particular form
for the distribution of orbits and priors for their parameters still
need to be assumed. Adopting more general functions to describe
the distribution of orbits also tends to complicate the mathematical
and computational aspects of the problem tremendously. Compared
with these Bayesian marginalization methods, our method is much
simpler and more intuitive. We do not need to model the distribution
of orbits at all, so our method is truly assumption-free in so far as
the distribution of orbits is concerned.

Our likelihood estimator is closely related to Schwarzschild’s
method (Schwarzschild 1979), a general numerical method that
solves the ρ = ∫

f (J)d3v equation numerically to obtain f as well
as the potential. Without loss of generality, our method effectively
works by determining one orbit from the phase-space coordinate of
each particle, avoiding the numerical search for the combinations of
orbits used in Schwarzschild’s method. We elaborate on this point
in Section 6.3.2.

In a follow-up paper (Han et al. 2015b, hereafter Paper II), we ap-
ply our oPDF analysis to tracers of Galaxy-sized haloes constructed
from the Aquarius simulations (Springel et al. 2008), to study the
dynamical status of both the dark matter and stars in the halo, and to
gain insights on the intrinsic uncertainties in the inferred dynamical
mass of the Milky Way (MW).

2 STEADY-STATE TRAC ERS

As the fundamental concept used in this work, we start by deriving
the steady-state distribution of test particles, which is used as the
definition of tracers throughout.

2.1 The orbital probability density function

We consider steady-state systems consisting of a set of test particles
(a tracer) moving under a gravitational potential. We require both the
total potential and the phase-space distribution of the tracer particles
to be in a steady state, i.e. to not evolve with time. As long as the
total potential is static, we do not care whether it is generated by
the tracer alone or purely by an external field, with the tracer being
massless, or from both components. The static potential assumption
is reasonable as long as the crossing time for tracer particles is much
smaller than the time-scale for the variation in potential.
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Dynamical inference with steady-state tracers 1005

Under the static potential condition, each particle has a fixed and
predictable orbit. If the tracer particles are to be in a steady state,
then for any given orbit, the probability of observing one particle at a
given position (labelled by some parameter λ) has to be proportional
to the time it spends at that position, i.e.

dP (λ|orbit)/dλ ∝ dt(λ|orbit)/dλ. (1)

In other words, if each particle has a fixed orbit, then the travel time
on different parts of the orbit determines the density of particles
observed along the orbit. We call equation (1) the orbital probability
density function (oPDF). This can be understood as arising from
the ergodicity of each particle in the steady-state system. The static
potential leads to fixed orbits. If the overall system is in a steady
state, ergodicity translates each orbit into a PDF.

2.2 oPDF from phase-space continuity

Formally, we can derive the oPDF from the phase-space continuity
equation (i.e. the collisionless Boltzmann equation) of the steady-
state system as shown below. Readers not interested in the proof
can skip this subsection.

Let us consider the two requirements of our steady-state system.

Static potential. Since the potential is fixed, each particle has a
fixed and predictable orbit. Formally, one would be able to specify
the phase-space coordinates with a set of orbital parameters Qi(i =
1, . . . , n) determining the shape of the orbit, plus one affine pa-
rameter, λ, specifying the current position of the particle along the
orbit. Note that λ can be any parameter that uniquely specifies the
position of the particle on the given orbit, e.g. radius r, velocity v

or the elapsed time since apocentre. Then the phase space of tracer
particles is fully sampled by the distribution of orbits and the current
position of the particles on each orbit. The distribution of orbits is
fixed in a collisionless system, and any evolution of phase-space
density is only caused by the change of the on-orbit position of
each particle. In this coordinate system, the phase-space continuity
equation reads

∂f

∂t
+

∑
i

∂(f Q̇i)

∂Qi

+ ∂(f λ̇)

∂λ
= 0. (2)

Since Q̇i = 0, we have

∂f

∂t
+ ∂(f λ̇)

∂λ
= 0. (3)

Steady state. To be able to predict the distribution of particles, we
require a tracer population to be in a steady state, that is, ∂f /∂t = 0
at any point in phase space. Immediately, from equation (3) this
implies ∂(f λ̇)/∂λ = 0 and hence

dP

dλ
|Q ∝ f (Q, λ) ∝ 1

λ̇
, (4)

where Q denotes the set of orbital parameters. That is, the probability
of observing a particle at a given position is proportional to the time
it spends near that position:

dP |Q ∝ dλ

λ̇
= dt . (5)

Q.E.D.
Note this is phase-space continuity and is more general than

configuration-space continuity for steady flows. The oPDF is a fun-
damental equation governing the distribution of steady-state tracers.

It is a very general result that follows from very general assump-
tions. We will also call this phase-space steady-state distribution the
equilibrium distribution. Note that the definition of a tracer puts no
constraint on the distribution of orbits. A tracer with any arbitrary
distribution of orbital parameters can be constructed, as long as the
oPDF is satisfied.

2.3 oPDF in spherical systems

In this work, we focus the application of the oPDF to a spherically
symmetric potential, whose value depends only on radius ψ(r, θ ,
φ) = ψ(r). In this conservative central force field, the binding
energy,

E = −
(

v2
r

2
+ v2

t

2
+ ψ(r)

)
, (6)

and angular momentum,

L = r × v (7)

= rvt eL, (8)

of each particle are conserved, and form a complete set of orbital
parameters. Taking r as the affine parameter λ along the orbit,
equation (1) becomes

dP (r|E,L) = dt∫
dt

= 1

T

dr

|vr | , (9)

where T = ∫
dt is the period of the orbit. Note that we only need

L rather than L if we are only interested in the radial motion of
particles. Since the orbit is symmetric for the inward and outward-
going parts, we ignore the direction of the radial velocity and
take one single journey between pericentre rp and apocentre ra as
one period. When radial cuts are imposed, we only need to replace
the orbital limits rp with max (rp, rmin) and ra with min (ra, rmax),
since equation (1) holds within any radial range.

More generally, in equation (1) the choice of the position variable,
λ, is not limited to the radial coordinate. It can be any variable that
uniquely determines the phase-space coordinate on its orbit. As an
example, we can choose λ to be the travel time a particle has spent
to get to the current position. In this coordinate, the distribution of
particles is uniform along the orbit. If we define an angle at each
position r as

θ (r) =
∫ r

rp
dr/|vr |
T

, (10)

where rp is the pericentre distance, then the oPDF becomes

dP (θ |E, L) = dθ. (11)

This PDF is a uniform distribution, with θ ∈ [0, 1]. This angle is
known as an action-angle, and its randomness has been argued for
or assumed in previous works (‘random phase principle’ in BL04;
Bovy et al. 2010). Here we do not assume randomness of the angle;
rather the randomness is a derived property from the continuity
equation of the steady-state system coupled to the uniform time
evolution of the action-angle. We will call this angle the radial
phase.

Despite the focus on spherically symmetric potentials in this
work, the oPDF does not require spherical symmetry for the tracer
distribution. For example, the oPDF holds for a tracer on a single
elliptical orbit with the same (E, L). The method can be generalized
to (E, L) orbits where the asphericity of the orbits is explicitly used.
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2.4 Equivalence to jeans theorem and connection to other DFs

A fundamental constraint on the DF of steady-state systems is pro-
vided by the Jeans theorem. It is useful to clarify how it connects to
the oPDF.

Below we demonstrate the connection in a spherically symmetric
system. In such a system, ignoring the angular distribution, each
particle has three phase-space coordinates, which can be specified
by (r, vr, vt) or equivalently (E, L, r). The phase-space DF can
generally be written as

dP (r, v) = f (E, L, r) d3r d3v (12)

= f (E, L, r) 8π2L
dr dE dL

|vr | . (13)

Now we prove the equivalence of oPDF with Jeans theorem. If Jeans
theorem holds, i.e. f (E, L, r) = f (E, L), then

dP (r|E,L) = dP (E, L, r)∫
r

dP (E, L, r)
(14)

∝ dr

|vr (E, L, r)| . (15)

Conversely, if the oPDF holds, then

dP (E,L, r) = dP (E, L) dP (r|E,L) (16)

= d2P (E, L)

dEdL

dr

|vr |T dE dL. (17)

Combining with equation (13), we have

f (E, L, r) = 1

8π2LT (E, L)

d2P (E, L)

dE dL
, (18)

which is purely a function of (E, L). Q.E.D.
Put simply, the Jeans theorem implies a known radial distribution,

so that the full phase-space DF only needs to be specified in (E, L)
coordinates.

Starting from the oPDF, one can construct the full DF from
Bayes’ theorem, by specifying the distribution of orbits, P(E, L), of
the tracer, as

dP (r, v) = dP (r|E,L) dP (E, L). (19)

Depending on how P(E, L) is specified, the constructed DF varies.
A popular way of specifying P(E, L) relies on the radial profile
constraint∫

dP

d3rd3v
d3v = ρ(r). (20)

This is obtained mathematically through, for example, an Abel
transform, with ρ(r) being the parametrized density profile of the
tracer. Even though equation (19) is not explicitly used, its equiv-
alent, Jeans theorem is used to propose a DF of the form f (E, L).
However, at this stage, the mathematical inversion of equation (20)
is not generally solvable without further restrictions, and one typi-
cally needs to further assume some more specific forms of f (E, L),
for example f (E, L) = L−2β f (E) (Camm 1952; Cuddeford 1991;
Wilkinson & Evans 1999; Wang et al. 2015). In some other works,
the radial constraint is not used and a more general distribution of
orbits is proposed (Bovy et al. 2010; Magorrian 2014).

Note that the DF constructed following equation (19) is non-
negative as long as dP(E, L) is non-negative, because dP(r|E, L) ∝
dt ≥ 0 always holds. As we will see later, in practice we approximate
the dP(E, L) with the empirical distribution given by equation (24),
which is always non-negative and corresponds to the discrete real-
ization of a physical DF.

3 DATA : I D E A L T R AC E R S

In order to test the performance of potential estimators, we first
generate a set of Monte Carlo steady-state tracers. Tracer particles
are generated according to the probability distribution dP (r, v) =
f (E,L) d3r d3v used in Wang et al. (2015). This DF is constructed
by inverting a double-power-law tracer density profile, assuming
f (E, L) = f (E)L−2β and an NFW (Navarro et al. 1996, 1997) poten-
tial. It describes a spherically symmetric steady-state system of trac-
ers inside an NFW halo. The detailed form of the DF is complicated
and we refer the reader to equation (12) of Wang et al. (2015) for a
full description. The parameters of the DF include the mass, M, and
concentration, c, of the NFW halo, the tracer velocity anisotropy, β,
and the double-power-law slopes and pivot radius of the tracer den-
sity profile, α, γ and rp. Their values are chosen to best match the
distribution of mock stars inside an MW-sized halo in the Aquar-
ius simulation (Cooper et al. 2010), with M = 1.83 × 1012 M�,
c = 16.2, β = 0.715, rp = 69.0 kpc, α = 2.30, γ = 7.47. The mock
tracers generated according to this f (E, L) are expected to be a
self-consistent, yet simplified, realization of the distribution of stars
in the MW. Tracer particles are generated between 1 and 1000 kpc
in radius. We will call these catalogues ideal tracers. Since it is a
steady-state system, the oPDF is applicable.1 In fact, as we have
discussed in Section 2.4, any f (E, L) DF has to be compatible with
the oPDF but it also imposes additional assumptions.

In real observations, the phase-space coordinates of tracer par-
ticles are inevitably affected by observational errors. We do not
consider such errors in the main portion of this paper. In the fol-
lowing, we simply use the ideal tracer with their exact phase-space
coordinates, to test our methods. We briefly discuss possible exten-
sions of applying our methods to real data in Section 6.4.1.

4 PARAMETRI C POTENTI AL ESTI MATO RS

The problem we are trying to solve is: given a tracer population in
equilibrium, with observed positions and velocities, how do we infer
the potential of the steady-state system in which it resides? For any
assumed potential, we can convert the positions and velocities of
particles into (r, E, L) or θ coordinates. This results in empirical dis-
tributions for the particles in these coordinates. By comparing these
distributions with the oPDF expected for tracer populations, it is
possible to constrain parameters of the underlying potential. Below
we consider various parameter estimators that compare empirical
and expected distributions: two minimum distance estimators given
in BL04 and one maximum likelihood estimator that we develop in
this work.

1 Strictly speaking, the DF of Wang et al. (2015) only describes a system
of massless tracers in an external NFW potential, because the tracer density
would exceed the total density as r → 0 unless the tracers were massless.
However, as we state at the beginning of Section 2, our definition of a
steady-state system does not depend on the origin of the potential and
equally applies to massless tracers in an external potential. So this is not an
issue for our analysis. It may also be worth noting that the tracer velocity
dispersion approaches 0 at r = 0 for this DF according to An & Evans
(2009). However, this does not prevent the system being in a steady state.
In addition, our radial cut of 1–1000 kpc ensures that we are not affected by
the behaviour at the centre.
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4.1 Minimum distance estimators and parameter degeneracies

For minimum distance estimators, one constructs a metric to specify
the distance between the empirical and theoretical distributions, and
minimizes this distance to infer model parameters. Since the phase
angles are computed quantities assuming a model potential rather
than observed quantities, one cannot construct likelihood estimators
using the distribution of the angles (the differentiation of angles
would introduce model dependence). Following BL04, we consider
two distance measures to quantify the consistency of the data with a
uniform phase angle distribution. For a sample of N particles drawn
from a uniform phase distribution, the mean phase, θ̄ , is expected to
follow a normal distribution with mean 0.5 and standard deviation
1/

√
12N according to the central limit theorem. The normalized

mean-phase deviation,

�̄ =
√

12N (θ̄ − 0.5), (21)

is then a standard normal variable. �̄2 then serves as a measure of the
distance of the actual phase distribution from the expected uniform
distribution. If the data follow the model distribution, then the �̄2

from different realizations of the same distribution will follow a χ2

distribution with one degree of freedom. Hence, the discrepancy
level of the data from the model can be quantified by the probability
of obtaining a χ2 as extreme as the measured value of �̄2.

A more sophisticated distance measure can be constructed by
comparing the cumulative data distribution, P<θ , to the expected
distribution, P̂<θ = θ , as (BL04)

D =
∫ 1

0

(P<θ − P̂<θ )2

var (P<θ )
dθ, (22)

where var(P<θ ) = θ (1 − θ )/N is the variance of P<θ . This is known
as the Anderson–Darling (AD; Anderson & Darling 1954) distance
measure. For a set of N particles with phase angles, θ i, equation (22)
can be evaluated:

D = −N + 1

N

N∑
i=1

(1 − 2i) ln θi

− [1 + 2(N − i)] ln(1 − θi). (23)

The above form is simpler than the one derived in BL04. The theo-
retical distribution of D can be found from Monte Carlo simulations.
A fitting formula is given by BL04 which fits the tail of the distri-
bution. In Appendix A, we provide a binormal fit to the distribution
of ln (D) that works very well for the full DF.

A small value of �̄2 or D suggests a good match between data
and model. Hence, these two distance measures can be used to fit
the data to parametric models, by searching for parameters that
minimize the distances. Confidence intervals can also be defined
by distance contours chosen so that the probability of obtaining a
distance measurement as extreme as that of the contour value equals
the desired confidence level.

In Fig. 1, we apply the minimum distance estimators to an ideal
tracer of 1000 particles. It is obvious in Fig. 1 that the mass–
concentration parameters are highly degenerate for both estimators.
For the mean-phase estimator, there is not a unique minimum dis-
tance point but a minimum distance line with �̄ = 0, as marked
by the central red dashed line. As a result, there is not a single
best-fitting parameter, but a line of degenerate solutions. The AD
estimator shows a slightly weaker degeneracy, which can be un-
derstood because it uses more information than the mean-phase
estimator. However, the best-fitting parameters from the AD esti-
mator still depend sensitively on the initial parameters due to the
degeneracy.

Figure 1. Constraints on the mass, M, and concentration, c, derived from
1000 particle realizations drawn from a model NFW halo. The outer (blue)
and inner (brown) contours mark the 1σ and 3σ confidence regions, respec-
tively, for the mean-phase (dashed) and AD (solid) estimators. The central
red dashed line marks �̄ = 0. The parameters are expressed in units of the
true parameter values, M0 and c0.

Even though the usefulness of these two statistics as estimators
is severely limited by the strong degeneracies, they can still be
used as theoretical probes to identify regions of discrepancy in
heterogeneous data. In particular, the signed mean-phase deviation
as a standard normal variable is easy to calculate as well as being
easy to interpret, making it a good residual measure of the phase
distribution under the proposed potential. We demonstrate such
an application in Section 6.2. Similar applications can be found
extensively in Paper II when analysing tracers from cosmological
simulations.

4.2 Breaking the degeneracy: the radial likelihood estimator

In addition to the minimum distance estimators in θ space, we also
try to construct maximum likelihood estimators. Since θ is not a
direct observable but is model dependent, its PDF cannot be directly
used to construct a likelihood. Instead, we work with the directly
observable r-coordinate to calculate the likelihood of the obser-
vations, making use of the oPDF, P(r|E, L). Since E is unknown
before the potential is known, trying to use the conditional probabil-
ity L = ∏

i dP (ri |Ei, Li) as a likelihood to infer the potential will
fail. Since P(E, L) is solely a characteristic property of the tracer
(tracers with any arbitrary P(E, L) can be constructed or selected)
and is independent of the potential, one could seek to eliminate the
(E, L) dependence by marginalizing over their prior distributions.

A proper marginalization can be done if one knows the P(E, L)
distribution. If one introduces additional assumptions on P(E, L)
(e.g. Bovy et al. 2010), then the method essentially reduces to a
f (E, L) method, whose generality is limited by the assumptions
made. We would like to avoid any such assumptions in order to
avoid any potential bias in the inferred potential introduced through
them. Without prior knowledge of P(E, L), we can approximate it
with the observed distribution

d2P (E, L)

dE dL
= 1

N

∑
i

δ(E + Ki + ψ(ri))δ(L − Li). (24)
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Figure 2. The radial likelihood function. We apply the unbinned [equa-
tion (30), red spiky curve] and binned [equation (31), black smooth curve]
likelihood estimator to the same sample of 1000 ideal tracer particles in an
NFW halo. The concentration parameter is fixed to be the true value and the
likelihood is calculated as a function of the mass parameter, M, normalized
by the true mass, M0. The likelihood ratio, 2 ln(L/Lmax), is plotted where
Lmax is the maximum likelihood value as the mass is varied. We adopt 30
bins logarithmically space between 1 and 1000 kpc in radius in the binned
case.

Now the marginalized distribution becomes

dP (r) =
∫

dP (r|E,L)
d2P (E, L)

dE dL
dE dL (25)

= 1

N

N∑
i=1

dP (r|Ei, Li). (26)

This is the mixed (empirically marginalized) radial distribution, an
analogy with the marginalized theoretical radial distribution. We
can define a reciprocal probability of finding a particle at ri with the
orbital parameters corresponding to (Ej, Lj) as

Pij = dP (ri |Ej ,Lj )

dri

(27)

= 1

vr (ri , Ej , Lj )Tj

. (28)

Then, the marginalized radial distribution becomes

dP (ri)

dri

= 1

N

N∑
j=1

Pij . (29)

This P(ri) is actually the posterior probability of finding a particle
at position ri given the orbital parameters of all the tracer particles,
P(ri|E1, E2, . . . , EN, L1, L2, . . . , LN). Now the likelihood can be
written as

L =
N∏

i=1

N∑
j=1

Pij . (30)

However, the above likelihood function is very noisy. In Fig. 2,
we show an example of this likelihood as a function of the halo
mass parameter for the ideal tracer. Overall, the global shape of the
likelihood function peaks around the true parameter value. On the
other hand, the likelihood function is not at all smooth. Moreover,

one does not get rid of this bumpiness by zooming into a finer grid
in M. The noisy behaviour originates from the singularities in the
PDF at peri and apocentres, and from the discreteness in the (E, L)
distribution, which we described as a sum of δ-functions. The noise
in the likelihood can thus be regarded as Poisson noise. This Poisson
noise prevents accurate inference of parameter values. Some form of
smoothing can suppress the Poisson noise. For example, one could
try to do kernel interpolation in the (E, L) distribution, to make it
a continuous rather than a discrete distribution (see e.g. Bovy et al.
2010; Magorrian 2014). The simplest smoothing strategy would be
to bin the data. If we bin the data radially into m bins, then the
binned version of the mixed radial likelihood can be written as

L =
m∏

i=1

n̂
ni
i exp(−n̂i)

= exp

(
−

∑
i

n̂i

)
m∏

i=1

n̂
ni
i

= exp(−N )
m∏

i=1

n̂
ni
i , (31)

where ni is the number of particles in the ith bin. We have omitted the
data-dependent constants in the above equation and

∑
i n̂i = N due

to the normalization of the PDF. The predicted number of particles
in the ith bin is given by

n̂i = N

∫ ru,i

rl,i

dP (ri)

dri

dri , (32)

where rl, i and ru, i are the lower and upper bin edges, and P(ri) is
given by equation (29). The binned likelihood curve is also shown
in Fig. 2 for the same sample. Clearly, the Poisson noise has been
suppressed and the likelihood function is now smooth and usable
for parameter inference.

In Fig. 3, we apply the binned radial likelihood estimator to
the ideal tracers. In the left-hand panel, the three estimators are
applied to the single realization of 1000 particles used in Fig. 1. The
degeneracy we have seen in the phase angle estimators is broken in
the radial likelihood estimator. The estimators are applied to many
(750) independent realizations of the same f (E, L) distribution,
and the distribution of the best-fitting parameters is plotted in the
right-hand panel of Fig. 3. This test shows the estimator to be
unbiased when averaged over many realizations. For comparison,
we also show the result of a likelihood analysis using the full f (E,
L) distribution as in Wang et al. (2015). Note that since the data
are generated with this exact DF, the f (E, L) likelihood applied to
these ideal tracers represents the best constraint one can get from
any likelihood inference.

The radial likelihood estimator gives wider but still comparable
confidence intervals as the full f (E, L) estimator. Note that we have
not assumed anything about the (E, L) distribution of the tracers
and that the mock catalogue is used blindly. The above test is a
general demonstration that our method will work for any steady-
state tracers in a static spherical potential. Compared to the perfect
f (E, L) method, where the adopted f (E, L) exactly matches the form
of the unknown underlying DF, the confidence interval is wider
but, in practice, the f (E, L) method will be biased if the tracer
follows a (E, L) distribution other than the specific f (E, L) model
adopted. With a small increase in noise, our radial likelihood method
gains generality. Compared with the minimum distance estimators,
the radial likelihood estimator breaks the degeneracy in the mass–
concentration parameters. Since the likelihood can be interpreted as
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Dynamical inference with steady-state tracers 1009

Figure 3. The 1σ confidence region for the different estimators. In both panels, the dark and light shaded regions are the confidence regions from the AD
and mean-phase estimators, respectively, while the green line marks the confidence region from the radial likelihood estimator (RBin), and the black line
marks that from the f (E, L) estimator. In the left-hand panel, the confidence regions are inferred from a single sample of 1000 particles. The blue and black
points correspond to the best-fitting parameters of the radial likelihood and f (E, L) estimators. In the right-hand panel, the confidence regions represent the
68.3 per cent most probable region of the best-fitting parameters, according to the distribution of best-fitting parameters from 750 independent samples.
The blue and black points correspond to the average parameters from the radial likelihood and f (E, L) estimators, respectively. Note that since the AD and
mean-phase fits are sensitive to the initial guess of the parameter values due to their strong degeneracy, we have randomly picked the initial values when fitting
each sample. The f (E, L) and RBin fits are independent of the initial parameters. The samples used here are generated according to the f (E, L) DF with true
parameters (M0, c0); hence, the f (E, L) fit is, by construction, the best constraint one can obtain.

the conditional probability of the data given the model, in principle
it can also be adopted in a Bayesian analysis.

We now make a few comments on the practical application of
the binned likelihood estimator. Since the purpose of the binning is
purely to suppress shot noise, a larger number of bins is generally
better, as long as it is not too noisy. On the other hand, when the
likelihood contours appear too irregular, one should try reducing the
number of radial bins to ensure that the irregularities are not caused
by shot noise. In our analysis, we have adopted 30 logarithmic bins
for an ideal sample of 1000 particles, and 50 bins for 106 particles in
a realistic halo (Paper II), although as few as 5 bins could still work.
Due to the singularity of the 1/v integrand at orbital boundaries,
it is expensive to achieve high accuracy for the phase calculations.
As a result, it is difficult to use algorithms involving numerical
derivatives for the optimization of the likelihood values. Instead,
we adopt the Nelder–Mead simplex minimizer to search for the
maximum of the likelihood.

5 R E C O N S T RU C T I N G T H E P OT E N T I A L
PROFILE: THE PHASE-MARK
N O N - PA R A M E T R I C M E T H O D

5.1 Towards understanding the parameter degeneracy

The strong parameter degeneracy with the minimum distance esti-
mators is easy to understand when we examine the constraints on
the mass profile of the halo, as shown in Fig. 4. Parameters yield-
ing the same mean-phase deviation, �̄, all predict the same mass
M(<Rc) = Mc inside a characteristic radius, Rc, of the tracer, which
is close to the half-mass radius of the tracer. Different �̄ values cor-
respond to different M(<Rc), with a positive correlation between
the two. In other words, the mean phase of the tracer is an esti-

mator of the gravitational force GM(< Rc)/R2
c or circular velocity

around the characteristic radius of the tracer population. On the
other hand, this estimator barely constrains the gravity elsewhere,
leaving the shape of the mass profile unconstrained. Parameters
leading to the same M(<Rc) but different shapes in the mass profile
are thus indistinguishable by the mean-phase estimator, resulting in
the parameter degeneracy in Fig. 1. The radial likelihood estimator
breaks this degeneracy by its ability to also constrain the shape of
the profile, as illustrated in the right-hand panel of Fig. 4.

The positive correlation between the mean phase �̄ and the char-
acteristic mass, M(<Rc), can be understood qualitatively. For pro-
files with the same shape (on a logscale), a higher M(<Rc) leads
to deeper potential everywhere. For a particle with a given position
and velocity, a deeper potential of the same shape will shift both its
peri and apocentres closer to the centre of the halo. As a result, the
current location of the particle relative to its peri and apocentres is
shifted outwards, increasing its phase angle θ . The mean phase of
all particles thus increases with the characteristic mass.

The location of the characteristic radius determines the shape
of the mean-phase line in parameter space. To demonstrate this,
instead of working in the (M, c) parameter space, it is more conve-
nient to work in the (Ms, rs) space, where Ms = 4πρsr

3
s . Suppose

the constant �̄ lines are described by Ms = f�̄(rs), then we have
M(< r) = f�̄(rs)[ln(1 + r/rs) − (r/rs)/(1 + r/rs)]. Now the char-
acteristic radius r at which the mass does not vary with the halo
parameter rs is given by

∂M(< r, rs)

∂rs
= 0, (33)

whose solution r = Rc depends on the contour line function f�̄(rs).
So the functional form of the contour line determines Rc, and vice
versa.
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1010 J. Han et al.

Figure 4. Constraints on the mass profile from different methods. In the left-hand panel, we plot the predicted mass profiles adopting parameters lying on
the �̄ = 0 and ±3 lines in the parameter space in Fig. 1 (�̄ = 3, 0,−3 from top to bottom near the median radius). The vertical line marks the median radius
(i.e. the half-mass radius) of the tracer. In the right-hand panel, the �̄ = 0 profiles are compared, over a wider radial range, with those adopting parameters on
the 1σ contour of the binned radial likelihood estimator. The span of the latter, that is, the 1σ prediction bounds of the likelihood estimator, is marked by the
shaded region. Note that since the constant �̄ lines are not closed in the parameter space (e.g. Fig. 1), there could be many mass profiles with shapes far more
different from those plotted in this figure that still share the same �̄. In other words, the shape variation at the same �̄ could be much larger than plotted.

Figure 5. Mass profiles adopting parameters on constant �̄ lines, demonstrating the characteristic radius of the tracers. These are the same as the left-hand
panel of Fig. 4 but using two tracer samples with different radial cuts. The left-hand panel uses a sample from 1–30 kpc, while the right-hand panel uses a
sample from 30–1000 kpc. The vertical black lines mark the half-mass (i.e. median) radius of each sample. The sample sizes are both 1000 particles and are
selected by applying only radial cuts to the parent samples constructed in Section 3.

It is worth clarifying that the characteristic radius, hence also the
shape of the degeneracy curve, is determined by the distribution of
the tracer and is not an intrinsic property of the halo. We demonstrate
this in Fig. 5, where the characteristic radii of two ideal tracers with
different radial ranges are shown. The two tracers are constructed
by sampling from 1–30 and 30–1000 kpc, respectively, from a par-
ent population whose half-mass radius is roughly 30 kpc. Clearly,
the two samples have different characteristic radii, which are both
close to their own half-mass radii, while the haloes hosting the two
samples are identical. Correspondingly, we have checked that the

mean-phase contours have different slopes in log (M)–log (c) space
from that shown in Fig. 1.

The existence of a best-constrained mass despite the parameter
degeneracy is broadly in line with empirical results on the robust-
ness of the mass constraint inside the half-light radius from Jeans
equation modelling of dwarf galaxies (Walker et al. 2009; Wolf et al.
2010). The existence of such a characteristic point in the Jeans anal-
ysis is further proved by Wolf et al. (2010). However, their results
are concerned with the insensitivity of the mass estimate to the ve-
locity anisotropy parameter of the tracers, which has to be fitted or
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Dynamical inference with steady-state tracers 1011

assumed because only line-of-sight velocities are available in these
studies. On the other hand, our parameter degeneracy arises from
solving the mean-phase equation using the full 6D data. Anisotropy
is not a parameter in our model at all.

Another closely related result to ours is presented by Amorisco &
Evans (2011, hereafter AE11), who studied the underlying potential
of dwarf spheroidals assuming a lowered isothermal DF. They found
that the structural parameters (ρs, rs) (or (ρ0, r0) in the original no-
tation of AE11) of NFW-like haloes are constrained by the observed
(Rh, σ 0) of each dwarf spheroidal to follow a certain relation, ρs(rs),
where Rh is the projected half-light radius and σ 0 is the line-of-sight
velocity dispersion at the centre of the dwarf spheroidal. This re-
sulted in a best-constrained mass near a common characteristic
radius Rc = 1.7Rh for almost all the dwarf spheroidals. As we ex-
plained above (see equation 33), the existence of this characteristic
point can be understood because the two-parameter halo profile is
reduced to a one-parameter family due to the constraint of the prob-
lem. In AE11, the constraint comes from matching the observed
(Rh, σ 0) of each system. By contrast, in our case a constrained
relation, ρs(rs), or equivalently, M(c), is determined by solving
�̄ = 0 (see Fig. 1). Note that it is not expected that an arbitrary
constraint (for example, rs(ρs) = Const) would always result in a
best-constrained mass in the mass profile, so the similarity between
the results by AE11 and ours is intriguing. Despite the apparent
similarity, our result is purely theoretical, while that of AE11 is em-
pirically driven by the observed quantities, (Rh, σ 0). Our finding is
expected to apply to steady-state tracers in general, not only to those
described by the lowered isothermal DF or to the observed dwarf
spheroidals studied in AE11. In our general case, the characteristic
radius is not a constant value in units of the median radius, as is ev-
ident in Fig. 5. We checked that the same is true (i.e. the scale is not

universal) in units of the projected half-mass radius. By contrast,
the common characteristic radius in AE11 is likely to arise from
some common properties shared by the dwarf spheroidals studied
there, namely the tight correlation between (Rh, σ 0).

5.2 The phase-mark method

The experiment in Fig. 5 also suggests a way of breaking the degen-
eracy in the mean-phase estimator, by applying it to two or more
subsamples split in radius. In this way, the shape of the mass profile
can be constrained as well, since different subsamples constrain
the characteristic mass, Mc, at different radius, Rc. For paramet-
ric fits, the degeneracy lines in Fig. 1 would have different slopes
for subsamples with different Rc, so they could jointly determine
a unique best-fitting parameter set. Even better than that, it is pos-
sible to reconstruct the mass profile non-parametrically, thanks to
the insensitivity of the mean-phase constraint on the shape of the
mass profile. The fact that the mean phase only depends on the
characteristic mass point means one can start from a profile of an
arbitrary shape and still obtain the correct characteristic mass, by
requiring the profile to produce the correct mean phase. As a result,
it is not necessary to know the functional form of the true profile in
order to constrain (Rc, Mc). By applying the mean-phase constraint
�̄ = 0 twice to two different single-parameter profiles and looking
for the point where they intersect, one can simultaneously obtain
both the characteristic radius and the characteristic mass. Note that
only having Mc is not enough, since Rc is unknown even though it
is close to the tracer half-mass radius.

We demonstrate this in Fig. 6. In the left-hand panel, we di-
vide the tracer sample of 1000 particles studied in Fig. 9 into two
sub-populations according to radius. Inside each bin, we fit two

Figure 6. The mass profile constrained with the phase-mark method. The left- and right-hand panels are the same except that they have different number of
radial bins. The bins are defined to have equal numbers of tracer particles, by subdividing a parent sample of 1000 particles. In each upper panel, the vertical
dotted line marks the median radius of the full sample of tracers; the black solid line shows the true mass profile of the halo; the green dashed line is the
best-fitting profile using the radial likelihood method; the blue solid lines are the best-fitting point-mass and isothermal profiles in each radial range. The point
where the two blue lines cross (marked by points with error bars) gives the characteristic mass in each bin. The error bars are the uncertainty in the fitted
point-mass parameter. The red dashed line is the best-fitting NFW profile to the characteristic mass points. The bottom panels are the corresponding mass
profiles divided by the true profile. The shaded region shows the 1σ uncertainty on the fitted profiles from the radial likelihood (green) and from fitting NFW
profiles to the characteristic masses (red).
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1012 J. Han et al.

Figure 7. Same as Fig. 3, but also showing the constraints from fitting NFW profiles to the phase-marks. In the left-hand panel, the red solid and red dashed
contours show the 1σ confidence regions obtained by dividing a single sample of 1000 particles into two and five radial bins, respectively. The red filled and
open squares in the centre of each contour show the corresponding best-fitting parameters. In the right-hand panel, the contours show the 68.3 per cent most
probable region of the best-fitting parameters, according to their distribution obtained from many (750) independent samples of 1000 particles each. The points
in the centre show the median best-fitting parameters. Again the results for the phase-mark with two and five bins are shown in red solid and dashed contours,
respectively, while the filled and open squares show the corresponding median parameters.

mass profiles with the mean-phase estimator: (1) point-mass profile,
M(<R) = Mc with parameter Mc; (2) isothermal profile,
M(<R) = kR, with parameter k. The mean-phase constraint �̄ = 0
uniquely determines a best fit for each profile. As expected, they
cross the true profile at the same point, which marks the character-
istic point of that bin as (Rc = Mc/k, M(<Rc) = Mc). We name this
method the ‘phase-mark’. Splitting the tracer into more bins, we can
obtain finer constraints on the profile, as shown in the right-hand
panel. By doing this, we have reconstructed the true mass pro-
file non-parametrically, without any assumption on the true profile.
Such a reconstructed mass profile becomes noisier when a larger
number of bins is adopted (right-hand panel), since each subsample
becomes smaller.

If desired, one can still fit a parametric function through the
reconstructed profile, as shown by the red dashed line in each panel,
with confidence regions on the fitted profile marked by the red
shaded regions in the lower panels. After combining all the radial
bins, the tightest constraint is still found near the half-mass radius
of the full tracer sample. It is interesting to see that although a
larger number of bins helps to obtain finer reconstruction of the
profile, it does not lead to a better constrained profile after fitting.
It appears that the constraining power using only two bins is close
to that of the radial likelihood method. This is confirmed by the
more direct comparisons made in Fig. 7. The confidence region
of the phase-mark with two bins has a comparable size to that of
the likelihood method. This means they are similarly efficient at
making use of the dynamical information. Adopting finer bins in
the phase-mark results in a looser constraint. This can be understood
because each mark only exploits the local phase uniformity inside
each radial bin, while the large-scale variation from bin to bin
is not taken into account, resulting in a leakage of information. A
potential improvement would be to combine bins at different scales.
However, it should be kept in mind that doing this will introduce
correlations among the marks, making the error analysis difficult.
In the right-hand panel, the phase-mark with two bins is applied to

many independent Monte Carlo realizations of the same system as
before, to show that the fit is statistically unbiased.

6 D I SCUSSI ON

6.1 What is a tracer population?

Dynamical modelling requires the tracer sample to be defined first,
or subsamples to be selected from a parent sample. Here we revisit
the question of ‘what is a tracer population?’. Modelling the tracer
population with a time-independent DF requires the tracers to be in a
steady state. For a spherically symmetric potential, this requirement
translates into a conditional radial distribution dN/dr ∝ 1/|vr(E, L,
r)| (necessary and sufficient) given E and L, or equivalently, all
the particles have completely uncorrelated radial phases. Once this
condition is satisfied, one can use the distribution of the sample to
infer the potential of the system. As a result, we can simply define a
tracer as any set of steady-state particles moving in the background
potential.

To obtain a steady-state subsample, the selection from the sample
must not distort this conditional radial distribution and must avoid
introducing artificial structure in the radial or angle distribution.
As long as this is guaranteed, any selection in E and L is allowed.
For example, one can select subregions of the E–L space, while
keeping full or random sampling in r. For a parent population not in
equilibrium inside a static potential, a steady-state subsample can
still be selected by sampling according to equation (9).

From this definition, we also learn how to mix tracers with
weights. If tracer i has a steady-state phase-space distribution fi,
then the uniformly weighted population wifi is still a tracer. Con-
sequently, N mixed tracers

∑N
i=1 wifi are still a tracer, since equa-

tion (9) is satisfied for every subtracer. As a result, when dealing
with multicomponent tracers using the oPDF, we can either model
them as a single population or as several populations separately.
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Dynamical inference with steady-state tracers 1013

Figure 8. Mean-phase profile evaluated with the two degenerating parame-
ter sets. From top to bottom, we bin the same sample of 1000 tracer particles
according to their r, E, L coordinates, respectively, with equal number of
particles in each bin. The mean-phase deviation, �̄, is evaluated inside each
bin. Different coloured lines represent different haloes. The blue solid and
red dashed lines are the profiles adopting two different potentials: one with
the real parameter values (M, c) and the other with a parameter set (0.6M,
2.2c) whose mean phase is degenerate with that of the true parameters.

Obviously, subhalo particles are not steady-state tracers since
they are localized structures. Streams in general are also not steady-
state tracers since they are usually characterized by correlated
phases.

6.2 The optimal marginalization

It is tempting to ask why the radial likelihood estimator works better
than the phase estimators. Recall that the oPDF actually specifies
both the randomness of the phase angle and the independence of
such a distribution on the orbital parameters. That is, the phase
distribution is not only uniform in general, but also uniform inside
any (E, L) bin. The oPDF also applies to any radial range, so the
uniformity is expected for any region in the (r, E, L) space. In Fig. 8,
we examine the mean phase in subregions of the phase space. We
divide the data into 30 equal-count bins in each dimension, and
measure the mean phase inside each bin for a given potential. This
mean-phase value indicates the discrepancy of the data inside this
subregion with uniform phase distribution. We do this for two mean-
phase degenerate points. For the true potential, �̄ is consistent with
0 everywhere. For the degenerate parameter set, we start to see a
dependence on (E, L), and �̄ is biased positively or negatively at
different places in the (E, L) space, even though the combined �̄

or the �̄ in r space would still be close to 0. This test shows that
there is still useful information beyond the uniform θ distribution,
namely its (E, L) dependence.

Since the minimum distance estimators do not examine the
(E, L) dependence, they have effectively marginalized over the (E,
L) distribution of tracers. One can rewrite the definition of the phase
angle as

θ (r, E, L) = P (< r|E,L). (34)

From this point of view, the marginalization is done by working in
the cumulative probability space of the tracers. Although the radial
likelihood method also marginalizes over the (E, L) distribution, the
marginalization combines the oPDF from different (E, L) orbits in a
different (possibly optimal) way. This could result in a marginalized
DF that is more sensitive to the discrepancies in the conditional
distribution. In Fig. 9, we see that the radial distribution is indeed
more sensitive, by examining the difference between empirical and
expected cumulative distributions in θ and r space.

6.3 Connection to other methods

Since dP(r, E, L) = dP(r|E, L)dP(E, L), the full phase-space distri-
bution of tracers breaks into two parts. The oPDF is determined by
dynamics, and reflects the underlying potential. The P(E, L) part is
simply a characteristic of the tracer not necessarily related to dy-
namics, and a sample with any form of P(E, L) can be constructed
which is still a valid tracer population. Any DF method has to make
use of the P(r|E, L) information in some way, but how one deals
with P(E, L) is not crucial to the determination of the potential.

6.3.1 Comparison with the f (E, L) DF method

As we have already discussed in Section 2.4, any f (E, L) DF function
has to be consistent with the oPDF, while imposing extra assump-
tions on the distribution of orbits. Because our method only uses the
conditional radial distribution, it is fully compatible with the den-
sity profile inverted f (E, L) method. At the same time, our method
has no extra assumptions and is applicable to more general tracers.
Also note that the density profile inversion involving a particular
parametrization of the potential can sometimes be quite challeng-
ing (see e.g. Wang et al. 2015), and may not always be solvable
analytically. In contrast, the application of any potential function in
our oPDF method is always straightforward.

Since the oPDF is given in differential form, it does not care
about the radial limits of the system. One can apply the oPDF to
data within any radial range, e.g. from rmin to rmax, since the phase-
space continuity equation holds within any radial range. When radial
cuts are imposed, we only need to replace the orbital limits ra with
max (ra, rmin) and rp with min (rp, rmax). In this case, the data only
care about the variation of the potential within the same radial range.
For the same reason, the zero-point of the potential, the extension
of the halo or tracer density profile outside the data window, or
the boundary of the halo is irrelevant in our method. By contrast,
in the f (E, L) method, the DF, f (E, L), has to satisfy the radial
constraint ρ(r) = ∫

f (E, L)d3v at all r by definition. Any change in
ρ(r) at any radius will require an adjustment in the proposed DF.
As a result, one has to include the full radial range of each orbit
in its density profile inversion. This requires a full description of
both the potential and the tracer density over the full radial range,
introducing a dependence on quantities outside the data window.
Such dependence, in turn, requires one to parametrize the tracer and
the potential profiles for extrapolation. In particular, for a finite-size
system the boundary condition, ρ(rmax) = 0, requires that no orbit
should extend beyond rmax, which translates into an energy bound,
E < −φ(rmax). In other words, the energy of particles has to be
bound for a finite-size system described by f (E, L). This constraint
is the main cause of the poor match between model and data for
simulated DM particles in Wang et al. (2015). This constraint does
not apply to our method, however, because we do not need to study
the full radial range of every orbit. For example, our method can be
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Figure 9. Cumulative distributions in θ and r spaces. Left: cumulative distribution of θ , at two sets of parameter values. The red solid line corresponds to the
true parameters, while the green solid line corresponds to (0.6M, 2.2c) which give the same mean phase. The bottom panel is the difference between the model
distribution and the cumulative distribution of a uniform distribution. Right: cumulative distribution of r. The black dashed line is the distribution of the data,
while the red and green lines are for the true and alternatives parameters as in the left-hand panel.

applied to an open system with constant inflows and outflows! In
this sense, the oPDF is more general than Jeans theorem.

Fitting with a full DF also has its advantage over the general
oPDF method. The prior assumptions on the distribution of orbits
serve to input extra information to the model. If these assumptions
are correct, the fitting can be more efficient, as demonstrated by the
performance of the true f (E, L) DF fitted to the ideal tracers. On
the other hand, incorrect assumptions are likely to lead to biased
results in the fits. From this point of view, adding extra assumptions
in the construction of a DF is a trade-off between efficiency and
correctness. Our oPDF method is specifically designed to minimize
extra assumptions hence maximizing correctness.

6.3.2 Connection to Schwarzschild’s method

Our radial likelihood method can be regarded as a lightweight
Schwarzschild’s method. Starting from the oPDF, P(r|E, L), one
can populate different orbits with tracer particles given a poten-
tial, and look for weighted combinations of orbits that reproduce
the observed spatial distribution of the tracer. The best match then
gives an estimate of both the potential and a phase-space distri-
bution in the form of combinations of orbits. This is the exactly
the Schwarzschild method (Schwarzschild 1979), which essentially
converts the ρ = ∫

fd3v into linear equations in phase-space grids
ρ(I) = ∑

JC(J)P(I|J), where I denotes configuration grids and J
denotes orbit populations. However, to infer the potential, it is not
necessary to solve for a general combination of orbits, C(J). Instead,
one can obtain the distribution of orbits directly from the observed
phase-space positions of particles, with each particle determining
one orbit, i.e. C(J) = 1 with J ranging from 1 to the number of par-
ticles. This is exactly what we do in our likelihood method. In this
sense, our likelihood method is a special type of Schwarzschild’s
method, with the population of orbits constrained to be the distri-
bution of orbits in the data, rather than constructed from an external

library. We do not lose generality with our choice of orbits, while
hugely reducing the dimension of the problem by not solving for
C(J) at all.

The disadvantage of not fitting for the distribution of orbits in
our method is that we have to rely on the full phase-space data to
initialize each orbit. When only certain moments of the DF such
as the velocity dispersion profile are available, Schwarzschild’s
method can still be applied by fitting the predicted moments of
the proposed DF to the observed ones, while the radial likelihood
method constructed here cannot. Another advantage of the general
Schwarzschild modelling is that it can be adopted to construct a
self-gravitating equilibrium system, which can be used as initial
conditions for N-body experiments.

6.4 Generalization of the likelihood method

Observational data usually involve selection functions describing
the non-uniform sample completeness, noise in the measurements
of the phase-space coordinates and even missing dimensions in
the coordinates. We briefly discuss how these complexities can be
handled in the oPDF framework, as well as generalizations to non-
spherical potentials. Given that the focus of this paper is to explore
whether a general dynamical method is applicable to simulated
haloes for the inference of the halo potential, we do not push the
following discussions further to implementation. Instead, we leave
further tests and improvements of the proposed solutions to future
work. In the following, we will focus on the likelihood estimator as
an example.

6.4.1 Selection function, noise, missing dimensions

As we have discussed before, our methods apply to tracers with any
(E, L) distribution, and hence are immune to any selection in (E, L).
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Radial selection can be easily handled by modifying the reciprocal
probability as

P ′
ij = PijSi/Sj∫

PijSi/Sj dri

, (35)

where Si = S(ri) is the probability of selecting a particle into the
sample at ri. If the selection is simply a radial cut, then equation (35)
simplifies to an adjustment of the normalization factor T. When
angular selections are involved, one needs to explicitly consider L
instead of L as the orbital parameters, to model the distribution in
r, θ , φ rather than just r.

The noise in the data can be incorporated as priors. Formally, the
new likelihood after marginalizing over the error distribution can
be written as

L′
ψ (Do) =

∫
Lψ (D)P (D|Do) dD, (36)

where Lψ (D) is the likelihood of an error-free data set, D, in a po-
tential ψ , P(D|Do) is the probability that the true data set is D given
the observed data set Do. Alternatively, one can generate Monte
Carlo realizations of the data according to the prior distributions,
P(D|Do), and apply the method to each realization assuming no
noise in the measurements. Once this is done, a statistical estimate
of the effect of the measurement noise on the fits can be obtained
from the distribution of the best-fitting parameters across the differ-
ent realizations.

Observational data might also miss some dimensions. For exam-
ple, it is difficult to measure the tangential velocity for distant stars
in the Galaxy. If only vr is available, then it is necessary to intro-
duce additional assumptions on vt in order to apply the method, e.g.
through an anisotropy parameter or anisotropy profile, β(r).

6.4.2 Generalization to arbitrary potentials

For a non-spherical potential, it might be difficult to write down
the integrals of motion as orbital parameters. However, the orbit is
still fully determined for each particle once a potential is assumed,
and one can calculate the orbit numerically without knowing the
integrals of motion. With calculable orbits, we can still predict
the spatial distribution of particles by superimposing the oPDF of
each particle, and compare with the observed distributions for a
likelihood analysis of the potential.

7 C O N C L U S I O N S

We have shown that tracers in a steady state in a static potential can
be characterized by an orbit-dependent DF, dP(λ|orbit) ∝ dt(λ), with
λ being an affine parameter of the position along the orbit. This is a
general result that follows from the time-independent collisionless
Boltzmann equation. We clarify that the phase-space distribution
of tracers connects to their host potential only through this oPDF,
while the distribution of orbits, e.g. P(E, L), is a characteristic of
each tracer that is independent of the host potential. The oPDF
can also be shown to be equivalent to Jeans theorem, which is the
starting point for constructing DFs for steady-state tracers in most
previous studies.

Starting solely from this oPDF, we have developed a likelihood
estimator to infer the potential of a spherically symmetric halo.
The method improves over previous f (E, L) DF methods in making
no assumption about the tracer characteristic functions, P(E, L).
We achieve this by approximating the prior distribution of orbits,

P(E, L), by their empirical distribution once a halo potential is as-
sumed, and marginalize over this distribution. The approximation of
P(E, L) by its empirical version introduces strong shot noise, which
is suppressed by binning the data radially.

To test the performance of the likelihood estimator, we have cre-
ated Monte Carlo samples of steady-state tracers from a realistic
phase-space DF for MW halo stars. The DF of these samples is
constructed to be in a steady state but also makes additional as-
sumptions about the orbit population. Applying our estimator to
these samples, we find it to be unbiased. Comparing our estimates
with those from a likelihood estimator that uses the correct form of
the underlying full DF, our estimated error bars are only increased
slightly (∼20 per cent), while avoiding having to assume any func-
tional form for the DF. Such a likelihood estimator can be easily
embedded into a Bayesian framework.

Expressed in action-angle coordinates, the oPDF reduces to the
random phase principle proposed in BL04, which has been used
to construct minimum distance estimators of the potential. When
applied to the inference of an NFW potential, the minimum distance
estimators suffer from a strong degeneracy in halo parameters, re-
flecting the fact that they only constrain the halo mass inside a tracer-
specific radius. While this degeneracy is an obvious disadvantage of
these methods, it also opens a door to non-parametric reconstruction
of the potential profile (or rotation curve) due to its independence
on the shape of the proposed profile. Taking advantage of this shape
independence, we have developed a non-parametric ‘phase-mark’
method to reconstruct the potential profile, by fitting elementary
profiles to radially split subsamples of the tracer to mark the charac-
teristic mass in each radial bin. Applied to the Monte Carlo samples,
we have shown that the phase-mark correctly reconstructs the true
potential without making any assumptions about its shape. Such
reconstructed profiles can be further fitted to provide parametric
constraints on the potential. We find that the constraining power of
such fits can be as good as that of the likelihood method and the
tightest constraint is obtained with only two radial subsamples. The
phase-mark method is more intuitive for recovering the potential
profile due to its non-parametric nature. It is also computationally
much faster.

Both the likelihood estimator and the phase-mark are able to
break the degeneracy between mass and concentration and constrain
the shape of the halo mass profile over a large radial range. The
generality of the oPDF also means that our methods can be applied
to tracers with multiple components, but without the necessity of
modelling each component separately. In the current form, the new
methods developed in this paper can serve as a powerful tool to
study the dynamical status of simulated haloes. They also offer a
promising way to constrain the mass of the MW halo with real data,
once further extended and tested to work with observational errors
and incompleteness.
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APPENDIX A : A D D ISTRIBUTION

The theoretical distribution of the AD distance (equation 22) under
the null hypothesis can be calculated with Monte Carlo simulations.

−2 −1 0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ln(D)

dP
/
d
ln
(D
)

Data
bi−normal
BL04

Figure A1. Binormal fit to the distribution of the AD statistic. The data are
generated from an ensemble of 50 000 random samples, of size N = 5000
each. For each of these samples, the AD statistic, D, is calculated. The em-
pirical distribution of ln (D) is plotted as a histogram. The solid line passing
through the histogram is a binormal fit according to equation (A1), which
is the sum of two Gaussian components (dashed lines). For comparison,
we also plot the BL04 fit which is only designed to describe the tail of the
distribution.

Specifically, we generate a number of independent random samples,
and calculate the AD distance, D, for each of them. Each sample
consists of N independent observations of a uniformly distributed
variable θ ∈ [0, 1]. In Fig. A1, we show that the distribution of
ln (D) (equation 22) can be well fitted by the sum of two normal
distributions of the form

P (ln D) = wN (ln D, μ1, σ1) + (1 − w)N (ln D, μ2, σ2) , (A1)

where N (x, μ, σ ) is the standard normal probability function of x
with mean μ and standard deviation σ . The best-fitting parameters
are w = 0.569, μ1 = −0.570, σ 1 = 0.511, μ2 = 0.227, σ 2 = 0.569.
Compared with the fitting function in BL04 designed to fit the tail
of the distribution, the binormal PDF fits well the whole range of
the distribution, which is important for likelihood analysis.

The distribution has barely any dependence on the sample size N.
For systems as small as N = 5, we find that our fitting still describes
the empirical AD distribution very well. We also verified that the
mean-phase distribution can be well approximated by the normal
distribution, for systems with N ≥ 5.
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