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 Abstract 

 

In this paper we propose a new time series empirical test to identify housing 

bubble periods. Our test estimates the beginning and the burst of bubbles as 

structural breaks in the difference between the appreciation rates of the Case-

Shiller price tiers. We identify the relevant periods by exploiting the common 

characteristic that lower-tier house prices tend to rise faster during the boom 

and fall more precipitously during the bust. We implement our test on 15 U.S. 

Metropolitan Statistical Areas during the most recent housing bubble.   
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1 Introduction 

The recent housing boom and bust in the United States was marked by large differences in 

the run-up and the subsequent decline of housing prices both across metro areas and across 

market segments in the same area. One common phenomenon observed in many metro areas 

is that the low-tier homes realized the largest price gains during the boom and saw the sharpest 

declines during the bust of the market. There is now a consensus in the rapidly growing 

empirical literature on the housing boom and bust that subprime lending and low interest rates 

were major contributing factors to the bubble (see e.g., Mayer 2011 for a recent survey). These 

factors, however, have a differential effect on the price tiers. Landvoigt, Piazzesi, and Schneider 

(2011) present a theoretical model in which movers of different age, income and wealth, 

demand houses that differ in quality. These three dimensions of mover characteristics and the 

quality of houses are then mapped into an equilibrium distribution of house prices. Applying 

micro data on buyer characteristics and house prices from San Diego to this model, Landvoigt 

et al conclude that “cheap credit for poor agents was most important in generating higher capital 

gains at the low end of the market.”   

 In this paper, we present a new empirical test for the existence of housing bubbles which 

exploits the specific feature that low tier homes appreciate more during the boom and fall faster 

during the bust of the market.  We use time series data of the S&P home price tiers to identify 

the exact dates at which housing market bubbles emerge and burst. Our methodology does not 

require information on market fundamentals. Instead, it analyzes the differences in the rate of 

change of the tiered price indices to identify breaks, which correspond to the origin and the burst 

of the bubbles. 

We implement our empirical test on the metropolitan areas covered by the Case-Shiller 

tiered price indices.2 The procedure allows the data to endogenously dictate the breaks, which 

mark the beginning and the end of the housing market bubbles. The results show that from the 

metropolitan areas considered in the analysis, all bubbles started between June 1997 (with 

Seattle, WA) and May 2001 (with Washington DC). Moreover, all bursts occurred between June 

2006 (in San Diego, CA and Tampa, FL) and July 2008 (in Portland, OR). The bubble that 

lasted the longest was the one in Seattle, between June 1997 and July, 2007. It was in the San 

Diego metropolitan area where the high-tier prices went up the most, increasing by 134.5% 

                                                           
2
 The S&P Case-Shiller home price indices are calculated from data on repeat sales of single-family homes and 

organized in three equally sized tiers depending on their resale value. 
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(between January, 1999 and June, 2006). In other cities the increase in high-tiered prices was 

less severe. For example, in Minneapolis the increase was 48.4% (between November, 2000 

and September, 2007), while in Portland it was 56.3% (between June, 1997 and November, 

2008). 

The extant literature on market bubbles has taken two distinct approaches to identify 

bubbles. The main approach views bubbles as a rapid and unsustainable growth in asset prices 

that cannot be explained by “fundamental” factors. In his summary article on the symposium on 

bubbles, in the Journal of Economic Perspectives, Stiglitz wrote that “[I]f the reason that the 

price is high today is only because investors believe that the selling price will be high 

tomorrow—when "fundamental" factors do not seem to justify such a price—then a bubble 

exists” (Stiglitz, 1990, p. 13). Using this definition, a number of empirical tests have been 

developed to exploit the link between asset prices and various fundamental values. West (1987) 

proposes an empirical test for the existence of a bubble using the constant expected return 

model. His approach relies on comparing two sets of parameters. One set of estimates is 

obtained by a projection of stock prices based on past dividends, and the other is obtained by a 

set of equations describing the discount rate and the dividend process. This and other tests to 

identify bubbles are reviewed in Flood and Hodrick (1990). Meese and Wallace (1994) examine 

whether the real expected return on home ownership is close to the real homeowner cost of 

capital by studying the relationship between price, rent, and the cost of capital. Abraham and 

Hendershott (1993 & 1996) study the relationship between housing prices and construction 

cost, real income growth and interest rate. They find that these factors explain half of the 

historical variation in house price appreciation. The bubble, then, manifests itself in the 

“sustained serially correlated deviations,” yet, it remains unclear whether these deviations are 

due to a “bubble” or to a misspecification of the econometric model. Himmelberg, Mayer and 

Sinai (2005) compare the level of housing prices to local rents and incomes for a period of 25 

years. They explain that changes in the price-to-rent and price-to-income ratios might suggest 

the existence of bubbles even when the houses are reasonably priced because they fail to 

account, for example, for differences in risk, property taxes and maintenance expenses, and 

anticipated capital gains from owning a home. Glaeser, Gyourko and Saiz (2008) present a 

theoretical model of housing bubbles which predicts that areas with more elastic supply will 

have fewer bubbles with shorter duration and smaller price run-ups. Their data indicate that the 

price increases in the 1980s were almost exclusively experienced in areas with inelastic supply. 

The alternative approach, promoted by Case and Shiller, views housing bubbles as a result of 
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unrealistic expectations of future prices sustained by speculative feedback and social contagion. 

In addition to the analysis of “fundamentals” —including personal per capita income, population, 

and employment— for the time period 1985-2003, Case and Shiller (2003) present the results of 

a survey of people who bought houses in 2002. This survey asked respondents a set of 

questions about their expectations of future prices and whether they feared that houses will 

become unaffordable in the future. The article reports that the term “housing bubble” had 

essentially no popularity prior to 2002 while the term “housing boom” had been in much more 

frequent use since the 1980s. An extensive overview of these approaches to understanding 

housing bubbles, and housing dynamics in general, is presented in Mayer (2011). 

The main innovation in this paper lies in identifying bubbles without observing fundamentals 

and without the reliance on surveys or on measurements of sentiment. This approach can be 

implemented in housing markets due to the availability of the tiered price indices.  

Defining the relevant periods in which bubbles grow and collapse opens new venues for 

future research on the impact of fundamentals on housing price movements both in and outside 

of the bubble periods. There is a rapidly growing strand in the recent literature on housing price 

dynamics which tries to identify the effects of various fundamental values on prices. Using 

simulation of the US housing market, Khandani, Lo, and Merton (2007) find that the declining 

interest rates and the growth of the refinancing business contributed significantly to the recent 

housing boom and the massive defaults during the bust. Favilukis (2010) argues that much of 

the housing price appreciation can be explained by relaxation of credit constraints and Mayer 

and Sinai (2009) show that markets with the highest subprime lending experienced the greatest 

growth in price-to-rent ratios. In contrast, Glaeser, Gottlieb, and Gyourko (2010) present 

evidence supporting the view that easy credit, in the form of low real interest rates and 

permissive mortgage approval standards is not a strong contributor to the rising house prices. 

Our approach permits these relationships to be revisited in the context of the relevant time 

period in each metropolitan area because we do not use fundamental factors to determine the 

bubble periods. 

The organization of the paper is as follows. In Section 2 we describe the data.  The 

empirical model, the estimation methods, and the identification strategy are outlined in Section 

3.  Section 4 presents the estimation results and Section 5 concludes. 
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2 Data and Intuition of the Testing Methodology 

The data utilized in this paper are the time series S&P Case-Shiller seasonally adjusted Tier 

Price Indices. Our study covers the time period between January 1992 and August 2011 with 15 

Metropolitan Statistical Areas (MSA): Atlanta, Boston, Chicago, Denver, Los Angeles, Miami, 

New York, Minneapolis, Phoenix, Portland, San Diego, San Francisco, Seattle, Tampa, and 

Washington DC. For each MSA we have three indices, the Low-,  Medium-, and High-Tier.3 

The indices we employ are constructed using a three month moving average, where home 

sales pairs are aggregated in rolling three month periods. This methodology assures the indices 

account for delays in data recording at the county level.4 As is detailed in S&P Indices (2011), 

for the construction of the three tier indices, the S&P Case-Shiller methodology selects price 

breakpoints between low-tier and middle-tier houses and price breakpoints between middle-tier 

and upper-tier houses. The breakpoints are smoothed through time to eliminate seasonal and 

other transient variation. Depending on the sale prices, a transaction is allocated to one of the 

three tiers. 

[Figure 1, here] 

To illustrate the dynamics of the price tiers during the period of study, we present in Figure 1 

the Low-, Mid-, and High-Tier indices for four of the metropolitan areas: Chicago, New York, 

San Diego, and Tampa. All indices are adjusted to have January 1992 as the base month. Two 

apparent observations can easily be made from examining these figures. First, all tiers 

increased during the housing bubble years and then decreased once the housing bubble 

busted. And second, the low tier increased the most during the bubble period, and decreased 

the most once the bubble burst. The vertical lines mark the beginning and end of the bubble and 

in the following section we will discuss how they are estimated. 

[Table 1, here] 

                                                           
3
 While S&P Case-Shiller also constructs the indices for Cleveland and Las Vegas, we dropped them from our 

sample because Las Vegas did not have information prior January 1993, and Cleveland only had data until August 

2011. 

4
 For a more detailed discussion on the construction of the indices see Miao, Ramchander and Simpson (2011). 
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The summary statistics of the tiers for all the MSA that we examine are presented in Table 

1. The higher averages in the lower tiers are consistent with the observation that during this 

period the low tier displays a larger appreciation than the high tier.  

 

4 Empirical Strategy 

4.1 The Housing Bubble and Identification Strategy 

Let the price of a house be given by 𝑝𝑡, and, following the literature on testing for speculative 

bubbles (see, e.g. Flood and Hodrick 1990), let us assume that it consists of a market 

fundamentals term,  𝑝𝑡
𝑓
, and a bubble term denoted by 𝐵𝑡: 

 𝑝𝑡 = 𝑝𝑡
𝑓

+ 𝐵𝑡.          (1) 

The bubble term 𝐵𝑡, thus, represents the deviation of the current market price from the value 

implied by market fundamentals. The market price in Equation (1) can be used for different price 

tiers 𝑖, 𝑗 = 𝐿, 𝑀, 𝐻, where 𝐿, 𝑀, and 𝐻 denote the low, medium, and high price tear, respectively. 

Hence we can write the difference between any two price tiers as follows: 

 𝑦𝑡
𝑖𝑗

 ≡  𝑝𝑖,𝑡 − 𝑝𝑗,𝑡 = (𝑝𝑖,𝑡
𝑓

+ 𝐵𝑖,𝑡) − (𝑝𝑗,𝑡
𝑓

+ 𝐵𝑗,𝑡)    for 𝑖, 𝑗 = 𝐿, 𝑀, 𝐻, and 𝑖 ≠ 𝑗. (2) 

We want to test whether the difference in the price tiers follows a trend stationary with a 

nonzero mean process. That is, 

  lim𝑘→∞𝐸𝑡(𝑝𝑖,𝑡+𝑘 − 𝑝𝑗,𝑡+𝑘|𝐼𝑡) = 𝛽0 + 𝛽1𝑡  for 𝑖, 𝑗 = 𝐿, 𝑀, 𝐻, and 𝑖 ≠ 𝑗, (3) 

which implies that after taking into account the nonzero mean and trend, the price sequences 

must be cointegrated with cointegrating vector [−1, 1]. 𝐼𝑡 denotes the information set at time 𝑡. 

Because by the definition of the tiers there must be a difference between the prices of different 

tiers, we allow for the sequence {𝑦𝑡
𝑖𝑗

} to have a nonzero mean. Stationarity has an interesting 

convergence interpretation; it says that shocks to the differences in the prices have to be 

temporary and that the long-term forecast of prices in both tiers can only differ by 𝛽0 + 𝛽1𝑡 at a 

finite fixed time 𝑡. 

Combining Equations (2) and (3) we obtain, 
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 lim𝑘→∞𝐸𝑡(𝑝𝑖,𝑡+𝑘 − 𝑝𝑗,𝑡+𝑘|𝐼𝑡) = lim𝑘→∞𝐸𝑡(𝑝𝑖,𝑡+𝑘
𝑓

− 𝑝𝑗,𝑡+𝑘
𝑓

|𝐼𝑡) +  lim𝑘→∞𝐸𝑡(𝐵𝑖,𝑡+𝑘 − 𝐵𝑗,𝑡+𝑘|𝐼𝑡) 

        for 𝑖, 𝑗 = 𝐿, 𝑀, 𝐻, and 𝑖 ≠ 𝑗. (4) 

One concern in the identification of the housing bubbles is that the two additively separable 

components on the right-hand side in Equation (4) cannot be separately observed. We only 

observe the sequence {𝑦𝑡
𝑖𝑗

}. Our identification strategy models the first term on the right-hand 

side to have a nonzero mean and a constant trend. Then, any structural break in the mean and 

trend of {𝑦𝑡
𝑖𝑗

} is assumed to come from the second term on the right-hand side of Equation (4). 

That is, the boom and bust of the housing bubble are identified under the assumption that the 

beginning and end of the bubble cause a significant difference (a structural break in the mean or 

trend of the price difference across tiers) in the rate at which the tiers appreciate and depreciate. 

 

4.2 Testing Methodology 

Our identification strategy has a natural testable analog in the cointegration literature that 

allows for structural breaks. In particular, we test whether the observed sequence {𝑦𝑡
𝑖𝑗

} is a 

nonzero mean trend stationary with process, while allowing for structural breaks in the mean 

and trend. To do this we use the minimum LM unit root test proposed by Lee and Strazicich 

(2003) which assumes the following data-generating process:5 

 𝑦𝑡 = 𝛿′𝑍𝑡 + 𝑒𝑡,   where  𝑒𝑡 = 𝛽𝑒𝑡−1 + 𝜀𝑡    (5) 

                                                           
5
 As explained in Lee and Strazicich (2003), one common issue in unit root tests that allow for structural breaks 

(such as the ones presented in Zivot and Andrews (1992), Lumsdaine and Papell (1997), and Perron (1997)) is that 

they assume no break(s) under the unit root null and the alternative is ‘structural breaks are present.’ This includes 

the possibility of having a unit root with break(s) (Perron (1989) and Perron and Vogelsang (1992) do allow for the 

possibility of breaks in both, the null and the alternative). This implies that the rejection of the null is rejection of a 

unit root without breaks and not necessarily the rejection of a unit root. Strazicich et al. (2004) point out that these 

endogenous break unit root tests might conclude that a time series is trend stationary, when in fact the series is 

nonstationary with break(s). To overcome this limitation the two-break minimum Lagrange Multiplier (LM) unit 

root test proposed by Lee and Strazicich (2003) has an alternative hypothesis that unambiguously implies trend 

stationary. 
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and for convenience we drop the superscript 𝑖𝑗 in 𝑦𝑡
𝑖𝑗

. 𝑍𝑡 is a vector of exogenous variables and 

𝜀~𝑖𝑖𝑑 𝑁(0, 𝜎2). We will use Model C, as in Perron (1989), which includes two changes in levels 

and trends: 

 𝑍𝑡 = [1, 𝑡, 𝐷1𝑡, 𝐷2𝑡, 𝐷𝑇1𝑡, 𝐷𝑇2𝑡]′  where  𝐷𝑇𝑚𝑡 = 𝑡 − 𝑇𝐵𝑚 for 𝑡 ≥ 𝑇𝐵𝑚 + 1, 𝑚 = 1,2 

       𝐷𝑇𝑚𝑡 = 0 otherwise. 

The first break should identify the beginning of the bubble, while the second break should 

identify the bust. The two-break LM unit root statistic is obtained from the following regression: 

 ∆𝑦𝑡 = 𝛿′∆𝑍𝑡 + 𝜙𝑆̃𝑡−1 + ∑ 𝛾𝑖Δ𝑆̃𝑡−𝑖 + 𝑢𝑡
𝑘
𝑖=1       (6) 

 where  𝑆̃𝑡 = 𝑦𝑡 − 𝜓̃𝑥 − 𝑍𝑡𝛿  for  𝑡 = 2, 3, . . . , 𝑇.,  

and where 𝛿 denotes the estimated coefficients from the regression equation of Δ𝑦𝑡 on Δ𝑍𝑡; 𝜓̃ is 

given by 𝑦1 = 𝑍1𝛿 as shown in Schmidt and Phillips (1992), and Δ𝑆̃𝑡−𝑖 are included as required 

to correct for serial correlation. The unit root test is described by 𝜙 = 0 in equation (4) and the 

LM test statistics are: 

 𝜌̃ = 𝑇𝜙̃, 

 𝜏̃  = t-statistic testing the null hypothesis 𝜙 = 0. 

The important element in this test is that the breaks 𝐿𝑀𝜌 and 𝐿𝑀𝜏 that identify the boom and the 

bust of the bubble, are determined endogenously by the test using: 

 𝐿𝑀𝜌 = infθ 𝜌̃(𝜃)  

 𝐿𝑀𝜏 = infθ 𝜏̃(𝜃) 

where 𝜃𝑚 = 𝑇𝐵𝑚/𝑇, for  𝑚 = 1,2, denotes the dates of the breaks relative to the total number of 

observations 𝑇. The breaks are determined when there is more evidence of stationarity in the 

sequence {𝑦𝑡
𝑖𝑗

}; that is, where the test statistic is minimized. Even when the series is found to 

have a unit root, the breaks can still be used to identify significant differences in the rates at 

which the tiers appreciate or depreciate. 

 

4 Empirical Results 
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For comparison purposes we first test for stationarity in the {𝑦𝑡
𝑖𝑗

} sequence for 𝑖, 𝑗 = 𝐿, 𝑀, 𝐻 

using two popular unit root tests that do not account for breaks, the Augmented Dickey Fuller 

(ADF) test and the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test. The results are reported in 

Table 2, where the null in the ADF is unit root and the null in the KPSS is trend stationary. The 

first two columns show the results for the difference in the mid and low tiers. At standard 

significance levels, the ADF tests—which were carried out with trend—fail to reject the unit root 

null for every metropolitan area. Moreover, the KPSS tests reach a similar conclusion, as they 

reject the null of trend stationarity at a 10% significance level for every market. A similar story is 

true for the difference between the prices of the high and middle tiers shown in the last two 

columns. The only evidence of stationarity when no breaks are allowed appears when 

comparing the prices of the high and low tiers for the Los Angeles, San Diego and Washington 

DC markets. The ADF tests for these cities reported in the third column reject the unit root null 

at a 10% significance level. Overall, the results with no breaks find very little evidence of 

stationarity and, of course, cannot identify the bubble. 

[Table 2, here] 

The first set of results that allow for breaks are presented in Table 3, where the analysis 

focuses on the difference in prices between the middle and the low tiers. These results 

correspond to Model C that allows for two breaks in the levels and the trends. The first column 

reports the estimate of 𝜙  from Equation (4). Its LM test statistic is reported in the second 

column, while the third column has the number of lags Δ𝑆̃𝑡−𝑖 included in the estimation. Given 

that we are using monthly data, the maximum number of lags we allow to correct for serial 

correlation is 𝑘 = 12. Moreover, lags are being dropped if they are not different from zero at at 

least 10% significance level. 𝑇̂𝐵1 and 𝑇̂𝐵2 denote the two key estimates of interest: the estimated 

breaks expressed in years and months. We restrict 𝜆̂1 and 𝜆̂2 to be in the interval [0.1𝑇, 0.9𝑇] to 

assure that we have enough observations at the end and at the beginning of the sample. The 

results show that nearly all the estimated boom and bust are statistically significant at at least 

10% level. We have that for Denver the bust is not significant, and for San Francisco neither the 

boom nor the bust are significant.6 

                                                           
6
 Comparing the results from Tables 2 and 3 we see a clear difference in terms of the stationarity of the difference 

between the middle and low tiers when allowing for breaks. While there is no evidence of stationarity when no 
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 [Table 3, here] 

 Tables 4 and 5 report the results for the differences between the high and low tiers, and the 

high and middle tiers, respectively. In Table 4 we see that there is less evidence of stationarity 

between the high and the low tiers. Only Phoenix, Portland, and Tampa reject the unit root null. 

Moreover, there is even less evidence of stationarity in the difference between the high and 

middle tiers. Only Atlanta and Portland reject the unit root null. In terms of the significance of the 

identified boom and bust, less breaks are significant in the difference between the high and low 

tiers, where six of the thirty breaks are not significant. For the difference between the high and 

the middle tiers, just the bust for Washington DC is not statistically significant. 

[Table 4, here] 

[Table 5, here] 

 

We can now explain the intuition behind these results and the key idea behind the estimated 

dates for the structural breaks. Figure 1 not only shows the price indices for the low, middle and 

high tiers discussed earlier, but the vertical lines in the graphs denote the endogenously 

determined boom and bust using the difference between the high and low tiers, as reported in 

Table 4. For example, in Chicago the boom of the housing bubble started in April 1999 and the 

bust was in September 2006. A very similar pattern can be observed in New York, San Diego, 

and Tampa, all shown in Figure 1. The identified date of the bust for the bubbles in Tampa and 

San Diego is the same, June of 2006.  In New York the bubble busted in February 2006. Notice 

that the identified breaks are not always the same across different {𝑦𝑡
𝑖𝑗

} when different tiers are 

considered. We illustrate the results for the difference between the high and low tiers because it 

is this difference that was most pronounced during the housing bubble. 

The last column in Table 4 shows the percentage change in the price of the high tier homes 

between the beginning and the end of the identified housing bubbles. For example, in Chicago 

the prices of the high tier homes went up by 62.5% between April, 1999 and September, 2006.7 

                                                                                                                                                                                           
breaks are allowed, the results in Table 3 show that at 10% significance level we reject the unit root null for six 

cities: Chicago, Miami, Phoenix, Portland, San Diego, and Tampa. 

7
 Notice that the Lee and Strazicich (2003) methodology allows for the identification of only two breaks, while 

some of the series appear to have more than two. In those cases (i.e., Atlanta, Denver, Los Angeles, Phoenix, and 
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The figures in this last column show that the appreciation was most pronounced in San Diego 

with an increase of 134.5%, followed by Seattle and Tampa with 119.2% and 103.4%, 

respectively. The cities in which the appreciation was lower were Minneapolis with a 48.4% 

increase and Portland with a 56.3%. The identified beginning and end of the bubbles are very 

similar across cities. The beginning of the bubbles that are statistically significant at a 10% level 

are all between June 1997 and May 2001, starting with Seattle and finishing with Washington 

DC. On the other hand, the statistically significant end-of-bubble dates are all between June, 

2006 (San Diego and Tampa) and July 2008 (Portland). 

[Figure 2, here] 

Figure 2 plots the logarithm of the difference between the high and low price tiers (𝑦𝑡
𝐻𝐿) for 

Miami, Portland, Seattle and Washington DC.  In addition to the actual 𝑦𝑡
𝐻𝐿 series, the figures 

also show the Ordinary Least Squares fitted lines to illustrate the dates of the breaks.  The 

figures clearly show how the Lee and Strazicich (2003) procedure select the dates of the boom 

and bust of the bubbles.  While the vertical lines denote the estimated beginning and end dates, 

the downward trend in the period between the two lines shows how during the bubble years the 

low tier prices increased faster than the high tier prices.  Once the bubble bursts, the break in 

the trend shows how the lower tier prices dropped at a much higher rate than the high tier 

prices.8 

 

6. Conclusion 

The traditional approach to test for housing market bubbles is to examine deviations from 

market fundamentals. This paper presents an alternative approach that does not rely on an 

analysis of fundamental values. Instead, we exploit the property that low tier homes increase at 

a faster pace during the boom and depreciate more during the bust. This insight serves as a 

basis for the development of our empirical strategy which employs cointegration techniques that 

allow for structural breaks to estimate the dates of boom and bust of the bubbles. Using data for 

                                                                                                                                                                                           
San Francisco) one of the identified breaks may correspond neither to the beginning nor the end of the bubble. 

Hence, in those cases we do not report the percentage increase in the prices of the high tear. 

8
 Figure 3 in the appendix show the 𝑦𝑡

𝐻𝐿 sequences for the other 11 cities, including Atlanta, Denver, Los Angeles, 

Phoenix, and San Francisco, where the procedure cannot correctly identify the beginning or end of the bubbles.  
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15 metropolitan areas we find that the estimated breaks resemble quite closely the beginnings 

of the price increases and the subsequent downfalls of the housing prices. 

Our paper offers new insights on the dynamics of housing market prices. On the one hand, it 

suggests that the misalignment in the appreciation rates of the home price tiered indices can be 

a symptom for a regime change in the borrowing and lending behavior of market agents. On the 

other hand, this misalignment can be interpreted as an indication for an ensuing market bubble. 

That is, the question of whether we are currently in a housing bubble can be addressed through 

a comparison of the appreciation rates of the tiers. By identifying the beginning and the ending 

of the housing bubbles and the intensity with which they occur without using market 

fundamentals, our paper provides opportunities for future research on the impact of market 

fundamentals on housing prices inside and outside of bubble periods.  
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Figure 1. 

Low, Mid and High Tiers Indexes, 1992-01 through 2011-08. 
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Figure 2 

Differences Between High and Low Tiers with Breaks, 1992-01 through 2011-08. 
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Figure 3 - Appendix 

Differences Between High and Low Tiers with Breaks, 1992-01 through 2011-08. 
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Table 1 
Summary Statistics 

             

  
Mean St.Dev Min Max 

   
Mean St.Dev Min Max 

Atlanta 
     

Boston 
    

 

𝑝𝐻,𝑡 144.9 27.9 99.3 193. 
  

𝑝𝐻,𝑡 188.0 60.2 99.6 271.8 

 
𝑝𝑀,𝑡 144.5 27.0 100.0 189.4 

  
𝑝𝑀,𝑡 187.7 67.2 99.9 288.7 

 
𝑝𝐿,𝑡 155.0 38.4 88.6 2
4.5 

  
𝑝𝐿,𝑡 208.3 89.7 94.5 350.4 

Chicago 
     

Denver 
    

 
𝑝𝐻,𝑡 152.6 36.8 100.0 217.7 

  
𝑝𝐻,𝑡 188. 48.8 100.0 254.8 

 

𝑝𝑀,𝑡 157.1 42.1 100.0 235.7 
  

𝑝𝑀,𝑡 208.0 57.5 100.0 275.3 

 

𝑝𝐿,𝑡 171.4 52.6 99.5 271.7 
  

𝑝𝐿,𝑡 247.8 80.3 100.0 342.5 

Los Angeles 
    

Miami 
    

 
𝑝𝐻,𝑡 150.4 62.6 78.6 266.1 

  
𝑝𝐻,𝑡 166.0 66.2 97.5 315
3 

 
𝑝𝑀,𝑡 156.1 72.4 79.6 304.8 

  
𝑝𝑀,𝑡 183.7 84.3 99.4 379.7 

 

𝑝𝐿,𝑡 156.7 83.1 76.6 347.0 
  

𝑝𝐿,𝑡 202.8 110.9 98.2 
70.0 

New York 
     

Minneapolis 
   

 
𝑝𝐻,𝑡 173.1 59.4 99.6 264.8 

  
𝑝𝐻,𝑡 163.1 44.2 100.0 237.7 

 
𝑝𝑀,𝑡 177.1 69.1 99.6 293.3 

  
𝑝𝑀,𝑡 176.7 53.8 100.0 266.2 

 
𝑝𝐿,𝑡 189.7 84.9 98.4 338.9 

  
𝑝𝐿,𝑡 189.2 71.2 100.0 311.7 

Phoeni 
     

Portland 
    

 
𝑝𝐻,𝑡 179.6 68.9 100.0 341.7 

  
𝑝𝐻,𝑡 169.5 47.3 99.0 264.1 

 
𝑝𝑀,𝑡 166.7 63.4 99.3 324.6 

  
𝑝𝑀,𝑡 199.5 63.1 100.0 319.7 

 
𝑝𝐿,𝑡 180.5 82.3 99.2 386.3 

  
𝑝𝐿,𝑡 265.1 101.3 100.0 452.4 

San Diego 
     

San Fr
ncisco 
   

 

𝑝𝐻,𝑡 164.3 65.9 88.7 281.5 
  

𝑝𝐻,𝑡 176.5 63.9 94.6 283.3 

 
𝑝𝑀,𝑡 171.1 75.6 88.5 314.3 

  
𝑝𝑀,𝑡 178.9 73.0 93.8 317.8 

 
𝑝𝐿,𝑡 182.2 92.0 86.5 366.6 

  
𝑝𝐿,𝑡 176.9 88.0 89.1 368.8 

Seattle 
     

Tampa 
    

 

𝑝𝐻,𝑡 170.7 55.1 99.5 279.3 
  

𝑝𝐻,𝑡 148.6 49.0 97.7 261.2 

 

𝑝𝑀,𝑡 174.9 58.7 100.0 2
1.6 
  

𝑝𝑀,𝑡 164.1 62.1 
9.2 311.1 

 

𝑝𝐿,𝑡 200.4 72.9 99.7 348.8 
  

𝑝𝐿,𝑡 195.7 91.2 98.0 412.2 

Washington DC 
          

 
𝑝𝐻,𝑡 161.1 57.8 99.2 26
.5 

       

 
𝑝𝑀,𝑡 159.6 62.4 98.7 285.2 

       

 

𝑝𝐿,𝑡 162.8 72.0 97.4 319.6 
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Table 2 

Differences across Tiers with No breaks. ADF and KPSS tests, 1992-01 through 2011-08. 

 
𝑦𝑡

𝑀𝐿 ≡  𝑝𝑀,𝑡 − 𝑝𝐿,𝑡 
 

𝑦𝑡
𝐻𝐿  ≡  𝑝𝐻,𝑡 − 𝑝𝐿,𝑡 

 
𝑦𝑡

𝐻𝑀 ≡  𝑝𝐻,𝑡 − 𝑝𝑀,𝑡 

 
ADF KPSS 

 
ADF KPSS 

 
ADF KPSS 

Atlanta -0.255 0.378c 
 

-0.027 0.395c 
 

-0.244 0.424c 

Boston -1.324 0.265c 
 

-1.332 0.266c 
 

-0.890 0.257c 

Chicago 0.083 0.329c 
 

-0.995 0.270c 
 

-0.810 0.214c 

Denver -1.081 0.500c 
 

-1.057 0.489c 
 

-1.225 0.391c 

Los Angeles -2.353 0.171a 
 

-2.598a 0.194b 
 

-1.898 0.211b 

Miami -1.078 0.244c 
 

-1.884 0.233c 
 

-0.369 0.208b 

New York -2.093 0.231c 
 

-1.930 0.240c 
 

-1.965 0.241c 

Minneapolis -0.771 0.378c 
 

-0.404 0.412c 
 

0.042 0.456c 

Phoenix -1.736 0.316c 
 

-1.592 0.315c 
 

-1.204 0.272c 

Portland -0.421 0.466c 
 

-0.463 0.411c 
 

-0.843 0.215b 

San Diego -1.499 0.255c 
 

-2.582a 0.247c 
 

-1.813 0.214b 

San Francisco -1.381 0.268c 
 

-1.792 0.268c 
 

-1.368 0.254c 

Seattle 0.361 0.392c 
 

-0.452 0.262c 
 

-1.225 0.157a 

Tampa -1.138 0.251c 
 

-1.314 0.260c 
 

-0.700 0.266c 

Washington DC -2.313 0.146b 
 

-2.711a 0.165b 
 

-1.989 0.179b 

Notes: Null hypothesis in the ADF is unit root. Null hypothesis in the KPSS is trend 
stationary. a, b, and c denote significant at the 10%, 5%, and 1% levels, respectively. 𝐿, 𝑀, 
and 𝐻 denote low, medium, and high tear, respectively. The critical values for the KPSS 
test are 10%: 0.119,  5% : 0.146,  1% : 0.216. 
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Table 3 
       Differences in Mid and Low (𝑦𝑡

𝑀𝐿 ≡  𝑝𝑀,𝑡 − 𝑝𝐿,𝑡) with Breaks, 1992-01 through 2011-08. 

 

𝜙̂ 
Test 

Statistic 
𝑘̂ 𝑇̂𝐵1 𝑇̂𝐵2 𝜆̂1 𝜆̂2 

Atlanta -0.126 -3.037 12 2000-01 2009-02 0.42 0.90 

Boston -0.217 -4.637 12 1997-12 2005-04 0.31 0.70 

Chicago -0.286 -5.724b 7 1995-12 2008-04 0.21 0.86 

Denver -0.138 -4.592 12 1997-03 2003-05d 0.27 0.60 

Los Angeles -0.044 -4.237 12 1995-11 2004-02 0.20 0.64 

Miami -0.220 -6.254b 10 2006-03 2008-06 0.75 0.86 

New York -0.189 -4.977 9 2001-09 2005-10 0.51 0.72 

Minneapolis -0.165 -4.606 10 1999-10 2007-11 0.41 0.83 

Phoenix -0.204 -6.460c 8 2006-10 2008-03 0.78 0.85 

Portland -0.421 -6.636c 12 1998-06 2009-02 0.34 0.90 

San Diego -0.104 -5.360a 12 1998-03 2006-08 0.33 0.77 

San Francisco -0.080 -3.881 11 2004-03d 2009-01d 0.64 0.89 

Seattle -0.184 -4.540 11 1994-02 2008-04 0.11 0.86 

Tampa -0.308 -5.753b 7 2000-08 2006-05 0.45 0.75 

Washington DC -0.148 -5.057 10 2002-01 2007-10 0.53 0.83 

Notes:  𝑘̂ is the optimal lagged first-differenced terms, 𝑇̂𝐵𝑚 for 𝑚 = 1, 2 denotes the year 

and month of the estimated break points and 𝜆̂𝑚 = 𝑇̂𝐵𝑚/𝑇  for 𝑚 = 1, 2  denote the 
location of the breaks. a, b, and c denote significant at the 10%, 5%, and 1% levels, 
respectively. d denotes that the identified break point is not significant at the 10%. 
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Table 4 
       

 

Differences in High and Low (𝑦𝑡
𝐻𝐿  ≡  𝑝𝐻,𝑡 − 𝑝𝐿,𝑡) with Breaks, 1992-01 through 2011-08.  

 
𝜙̂ 

Test 
Statistic 

𝑘̂ 𝑇̂𝐵1 𝑇̂𝐵2 𝜆̂1 𝜆̂2 %∆𝑝𝐻,𝑡 

Atlanta -0.188 -4.049 12 2001-01 2009-02 0.47 0.90  

Boston -0.122 -4.358 12 1997-12 2004-08d 0.31 0.66 96.6% 

Chicago -0.265 -4.600 11 1999-04 2006-09 0.38 0.77 62.5% 

Denver -0.146 -4.588 11 2002-09 2007-10 0.56 0.83  

Los Angeles -0.032 -3.761 11 1995-11 2003-10 0.20 0.62  

Miami -0.148 -4.717 11 2000-12 2007-09 0.47 0.82 79.4% 

New York -0.226 -5.155 9 2000-11 2006-02d 0.47 0.74 70.4% 

Minneapolis -0.142 -4.124 12 1999-10 2007-08 0.41 0.82 48.4% 

Phoenix -0.345 -7.211c 8 2007-04 2008-12d 0.80 0.89  

Portland -0.284 -5.919b 12 1997-03d 2008-07 0.27 0.87 56.3% 

San Diego -0.063 -5.175 11 1999-01 2006-06 0.37 0.76 134.5% 

San Francisco -0.064 -3.096 10 2003-12 2008-08d 0.63 0.87  

Seattle -0.132 -3.845 12 1997-06 2007-07d 0.29 0.81 119.2% 

Tampa -0.271 -5.516a 7 2000-07 2006-06 0.45 0.76 103.4% 

Washington DC -0.078 -3.640 10 2001-05 2007-07 0.49 0.81 61.8% 

Notes:  𝑘̂ is the optimal lagged first-differenced terms, 𝑇̂𝐵𝑚 for 𝑚 = 1, 2 denotes the year and month 

of the estimated break points and 𝜆̂𝑚 = 𝑇̂𝐵𝑚/𝑇 for 𝑚 = 1, 2 denote the location of the breaks. a, b, 
and c denote significant at the 10%, 5%, and 1% levels, respectively. d denotes that the identified break 
point is not significant at the 10%. 
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Table 5 
       Differences in High and Mid (𝑦𝑡

𝐻𝑀 ≡  𝑝𝐻,𝑡 − 𝑝𝑀,𝑡) with Breaks, 1992m01 through 2011m08. 

 

𝜙̂ 
Test 

Statistic 
𝑘̂ 𝑇̂𝐵1 𝑇̂𝐵2 𝜆̂1 𝜆̂2 

Atlanta -0.468 -7.105c 11 2001-06 2009-01 0.50 0.89 

Boston -0.118 -4.016 5 1998-10 2005-08 0.36 0.72 

Chicago -0.116 -3.253 12 2001-06 2008-07 0.50 0.87 

Denver -0.162 -4.516 5 2003-06 2008-03 0.60 0.85 

Los Angeles -0.078 -4.024 12 1998-05 2006-09 0.33 0.77 

Miami -0.140 -4.040 6 2000-10 2007-07 0.46 0.81 

New York -0.214 -5.258 12 2000-11 2006-12 0.47 0.78 

Minneapolis -0.256 -4.599 11 2000-11 2007-09 0.47 0.82 

Phoenix -0.270 -4.831 12 2004-09 2009-02 0.67 0.90 

Portland -0.240 -5.694a 12 1997-06 2008-11 0.29 0.89 

San Diego -0.094 -4.057 11 2001-01 2006-10 0.47 0.78 

San Francisco -0.151 -4.606 7 2000-09 2007-05 0.46 0.81 

Seattle -0.240 -4.991 12 1997-03 2008-06 0.27 0.86 

Tampa -0.304 -4.848 10 2001-12 2007-10 0.52 0.83 

Washington DC -0.056 -3.659 11 2002-09 2008-09d 0.56 0.88 

Notes:  𝑘̂ is the optimal lagged first-differenced terms, 𝑇̂𝐵𝑚 for 𝑚 = 1, 2 denotes the year 

and month of the estimated break points and 𝜆̂𝑚 = 𝑇̂𝐵𝑚/𝑇  for 𝑚 = 1, 2  denote the 
location of the breaks. a, b, and c denote significant at the 10%, 5%, and 1% levels, 
respectively. d denotes that the identified break point is not significant at the 10%. 
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