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ABSTRACT

Very high energy (VHE, E > 100 GeV) γ-ray flaring activity of the high-frequency peaked BL Lac object PG 1553
+113 has been detected by the H.E.S.S. telescopes. The flux of the source increased by a factor of 3 during the
nights of 2012 April 26 and 27 with respect to the archival measurements with a hint of intra-night variability. No
counterpart of this event has been detected in the Fermi-Large Area Telescope data. This pattern is consistent with
VHE γ-ray flaring being caused by the injection of ultrarelativistic particles, emitting γ-rays at the highest energies.
The dataset offers a unique opportunity to constrain the redshift of this source at z = 0.49 ± 0.04 using a novel
method based on Bayesian statistics. The indication of intra-night variability is used to introduce a novel method to
probe for a possible Lorentz invariance violation (LIV), and to set limits on the energy scale at which Quantum
Gravity (QG) effects causing LIV may arise. For the subluminal case, the derived limits are
EQG,1 > 4.10 × 1017 GeV and EQG,2 > 2.10 × 1010 GeV for linear and quadratic LIV effects, respectively.

Key words: BL Lacertae objects: individual (PG 1553+113) – galaxies: active – galaxies: distances and redshifts –
gamma-rays: galaxies

1. INTRODUCTION

Blazars are active galactic nuclei (AGNs) with their jets
closely aligned with the line of sight to the Earth (Urry &
Padovani 1995). Among their particularities is flux variability
at all wavelengths on various time scales, from years down to
(in some cases) minutes (Gaidos et al. 1996; Aharonian
et al. 2007a). Flaring activity of blazars is of great interest for
probing the source-intrinsic physics of relativistic jets,
relativistic particle acceleration and generation of high-energy
radiation, as well as for conducting fundamental physics tests.
On the one hand, exploring possible spectral variability
between flaring and stationary states helps to understand the
electromagnetic emission mechanisms at play in the jet. On the
other hand, measuring the possible correlation between photon
energies and arrival times allows one to test for possible
Lorentz invariance violation (LIV) leading to photon-energy-
dependent variations in the speed of light in vacuum.

Located in the Serpens Caput constellation, PG 1553+113
was discovered by Green et al. (1986), who first classified it as
a BL Lac object. Later the classification was refined to a high-
frequency peaked BL Lac object (HBL, Giommi et al. 1995).
PG 1553+113 exhibits a high X-ray to radio flux
( > -F Flog ( ) 4.52 keV 5 GHz , Osterman et al. 2006), which
places it among the most extreme HBLs (Rector et al. 2003).
The object was observed in X-rays by multiple instruments in
different flux states. Its 2–10 keV energy flux ranges from

´ - - -0.3 10 erg cm s11 2 1 (Osterman et al. 2006) to
´ - - -3.5 10 erg cm s11 2 1 (Reimer et al. 2008) but no fast

variability (in the sub-hour time scale) has been detected so far.
PG 1553+113 was discovered at very high energies (VHE,

E > 100 GeV) by H.E.S.S. (Aharonian et al. 2006a, 2008) with

a photon index of G = 4.0 ± 0.6. At high energies (HE, 100
MeV < E < 300 GeV) the source has been detected by the
Fermi Large Area Telescope (LAT) (Abdo
et al. 2009b, 2010a) with a very hard photon index of G
= 1.68 ± 0.03, making this object the one with the largest HE–
VHE spectral break (DG ≈ 2.3) ever measured. No variability
in Fermi-LAT was found by Abdo et al. (2009b, 2010a) on
daily or weekly time scales, but using an extended data set of
17 months, Aleksić et al. (2012) reported variability above
1 GeV with flux variations of a factor of ∼5 on a yearly time
scale.
With 5 yr of monitoring data of the MAGIC telescopes,

Aleksić et al. (2012) discovered variability in VHE γ-rays with
only modest flux variations (from 4% to 11% of the Crab
Nebula flux). In addition to the high X-ray variability, this
behavior can be interpreted as evidence for Klein–Nishina
effects (Abdo et al. 2010a) in the framework of a synchrotron
self-Compton model. The source underwent VHE γ-ray flares
in 2012 March (Cortina 2012a) and April (Cortina 2012b),
detected by the MAGIC telescopes. During the March flare, the
source was at a flux level of about 15% of that of the Crab
Nebula, while in April it reached ≈50%. During those VHE γ-
ray flares, also a brightening in X-ray, UV and optical
wavelengths has been noticed by the MAGIC collaboration.
A detailed study of the MAGIC telescopes and multi-
wavelength data is in press (Aleksić et al. 2014). The latter
event triggered the H.E.S.S. observations reported in this work.
Note that the VERITAS collaboration has reported an overall
higher flux in 2012 (Aliu et al. 2015) in VHE.
Despite several attempts to measure it, the redshift of

PG 1553+113 still suffers from uncertainties. Different
attempts, including optical spectroscopy (Treves et al. 2007;
Aharonian et al. 2008) or comparisons of the HE and VHE
spectra of PG 1553+113 (Prandini et al. 2009; Sanchez

43 Wallenberg Academy Fellow.
44 Funded by contract ERC-StG-259391 from the European Community.
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et al. 2013), were made. Based on the assumption that the
extragalactic background light (EBL)-corrected VHE spectral
index is equal to the Fermi-LAT one, Prandini et al. (2009)
derived an upper limit (UL) of z < 0.67. Comparing PG 1553
+113 statistically with other known VHE emitters and taking
into account a possible intrinsic γ-ray spectral break through a
simple emission model, Sanchez et al. (2013) constrained the
redshift to be below 0.64 and Aliu et al. (2015) constrained it at
z < 0.62 using VHE data only. The best estimate to-date was
obtained by Danforth et al. (2010) who found the redshift to be
between 0.43 and 0.58 using far-ultraviolet spectroscopy.

This paper concentrates on the HE and VHE emission of
PG 1553+113 and is divided as follows: Sections 2.1 and 2.2
present the H.E.S.S. and Fermi-LAT analyses. The discus-
sion, in Section 3, includes the determination of the redshift
using a novel method and the constraints derived on LIV
using a modified likelihood formulation. Throughout this
paper a LCDM cosmology with = H 70.4 1.40
km s−1Mpc−1, Ωm = 0.27 ± 0.03, = LΩ 0.73 0.03 from
WMAP (Komatsu et al. 2011) is assumed.

2. DATA ANALYSIS

2.1. H.E.S.S. Observations and Analysis

H.E.S.S. is an array of five imaging atmospheric Cherenkov
telescopes located in the Khomas highland in Namibia
(  ¢ 23 16 18 S, 16°30′01″ E), at an altitude of 1800 m above
sea level (Hinton & the H.E.S.S. Collaboration 2004). The fifth
H.E.S.S. telescope was added to the system in 2012 July and is
not used in this work, reporting only on observations prior to
that time.

PG 1553+113 was observed with H.E.S.S. in 2005 and 2006
(Aharonian et al. 2008). No variability was found in these
observations, which will be referred to as the “pre-flare” data
set in the following. New observations were carried out in 2012
April after flaring activity at VHE was reported by the MAGIC
collaboration (“flare” data set, Cortina 2012b).

The pre-flare data set is composed of 26.4 live time hours of
good-quality data (Aharonian et al. 2006b). For the flare
period, eight runs of ∼28 minutes each were taken during the
nights of 2012 April 26 and 27, corresponding to 3.5 hr of live
time. All the data were taken in wobble mode, for which the
source is observed with an offset of ◦0 .5 with respect to the
center of the instrumentʼs field of view, yielding an acceptance-
corrected live time of 24.7 and 3.2 hr for the pre-flare and flare
data sets, respectively.
Data were analyzed using the Model analysis (de Naurois &

Rolland 2009) with Loose cuts. This method–based on the
comparison of detected shower images with a pre-calculated
model–achieves a better rejection of hadronic air showers and a
better sensitivity at lower energies than analysis methods based
on Hillas parameters. The chosen cuts, best suited for sources
with steep spectra such as PG 1553+113,45 require a minimum
image charge of 40 photoelectrons, which provides an energy
threshold of~217 GeV for the pre-flare and~240 GeV for the
flare data set.46 All the results presented in this paper were
cross-checked with the independent analysis chain described in
Becherini et al. (2011).
Events in a circular region (ON region) centered on the

radio position of the source, a = 15 55 43. 04,J2000
h m s

d =  ¢ 11 11 24. 4J2000 (Green et al. 1986), with a maximum
squared angular distance of 0.0125 deg2, are used for the
analysis. In order to estimate the background in this region,
the reflected background method (Berge et al. 2007) is used to
define the OFF regions. The excess of γ-rays in the ON region
is statistically highly significant (Li & Ma 1983): 21.5σ for
the pre-flare period and 22.0σ for the flare. Statistics are
summarized in Table 1.
The differential energy spectrum of the VHE γ-ray emission

has been derived using a forward-folding method (Piron
et al. 2001). For the observations prior to 2012 April, a power

Table 1
Summary of the Statistics for Both Data Sets (First Column)

Data Set ON OFF r Excess Significance E (GeV)th Zenith Angle c
P cst

2

Pre-flare 2205 13033 0.100 901.7 21.5 217 34° 0.77

Flare 559 1593 0.105 391.2 22.0 240 52° 3.3 × 10−3

Note. The second and third columns give the number of ON and OFF events. The fourth column gives the ratio between ON and OFF exposures (r). The excess and
the corresponding significance are given, as well as the energy threshold and the mean zenith angle of the source during the observations. The last column presents the
probability of the flux to be constant within the observations (see text).

Table 2
Summary of the Fitted Spectral Parameters for the Pre-flare and the Flare Data Sets and the Corresponding Integral Flux I Calculated Above 300 GeV

Data Set (Model) Spectral Parameters I (E > 300 GeV) Edec

(10−12 ph cm−2 s−1) (GeV)

Pre-flare (PWL) Γ = 4.8 ± 0.2stat ± 0.2sys 4.4 ± 0.4stat ± 0.9sys 306

Pre-flare (LP) =  a 5.4 0.4 0.1stat sys 5.0 ± 0.6stat ± 1.0sys L

b = 4.0 ± 1.4stat ± 0.2sys

Flare (PWL) Γ = 4.9 ± 0.3stat ± 0.2sys 15.1 ± 1.3stat ± 3.0sys 327

Note. The Last Column gives the Decorrelation Energy.

45 PG 1553+113 has one of the steepest spectra measured at VHE.
46 The difference of energy threshold between the two data set is due to the
changing observation conditions, e.g., zenith angle and optical efficiency.
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law (PWL) model fitted to the data gives a χ2 of 51.7 for 40
degrees of freedom (dof, corresponding to a χ2 probability of

=cP 0.102 ). The values of the spectral parameters (see
Table 2) are compatible with previous analyses by H.E.S.S.
covering the same period (Aharonian et al. 2008). A log-
parabola (LP) model,47 with a χ2 of 37.5 for 39 dof
( =cP 0.542 ), is found to be preferred over the PWL model
at a level of 4.3σ using the log-likelihood ratio test. Note that
systematic uncertainties, presented in Table 2, have been
evaluated by Aharonian et al. (2006b) for the PWL model and
using the jack-knife method for the LP model. The jack-knife
method consists in removing one run and redoing the analysis.
This process is repeated for all runs.

For the flare data set, the LP model does not significantly
improve the fit and the simple PWL model describes the data
well, with a χ2 of 33.0 for 23 dof ( =cP 0.082 ). Table 2
contains the integral fluxes above the reference energy of
300 GeV. The flux increased by a factor of ∼3 in the flare data
set compared to the pre-flare one with no sign of spectral
variations (when comparing power law fits for both data sets).
The derived spectra and error contours for each data set are
presented in Figure 1, where the spectral points obtained from
the cross-check analysis are also plotted.

To compute the light curves, the integrated flux above
300 GeV for each observation run was extracted using the
corresponding (pre-flare or flare) best fit spectral model. A fit
with a constant of the run-wise light curve of the entire (pre-
flare+flare) data set, weighted by the statistical errors, yields a

χ2 of 123.2 with 68 dof ( = ´c
-P 6.6 10 52 ). Restricting the

analysis to the pre-flare data set only, the fit yields a χ2 of 51.76
with 60 dof ( =cP 0.772 ), indicating again a flux increase
detected by H.E.S.S. at the time of the flaring activity reported
by Cortina (2012b).
Figure 2 shows the light curve during the flare together with

the averaged integral fluxes above 300 GeV of both data sets. A
fit with a constant to the H.E.S.S. light curve during the first
night yields a χ2 of 20.76 for 6 dof ( = ´c

-P 2.0 10 32 ),
indicating intra-night variability. This is also supported by the

Figure 1. Differential fluxes of PG 1553+113 during the pre-flare (left) and flare (right) periods. Error contours indicate the 68% uncertainty on the spectrum.
Uncertainties on the spectral points (in black) are given at 1σ level, and upper limits are computed at the 99% confidence level. The gray squares were obtained by the
cross-check analysis chain and are presented to visualize the match between both analyses. The gray error contour on the left panel is the best-fit power law model. The
lower panels show the residuals of the fit, i.e., the difference between the measured (nobs) and expected numbers of photons (nmodel), divided by the statistical error on
the measured number of photons (snobs).

Figure 2. H.E.S.S. light curve of PG 1553+113 during the two nights of the
flare period. The continuous line is the measured flux during the flare period
while the dashed one corresponds to the pre-flare period (see Table 2 for the
flux values). Gray areas are the 1σ errors.

47 The log-parabola is defined by = F - -( )dN dE E E a b E E
0 0

log( )0 .
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use of a Bayesian block algorithm (Scargle 1998) that finds
three blocks for the two nights at a 95% confidence level.

2.2. Fermi-LAT Analysis

The Fermi-LAT is detector converting γ-rays to e+e− pairs
(Atwood et al. 2009). The LAT is sensitive to γ-rays from
20MeV to >300 GeV. In survey mode, in which the bulk of the
observations are performed, each source is seen every 3 hr for
approximately 30 minutes.

The Fermi-LAT data and software are available from the
Fermi Science Support Center.48 In this work, the ScienceTools
V9R32P5 were used with the Pass 7 reprocessed data
(Bregeon et al. 2013), specifically SOURCE class event
(Ackermann et al. 2012a), with the associated P7REP_SOUR-
CE_V15 instrument response functions. Events with energies
from 300MeV to 300 GeV were selected. Additional cuts on
the zenith angle (<100°) and rocking angle (<52°) were
applied as recommended by the LAT collaboration49 to reduce
the contamination from the Earth atmospheric secondary
radiation.

The analysis of the LAT data was performed using the
Enrico Python package (Sanchez & Deil 2013). The sky
model was defined as a region of interest of 15° radius with
PG 1553+113 in the center and additional point-like sources
from the internal 4 yr source list. Only the sources within a
3° radius around PG 1553+113 and bright sources (integral flux
greater than 5 × 10−7 ph cm−2 s−1) had their parameters free to
vary during the likelihood minimization. The template files
isotrop_4years_P7_V15_repro_v2_source.
txt for the isotropic diffuse component, and templa-
te_4years_P7_v15_repro_v2.fits for the standard
Galactic model, were included. A binned likelihood analysis
(Mattox et al. 1996), implemented in the gtlike tool, was
used to find the best-fit parameters.

As for the H.E.S.S. data analysis, two spectral models were
used: a simple PWL and a LP. A likelihood ratio test was used
to decide which model best describes the data. Table 3 gives
the results for the two time periods considered in this work, and
Figure 3 presents the γ-ray spectral energy distributions. The
first one (pre-flare), before the H.E.S.S. exposures in 2012,
includes more than 3.5 yr of data (from 2008 August 4 to 2012
March 1). The best fit model is found to be the LP (with a Test
Statistic50 of 11.3, ≈3.4σ). The second period (flare) is

centered on the H.E.S.S. observation windows and lasts for 7
days. The best fit model is a power law, the flux being
consistent with the one measured during the first 3.5 yr. Data
points or light curves were computed within a restricted energy
range or time range using a PWL model with the spectral index
frozen to 1.70.
To precisely probe the variability in HE γ-rays, 7-day time

bins were used to compute the light curve of PG 1553+113 in an
extended time window (from 2008 August 4 to 2012 October
30), to probe any possible delay of a HE flare with respect to the
VHE one. While the flux of PG 1553+113 above 300MeV is
found to be variable in the whole period with a variability index
of = F 0.16 0.04var (Vaughan et al. 2003), there is no sign of
any flaring activity around the 2012 H.E.S.S. observations. This
result has been confirmed by using the Bayesian block algorithm,
which finds no block around the H.E.S.S. exposures in 2012.
Similar results were obtained when considering only photons
with an energy greater than 1 GeV. No sign of enhancement of
the HE flux associated to the VHE event reported here was
found. This might be due to the lack of statistics at high energy in
the LAT energy range.

3. DISCUSSION OF THE RESULTS

3.1. Variability in γ-rays

The VHE data do not show any sign of variation of the
spectral index (when comparing flare and pre-flare data sets
with the same spectral model), and in HE no counterpart of this
event can be found. The indication for intra-night variability is
similar to other TeV HBLs (Mrk 421, Mrk 501 or PKS 2155-
304) with, in this case, flux variations of a factor 3.
As noticed in previous works, PG 1553+113 presents a sharp

break between the HE and VHE ranges (Abdo et al. 2010a) and
the peak position of the γ-ray spectrum in the νf(ν)
representation is located around 100 GeV. This is confirmed
by the fact that the LP model better represents the pre-flare
period in HE. Nonetheless, the precise location of this peak
cannot be determined with the Fermi-LAT data only. Combin-
ing both energy ranges and fitting the HE and VHE data points
with a power law with an exponential cutoff51 allows us to
determine the νf(ν) peak position for both time periods. The
functional form of the model is

=
æ
è
ççç

ö
ø
÷÷÷ -
-G

( )E
dN

dE
N

E
E E

100 GeV
exp .2

c

Table 3
Results of the Fermi-LAT Data Analysis for the Pre-flare and Flare Periods

MJD Range Energy Range TS Spectral Parameters I(E > 300MeV)
(GeV) (10−8 (ph cm−2 s−1)

54682–55987 0.3–300 7793.7 a = 1.49 ± 0.06stat ± 0.01sys 2.82 ± 0.1stat ± 0.2sys
b = 3.8 ± 1.1stat ± 0.1sys

56040–56047 0.3–300 43.8 Γ = 1.78 ± 0.24stat ± 0.01sys 3.5 ± 1.3stat ± 0.3sys

56040–56047 0.3–80 44.5 Γ = 1.72 ± 0.26stat ± 0.01sys 3.4 ± 1.3stat ± 0.3sys

Note. For the flare period, the analysis has been performed in two energy ranges (see Section 3.2). The first two columns give the time and energy windows and the
third the corresponding Test Statistic (TS) value. The model parameters and the flux above 300 MeV are given in the last two columns. The systematic uncertainties
were computed using the IRFs bracketing method (Abdo et al. 2009a).

48 http://fermi.gsfc.nasa.gov/ssc/data/analysis/
49 http://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Cicerone/
index.html
50 Here the TS is two times the difference between the log-likelihood of the fit
with a LP minus the log-likelihood with a PL.

51 A fit with a LP model has been attempted, but the power law with an
exponential cutoff leads to a better description of the data.
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For this purpose, Fermi-LAT and H.E.S.S. systematic uncer-
tainties were taken into account in a similar way as in
Abramowski et al. (2014) and added quadratically to the
statistical errors. The Fermi-LAT systematic uncertainties were
estimated by Ackermann et al. (2012a) to be 10% of the
effective area at 100MeV, 5% at 316MeV and 15% at 1 TeV
and above. For the VHE γ-ray range, they were taken into
account by shifting the energy by 10%. This effect translates
into a systematic uncertainty for a single point of
s = ¶ ¶f f E( ) 0.1 ·sys where f is the differential flux at energy
E.

The results of this parameterization are given in Table 4.
Using the pre-flare period, the peak position is found to be
located at =  Elog ( 1 GeV) 1.7 0.2 0.410 max stat sys with no
evidence of variation during the flare and no spectral variation.
This is consistent with the fact that no variability in HE γ-rays
was found during the H.E.S.S. observations. This is also in
agreement with the fact that HBLs are less variable in HE γ-
rays than other BL Lac objects (Abdo et al. 2010b), while
numerous flares have been reported in the TeV band.

3.2. Constraints on the Redshift

The EBL is a field of UV to far-infrared photons produced
by the thermal emission from stars and reprocessed starlight by
dust in galaxies (see Hauser & Dwek 2001, for a review) that
interacts with very high energy γ-rays from sources at
cosmological distances. As a consequence, a source at redshift
z exhibits an observed spectrum f f= ´ t-E E e( ) ( ) E z

obs int
( , )

where f E( )int is the intrinsic source spectrum and τ is the
optical depth due to interaction with the EBL. Since the optical
depth increases with increasing γ-ray energy, the integral flux
is lowered and the spectral index is increased.52 In the
following, the model of Franceschini et al. (2008) was used
to compute the optical depth τ as a function of redshift and
energy. In this section, the data taken by both instruments
during the flare period are used, with the Fermi-LAT analysis
restricted to the range 300MeV < E < 80 GeV (see Table 3 for

the results). In the modest redshift range of VHE emitters
detected so far ( ⩽z 0.6), the EBL absorption is negligible
below 80 GeV (t ~gg 0.1 at 80 GeV for z = 0.6).
A measure of the EBL energy density was obtained by

Ackermann et al. (2012b) and Abramowski et al. (2013b)
based on the spectra of sources with a known z. In the case of
PG 1553+113, for which the redshift is unknown, the effects of
the EBL on the VHE spectrum might be used to derive
constraints on its distance. Ideally, this would be done by
comparing the observed spectrum with the intrinsic one but the
latter is unknown. The Fermi-LAT spectrum, derived below
80 GeV, can be considered as a proxy for the intrinsic spectrum
in the VHE regime, or at least, as a solid UL (assuming no
hardening of the spectrum).
Following the method used by Abramowski et al. (2013a), it

has been assumed that the intrinsic spectrum of the source in
the H.E.S.S. energy range cannot be harder than the
extrapolation of the Fermi-LATmeasurement. From this, one
can conclude that the optical depth cannot be greater than
τmax(E), given by:

t
f

a f f
=

é

ë

ê
ê
ê - - D

ù

û

ú
ú
ú( )

E( ) ln
(1 ) 1.64

, (1)max
int

obs obs

where ϕint is the extrapolation of the Fermi-LATmeasurement
toward the H.E.S.S. energy range. f f Dobs obs is the flux
measured by H.E.S.S. The factor (1 − α) = 0.8 accounts for the
systematic uncertainties of the H.E.S.S. measurement and the
number 1.64 has been calculated to have a confidence level of
95% (Abramowski et al. 2013a). The comparison is made at
the H.E.S.S. decorrelation energy where the flux is best
measured.
Figure 4 shows the 95% UL on τmax. The resulting UL on

the redshift is z < 0.43. This method does not allow the
statistical and systematic uncertainties of the Fermi-
LATmeasurement to be taken into account and does not take
advantage of the spectral features of the absorbed spectrum
(see Abramowski et al. 2013b).
A Bayesian approach has been developed with the aim of

taking all the uncertainties into account. It also uses the fact that
EBL-absorbed spectra are not strictly power laws. The details of
the model are presented in Appendix A and only the main
assumptions and results are recalled here. Intrinsic curvature
between the HE and VHE ranges that naturally arises due to
either curvature of the emitting distribution of particles or
emission effects (e.g., Klein–Nishina effects) is permitted by
construction of the prior (Equation (A.1)). A spectral index
softer than the Fermi-LATmeasurement is allowed with a
constant probability, in contrast with the previous calculation. It
is assumed that the observed spectrum in VHE γ-rays cannot be
harder than the Fermi-LATmeasurement by using a prior that
follows a Gaussian for indices harder than the Fermi-LAT one.
The prior on the index is then:

sG µ G G G ( )P ( ) , , (2)G Fermi

if G < GFermi and

G µP ( ) 1

otherwise. GFermi is the index measured by Fermi-LAT and sG is
the uncertainty on this measurement that takes all the systematic
and statistical uncertainties into account.

Figure 3. Spectral energy distribution of PG 1553+113 in γ-rays as measured
by the Fermi-LAT and H.E.S.S. Red (blue) points and butterflies have been
obtained during the flare (pre-flare) period. The Fermi and H.E.S.S. data for the
pre-flare are not contemporaneous. H.E.S.S. data were taken in 2005–2006
while the Fermi data were taken between 2008 and 2012.

52 For sake of simplicity it is assumed here that the best-fit model is a power
law, an assumption which is true for most of the cases due to limited statistics
in the VHE range.
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The most probable redshift found with this method is
z = 0.49 ± 0.04, in good agreement with the independent
measure of Danforth et al. (2010), who constrained the
distance to be between 0.43 < z < 0.58. Figure 5 gives the
posterior probability obtained with the Bayesian method
compared with other measurements of z. Lower and upper
limits at a confidence level of 95% can also be derived as
0.41 < z < 0.56. Note that this method allows the systematic
uncertainties of both instruments (Fermi-LAT and H.E.S.S.) to
be taken into account. The spectral index obtained when fitting
the H.E.S.S. data with an EBL absorbed PWL using a redshift
of 0.49 is compatible with the Fermi measurement below
80 GeV.

3.3. Lorentz Invariance Violation

As stated in Section 2.1, the H.E.S.S. data of the flare show
an indication of intra-night variability, which is used here to
test for a possible LIV. Some Quantum Gravity (QG) models
predict a change of the speed of light at energies close to the
Planck scale (~1019 GeV). A review of such models can be

found in Mattingly (2005) and Liberati (2013). An energy-
dependent dispersion in vacuum is searched for in the data by
testing a correlation between arrival times of the photons and
their energies. For two photons with arrival times t1 and t2 and
energies E1 and E2, the dispersion parameter of order n is
defined as t = =-

-
D

Dn
t t

E E

t

E( )n n n
2 1

2 1
. Here only the linear (n = 1)

and quadratic (n = 2) dispersion parameters are calculated.
Assuming no intrinsic spectral variability of the source, the
dispersion τn can be related to the normalized distance of the
source κn corrected for the expansion of the universe and an
energy EQG at which QG effects are expected to occur (Jacob
& Piran 2008):

t k=
D

D
+


( )

t

E
s

n

E H

(1 )

2
(3)n n n n

QG 0

where H0 is the Hubble constant and s± = −1 (resp. +1) in the
superluminal (resp. subluminal) case, in which the high-energy
photons arrive before (resp. after) low-energy photons. The
normalized distance κn is calculated from the redshift of the
source z and the cosmological parameters Ωm, LΩ given in the
introduction:

òk =
+ ¢ ¢

+ ¢ + L

z dz

z

(1 )

Ω (1 ) Ω
(4)n

z n

m
0 3

Using the central value of z = 0.49 determined in Section 3.2,
the distance κn for n = 1 and 2 is κ1 = 0.541 and κ2 = 0.677.
First, the dispersion measurement method will be described.

It will then be applied to the H.E.S.S. flare dataset (Monte
Carlo (MC) simulations and original dataset), in order to
measure the dispersion and provide 95% 1-sided lower and
upper limits on the dispersion parameter τn. These limits on τn
will lead to lower limits (LLs) on EQG using Equation (3).

3.3.1. Modified Maximum Likelihood Method

A maximum likelihood method, following Martinez &
Errando (2009), was used to calculate the dispersion parameter
τn. Albert et al. (2008) applied this method to a flare of
Mkn 501, while Abramowski et al. (2011) applied it to a flare
of PKS 2155-304. More recently, it was used by Vasileiou et al.
(2013) to analyze Fermi data of four gamma-ray bursts. The
data from Cherenkov telescopes are contaminated by π0 decay
from proton showers, misidentified electrons, or heavy
elements such as helium. In the case of PG 1553+113, and
contrary to previous analyses, this background is not
negligible: the signal-over-background ratio S/B is about 2,
compared to 300 for the PKS 2155-304 flare event of 2006 July
(Aharonian et al. 2007b). The background was included in the
formulation of the probability density function (PDF) used in a
likelihood maximization method. Given the times ti and
energies Ei of the gamma-like (ON) particles received by the

Table 4
Parametrization Results of the Two Time Periods (First Column) Obtained by Combining H.E.S.S. and Fermi-LAT

Period N (E = 100 GeV) Γ Elog ( 1 GeV)10 c Elog ( 1 GeV)10 max

(10−11 - -erg cm s2 1)

Pre-flare 9.6 ± 0.7stat ± 1.7sys 1.59 ± 0.02stat ± 0.03sys 2.03 ± 0.02stat ± 0.04sys 1.7 ± 0.2stat ± 0.4sys
Flare 13.0 ± 3.5stat ± 5.7sys 1.56 ± 0.08stat ± 0.11sys 2.16 ± 0.04stat ± 0.09sys 1.8 ± 0.7stat ± 1.3sys

Note. The second column gives the normalization at 100 GeV, while the third and the fourth present the spectral index and cut-off energy of the fitted power law with
an exponential cut-off. The last column is the peak energy in a n nf ( ) representation.

Table 5
Calibrated 95% 1-Sided LL and UL (including systematic errors) on the
Dispersion Parameter tn and Derived 95% one-sided Lower Limits on EQG

Limits on τn (s TeV
−n) Lower Limits on EQG (GeV)

n +LLcalib syst ULcalib + syst s = −1 s = +1

1 −838.9 576.4 2.83 × 1017 4.11 × 1017

2 −1570.5 1012.4 1.68 × 1010 2.10 × 1010

Figure 4. Values of τmax as a function of the photon energy. The black line is
the 95% UL obtained with the H.E.S.S. data and the red line is the optical depth
computed with the model of Franceschini et al. (2008) for a redshift of 0.43.
The blue line is the decorrelation energy for the H.E.S.S. analysis. The gray
lines are the value of optical depth for different redshifts.
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detector, the unbinned likelihood function of the dispersion
parameter τn is:

t t=
=

( )L P E t( ) , . (5)n
i

n

i i n
1

ON

The PDF t∣P E t( , )i i n associated with each ON event is
composed of two terms:

t t=

+ -

( ) ( )
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The PDF PSig includes the emission time distribution of the
photons FSig determined from a parameterization of the
observed light curve at low energies (discussed in the next
section) and evaluated on t-t E·n

n to take into account the
delay due to a possible LIV effect, the measured signal
spectrum ΛSig and the effective area Aeff. The PDF PBkg is
composed of the uniform time distribution FBkg of the
background events, the measured background spectrum ΛBkg

and the effective area Aeff. No delay due to a possible LIV
effect is expected in the background events of the ON data set.
N(τn) and N′ are the normalization factors of PSig and PBkg

respectively, in the (E, t) range of the likelihood fit. The
coefficient ws corresponds to the relative weight of the signal
events in the total ON data set, derived from the number of
events in the ON region nON and the number of events in the
OFF regions nOFF weighted by the inverse number of OFF
regions α. More details on the derivation of this function are
given in Appendix B.1.

3.3.2. Specific Selection Cuts and Timing Model

The flare data set of the H.E.S.S. analysis (see Section 2.1)
was used with additional cuts. To perform the dispersion
studies, only uninterrupted data have been kept. Thus, the
analysis was conducted on the first seven runs, taken during the
night of April 26. Moreover, the cosmic ray flux increases
substantially for the seventh run, due to a variation of the zenith
angle during this night. This fact, along with its large statistical
errors, leads us to discard this run from the analysis. The sixth
run shows little to no variability and was therefore also
removed from the LIV analysis. Since within the ON data set,
the signal and the background spectra have different indices
(G = 4.8Sig for the signal and G = 2.5Bkg for the background),
the ratio S/B is expected to decrease with increasing energy. An
upper energy cut at Emax = 789 GeV was set, corresponding to
the last bin with more than 3σ significance in the reconstructed
photon spectrum (see the differential flux during the flare in
Figure 1). A lower cut on the energy at Emin = 300 GeV was
used in order to avoid large systematic effects arising from high
uncertainties on the H.E.S.S. effective area at lower energies.
The intrinsic light curve of the flare, needed in the formulation
of the likelihood, can be obtained from a model of the timed
emission or approximated from a subset of the data. To be as
model-independent as possible, it was here derived from a fit of
the measured light curve at low energies (with E < Ecut). The
high-energy events ( >E Ecut) were processed in the calcula-
tion of the likelihood to search for potential dispersion. Here
Ecut was set to Ecut = 400 GeV, which is approximately the
median energy of the ON event sample. Other cuts on the
energy did not introduce significant effects on the final results.
The histogram and the fit (Figure 6) were obtained as follows:
the main idea was to preserve the maximum detected variability

Figure 5. Posterior probability density as a function of redshift (red). The blue
area represents the redshift range estimated by Danforth et al. (2010) while the
green dashed line indicates the limit of Sanchez et al. (2013).

Figure 6. Time distribution of the excess ON − αOFF in the first six runs
(70971–70976), with energies between 300 and 400 GeV. T = 0 corresponds
to the time of the first detected event in run 70971. The vertical bars correspond
to 1σ statistical errors; the horizontal bars correspond to the bin width in time.
The best fit, in red, was used as the template light curve in the maximum
likelihood method; the ±1σ error envelope is shown in green.
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in the PG 1553+113 flare, together with a significant response
in each observed peak:

1. The binning was chosen so that at least two adjacent bins
of the distribution yield a minimum of 3σ excess with
respect to the average value.

2. Simple parameterizations have been tested on the whole
data set (all energies): constant (χ2/dof = 25/12), single
Gaussian (χ2/dof = 20/10) and double Gaussian (χ2/
dof = 8.5/7) functions. The latter is preferred, since it
improves the quality of the fit. This shape was chosen to
fit the low energy subset of events. Choosing a single
Gaussian parameterization would result in a decrease of
the sensitivity to time-lag measurements by a factor
of two.

There is a gap of ∼2 minutes between each two consecutive
runs. We did not consider the effect of these gaps as it is small
with respect to the bin width of ∼10 minutes. More
importantly, their occurrence is not correlated with the binning:
one gap falls in the rising part of the light curve, one is at a
maximum, two fall in the decreasing parts and none of the gaps
is at the minimum.

Table B1 in Appendix B.2 shows the number of ON and
OFF events for the different cuts applied to the data.

3.3.3. Results: Limits on τn and EQG

The maximum likelihood method was performed using high-
energy events with Ei > Ecut. First, confidence intervals (CIs)
corresponding to 95% confidence level (1-sided) were
determined from the likelihood curve at the values of τn where
the curve reaches 2.71, which corresponds to the 90% CL
quantile of a χ2 distribution. However, these CIs are derived
from one realization only and do not take into account the
“luckiness” factor of this measurement. To get statistically
significant CIs (“calibrated CIs”), several sets were generated
with MC simulations, with the same statistical significance,
light curve model and spectrum as the original data set. No

intrinsic dispersion was artificially added. Each simulated data
set produces a LL and an UL on τn. The calibrated lower
(upper) limit of the confidence interval is obtained from the
mean of the distribution of the per-set individual lower (upper)
limits. Both CIs (from the data only and from the simulated
sets) are listed in Table B2. Sources of systematic errors
include uncertainties on the light curve parameterization, the
background contribution, the calculation of the effective area,
the energy resolution, and the determination of the photon
index (see Appendix B.4).
The resulting limits on the dispersion τn using the quadratic

sum of the statistical errors from the simulations and the
systematic errors determined from data and simulations were
computed, leading to limits on the energy scale EQG (Equa-
tion (3)). The 95% 1-sided LLs for the subluminal case (s = +1)
are: EQG,1 > 4.11 × 1017 GeV and > ´E 2.10 10QG,2

10 GeV for
linear and quadratic LIV effects, respectively. For the super-
luminal case (s = –1) the limits are: > ´E 2.83 10QG,1

17 GeV
and EQG,2 > 1.68 × 1010 GeV for linear and quadratic LIV effects,
respectively. Figure 7 shows a comparison of the different LLs on
EQG,1 and EQG,2 for the subluminal case (s = +1) obtained with
AGNs at different redshifts studied at VHE. All these limits,
including the present results, have been obtained under the
assumption that no intrinsic delays between photons of different
energies occur at the source. For the linear/subluminal case, the
most constraining limit on EQG with transient astrophysical events
has been obtained with GRB 090510: EQG,1 > 6.3 × 1019 GeV
(Vasileiou et al. 2013). The most constraining limits on EQG with
AGN so far have been obtained by Abramowski et al. (2011)
with PKS 2155-304 data observed with H.E.S.S.:

> ´E 2.1 10QG,1
18 GeV and EQG,2 > 6.4 × 1010 GeV for linear

and quadratic LIV effects, respectively (95% CL, 1-sided).
Compared to the PKS 2155-304 limits, the limits on the linear
dispersion for PG 1553+113 are one order of magnitude less
constraining, but the limits on the quadratic dispersion are of the
same order of magnitude since the source is located at a higher
redshift. This highlights the interest in studying distant AGNs, in
spite of the difficulties due to limited photon statistics.

Figure 7. Lower limits on EQG,1 from linear dispersion (left) and on EQG,2 from quadratic dispersion (right) for the subluminal case (s = +1) obtained with AGNs as a
function of redshift. The limits are given in terms of EPlanck. The constraints from Mkn 421 have been obtained by Biller et al. (1999), from Mkn 501 by Albert et al.
(2008), and from PKS 2155-304 by Abramowski et al. (2011).
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4. CONCLUSIONS

A VHE γ-ray flaring event of PG 1553+113 has been
detected with the H.E.S.S. telescopes, with a flux increasing by
a factor of 3. No variability of the spectral index has been found
in the data set, but indication of intra-night flux variability is
reported in this work. In HE γ-rays, no counterpart of this event
can be identified, which may be interpreted as the sign of
injection of high energy particles emitting predominantly in
VHE γ-rays. Such particles might not be numerous enough to
have a significant impact on the HE flux during either their
acceleration or cooling phases.

The data were used to constrain the redshift of the source
using a new approach based on the absorption properties of the
EBL imprinted in the spectrum of a distant source. Taking into
account all the instrumental systematic uncertainties, the
redshift of PG 1553+113 is determined as being z = 0.49
± 0.04.

Flares of variable sources can be used to probe LIV effects,
manifesting themselves as an energy-dependent delay in the
photon arrival time. A likelihood method, adapted to flares with
a large amount of background and modest statistics, was
presented. To demonstrate the analysis power of this method, it
was applied to the H.E.S.S. data of a flare of PG 1553+113.
This analysis relies on the indication of the intra-night
variability of the flare at VHE. No significant dispersion was
measured, and limits on the EQG scale were derived, in a region
of redshift unexplored until now. Limits on the energy scale at
which QG effects causing LIV may arise, derived in this work,
are > ´E 4.11 10QG,1

17 GeV and EQG,2 > 2.10 × 1010 GeV for
the subluminal case. Compared with previous limits obtained
with the PKS 2155-304 flare of 2006 July, the limits for
PG 1553+113 for a linear dispersion are one order of
magnitude less constraining while limits for a quadratic
dispersion are of the same order of magnitude. With the new
telescope placed at the center of the H.E.S.S. array that
provides an energy threshold of several tens of GeV, a better
picture of the variability patterns of AGN flares should be
obtained. The future Cherenkov Telescope Array will increase
the number of flare detections (Sol et al. 2013) with better
sensitivity, allowing for the extraction of even more constrain-
ing limits on the LIV effects.
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APPENDIX A
BAYESIAN MODEL USED TO CONSTRAIN THE

REDSHIFT

A Bayesian approach has been used to compute the redshift
value of PG 1553+113 in Section 3.2. The advantage of such a
model is that systematic uncertainties, which are important in
Cherenkov astronomy, can easily be included in the calcula-
tion. In the following, the notation Θ for the model parameters
and Y for the data set is adopted. All normalization constants
are dropped in the development of the model, and the final
probability is normalized at the end.
Bayes’ Theorem, based on the conditional probability rule,

allows us to write the posterior probability Q∣P Y( ) for the
model parameters Θ as the product of the likelihood Q∣P Y( )
and the prior probability P(Θ):

Q µ Q QP Y P P Y( ) ( ) ( ).

The likelihood is the quantity that is maximized during
determination of the best-fit spectrum (Piron et al. 2001). It is
at this step that the H.E.S.S. data, taken during the flare, were
actually used. The spectrum model here is a simple power law
corrected for the EBL absorption:

f = ´ ´ t-G -( )N E E e .E z
0

( , )

The model parameters are then N, G, and z.
The prior is the most difficult and most interesting part of

the model. To derive it, N and Γ are assumed to be independent
from each other and independent of the redshift. In contrast,
the prior on the redshift might depend on N and Γ. Then,
the prior can be simplified using the conditional probability
rule:

Q = G GP P z N P N P( ) ( , ) ( ) ( )

As much as possible, weak assumptions should be made to
write a robust prior then often flat priors (i.e., P ∝ const) are
used. Priors should also be based on a physical meaning and
not contradict the physical and observed properties of the
objects. For the purpose of this model, the prior on N is
assumed to be flat and the prior on the spectral index is a
truncated Gaussian sG µ G G GP ( ) ( , , )G Fermi if G < GFermi
and P(Γ) = ∝ const otherwise. The values of ΓFermi and σΓ are
obtained by analyzing LAT data below 80 GeV (see Section 3
and Table 3). Here, it is assumed that the intrinsic spectrum
in the VHE range cannot be harder than the Fermi-
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LATmeasurement. σΓ takes into account the statistical and
systematic uncertainties on the Fermi-LATmeasurement and
also the systematic uncertainty on the H.E.S.S. spectrum
(σ = 0.20, see Aharonian et al. 2006b) added quadratically and
σΓ = 0.33 for a mean value of ΓFermi = 1.72.

The prior on z is much more difficult to determine. A flat
prior has no physical motivations since the probability to detect
sources at TeV energy decreases with the redshift. The number
of sources detected at TeV energy is not sufficient to use the
corresponding redshift distribution as a prior.

A prior which takes into account the EBL can be derived
assuming a population of sources with a constant spatial
density. In the small space element πz dz4 2 , the number of such
sources scales ∝z2. For any given luminosity, their flux (which
scales with the probability to detect them) is scaled by

t--z zexp ( ( ))2 . Lacking a proper knowledge of the intrinsic
luminosity function of VHE γ-ray blazars, a reasonable
assumption on the detection probability of a blazar at any
redshift is a scaling proportional to the flux for a given
luminosity, i.e., tµ --z zexp ( ( ))2 . Putting everything
together, the prior on the redshift reads G =∣P z N( , )

tµ -P z z( ) exp ( ( )).
Finally, the prior we use for our analysis is:

tQ µ - GP z( ) exp ( ( )) ( , 1.72, 0.33) (A.1)G

if Γ < 1.72 and

tQ µ -P z( ) exp ( ( ))

otherwise. Putting all the components of the model together
and marginalizing over the nuisance parameters N and Γ, the
probability on the redshift can be computed numerically. The
obtained mean value is z = 0.49 ± 0.04. At a confidence level
of 95%, the redshift is between 0.41 < z < 0.56.

In this work, only the model of Franceschini et al. (2008)
has been used. Other EBL models available in the literature
predict slightly different absorption depths. This will lead to a
small difference in the redshift. The use of a flat prior for the
redshift distribution of the sources or a prior based on estimates
of the HBLs luminosity function (Ajello et al. 2014) leads to
changes of order of 0.01 on the resulting redshift.

APPENDIX B
DEVELOPMENT OF THE LIV METHOD

B.1 Modified Maximum Likelihood Method

In previous LIV studies with AGN flares (Albert et al. 2008;
Abramowski et al. 2011) the signal was clearly dominating
over the background, whereas in the present study the signal-
over-background ratio is about 2. The background has been
included in the formulation of the PDF: in the most general
case, for given numbers of signal and background events s and
b in the observation region (“ON” region), for a given
dispersion parameter τn, the unbinned likelihood is:



t
a

t

= +
æ
è
ççç

ö
ø
÷÷÷

=

( ) ( )

( )

L n n s b n s b n
b

P E t s b

, , , Pois · Pois

· , , , (B.1)

n

i

n

i i n

ON OFF ON OFF

1

ON

The PDF t∣P E t s b( , , , )i i n associated with each gamma-like
particle characterized by its time ti and energy Ei contains two

terms (signal and background):

t t=

+ -

( ) ( )
( ) ( )

P E t s b w P E t

w P E t

, , , · ,

1 · , (B.2)

i i n s i i n

s i i

Sig

Bkg

with

=
+

w
s

s b
. (B.3)s

nON is the number of events detected in the source ON region
included in the fit range ´E E t t[ ; ] [ ; ]cut max min max . nOFF is the
number of events in the OFF regions, in the same (E, t) range;
α is the inverse number of OFF regions. +∣n s bPois( )ON
( a∣n bPois( )OFF ) is the Poisson distribution with index nON
(nOFF) and parameter s + b (b/α). The likelihood function can
be simplified by fixing s and b from a comparison of ON and
OFF sets: s = nON − αnOFF and b = αnOFF. In this case, the
Poisson terms in Equation (B.2) are equal to 1. The

Table B1
Selections Applied to the ON and OFF Data Sets

Selection
# of ON
Events

Weighted # of OFF
Events S/B

Total sample 461 (100%) 144.3 (100%) 2.2
(1) = Time in 500–8500s 358 (77.7%) 95.8 (66.4%) 2.7
(1) and E in 0.3–0.789 TeV 154 (33.4%) 36.3 (25.1%) 3.2
(1) and E in 0.3–0.4 TeV

(Template)
82 (17.8%) 14.2 (9.9%) 4.8

(1) and E in 0.4–0.789 TeV
(LH fit)

72 (15.6%) 21.9 (15.2%) 2.3

Figure B1. Means of the reconstructed dispersion vs. the real (injected
dispersion) for the linear case n = 1; for a given injected dispersion, errors
bars correspond to the means of the distribution of the upper and lower limits
(90% 2-sided  95% 1-sided). The blue line is a linear fit to the points. The
red line shows the ideally obtained curve t t=recontructed injected obtained in the
case S/B = ¥.

11

The Astrophysical Journal, 802:65 (14pp), 2015 March 20 Abramowski et al.



probabilities PSig and PBkg are defined as:

t
t

t=( ) ( )P E t
N

R E t,
1

( )
· , (B.4)i i n

n
i i nSig Sig

=
¢

( ) ( )P E t
N

R E t,
1

· , (B.5)i i i iBkg Bkg

with

òt

t

=

´ L -

=

¥

( )

( ) ( ) ( )

( )

R E t D E E A E t

E F t E dE

, , ,

·

(B.6)

n
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n

Sig
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true eff true
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true

ò=

´ L

=

¥
( )

( ) ( )

R E t D E E

A E t E F t dE

( , ) ,

, ( ) .

(B.7)

E
Bkg

0
true

eff true Bkg true Bkg true

true

t∣P E t( , )i i nSig is the probability that the event (Ei, ti) is a photon
emitted at the source and detected on Earth with a delay t En

n. It
takes into account the emission (time distribution F t( )Sig and
energy spectrum L E( )Sig at the source), the propagation (delay
t E·n i

n due to possible LIV effect) and the detection of a
photon by the detector (H.E.S.S. energy resolution D E E( , )true
and effective area A E t( , )eff ). P E t( , )i iBkg is the probability that
the event (Ei, ti) is a background event; it is not expected to be
variable with time, thus FBkg(t) is a uniform time distribution:

=F t F( )Bkg Bkg. The background energy distribution ΛBkg is
measured from OFF regions. N(τn) (resp. N′) is the normal-
ization factor of the PDF PSig (resp. PBkg) in the range

´E E t t[ ; ] [ ; ]cut max min max where the likelihood fit is performed.
Also, the energy resolution D(E, Etrue) is assumed to be

perfect in the range [Ecut; Emax].
53 This leads to simplified

expressions of t∣P E t( , )i i nSig and P E t( , )i iBkg :

t
t

t

=

´ L -( )

( ) ( )

( )

P E t
N

A E t

E F t E

,
1

( )
· ,

· (B.8)

i i n
n

i i

i i n i
n

Sig eff

Sig Sig

=
¢

L( ) ( ) ( )P E t
N

A E t E F,
1

· , (B.9)i i i i iBkg eff Bkg Bkg

The best estimate of the dispersion parameter tn is obtained by
maximizing the likelihood L(τn).

B.2 Selection Cuts

Table B1 shows the effect of the selection cuts on the
number of ON and OFF events. Other choices of Emin and Ecut

did not introduce significant changes in the final results.

B.3 Test of the Method, CIs

The method has been tested on MC simulated sets. Each set
was composed of =n 72ON ON events, as in the real data
sample:

1. s = 50 signal events with times following the template
light curve (Figure 6) shifted by a factor t E·n i,inj ;
energies follow a power law spectrum of photon index
G = 4.8Sig , degraded by the acceptance and convolved
with the energy resolution.

2. b = 22 background events with times following a
uniform distribution and energies drawn from a power
law spectrum of index G = 2.5Bkg , degraded by the
acceptance and convolvted with the energy resolution.

For a given injected dispersion, the maximum likelihood
method is applied to each MC-simulated set. The initial light
curve and energy spectrum were used as templates in the model
instead of fitting them for each set.
Figure B1 shows the means of the reconstructed dispersion

versus the real (injected) dispersion for n = 1; for a given
injected dispersion, error bars correspond to the rms of the
distribution of the best estimates t̂1. The blue line shows the
result of a linear fit. The slope roughly corresponds to the
percentage of signal in the total ON data set. It is due to the loss
of sensitivity resulting from the part of the data sets with no
dispersion. A systematic shift is observed of about 100 s TeV−1,
well bellow 1σ value—the rms of the best estimate distribution
is 361 s TeV−1. The results in this paper have not been
corrected for this bias.
The coverage is not necessarily proper, i.e. the number of

sets for which the injected dispersion value τinj lies between
the setʼs LL and UL does not match the required 95% 1-sided
confidence level. The common cut used on the likelihood
curves to get the LLs/ULs has been iteratively adjusted to
ensure a correct statistical coverage: using this new cut, 95%
of the realizations provide CIs that include the injected
dispersion tn,inj. The initial coverage was about 85% for a cut
on L2 ln of 2.71. The new common cut, found iteratively at
3.5, ensures the desired 90% 2-sided CL (approx. 95% one-
sided CL). Figure B2 shows the distributions of the best
estimates, the 95% 1-sided LLs and ULs for t = 01,inj s TeV−1

(linear case) and t = 02,inj s TeV−2 (quadratic case); the
means of the lower and upper limit distributions, shown as a

Table B2
Linear (Top) and Quadratic (Bottom) Dispersion Parameters; from left to right: Best Estimate, LL and UL from Data (Cut on Likelihood Curve), LL and UL from
MC Simulations (means of Per-set LL and UL Distributions), Calibrated LL and UL (Combination of Data and MC), Calibrated LL and UL Including Systematic

Errors

n tn,best
data LLn

data ULn
data tn,best

MC LLn
MC ULn

MC LLn
calib ULn

calib LLn
calib ULn

calib

With Systematics

1 −131.7 −806.7 554.7 99.1 −526.3 725.6 −757.1 494.8 −838.9 576.4
2 −287.5 −1449.9 853.6 217.2 −942.0 1395.0 −1446.7 890.3 −1570.5 1012.4

Note. Dispersion Parameters τn,best, LLs and ULs are in s TeV−n.

53 The actual energy resolution is of the order of 10% in this range.
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blue vertical line, are used to construct the “calibrated
confidence interval.”

To get CIs from data, a maximum likelihood method is
applied to the original data set and gives a best estimate tbest

data.
The cut value determined from the simulations to ensure proper
coverage is applied on the original data set to obtain LLdata and
ULdata. The “calibrated” limits LLcalib and ULcalib, combining
tbest

data from data together with MC results, are taken as

t t

t t

= - -

= + -

LL LL

UL UL (B.10)

calib
best
data

best
MC MC

calib
best
data

best
MC MC

with tbest
MC, LLMC and ULMC defined as the means of the per-set

best-estimate distribution, LL distribution, and UL distribution
respectively.

Table B2 lists the CIs determined in both ways, i.e., data-
only and calibrated ones: LLn

data and LLn
calib (resp. ULn

data and
ULn

calib) are compatible within 10%. In this work, calibrated
CIs have been used to derive the final LLs on EQG. They are
preferred over data-only CIs as they provide statistically well
defined confidence levels. They also ensure coherent compar-
ison with previous published results, e.g., with PKS 2155-304

by Abramowski et al. (2011) and GRB studies by Vasileiou
et al. (2013).

B.4 Estimation of the Systematics

Estimations of the systematic effects on the dispersion
measurement were performed. It was found that the main

Figure B2. Distributions of the best estimates, the 95% one-sided lower and upper limits from simulations in case of no injected dispersion (t = 0n,inj s TeV−n), for
n = 1 (top) and n = 2 (bottom); dispersion values are in s TeV−n. The blue vertical line on the LL (resp. UL) distribution shows LLMC (resp. ULMC), defined as the
mean of the distribution.

Table B3
Summary of all Studied Systematic Contributions. The Main Systematic Errors

are due to the Uncertainties on the Light Curve Parametrization

Estimated Error τ1 τ2

on Input Parameters (s TeV−1) (s TeV−2)

Background contribution L <45 <80
Acceptance factors 10% <1 <1
Energy resolution 10% <55 <85
Photon index 5% <55 <50
Light curve
parameterization

L <300 <500

Systematic bias L ∼100 ∼200

Total: å systi i
2 <330 <555
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systematic errors are due to the uncertainties on the light curve
parameterization. Other sources of systematic errors include the
contribution of the background, effect of the change of photon
index, the energy resolution and the effective area determina-
tion of the detector. To study the following four contributions,
new simulated data sets have been built, each one with different
input parameters:

1. background contribution: photons and background events
have been reallocated within the ON data set in the fit
range [Ecut; Emax], introducing a 1σ fluctuation in the
number of signal event s in the ON data set;

2. effective area: set to a constant, equal to 120000 m2 for
all energies and all times, which corresponds to a
maximum shift of 10% (the actual effective area increases
with energy);

3. energy resolution: reconstructed energies have been
replaced by the true energies; this corresponds to a shift
of about 10% on the reconstructed energy values;

4. photon index: changed by one standard devia-
tion (±0.25).

For the determination of systematic errors arising from the
light curve parameterization, the calibration of the CIs has been
redone using successively the upper 1σ and the lower 1σ
contours of the template, shown in Figure 6. The change in
mean lower and ULs on the dispersion parameter τn gives an
estimate of the systematic error associated to each contribu-
tion.54 An additional systematic contribution comes from the
shift arising from the method found with simulation (see
Appendix B.3). Table B3 summarizes all studied systematic
contributions. The overall estimated systematic error on τn is
330 s TeV−1 for the linear case (n = 1) and 555 s TeV−2 for the
quadratic case (n = 2); they were included in the calculation of
the limits on EQG by adding the statistical and the systematic
errors in quadrature.
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