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1 Introduction

Over the last decades there was tremendous progress in the understanding of scattering

amplitudes of quantum field theories, in particular for N = 4 super Yang-Mills. For this

theory it was found that in addition to superconformal invariance, tree level amplitudes, as

well as planar loop-level integrands exhibit dual superconformal symmetry [1]. Together

they combine into a Yangian [2], a symmetry that also underlies the integrable structure

of the spectral problem [3, 4].

More recently, the authors of [5–7] observed that for the examples they studied, non-

planar contributions to the integrand exhibit properties, which in the planar case are con-

sequences of dual superconformal symmetry. This is a strong hint that planar integrability

implies constraints on the subleading contributions in the 1/N expansion. Here we make

a preliminary step towards identifying these symmetries, focusing on leading singularities

instead of the full integrand.

Leading singularities are quantities that are obtained from the loop integrand by lo-

calizing all integration variables by Cutkovsky cuts. They capture the IR structure of the

amplitude and play an important role in the method of generalized unitarity [8–10]. As

discussed in [11], all leading singularities can be expressed as on-shell diagrams. On-shell

diagrams are graphs with black and white trivalent vertices, representing 3-point MHV

and MHV amplitudes. Their internal edges correspond to on-shell phase space integra-

tions. Due to BCFW recursion relations at tree- [12, 13] and loop-level [14, 15], planar

on-shell diagrams also encode all tree level scattering amplitudes as well as the integrands

of planar loop-level amplitudes.

In the following we use twistor variables Wa
i , the half-Fourier transform of spinor-

helicity variables [16]. However, our results are independent of this choice. When working

with the twistor variables above, two external legs of an on-shell diagram are glued together

by identifying the legs employing a projective delta function

∆ij =

∫
dα

α
δ4|4(Wi + αWj) , (1.1)
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and subsequently integrating over the internal states∫
d3|4W =

∫
d4|4W

Vol[GL(1)]
. (1.2)

Every on-shell diagram encodes an expression in terms of a Graßmannian contour integral

of the form [11, 17–19]

A =

∫
dk×nC

Vol[GL(k)]
Ω δ4k|4k(C · W) , (1.3)

where Ω is a rational function of the k×k minors of the k×n matrix C. Here k is the MHV

degree and n the number of particles. While the integrand Ω is fixed for planar diagrams

by Yangian invariance and simply given by the inverse of the product of all consecutive

minors [20, 21], a general expression for non-planar diagrams is unknown and has to be

calculated case-by-case [19, 22, 23].

In this article we derive symmetries of non-planar leading singularities (on-shell dia-

grams) that are inherited from the Yangian invariance of their planar counterparts. Noting

that every non-planar on-shell diagram can be cut open until it is planar allows us to de-

duce the action of the Yangian generators on a given boundary with a fixed ordering of

external states. We find that that non-planar leading singularities are invariant under a

subset of the Yangian generators (2.10). The first levels are broken depending on the degree

of non-planarity, which is parametrized by the number of cut internal edges. Additionally,

we derive similar identities involving integrable transfer matrices which are related to the

Yangian (3.8). For the special case of diagrams on a cylinder, we present an exact conser-

vation law in (3.5). Finally, we consider a five-point MHV on-shell function on a cylinder

to exemplify our results.

2 Monodromy matrix identities

Let us consider an arbitrary non-planar on-shell diagram Anp, with nnp external particles

and MHV degree knp. By cutting internal edges this diagram can be cast into a planar

diagram Ap. As a consequence, Anp can be written in terms of this diagram Ap with

external states identified via (1.1) and (1.2),

Anp =

∫
C,C′

∆CC′ Ap . (2.1)

Here
∫
C,C′ is a shorthand notation for the projective integrations (1.2) over all the cut

internal states of Anp with ∆CC′ = ∆C1C′
1
· · ·∆CncutC

′
ncut

as defined in (1.1). Schematically,

the decomposition (2.1) is depicted in figure 1. The planar diagram Ap has np = nnp+2ncut

external legs and MHV degree kp = knp + ncut. In general the decomposition in (2.1) is

not unique and the parameters np and kp depend on this choice. In the following, we

distinguish among the particles on a single boundary B of the non-planar diagram Anp

and the remaining external particles of Ap which we label by R. They include the particles

on other boundaries of Anp as well as the 2ncut particles that become external when cutting

– 2 –
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Figure 1. Cutting a non-planar into a planar on-shell diagram. We only show the surface on

which the diagram is embedded. The gray lines indicate a possible cuts. For the planar diagram we

combine the states on boundaries B′ and B′′ together with the cut lines C and C ′ into the ordered

set R. The arrows indicate the ordering of labels.

the diagram open, see figure 1. Initially, Yangian invariance of the planar on-shell diagram

Ap was shown using Drinfeld’s first realization [2]. In this realization the Yangian is defined

via the first and second level generators and their commutators, imposing certain Serre

relations. In the following, we will work in the RTT-realization of the Yangian which is

intimately related to the construction of spin chain monodromy matrices in the framework

of the quantum inverse scattering method. In this realization all Yangian generators are

combined into such a monodromy matrix, which depends on a spectral parameter. The

individual generators of the Yangian symmetry can be recovered by expanding in this

parameter. Yangian invariance of the planar on-shell diagram Ap can then be compactly

expressed as a set of 8× 8 eigenvalue equations

Mab
RB(u)Ap = λ(u) δabAp , (2.2)

see [24, 25]. Here the indices take the values a, b = 1, . . . , 8, the complex variable u

denotes the spectral parameter and the eigenvalue in the conventions fixed below is λ(u) =

(u− 1)kpunp−kp . The monodromy matrixMRB can be written as the product of two 8× 8

monodromy matrices acting on B and R

MRB(u) =MR(u)MB(u) . (2.3)

Each of the monodromies yields a realization of the Yangian separately. They are defined

in terms of the Lax operators Li(u) = u+ (−1)beabWb
i ∂

a
i as

MB(u) = LB1(u) · · · LBnB
(u) , (2.4)

with MR(u) correspondingly. The elementary matrices eab form the fundamental repre-

sentation of gl(4|4), while the operators Wb
i ∂

a
i generate the action of the superconformal

group on particle i. Here we introduced the notation ∂ai = ∂/∂Wa
i .

We now show that identities similar to the Yangian invariance of the planar on-shell

diagram Ap in (2.2) also hold for the non-planar diagram Anp. In order to derive those
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identities we note that the product of two Lax operators Li for a certain choice of the

spectral parameters is proportional to the identity

Li(u)Li(1− u− Ci) = u(1− u− Ci) . (2.5)

In the context of integrable models this property is also known as unitarity. The central

charges Ci =Wa
i ∂

a
i vanish when acting on an on-shell diagram. Using the inversion relation

in (2.5), the planar Yangian invariance condition (2.2) can be rewritten as

MB(u)Ap =
(−1)kpunB−kp

(1− u)nR−kp
MR̄(1− u)Ap . (2.6)

Here the Lax operators in MR̄(u) = LRnR
(u) · · · LR1(u) are multiplied in the opposite

order compared to (2.4). The monodromy matrix on the left-hand side does not depend

on the cut lines. Thus from the definition of the non-planar on-shell diagram Anp in (2.1)

we immediately conclude that

MB(u)Anp =
(−1)kpunB−kp

(1− u)nR−kp

∫
C,C′

∆CC′MR̄(1− u)Ap . (2.7)

To obtain the action of the Yangian generators on the boundary B we expand the mon-

odromy in terms of the spectral parameter u. This yields the Yangian generators

Mab
B (u) = unBδab + unB−1

(
M[1]

B

)ab
+ · · ·+

(
M[nB ]

B

)ab
, (2.8)

see e.g. [26]. The form of the Yangian generators (MB
[i])ab can be obtained from the

monodromy (2.4) after inserting the explicit form of the Lax operators. The analogous

expansion holds for the monodromy MR̄(u). Thus, when expanding (2.7) for u � 1 we

obtain the action of the Yangian generators (MB
[i])ab on the boundary B. We find that

the action of the first kp Yangian generators is rather complicated(
M[i]

B

)abAnp =

nR∑
j=0

(j − kp)kp−i

(kp − i)!

∫
C,C′

∆CC′
(
M[j]

R̄

)abAp (2.9)

for i = 0, . . . , kp. Here (MR̄
[j])ab denote the Yangian generators of the monodromyMR̄(u)

involving superconformal generators which are inserted into the diagram and (a)n is the

Pochhammer symbol. However, we find that the remaining higher levels of the Yangian

generators that act on the boundary B annihilate the non-planar on-shell diagram Anp,

and generate unbroken symmetries,(
M[i]

B

)ab Anp = 0 , i = kp + 1, . . . , nB . (2.10)

Note that the amount of unbroken symmetries in (2.10) depends in an interesting way on

the degree of non-planarity and is given by nB−kp. The number of external states nB fixes

the number of levels of the Yangian generators and kp = knp + ncut can be regarded as a

measure of non-planarity, as each additional boundary or handle requires further internal

lines to be cut. If kp ≤ nB, we don’t find unbroken symmetries. Here we did not specify

any particular embedding of the diagram, nor any specific way of cutting it into a planar

one. The preceding discussion shows that the actual symmetries are determined by the

minimal way to cut the diagram, and that one should consider all possible embeddings of

the diagram to identify as many symmetries as possible.

– 4 –
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Figure 2. Cutting an on-shell diagram on a cylinder into a planar on-shell diagram. We only show

the surface on which the diagram is embedded. The gray line indicates a possible cut. The external

states C and C ′ arise from cutting internal lines of Acyl. Arrows indicate the ordering of labels.

3 Transfer matrix identities

In the spirit of the quantum inverse scattering method [27], we define the transfer matrix

as the supertrace over the auxiliary fundamental space of the monodromy matrix

TB(u) = strMB(u) , (3.1)

see also [28], where this transfer matrix appeared in the context of on-shell diagrams of

form factors. It generates a set of mutually commuting operators T [i]
B = strM[i]

B with

i = 1, . . . , nB, cf. (2.8). In this section we derive further identities of non-planar on-shell

diagrams which involve the operators T [i]
B . In particular, for the special case of diagrams

on a cylinder they yield exact conservation laws.

First, we specialize (2.7) to the case of a diagram with two boundaries. Then the

supertrace yields

TB(u)Acyl =
(−1)kpunB−kp

(1− u)nB′+2ncut−kp

∫
C,C′

∆CC′TC̄B′C′(1− u)Ap , (3.2)

where Acyl denotes an on-shell diagram on a cylinder, cf. figure 2. At first sight we have

not gained anything in comparison to (2.7). However, when acting with the transfer matrix

on Acyl we can evaluate the integral over the internal lines on the right-hand side. We first

integrate by parts using∫
d3|4W g(W)L(u)f(W) = −

∫
d3|4W [L(1− u)g(W)] f(W) , (3.3)

which holds for arbitrary functions f and g. Now the Lax operators LCi and LC′
i

act on the

∆’s instead of Ap. The special feature of diagrams on cylinders is that here, the cyclicity

of the supertrace allows to bring the Lax operators LCi and LC′
i

into a consecutive order,

TC̄B′C′ = TC′C̄B′ . We can now use the identity

LC′
i
(u)LCi(u)∆CiC′

i
= u(u− 1)∆CiC′

i
, (3.4)

which is equivalent to the inversion relation in (2.5). This removes these Lax operators

entirely from the right-hand side, and the transfer matrix becomes simply TB′(1− u) and
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can be pulled out of the integral. The integral is then the original diagram on the cylinder,

Acyl =
∫
CC′ ∆CC′Ap, and we finally find

ukcyl
TB(u)

unB
Acyl = (u− 1)kcyl

TB′(1− u)

(1− u)nB′
Acyl . (3.5)

This result can be understood as a conservation law or intertwining relation between the

two boundaries. Comparing with (2.6), we see that that it plays a similar role as an exact

identity for the cylinder as the Yangian invariance does for planar diagrams. Note in

particular that there is no dependence on the number of cut lines.

Similar to the case of the monodromy in section 2, we use (3.5) to obtain further

identities for general non-planar on-shell diagrams. Again we consider an arbitrary on-shell

diagram Anp. This time we decompose it only up to a diagram on a cylinder such that

Anp =

∫
C,C′

∆CC′ Acyl . (3.6)

The on-shell diagram on the cylinder Acyl satisfies (3.5). Here we take B to be an actual

boundary of Anp. The other boundary B′ of Acyl contains the other boundaries of the

initial diagram as well as the cut lines Ci, C
′
i. Integrating this identity over the cut lines

as in (3.6) we get

TB(u)Anp =
(−1)kcylunB−kcyl

(1− u)nB′−kcyl

∫
C,C′

∆CC′TB̄′(1− u)Acyl . (3.7)

By arguments identical to those used in section 2, we can expand in the spectral parameter

and identify powers where the right-hand side of (3.7) vanishes:

T [i]
B Anp = 0 , i = kcyl + 1, . . . , nB . (3.8)

Note that although (3.8) looks like the supertrace of (2.10), the crucial difference lies in

the number of broken levels: here kcyl refers to the MHV degree after cutting to a cylinder,

which is smaller than kp the MHV degree after continuing to cut the diagram to a planar

one. Thus (3.8) provides additional identities not obtained from the supertrace of (2.10).

4 Example: five-point MHV on a cylinder

In this section we exemplify and validate the symmetries derived in section 2 and 3 for a

five-point MHV diagram with knp = 2 on a cylinder as depicted in figure 3.

While particle “5” belongs to one boundary B′ = (5), the remaining particles are on

the other boundary B = (1, 2, 3, 4). As discussed in [19], the integrand of the Graßmannian

integral corresponding to this diagram Acyl can be written as

Ωcyl =
1

(12)(23)(34)(41)

(13)

(35)(51)
. (4.1)

Here (ij) denotes 2×2 minor with respect to the ith and jth column of the k×n matrix C,

cf. (1.3).

– 6 –
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Figure 3. A five-point MHV diagram on a cylinder, and the planar diagram obtained after cutting

along the indicated line.

Let us first look at the action of the Yangian generators M[i] ab
B , generated by the

monodromy

MB(u) = L1(u)L2(u)L3(u)L4(u) , (4.2)

on the particles at boundary B. As discussed in section 2, we can decompose the non-

planar diagram Acyl using the cutting procedure (2.1). When minimally cut, the planar

diagram Ap has np = 7 external particles and MHV degree kp = 3 as shown in the right-

hand side of figure 3. Note that other possibilities to cut the diagram via a single edge are

equivalent due to cyclic symmetry on the boundary, while cutting two edges does not yield

any identity. As nB = 4, we find that the fourth level of the Yangian generators has to

annihilate the non-planar on-shell function Acyl. The Yangian generators of this level read

M[4] ab
B = (−1)ab+c+d+e(Wa

4∂
c
4)(Wc

3∂
d
3)(Wd

2∂
e
2)(We

1∂
b
1) . (4.3)

In order to show that the Acyl is annihilated by the operator above we proceed in analogy

to [21]. After reordering (4.3) and acting on the delta function we obtain

M[4] ab
B Acyl = (−1)ab

4∑
i=1

∫
d2×5C

Vol[GL(2)]
Ω g(i)Wb

4∂
a
i δ

8|8(C · W), (4.4)

with g(1) = O12O23O34, g(2) = −O23O34, g(3) = O34, g(4) = −1 and Oij = CIi
∂

∂CIj
,

where we sum over the index I = 1, 2. Integrating by parts such that the operators g(i)

act only on Ω, we find

M[4] ab
B Acyl = 0 , (4.5)

which agrees with (2.10).

We will now discuss the symmetries as derived in section 3. Since the diagram Anp is

embedded on a cylinder, the exact transfer matrix identity (3.5) holds. In order to check

this identity, we note that in our particular case there is only one particle on the boundary

B′. Thus, due to the vanishing central charge constraint we trivially find

TB′(u)Acyl = strL5(u)Acyl = 0 . (4.6)

– 7 –
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The evaluation of the action of the transfer matrix on the particles at the boundary B

is more involved. However, again we can proceed in analogy to [21]. A straightforward

calculation shows that

TB(u)Acyl =

4∑
i=0

u4−i
∑

j1>...>ji

(Wa1
j1
∂a2j1 ) · · · (Wai

ji
∂a1ji )︸ ︷︷ ︸

T [i]
B

Acyl = 0 . (4.7)

Note that (4.7) yields three independent identities when expanded in the spectral parameter

u for the action of T [i]
B with i = 2, 3, 4, cf. (3.8). Here we did not include the case i = 0

which identically vanishes as well as i = 1 which trivially holds when acting on a function

with vanishing central charge. The only identity that can be obtained from (4.3) by taking

the supertrace is the case i = 4.

The example also shows that one has to consider all possible embeddings in order to

find all symmetries, as briefly discussed at the end of section 2. Note that in the diagram

of Acyl in figure 3, another embedding on the cylinder is obtained by simply exchanging

particles “2” and “5”. The integrand (4.1) is invariant under this replacement. Therefore

the invariance relations (4.3) and (4.7) also hold with the labels “2” and “5” interchanged.

5 Conclusions

In this paper we studied the integrable structures in non-planar contributions to amplitudes

in N =4 super Yang-Mills theory. More precisely, we have shown that leading singularities

of non-planar amplitudes in the maximally supersymmetric gauge theory in four dimensions

enjoy Yangian-type symmetries. This is a direct consequence of the Yangian invariance of

their planar counterparts. We derived the action of the monodromy matrix, and thus

the Yangian, as well as the corresponding transfer matrix on a given boundary of a given

non-planar on-shell diagram. The symmetry generators realize the same Yangian as in

the planar case, but act on each boundary of the diagram individually. The lowest levels

of these Yangian generators are broken, depending on the minimal number of internal

edges that have to be cut in order to render the diagram planar. Additionally, we showed

that a similar statement also holds true for the commuting operators that arise from the

expansion of the corresponding transfer matrix in the spectral parameter. As an example,

we explicitly constructed the symmetry generators for a five-point MHV on-shell function

on a cylinder.

It would be important to investigate if our prescription yields all unbroken generators

when cutting a minimal number of internal edges. Also other ways of decomposing the

non-planar diagrams or comparing different embeddings may yield further unbroken levels

and additional constraints.

We hope that the symmetries can be used to determine integrands of non-planar Graß-

mannian integrals. Despite the fact that the Yangian generators are fairly complicated

differential operators, their action on Graßmannian integrals can easily be computed using

the techniques outlined in section 4. We have seen that in the example studied here the

transfer matrix of length nB = 4 vanishes when acting on the on-shell function on the
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cylinder. Interestingly, the same is true when acting on the planar five-point MHV dia-

gram. This suggests that both belong to the same gl(4|4) multiplet. In principle, such a

relation to planar diagrams may exist for all diagrams on the cylinder with a single leg on

one boundary. It would be interesting to make this relation more precise and understand

if it can be generalized to more involved configurations and topologies.

The most pressing question to ask is whether the symmetries we found manifest them-

selves in the full non-planar loop integrands and explain the recent observations which hint

at hidden symmetries similar to the planar ones [5–7]. We plan to elaborate on these open

problems elsewhere.

Finally, the key property of on-shell diagrams which allowed us to deduce their sym-

metries from those of the planar ones is the fact that for on-shell diagrams there is a

well-defined cutting and gluing procedure. As all internal states are on-shell, one can in-

terpret them as external states of a cut diagram. Our formulation of the symmetries of

on-shell diagrams indicates that it is possible to systematically identify the implications of

planar integrability for the subleading terms in the 1/N expansion, for quantities where

such a procedure is available. We hope that such a strategy can shed new light on the

study of the integrable structure of non-planar observables, see e.g. [29]. It would be in-

teresting to connect these ideas to recent approaches to study amplitudes and correlation

functions [30–33].
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