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ABSTRACT
Early dark energy (EDE) models are a class of quintessence dark energy with a dynamically
evolving scalar field which display a small but non-negligible amount of dark energy at the
epoch of matter-radiation equality. Compared with a cosmological constant, the presence
of dark energy at early times changes the cosmic expansion history and consequently the
shape of the linear theory power spectrum and potentially other observables. We constrain
the cosmological parameters in the EDE cosmology using recent measurements of the cosmic
microwave background and baryon acoustic oscillations. The best-fitting models favour no
EDE; here we consider extreme examples which are in mild tension with current observations
in order to explore the observational consequences of a maximally allowed amount of EDE.
We study the non-linear evolution of cosmic structure in EDE cosmologies using large-volume
N-body simulations. Many large-scale structure statistics are found to be very similar between
the � cold dark matter (�CDM) and EDE models. We find that EDE cosmologies predict fewer
massive haloes in comparison to �CDM, particularly at high redshifts. The most promising
way to distinguish EDE from �CDM is to measure the power spectrum on large scales, where
differences of up to 15 per cent are expected.

Key words: methods: numerical – cosmology: theory – dark energy – large-scale structure of
Universe.

1 IN T RO D U C T I O N

One of the key objectives of future galaxy surveys is to determine the
nature of the dark energy behind the accelerating cosmic expansion.
In particular, does the dark energy take the form of a cosmological
constant, which is hard to explain from a theoretical perspective,
or is it a dynamical field, with a time-dependent equation of state?
What is the best way to distinguish between these scenarios for
the dark energy? Here we demonstrate that this is a remarkably
challenging problem, once the competing models have been set up
to reproduce what we already know about the Universe.

The standard � cold dark matter (�CDM) cosmological model,
in which dark energy is time independent, provides a good de-
scription of current data (e.g. Efstathiou et al. 2002; Sánchez et al.
2009, 2012; Planck Collaboration XVI 2014; Planck Collaboration
XIII 2015). However, the cosmological constant lacks theoretical
motivation and throws up issues such as the fine-tuning and the
coincidence problems. Many alternatives have been proposed to
alleviate these problems (e.g. the review by Copeland, Sami &
Tsujikawa 2006). A number of these are based on time-evolving
scalar fields, which are usually referred to as quintessence models
(Ratra & Peebles 1988; Wetterich 1988; Caldwell, Dave & Stein-
hardt 1998; Ferreira & Joyce 1998).

� E-mail: difu.shi@durham.ac.uk

In �CDM, the impact of the cosmological constant on the cosmic
expansion can be ignored once the energy density of the dark energy
falls below ∼1 per cent of the critical density, which occurs above
z ∼ 5. In contrast, a class of quintessence models called early dark
energy (EDE) display a small but non-negligible amount of dark
energy at early times which can change the expansion rate appre-
ciably, even as early as the epoch of matter-radiation equality. These
models can be divided into two classes: the so-called tracker fields
(Steinhardt, Wang & Zlatev 1999) and scaling solutions (Halliwell
1987; Wetterich 1995).

Previous simulations of EDE cosmologies, such as those by
Grossi & Springel (2009), Francis, Lewis & Linder (2009) and
Fontanot et al. (2012), focused on the impact on structure forma-
tion of the different expansion history with EDE compared with
�CDM, whilst keeping the same linear theory power spectrum and
background cosmological parameters as used in �CDM. However,
to produce a fully self-consistent model, two further steps are nec-
essary in addition to changing the expansion history (Jennings et al.
2010). First, the best-fitting cosmological parameters will be dif-
ferent in EDE cosmologies than they are in �CDM. Secondly, the
input power spectrum used to set-up the initial conditions for the
N-body simulation should be different in EDE from that used in
�CDM. The change in the expansion history alters the width of
the break in the power spectrum around the scale of the horizon at
matter – radiation equality (Jennings et al. 2010). This change in the
power spectrum is compounded by the changes in the cosmological
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parameters between the best-fitting EDE and �CDM models. If we
are to compare models that satisfy the current observational con-
straints to look for measurable differences which can be probed by
new observations, we need to take all three of these effects into
account.

EDE models can be described in terms of a scalar field potential,
with the dynamical properties obtained by minimizing the action
that includes the scalar field potential. We take a more practical
view and consider parametrizations of EDE models which allow
us to explore the parameter space more efficiently. Corasaniti &
Copeland (2003) presented four- and six-parameter models for the
time dependence of the equation-of-state parameter of the dark en-
ergy, w, which give very accurate reproductions of the results of the
full Lagrangian minimization. However, with current data it is not
feasible, to constrain such a large number of additional parameters
in addition to the standard cosmological parameters. Instead, we
investigate two-parameter formulations of the dark energy.

We demonstrate that current observations of temperature fluctu-
ations and the polarization of the cosmic microwave background
(CMB) radiation and the apparent size of baryon acoustic oscilla-
tions (BAO) in the galaxy distribution already put tight constraints
on EDE models. In fact, the best-fitting models are consistent with
no EDE, a conclusion that has been reached by other studies (Planck
Collaboration XVI 2014; Planck Collaboration XIII 2015). Never-
theless, models with appreciable amounts of dark energy remain
formally consistent with the current data. We consider two cases
which have one and two per cent of the critical density in dark
energy back to the epoch of matter radiation equality.

In the standard lore, EDE models display a more rapid expansion
at high redshift than �CDM and so, if they are normalized to
have the same fluctuations on 8 h−1 Mpc today (i.e. the same value
of σ 8), structures form earlier in these models. We find that this
is not a generic feature of EDE. The EDE models we consider
have growth rates that are very similar to that in �CDM, even
lagging behind �CDM at intermediate redshifts. This results in
these cosmologies actually displaying fewer massive haloes than
�CDM at high redshifts.

This paper is organized as follows. In Section 2, we discuss
the parametrization of EDE models (Section 2.1), the constraints
derived on cosmological parameters using CMB and BAO data
(Section 2.2), compare the rate at which fluctuations grow in EDE
and �CDM (Section 2.3) and describe the N-body simulations car-
ried out (Section 2.4). The simulation results, namely the matter
power spectrum, distribution function of counts-in-cells and halo
mass function are presented in Section 3. Finally, in Section 4, we
give a summary of our results.

2 TH E O R E T I C A L BAC K G RO U N D

In this section, we explain the behaviour of EDE cosmologies and
how this is parametrized (Section 2.1), and then present constraints
on the cosmological parameters in EDE and �CDM (Section 2.2).
The rate at which fluctuations grow in the different cosmologies
is calculated in Section 2.3. The numerical simulations used are
described in Section 2.4.

2.1 EDE cosmologies

The dark energy equation of state, w(z) = P/ρ, where P is pressure
and ρ is density, determines how dark energy influences the expan-
sion of the Universe. In the standard �CDM model, the equation

Figure 1. The dark energy density parameter, �de, as a function of scale
factor, a, for the two EDE models studied here, the EDE1 model (red line),
EDE2 model (blue line), the Wetterich model (green line) and �CDM (black
line). (See Table 1 for the model parameters.) The two black dashed lines
indicate, as labelled, redshift 199 when our simulations are started and the
CMB redshift, z ∼ 1090.

of state of the dark energy is a constant, w� = −1, and the dark en-
ergy density parameter �de(z) falls rapidly to zero with increasing
redshift (see Fig. 1). The cosmological constant can be completely
ignored beyond z ∼ 5, once it accounts for less than 1 per cent of the
critical density. However, if the dark energy equation of state is such
that w > −1, �de will decrease more slowly and the consequences
of dark energy will be felt earlier.

Quintessence originates from theoretical models which treat the
dark energy as a slowly evolving scalar field. The scalar field can
be described by potentials with different properties. Viable models
share common features such as reproducing the observed magnitude
of the present-day energy density and producing an accelerating
expansion at late times. Due to the time-dependent scalar field, the
dark energy equation of state evolves. The ratio of the energy density
of dark energy to the critical density in quintessence models, �de,
will be different from that in the �CDM model. This affects the
growth of structure (see Fig. 1 for a comparison between �de in
�CDM and in the EDE models simulated here; the choice of EDE
model is discussed later in Section 2.2). Observations constrain the
present-day dark energy equation of state to be w0 < −0.8 (Sánchez
et al. 2012). So, EDE models which agree with this constraint should
display a transition in w from the present day value (w ≈ −1) to
the early-time value (usually close to zero). How and when this
transition happens is the main difference between the various EDE
models.

Ideally, the dark energy equation of state should be derived from
the potential energy associated with a time-dependent scalar field.
However, the motivation behind the form of the potential is weak
which means that a wide variety of cases have been considered
(Corasaniti & Copeland 2003). One way to carry out a system-
atic study of the EDE parameter space is to use a parametrization
for the dark energy equation of state, w, or the dark energy den-
sity parameter, �de. This approach offers a model independent and
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efficient way to investigate the properties of EDE models which
display similar behaviour for w.

The most commonly used and simplest parametrization to de-
scribe the evolution of the equation of state is the two-parameter
equation, w = w0 + (1 − a)wa, where a is the expansion param-
eter (Chevallier & Polarski 2001; Linder 2003). However, Bassett,
Corasaniti & Kunz (2004) have shown that a two-parameter equa-
tion is not sufficiently accurate to describe the equation of state of
the scalar field to better than 5 per cent beyond z ∼ 1. This problem
is even worse when if a two-parameter model is to be used in an
N-body simulation which might start at a very high redshift (e.g.
z ≈ 100). More complex parametrizations with more parameters
have been proposed which can capture the behaviour seen in a
wide range of quintessence models (Corasaniti & Copeland 2003).
However, the additional parameters are hard to constrain in practice
given current observations.

Instead, we investigate empirical parametrizations of EDE which
have three parameters. One was introduced by Wetterich (2004) and
is given in terms of the equation-of-state parameter,

w(a) = − w0

(1 − b ln(a))2
, (1)

where

b = − 3w0

ln
(

1−�de,e
�de,e

)
+ ln

(
1−�m,0
�m,0

) . (2)

Here w0 is the dark energy equation of state today, �m, 0 is the matter
(i.e. baryons and cold dark matter) density parameter at z = 0. �de, 0

and �de, e are, respectively, the dark energy density parameters today
and as z → ∞.

The other empirical parametrization we consider was proposed
by Doran & Robbers (2006) and is written in terms of the time
evolution of the dark energy density parameter

�de(a) = �de,0 − �de,e(1 − a−3w0 )

�de,0 + �m,0a3w0
+ �de,e(1 − a−3w0 ). (3)

Both parametrizations mimic �CDM at low redshift and can pro-
vide non-negligible amounts of EDE at early times, depending upon
the parameter values adopted. The Doran & Robbers parametriza-
tion allows rapid transitions in the dark energy equation of state. The
variation of w(a) in the Wetterich parametrization is more gradual
as shown in Fig. 2. If we assume �m + �de = 1 at z = 0, the two
parametrizations yield �CDM, w(a) = w0 = −1, in the limit when
�de, e = 0.

2.2 Parameter fitting

Changing the equation of state, w, from a constant to being time de-
pendent, will affect the evolution of the Universe. The cosmological
distance–redshift relation also changes. Cosmological constraints
derived for �CDM will not necessarily apply in an EDE universe.
We need to re-fit the cosmological parameters for an EDE cosmol-
ogy and use the best-fitting values in a simulation of such a model
rather those derived for �CDM. Here we use observations of the
CMB and BAO to find the best-fitting cosmological parameters for
EDE models. Using the CMB and BAO data in this way not only
allows us to determine the cosmological parameters we should use
in simulations, but is also a preliminary test of the viability of EDE
parametrization.

To derive the constraints on EDE parameters, we use the CMB
measurement from the Planck 2013 data release (Planck Collabo-
ration XVI 2014), which contains the Planck temperature angular

Figure 2. The dark energy equation of state, w, as a function of the scale
factor, a, for the EDE1 model (red line), EDE2 model (blue line), a Wetterich
model (green line) and �CDM (black line). (See Table 1.) The two black
dashed lines indicate the redshift when the simulations are started (z = 199)
and the CMB redshift (z ∼ 1090).

power spectrum (TT) and WMAP9 polarization data (WP), in the
form of likelihood software.1 We adapted the Markov Chain Monte
Carlo code, COSMOMC, to work for EDE cosmologies (Lewis &
Bridle 2002a). Some studies, such as Wang & Mukherjee (2006),
use CMB distance priors which condense the full temperature fluc-
tuation power spectrum into three quantities which depend on an
assumed cosmological model to describe the peak positions and
peak height ratios (Komatsu et al. 2009; Wang & Wang 2013). Al-
though this method is faster, we do not use it here because it results
in weaker constraints than using the full data set.

We also use the BAO feature in the galaxy distribution which
depends on the horizon scale at matter-radiation decoupling and
angular diameter distance to a given redshift. The BAO measure-
ments used are the z = 0.106 result from the 6dF Galaxy Survey
(Beutler et al. 2011), the z = 0.35 measurement from Sloan Digital
Sky Survey Data Release 7 (Percival et al. 2010) and the z = 0.57
measurement from the Baryon Oscillation Spectroscopic Survey
(Sánchez et al. 2012).

Fig. 3 shows the 2D marginalized distribution for w0 and �de, e

using the Doran & Robbers parametrization of EDE. �CDM
(w0 = −1, �de, e = 0) is within the 68 per cent confidence level.
The Doran & Robbers cosmologies with 1 and 2 per cent EDE are,
respectively, roughly 1 and 2σ away from the best-fitting value. In
order to maximize the effects of EDE, here, we choose w0 = −1.2
and �de, e = 0.01 as the ‘EDE1’ model, �de, e = 0.02 as the ‘EDE2’
model rather than using the best-fitting values and keep the other
cosmological parameters the same between the two models. The
EDE1 and EDE2 models are therefore somewhat in tension with
the current observational constraints but are formally consistent
with the data.

1 We note that the Planck 2015 results show a somewhat tighter constraint
on �de, e for the Doran & Robbers (2006) model than we find using the 2013
data release (Planck Collaboration XIV 2015).
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Figure 3. The 2D marginalized distribution in the present-day equation-of-
state parameter, w0, and the critical density in dark energy at early times, �de,
using the Doran & Robbers EDE parametrization for the Planck TT, WMAP
polarization and BAO data combination. The constraint is compatible with
�CDM. The solid black lines show the 68 per cent and 95 per cent confidence
intervals. The red cross and green circle indicate, respectively, the EDE1
and EDE2 models which are used in our simulations. The black dashed lines
indicate the values of �de in these models.

Table 1. Summary of the best-fitting values using CMB and BAO data for
the dark energy parametrizations of Doran & Robbers (labelled EDE1 and
EDE2) and Wetterich, along with �CDM. All models have σ 8 = 0.8.

Parameter �CDM EDE1 EDE2 Wetterich

H0 67.7 71.9 71.9 70.7
�de 0.687 0.719 0.719 0.716
�b 0.0488 0.0424 0.0424 0.044
w0 −1 −1.2 −1.2 −1.16

�de, e – 0.01 0.02 <10−7

Table 1 summarizes the constraints for the �CDM and EDE
cosmologies, assuming a flat universe. In the EDE models, the cos-
mological parameters show small departures from the best-fitting
�CDM values. The best-fitting result obtained using the Wetterich
parametrization gives a negligible amount of EDE, �de, e ∼ 0, corre-
sponding to �CDM if we fix w0 = −1. The Wetterich parametriza-
tion does not yield any EDE when constrained using current obser-
vations. The Doran & Robbers parametrization can reproduce the
step-like transition in the dark energy equation of state that results
from solving the equations of motion for an EDE potential, so we
focus on this parametrization from hereon.

Fig. 2 shows the dark energy equation of state as a function of
scale factor for the EDE1 and EDE2 models, along with the �CDM
model. The corresponding dark energy density parameter as a func-
tion of scale factor is shown in Fig. 1. Here, we plot the Wetterich
model with �de, e = 10−5, which is much larger than the value listed
in Table 1, but retain the other best-fitting cosmological parameters
for comparison. At late times, the EDE1 and EDE2 models show
very similar behaviour to �CDM, with a rapid transition to w ≈ 0
at early times. The dark energy parameter remains nearly constant
at early times (z � 9). Even for the tiny amount of EDE considered,

the Wetterich model deviates from �CDM from very low redshift.
The BAO data probe low redshifts which is why the observational
constraints do not allow Wetterich model to have non-negligible
EDE.

Since the EDE1 and EDE2 models are not best-fitting models, in
order to evaluate the effect of the deviations before running simula-
tions, we look at two variant �CDM models for comparison. One
is a �CDM model with a value of �m which deviates by 1σ from
the best-fitting value, labelled ‘�CDM 1σ �m’. The other one is a
�CDM model with H0 deviating by 1σ from the best-fitting value,
named ‘�CDM 1σ H0’. We use the CAMB code (Lewis & Bridle
2002b) to generate the CMB temperature spectra for those models.
Fig. 4 shows the comparison between all the models and the Planck
CMB data. It is clear that the CMB peaks of the Wetterich model
are shifted to lower multipoles compared to �CDM. All the other
models have similar CMB spectra and fit the Planck data reason-
ably well. At very low multipoles, l < 50, the ‘�CDM 1σ �m’ and
‘�CDM 1σ H0’ models are almost the same as �CDM. However,
the two Doran & Robbers models deviate from �CDM by up to
4 per cent at these multipoles. Hence the differences between the
EDE1 and EDE2 models and �CDM are not due to the fact that
the EDE models are not formally the best-fitting models but rather
arise because of the different expansion histories. Fig. 4 also shows
that the acoustic oscillations appear at slightly different l in EDE1
and EDE2 than in �CDM, as shown by the oscillations in the ratio
of power spectra shown in the lower panel.

2.3 Linear growth rate

The evolution of linear growth rate reflects the different growth
histories of structure between the EDE and �CDM cosmologies. If
we assume the dark matter perturbations are small, i.e. the density
contrast �1, the power spectrum, P(k, t) can be written as a function
of time,

P (k, t) = D(t)2

D(t0)2
P (k, t0). (4)

Here, D(t0) is the linear growth factor today and is obtained by
solving the differential equation (Linder 1998):

D′′ + 2

3

(
1 − w(a)

1 + X(a)

)
D′

a
− 3

2

X(a)

1 + X(a)

D

a2
= 0, (5)

where

X(a) = �m

1 − �m
e−3

∫ 1
a d ln a′w(a′). (6)

The linear growth rate is defined as f = d ln D/d ln a. Fig. 5 shows
the ratio of the linear growth factor in the EDE1 and EDE2 models
to that in �CDM. Before z = 10, the growth factor is enhanced by a
few per cent in the EDE1 and EDE2 compared with �CDM, before
showing a reduction for z ∼ 2–10.

Although it is straightforward to obtain the linear growth factor
by solving equation (5), some parametrizations of linear growth
rate have become popular. Peebles (1976) proposed a widely used
parametrization, f (z) ≈ �γ

m, where γ = 0.6 is the growth index.
Linder (2005) suggested the more accurate form

γ = 0.55 + 0.05[1 + w(z = 1)], (7)

which gives f = �0.55
m for a �CDM cosmology.

In order to test the accuracy of the Linder parametrization for
the growth factor, we plot in Fig. 6 the approximate growth rate,
fapprox, given by equation (7) divided by the value fanalytical calculated
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Figure 4. The upper panel shows the cosmic microwave background temperature fluctuation spectra of the EDE1, EDE2, �CDM and Wetterich models from
Table 1 compared with the Planck 2013 data (Planck Collaboration XVI 2014, see legend). Two variants of the �CDM model are also shown, which depart
from the best-fitting model by similar amounts to the EDE models. The lower panel shows the ratio of these models to �CDM.

Figure 5. The ratio of the linear growth factor in the EDE models considered
here compared to �CDM as labelled. The linear growth factor is normalized
to unity at z = 0 in all models.

from equation (5). For the EDE1 and EDE2 models and �CDM,
the approximation reproduces the linear growth rate to better than
1 per cent over the redshift range from z = 0 up to 10. Nevertheless,
at late times, the inaccuracy in the growth rate obtained from equa-
tion (7) is comparable to the magnitude of the departure from the
�CDM growth rate, which means that the full calculation should
be used.

Figure 6. A comparison of growth rate obtained using an approximation,
fapprox, estimated from equation (7) and the analytical value, fanalytical calcu-
lated using equation (5) in the EDE and �CDM models as labelled.

2.4 N-body simulations

We have carried out three large-volume, moderate-resolution
N-body simulations for �CDM and the EDE1 and EDE2 cos-
mologies, using a memory-efficient version of the TREEPM code
GADGET-2 (Springel 2005), called L-GADGET2. The code was used in
Jennings et al. (2010) and has been modified in order to allow
a time-dependent equation of state for dark energy. We assume
a flat universe and use the cosmological parameters in Table 1.
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The simulations use grid initial conditions with N = 20483 dark
matter particles in a computational box of a comoving length of
1500 h−1 Mpc. The particle mass is 3.413 × 1010 h−1 M	 for
�CDM and 3.064 × 1010 h−1 M	 for the EDE1 and EDE2 mod-
els. The initial mean inter-particle separation is 0.732 h−1 Mpc. We
adopt a comoving softening length of ε = 15 h−1 kpc. The ini-
tial conditions were generated using the L-GENIC code (Springel
et al. 2005), which has also been adapted to handle a time variable
equation of state. A self-consistent linear theory power spectrum
for each model is generated using CAMB (Lewis & Bridle 2002b).
The normalization extrapolated to z = 0 is σ 8 = 0.8 for all sim-
ulations. The starting redshift is z = 199. We have tested that the
results presented have converged for these choices of particle num-
ber, softening length and starting redshift. Here we are interested
in large-scale structure, redshift space distortions and rare objects,
which is why we chose a large simulation box.

3 R ESULTS

Here we present a range of results from our N-body simulations: the
matter power spectrum in real and redshift space (Section 3.1), the
dark matter halo mass function (Section 3.2), and the distribution
of counts-in-cells (Section 3.3).

3.1 Matter power spectrum

The power spectrum of fluctuations in the matter distribution is
a key statistic that encodes information about the cosmological
parameters and is the starting point for determining many quantities,
such as the clustering of galaxies and the weak gravitational lensing
of faint galaxies. The presence of dark energy at early times in the
EDE cosmologies can change the form of the matter power spectrum
compared to that in �CDM and may allow us to distinguish between
models. The use of N-body simulations allows this comparison to
be extended into the non-linear regime.

3.1.1 The power spectrum in real space

Fig. 7 shows the matter power spectra at redshifts z = 0, 1, 3, 5, 7
measured from the �CDM, EDE1 and EDE2 simulations, together
with the linear perturbation theory power spectra for �CDM. At
z= 0, the power spectra have very similar amplitudes at intermediate
wavenumbers because the three models have been normalized to
have the same value of σ 8 today (σ 8 = 0.8). The power spectra,
however, are noticeably different at very small wavenumbers (large
scales). There are also small differences apparent deep into the
non-linear regime at high wavenumbers (small scales).

The EDE models differ from �CDM on large scales at all plot-
ted redshifts. This is due to the difference in the expansion histories
in these models compared with that in �CDM. This changes the
rate at which fluctuations grow, particularly around the transition
from radiation to matter domination, which alters the shape of the
turnover in the power spectrum (Jennings et al. 2010). To drill down
further into the comparison between the power spectra in the mod-
els, we now compare the simulation measurements after taking into
account differences in the linear growth factor at a given redshift
(as plotted in Fig. 5). Fig. 8 shows the ratio of matter power spec-
trum after dividing by the linear growth factor squared, D(a)2, for
each model. The EDE1 and EDE2 models differ from �CDM by
up to 13 per cent and 17 per cent on large scales, respectively, with

Figure 7. The matter power spectra measured in the EDE1, EDE2 and
�CDM simulations. Different line styles refer to the results for different
models and different colours show the measurements at different redshifts,
as indicated by the key. The smooth black curves show the predictions of
linear perturbation theory in �CDM. Differences between the EDE1 and
EDE2 models and the �CDM results are apparent at very small and high
wavenumbers.

Figure 8. The ratio of matter power spectra measured in real space in the
EDE1 and EDE2 simulations to those in �CDM. This ratio is plotted after
taking into account differences in the linear growth factor at a fixed redshift
between the models. The differences on large scales (small k) show that it
is important to use a linear theory power spectrum in the simulations that
is consistent with the expansion history and cosmological parameters in the
EDE models.
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Figure 9. The ratio of redshift space power spectra measured in the EDE1
and EDE2 simulations after dividing by the square of the linear growth factor
in each model at the redshift in question to that in �CDM as labelled (note
that the range of redshifts compared in this plot is smaller than in Fig. 8).

the ratio showing a slight dependence on redshift. But the differ-
ences between the models on small scales (high k) are more modest,
reaching at most around 5 per cent. Using the linear growth factor
in this way helps to isolate the impact of the different expansion
histories in the models (see Jennings et al. 2010 for a more extended
discussion of this comparison). When plotted in this way, the ra-
tios of power spectra measured at different redshifts coincide. The
residual differences at high wavenumbers are due to the different
growth histories in the models.

The non-negligible difference in Fig. 8 illustrates the need to use
a consistent linear theory power spectrum to generate the initial
conditions in the N-body simulation rather than using a �CDM
spectrum in all cases.

The conclusion of this subsection is that it should be possible to
distinguish an EDE model from �CDM using the shape of power
spectrum on large scales, well into the linear perturbation theory
regime. The bulk of observational measurements of the power spec-
trum probe the clustering in ‘redshift’ space, so next we extend the
comparison to include the contribution from gravitationally induced
peculiar velocities.

3.1.2 The power spectrum in redshift space

We model clustering in redshift space using the distant observer
approximation. We adopt one axis as the line-of-sight direction and
displace the particles along this axis according to the component of
their gravitationally induced peculiar velocity in this direction. Even
though we use a large simulation volume, there is still appreciable
scatter in the clustering when viewed in redshift space, so we repeat
this procedure for each axis in turn and average the results to obtain
our estimate of the matter power spectrum in redshift space.

Fig. 9 shows the ratio of the redshift space power spectra mea-
sured in the simulations after removing differences in the linear
growth factors of the Doran & Robbers cosmologies to that in
�CDM. On large scales, the EDE power spectra are 10 per cent–

20 per cent higher in amplitude than the �CDM power spectrum,
which is similar to the result found in real space. On small scales,
due to the non-linear effects, there are clear differences in the P(k),
but these are smaller than 5 per cent. However, unlike the case of the
real space power spectra, dividing by growth factor squared does not
reduce the differences between the ratios measured at different red-
shifts. Instead, the difference between the rations measured between
the redshift space power spectra in a given pair of models increases
slightly on large scales. This is because the linear growth factor
does not account for all of the linear theory differences between the
power spectra in redshift space.

To further investigate the contributions of the velocity dispersion
and non-linearities to the form of the redshift space power spectrum,
we compare the ratio of the spherically averaged power spectra
in redshift space and real space in left-hand column of Fig. 10.
The linear theory prediction, known as the ‘Kaiser formula’ given
by Ps(k, μ) = Pr(k)(1 + μ2β)2, is plotted as black dashed lines
in Fig. 10. Here Pr(k) is the power spectrum in real space, μ is
the cosine of the angle between the line of sight and the peculiar
motion of the dark matter particle and β = f for the dark matter.
The linear theory monopole ratio depends on redshift through the
value of the matter density parameter. The value of linear growth
rate is calculated using the parametrization f(z) = �γ , where γ

is given by equation (7). The error bars illustrate the scatter in
Ps(k) obtained by using the x-, y-, z-directions in turn as the line-
of-sight direction. At z = 0, the left-hand panel of Fig. 10 shows
that the Kaiser formula only fits the simulation results on very large
scales, k < 0.03 h Mpc−1, as reported by Jennings, Baugh & Pascoli
(2011). The departure from the linear theory prediction is due to a
combination of non-linearities and the damping effects of peculiar
velocities, even though this is often modelled as arising solely due
to damping. Non-linear effects are important for k > 0.03 h Mpc−1

even though the linear regime is typically believed to hold out
to k ∼ 0.1–0.25 h Mpc−1. The Kaiser prediction agrees with the
simulation results over a slightly wider range of scales at higher
redshifts because the non-linear effects are smaller than they are
that at z = 0. In the right-hand panel of Fig. 10, we plot the ratio
of the quadpole to monopole moments of the redshift space power
spectrum, P s

2 (k)/P s
0 (k), for each cosmology at z = 0, 1 and 2. The

Kaiser limit agrees with the simulation results for k < 0.05 h Mpc−1

at z = 0 which is a slightly higher wavenumber than was the case
for the monopole ratio. The departures from the redshift space
distortions expected in �CDM (shown by the grey lines in Fig. 10)
are small, and well within our estimated errors.

3.2 Halo mass function

The mass function of dark matter haloes, defined as the number of
haloes per unit volume with masses in the range M to M + dM,
n(M, z), is an important characteristic of the dark matter density
field which is affected by the expansion rate of the Universe.

We use the friends-of-friends (FOF) algorithm (Davis et al. 1985)
which is built into the L-GADGET2 code to identify dark matter haloes,
using a linking length of b = 0.2 times the mean inter-particle
separation. We retain FOF groups down to 20 particles. In Fig. 11,
we plot the halo mass functions measured from the �CDM, EDE1
and EDE2 simulations at z = 0, 1, 3, 7. For comparison, we also plot
the Jenkins et al. (2001) and Sheth & Tormen (1999) mass functions
evaluated for �CDM. The lower panel of Fig. 11 shows the ratio
of the mass functions measured in the EDE cosmologies to that in
�CDM. The differences in the mass functions at low redshift (z ≤
1) are small, in agreement with results of Francis et al. (2009). The
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Figure 10. The distortion of clustering due to peculiar velocities. Left-hand panel: the ratio of the monopole redshift power spectra to real space power spectra
measured from the N-body simulations at z = 0, 1 and 2. Different colours show the results for different redshifts as labelled. The dashed lines show the linear
theory prediction. Right-hand panel: the ratio of the quadrupole to monopole moments of the redshift power spectra measured from the simulations. Each panel
shows the result for a different model as labelled. For comparison, the �CDM measurements are reproduced as grey lines in the EDE1 and EDE2 panels.

EDE mass functions agree with �CDM to within 20 per cent for
haloes with masses around 1012.0–1013.5 h−1 M	 at z = 1.

The difference between the halo mass functions in EDE and
�CDM increases with increasing redshift. This is due in part to the
difference in the linear growth factors getting larger between the
EDE and �CDM cosmologies going back in time from the present

day. Also, because the simulations have a fixed mass resolution, the
results probe rarer haloes with increasing redshift. The abundance
of these objects is sensitive to the matter power spectrum at smaller
wavenumbers, where we found the largest differences between EDE
and �CDM. At z = 7, �CDM predicts 2.5 times as many haloes
as are found in the EDE cosmologies.
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3548 D. Shi and C. M. Baugh

Figure 11. The mass function of dark matter haloes measured from the
simulations. The upper panel shows the halo mass functions at different
redshifts. The crosses show �CDM, circles EDE1 and triangles EDE2. The
solid and dashed lines show the Jenkins et al. and Sheth–Tormen mass
functions, respectively, for �CDM. The lower panel shows the ratio of dark
matter halo mass functions in the EDE1 and EDE2 cosmologies to that
measured in �CDM.

This prediction could be tested by using a proxy for the halo
mass function at high redshift, such as the galaxy luminosity func-
tion (Jose et al. 2011 proposed a similar test to probe the mass of
neutrinos). To make the connection to the observable Universe, a
model is needed to connect the mass of a dark matter halo to the
properties of the galaxy it hosts. We have evaluated this approach
by carrying out an abundance matching exercise between the halo
mass functions and the observed luminosity function of galaxies
in the rest-frame ultraviolet. This simple procedure assigns one
galaxy to each dark matter halo, ignoring any contribution from
satellite galaxies. The translation between halo mass and galaxy
luminosity can be described by a mass-to-light ratio. Despite the
large differences in the halo mass functions between cosmologies,
the differences in the implied mass-to-light ratios are quite modest

and well within the current uncertainties in our knowledge of the
galaxy formation process. Hence, we conclude that any of these
cosmologies could be made to match the observed galaxy luminos-
ity function at high redshift with plausible mass-to-light ratios, and
that it would be difficult to use the galaxy luminosity function to
distinguish between the models.

3.3 Extreme structures

We have seen in Section 3.1 that the power spectra of the �CDM and
EDE energy models are similar on small scales, particularly once
the differences between the expansion histories in the models have
been taken into account. The power spectrum is a second moment
of the density field and so does not probe the tails of the distribution
of density fluctuations, which could carry the imprint of differences
in the growth history of fluctuations.

Fluctuations in the density field can be quantified by measur-
ing the distribution of fluctuations smoothed over cells, commonly
referred to as counts-in-cells. Rather than formally measuring the
higher order moments of the counts-in-cells distribution, which
rapidly becomes infeasible even with simulations of the volume
used here, we instead compare the high fluctuation tails of the dis-
tributions directly in different cosmologies.

Following Yaryura, Baugh & Angulo (2011), in order to connect
more closely with observables rather than looking at fluctuations
in the overall matter distribution, we consider the counts-in-cells of
cluster-mass dark matter haloes. In particular, we look for ‘hot’ cells
that contain a substantial number of massive haloes. The choice of
halo mass and the definition of hot cells is motivated by results from
the two-degree field galaxy redshift survey (2dFGRS). Croton et al.
(2004) identified two hot cells in the 2dFGRS. Padilla et al. (2004)
found 10 groups with an estimated mass over 5 × 1014 h−1 M	 in
each cell, by cross matching the hot cells in the galaxy distribution
with the 2dFGRS Percolation Inferred Galaxy Group catalogue
(2PIGG catalogue; Eke et al. 2004).

Here we use a cubical cell of side 37.5 h−1 Mpc, which corre-
sponds to a slightly smaller volume than the equivalent size of the
spherical cell used by Croton et al. (2004). We then count the num-
ber of dark matter haloes with Mhalo > 5 × 1014 h−1 M	 inside
each cell. We use the jackknife method to estimate the errors on the
distribution of counts (Shao 1986; Norberg et al. 2009). Put simply,
the jackknife is a resampling technique which works by systemati-
cally leaving out each subset of data in turn from a whole data set to
generate ‘new’ subsamples. Here a subset is defined to be a volume
within the simulation. Then, the overall jackknife estimate of δ can
be found by averaging over all the subsamples, given by

δJack = 1

N

N∑
i=1

δi, (8)

where N is the number of subsamples. The jackknife error is calcu-
lated as

σJack =
√√√√(N − 1)

N∑
i=1

(δi − δJack)2

N
. (9)

We use 64 spatial subsamples in our analysis, dividing each side of
simulation box equally into four parts.

Fig. 12 shows the distribution of cell counts for the three cos-
mologies in both real space and redshift space at z = 0 and 0.5.
The x-axis gives the number of haloes per cell above the specified
mass limit. The y-axis is the normalized probability to find such a
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Figure 12. The counts-in-cells distribution for extreme structures. The probability distribution of finding a given number of haloes with mass larger than
5 × 1014 h−1 M	 in cubic cells of side 37.5 h−1 Mpc. The x-axis is the number of haloes in the cell. In the upper panels, the cell counts are measured in the
real space, while in the lower panels the counts are measured in redshift space. The two dashed horizontal lines in each panel indicate the probability to find
one cell and two cells in the whole simulation box.

cell. In redshift space, we also considered the scatter from using
the three axes in turn as the line of sight. The high cell count tails
are very similar, but �CDM consistently predicts more ‘hot’ cells.
The ‘hottest’ cells only contain seven haloes in �CDM at z = 0,
which is lower than suggested by the 2dFGRS superclusters. This
could be because the FOF halo mass, which we used to select the
haloes, does not match the halo mass estimated from the galaxy
group catalogue. Yaryura et al. (2011) showed that by perturbing
the FOF halo mass by the systematic bias and scatter expected
in the masses returned by a group finder run on a galaxy catalogue,
the number of hot cells increases.

Again, the differences between the predicted count distributions
are smaller than the estimated errors on the measurement and so
could only be probed by a survey covering a volume that is much
larger than our simulations.

4 C O N C L U S I O N S

One of the main science goals of future wide-field galaxy surveys is
to distinguish a cosmological constant from other scenarios for the
acceleration of the cosmic expansion, such as dynamical dark en-
ergy models. Here we have examined a particular class of dynamical
dark energy model which display a small but non-negligible amount
of dark energy at early times, which are referred to as EDE models.

Such models could be motivated by a choice of potential for the
scalar field describing the dark energy. Instead, to confront these
models with the currently available cosmological constraints in an
efficient way, we chose to use a simple description in which the den-
sity parameter of the dark energy is parametrized as a function of
the expansion factor, the present day values of the dark energy and
matter density parameters, the present equation-of-state parameter
of the dark energy and the asymptotic value of the density parameter
of dark energy at early times. Once constrained, the model can be
described by the resulting time dependence of the equation-of-state
parameter.

The step of constraining the EDE model to reproduce current ob-
servations is a critical one. In fact, the best-fitting models, even with
the observational constraints available today favour models with-
out any dark energy at early times, a conclusion that has already
been reached by other studies (Planck Collaboration XVI 2014).
Nevertheless, within the range of models that remain compatible
with current data, it is possible to find examples with interesting
amounts of EDE. Increasing the amount of EDE in the model tends
to favour a more negative equation-of-state parameter at the present
day than the canonical w = −1 which corresponds to the cosmo-
logical constant. We have investigated two models which, whilst
not best-fitting models, are still compatible with the observations at
the 1σ (EDE1 with 1 per cent of the critical density in dark energy
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at early times) and 2σ levels (EDE2 with 2 per cent of the critical
density in dark energy at early times); both models have w0 = −1.2.

Previous simulation work on EDE models suggested that a clear
signature that could be testable against �CDM is the halo mass
function (Francis et al. 2009; Grossi & Springel 2009). In a simple
picture, the presence of a small but unignorable amount of dark
energy at early epochs increases the rate at which the universe
expands, making it harder for structure to form. If the models
are set-up to have the same value of σ 8 today, this means that
structure has to form at a smaller expansion factor or earlier time in
the EDE model. Hence, a larger number density of massive haloes
is predicted in EDE models compared to �CDM.

Our results show that this simple picture of early structure forma-
tion with early dark matter is not a generic feature of these models.
After constraining the models against current observations, we find
that the evolution of the linear growth rate of fluctuations in the
EDE models is remarkably close to that in �CDM. At the earli-
est epochs, the EDE2 growth rate exceeds that in �CDM by just
2 per cent before lagging behind until catching up around z ∼ 0.8
and then exceeding the �CDM growth rate by less than 0.5 per cent.

The dark matter halo mass function in the EDE simulations shows
fewer massive haloes than we find in the �CDM simulation. This
difference in the halo mass function could be tested using the high-
redshift galaxy luminosity function (as suggested by Jose et al. 2011
to probe the nature of massive neutrinos). The difference in halo
abundance is, however, modest, and could be accounted for by our
lack of knowledge of the relevant galaxy formation physics. We find
a small difference in the abundance of ‘hot cells’ in the distribution
of dark matter haloes between EDE and �CDM, though this will
be challenging to measure, requiring huge survey volumes.

The cleanest signature we have found of the presence of dark
energy at early times is in the shape of the matter power spectrum.
The more rapid expansion rate around the epoch of matter radiation
equality in EDE models compared to �CDM changes the shape of
the turnover in the matter power spectrum (Jennings et al. 2010).
This effect is visible in the linear theory power spectrum and is
present on scales on which we would expect scale-dependent effects
in galaxy bias to be small (Angulo et al. 2008). To probe this
effect, it will necessary to retain the full shape information for
the galaxy power spectrum, rather than isolating the scale of the
baryonic acoustic oscillation feature (Sánchez, Baugh & Angulo
2008). Tentative measurements of the matter power spectrum on
the scale of the turnover have already been made by the WiggleZ
Dark Energy survey (Poole et al. 2013). Future large-area radio
surveys conducted with the SKA pathfinder experiments, MeerKAT
and ASKAP have the potential to probe the existence of EDE by
providing more accurate measurements of the turnover in the power
spectrum.
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