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ABSTRACT

We apply a combination of genetic algorithm (GA) and support vector machine (SVM) machine learning
algorithms to solve two important problems faced by the astronomical community: star–galaxy separation and
photometric redshift estimation of galaxies in survey catalogs. We use the GA to select the relevant features in the
first step, followed by optimization of SVM parameters in the second step to obtain an optimal set of parameters to
classify or regress, in the process of which we avoid overfitting. We apply our method to star–galaxy separation in
Pan-STARRS1 data. We show that our method correctly classifies 98% of objects down to =i 24.5P1 , with a
completeness (or true positive rate) of 99% for galaxies and 88% for stars. By combining colors with morphology,
our star–galaxy separation method yields better results than the new SExtractor classifier spread_model, in
particular at the faint end ( >i 22P1 ). We also use our method to derive photometric redshifts for galaxies in the
COSMOS bright multiwavelength data set down to an error in ( )+ z1 of s = 0.013, which compares well with
estimates from spectral energy distribution fitting on the same data (s = 0.007) while making a significantly
smaller number of assumptions.
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1. INTRODUCTION

Astronomy has witnessed an ever-increasing deluge of data
over the past decade. Future surveys will gather very large
amounts of data daily that will require on-the-fly analysis to
limit the amount of data that can be stored or analyzed and to
allow timely discoveries of candidates to be followed up:
examples are Euclid (Laureijs et al. 2011, 100 GB per day),
WFIRST (Spergel et al. 2015, 1.3 TB per day), and the Large
Synoptic Survey Telescope (Ivezic et al. 2008, 10 TB per day).
The evolution of the type, volume, and cadence of the
astronomical data requires the advent of robust methods that
will enable a maximal rate of extraction of information from the
data. Thus, for a given problem, one needs to make sure all the
relevant information is made available in the first step, followed
by the use of a suitable method that is able to narrow down the
important aspects of the data. This can be done both for feature
selection and for noise filtering.

In machine learning parlance, the tasks required can be
designated as classification tasks (derive a discrete value: star
versus galaxy, for instance) or regression tasks (derive a
continuous value: photometric redshift, for instance.) Methods
for classification or regression usually are of two kinds:
physically motivated or empirical.4 Physically motivated
methods use templates built from previously observed data,
like star or galaxy spectral energy distributions (SEDs), for
instance, in the case of determining photometric redshifts. They
also attempt to include as much knowledge as we have of the
processes involved in the problem at stake, such as prior
information. Physically motivated methods seem more appro-
priate than empirical, but the very fact that they require a good
knowledge of the physics involved might be an important

limitation. Indeed, our knowledge of a number of the processes
involved in shaping the SEDs of galaxies, for instance, is still
quite limited (e.g., Conroy et al. 2010, and references therein),
whether it is about the processes driving star formation, dust
attenuation laws, initial mass function, star formation history,
or active galactic nucleus (AGN) contribution. Hence, choices
need to be made: either make a number of assumptions, in
order to reduce the number of free parameters, or decide to be
more inclusive and add more parameters, but at the cost of
potential degeneracies. Physically motivated methods are also
usually limited in the way they treat the correlation between the
properties of the objects because the only correlations taken
into account are those included in the models used and might
not reflect all of the information contained in the data.
On the other hand, empirical methods require few or no

assumptions about the physics of the problem. The goal of an
empirical method is to build a decision function from the data
themselves. The quality of the generalization of the results to a
full data set depends of course on the representativeness of the
training sample. We note, however, that the question of the
generalization also applies to physically motivated methods
because they are also validated on the training data.
Depending on the methods used, transformations may need

to be effected before the method is applied; for example, in the
case of support vector machines (SVM; e.g., Boser et al. 1992;
Cortes & Vapnik 1995; Vapnik 1995, 1998; Smola &
Schölkopf 1998; Duda et al. 2001), linear separability is
presumed, thereby requiring nonlinearly separable or regres-
sible data to be kernel transformed to enable this.
A challenge with empirical methods is that with growing

numbers of input parameters, it becomes prohibitive in terms of
CPU time to use all of them. It can also be counterproductive to
feed the machine learning tool with all of these parameters
because some of them might either be too noisy or not bring
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4 Formalisms that blend physically motivated and empirical methods have
been proposed; see, e.g., Budavári (2009).
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any relevant information to the specific problem being tackled.
Moreover, high-dimensional problems suffer from being overfit
by machine learning methods (Cawley & Talbot 2010), thereby
yielding high-dimensional nonoptimal solutions. This requires
subselection of relevant variables from a large N-dimensional
space (with N potentially close to 1000). This task itself can
also be achieved using machine learning tools. Here we
present, to our knowledge, the first application to astronomy of
the combination of two machine learning techniques: genetic
algorithms (GA; e.g., Steeb 2014) for selecting relevant
features, followed by SVMs to build a decision–reward
function. GAs alone have already been used in astronomy,
for instance, in the study of orbits of exoplanets and the SEDs
of young stellar objects (Cantó et al. 2009), the analysis of
SN Ia data (Nesseris 2011), the study of star-formation and
metal-enrichment histories of a resolved stellar system (Small
et al. 2013), the detection of globular clusters from Hubble
Space Telescope (HST) imaging (Cavuoti et al. 2014), and
photometric redshift estimation (Hogan et al. 2015). At the
same time, SVMs have been extensively used to solve a
number of problems, such as object classification (Zhang &
Zhao 2004), the identification of red variable sources (Woźniak
et al. 2004), photometric redshift estimation (Wadadekar 2005),
morphological classification (Huertas-Company et al. 2011),
and parameter estimation for Gaia spectrophotometry (Liu
et al. 2012). We note also that the combination of GA and
SVM has already been used in a number of fields, such as
cancer classification (e.g., Huerta et al. 2006; Albda
et al. 2007), chemistry (e.g., Fatemi & Gharaghani 2007),
and bankruptcy prediction (e.g., Min et al. 2006). We do not
attempt here to provide the most optimized results from this
combination of methods. Rather, we present a proof of concept
that shows that GA and SVM yield remarkable results when
combined, as opposed to using the SVM as a standalone tool.

In this paper, we focus on two tasks frequently seen in large
surveys: star–galaxy separation and the determination of
photometric redshifts of distant galaxies. Star–galaxy separa-
tion is a classification problem that has usually been
constrained purely from the morphology of the objects (e.g.,
Kron 1980; Bertin & Arnouts 1996; Stoughton et al. 2002). A
number of studies have used color information with template
fitting to separate stars from galaxies (e.g., Fadely et al. 2012).
On top of these two common approaches, good results have
been obtained by feeding morphology and colors to machine
learning techniques (e.g., Vasconcellos et al. 2011; Saglia et al.
2012; Kovács & Szapudi 2015). Our goal here is to extend the
star–galaxy separation to faint magnitudes, where the morphol-
ogy is not as reliable. We apply here the combination of GA
with SVM to star–galaxy separation in the Pan-STARRS1
(PS1) Medium Deep Survey (Kaiser et al. 2010; Tonry
et al. 2012; Rest et al. 2014).

On the other hand, the determination of photometric
redshifts is a well-studied problem of regression that has been
dealt with using a variety of methods, including template fitting
(e.g., Arnouts et al. 1999; Benítez 2000; Brammer et al. 2008;
Ilbert et al. 2009), cross-correlation functions (Rahman
et al. 2015), random forests (Carliles et al. 2010), neural
networks (Collister et al. 2007), polynomial fitting (Connolly
et al. 1995), and symbolic regression (Krone-Martins
et al. 2014). We apply the GA-SVM to the zCOSMOS bright
sample (Lilly et al. 2007).

The outline of this paper is as follows. In Section 2 we
present the data to which we apply our methods and the
training sets we use: PS1 and zCOSMOS bright. In Section 3
we briefly describe our methods; we include a more detailed
description of SVM in an Appendix. We present our results in
Section 4 and finally list our conclusions.

2. DATA

We perform star–galaxy separation in PS1 Medium Deep
data (Section 2.1), using a training set built from COSMOS
Advanced Camera for Surveys (ACS) imaging (Section 2.2.1).
We then derive photometric redshifts for the zCOSMOS bright
sample (Section 2.2.2).

2.1. Pan-STARRS1 Data

The Pan-STARRS1 survey (Kaiser et al. 2010) surveyed
three-quarters of the northern hemisphere (d > - 30 ) in five
filters: gP1, rP1, iP1, zP1, and yP1 (Tonry et al. 2012). In addition,
PS1 has obtained deeper imaging in 10 fields (amounting to
80 deg2) called the Medium Deep Survey (Tonry et al. 2012;
Rest et al. 2014). We use here data in the MD04 field, which
overlap the COSMOS survey (Scoville et al. 2007).
We use our own reduction of the PS1 data in the Medium

Deep Survey. We use the image stacks generated by the Image
Processing Pipeline (Magnier 2006) and also the CFHT u-band
data obtained by E. Magnier as follow-up of the Medium Deep
fields. We have at hand six bands: uCFHT, gP1, rP1, iP1, zP1, and
yP1. We perform photometry using the following steps,
considering PS1 skycell as the smallest entity: (1) resample
(using SWarp, Bertin et al. 2002) the u-band images to the PS1
resolution, and register all images; (2) for each band, fit the
point-spread function (PSF) to a Moffat function and match
that PSF to the worst PSF in each skycell; (3) using these PSF-
matched images, we derive a c2 image (Szalay et al. 1999); (4)
we perform photometry using the SExtractor dual mode
(Bertin & Arnouts 1996), detecting objects in the c2 image and
measuring the fluxes in the PSF-matched images: the Kron-like
apertures are defined from the c2 image and hence are the same
over all bands; (5) for each detection, we measure spread_-
model in each band on the original, non-PSF-matched images.
We consider here Kron magnitudes, which are designed to
contain ∼90% of the source light, regardless of being from a
point-source star or an extended galaxy.
Here, spread_model (Soumagnac et al. 2013) is a

discriminant between the local PSF, measured with PSFEx
(Bertin 2011), and a circular exponential model of scale length
FWHM 16 convolved with that PSF. This discriminant has
been shown to perform better than SExtractor’s previous
morphological classifier, class_star.

2.2. COSMOS Data

2.2.1. Star–Galaxy Classification Training Set

We use the star–galaxy classification from Leauthaud et al.
(2007) derived from high-spatial-resolution HST imaging (in
the F W814 band) as our training set for star–galaxy
classification. They separate stars from galaxies based on their
SExtractor mag_auto and mu_max (peak surface bright-
ness above surface level). By comparing the derived stellar
counts with the models of Robin et al. (2007), Leauthaud et al.
(2007) showed that the stellar counts are in excellent agreement
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with the models for < <F W20 814 25. We perform here star–
galaxy separation down to =i 24.5P1 .

2.2.2. Spectroscopic Redshift Training Set

We use data taken as part of the COSMOS survey (Scoville
et al. 2007). We focus here on objects with spectroscopic
redshifts obtained during the zCOSMOS bright campaign
(Lilly et al. 2007, <i 22.5). We use the photometry obtained in
25 bands by various groups in broad optical and near-infrared
bands (Capak et al. (2007, u

*

, BJ, VJ, +g , +r , +i , +z , Ks), in
narrow bands (Taniguchi et al. 2007, NB816; Ilbert et al. 2009,
NB711), and in intermediate bands (Ilbert et al.2009, IA427,
IA464, IA505, IA574, IA709, IA827, IA484, IA527, IA624,
IA679, IA738, IA767). We also use IRAC1 and IRAC2
photometry (Sanders et al. 2007). We consider here only
objects with good redshift determination (confidence class: 3.5
and 4.5), <z 1.5 (which yields 5807 objects) and measured
magnitudes for all the bands listed above, which finally leaves
us with 5093 objects. We do not use objects with other
confidence-class values because the spectroscopic redshifts can
be erroneous in at least 15% of cases (O. Ilbert 2016, private
communication).

3. METHODS

We present here the two machine learning methods we use in
this work: GAs are used to select the relevant features, and
SVMs are used to predict the property of interest using these
features.

3.1. Genetic Algorithms

GAs (e.g., Steeb 2014) apply the basic premise of genetics to
the evolution of solution sets of a problem until they reach
optimality. The definition of optimality itself is debatable, but
the general idea is to use a reward function to direct the
evolution. That is, we evolve solution sets of parameters (or
genes) known as organisms through several generations
according to some predefined evolutionary reward function.
The reward function may be a goodness of fit or a function
thereof that may take into account more than just the goodness
of fit. For example, one may choose to determine subsets of
parameters that optimize c2 or likelihood, Akaike information
criteria, energy functions, or entropy. The lengths of the first
generation of organisms are chosen to range from the minimum
expected dimensionality of the parameter space (which can be
one) to the maximum expected dimensionality of the
covariance.

The fittest organisms in a particular generation are then given
higher probabilities of being chosen to be the parents for
successive generations using a roulette selection method based
on their fitnesses. Parents are then crossbred using a
customized procedure; in our method we first choose the
lengths of the children to be based on a tapered distribution
where the taper depends on the fitnesses of the parents. That
way the length of the child is closer to that of the fitter parent.
The child is then populated using the genes of both parents,
where genes that are present in both parents are given twice the
weight of genes that are only present in one parent. The idea is
that the child should, with a greater probability, contain genes
that are present in both parents, as opposed to the ones
contained in only one of them. This process iteratively
produces fitter children in successive generations and is

terminated when no further improvement in the average
organism quality is seen. Like in biological genetics, we also
introduce a mutation in the genes with constant probability.
The genes that are chosen to be mutated are replaced with any
of the genes that are not part of either parent, with a uniform
probability of choosing from the remaining genes. This allows
for genes that are not part of the current gene pool to be
expressed. The conceptual simplicity of GA combined with
their evolutionary analogy as applied to some of the hardest
multiparameter global optimization problems makes them
highly sought after.

3.2. Support Vector Machines

SVM (e.g., Boser et al. 1992; Cortes & Vapnik 1995;
Vapnik 1995, 1998; Smola & Schölkopf 1998; Duda
et al. 2001) is a machine learning algorithm that constructs a
maximum-margin hyperplane to separate linearly separable
patterns. SVM is especially efficient in high-dimensional
parameter spaces, where separating two classes of objects is a
hard problem, and performs with best-case complexity
n nparameters samples

2 . Where the data are not linearly separable,
a kernel transformation can be applied to map the original
parameter space to a higher-dimension feature space where the
data become linearly separable. For both problems we attempt
to solve in this paper, we use a Gaussian radial basis function
kernel, defined as

( ) ( ∣∣ ∣∣ ) ( )g¢ = - - ¢K x x x x, exp . 12

Another advantage of using SVM is that there are
established guarantees of their performance, which have been
well documented in the literature. Also, the final classification
plane is not affected by local minima in the classification or
regression statistic, which other methods based on least squares
or maximum likelihood may not guarantee. For a detailed
description of SVM, please refer to Smola & Schölkopf (1998)
and Vapnik (1995, 1998). We use here the Python
implementation within the Scikit-learn (Pedregosa
et al. 2011) module.

3.3. Optimization Procedure

We combine the GA and SVM to select the optimal set of
parameters that enables one to classify objects or derive
photometric redshifts. In either case, we first gather all input
parameters and then build color combinations from all
available magnitudes. We also consider here transformations
of the parameters, namely their logarithm and exponential on
top of their catalog values, which we name “linear” afterward,
in order to capture nonlinear dependencies on the parameters.
Note that any transformation could be used; we limited
ourselves to log and exp for the sake of simplicity for this
first application. This way, the rate of change of the dependent
parameter as a function of the independent parameter in
question is more accurately captured, and dependencies on
multiple transformations of the same variable can also be
captured. To eliminate scaling issues in transformed spaces, we
transform all independent parameters to between −1 and 1. The
optimization is then performed in the following two steps
iteratively until the end criterion or convergence criterion is
met: selection of the relevant set of features in the first, and
automatic optimization of SVM parameters to yield optimal
classification/regression given the parameters. For SVM
classification, the true positive rate is used as the fitness
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function. For SVM regression, a custom fitness function based
on the problem at hand is chosen. For example, for SVM
regressions on the photometric redshift we use

( )
å
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. 2
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z z
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2i i
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phot spec
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Once the fitness of all organisms has been evaluated, a new
generation of the same size as the parent generation is created
using roulette selection. The GA then runs until it reaches a
predefined stopping criterion. We use here the posterior
distribution of the parameters. We stop the GA when all
parameters have been used at least 10 times. We also use the
posterior distribution to choose the optimal set of parameters.
Various schemes can be defined. For our application, we
restrict ourselves to characterizing the posterior distribution by
its mean μ and standard deviation σ (see Figure 1). We
consider here all parameters that appear more than m s+ or
m s+ 2 times in the posterior distribution, depending on which
of our results change significantly. For instance, in the case of
photometric redshifts, the mean of the posterior distribution is
m = 13.8, and the standard deviation is s = 10.4; we keep all
parameters that occur more than 24 times in the posterior
distribution when using the m s+ criterion.

3.3.1. SVM Parameter Optimization

SVM are not “black boxes” but come with a well-defined
formalism and free parameters to be adjusted. For this
application, we use the νSVM version of the algorithm, which
allows us to control the fractional error and the lower limit on
the fraction of support vectors used. We use here n = 0.1. In
the case of classification (star–galaxy separation), we are then

left with only one free parameter, the inverse of the width of the
Gaussian kernel, γ (Equation (1)). In the case of regression
(photometric redshifts), we have an additional free parameter,
the trade-off parameter C (see Appendix).
If not used with caution, machine learning methods can lead

to overfitting: the decision function is biased by the training
sample and will not perform well on other samples. In order to
avoid overfitting and optimize the values of γ and C, we
perform a 10-fold cross-validation, in which we divide the
sample into 10 subsets, and we then perform classification or
regression for each subset after training on the nine other
subsets. We perform this cross-validation for a grid of γ and C
values. In the case of SVM, the overfitting can be measured by
the fraction of objects used as support vectors, fSV. If ~f 1SV ,
most of the training sample is used as support vectors, which
will lead to poor generalization. For each iteration, we also get
fSV, in order to include it in our cost function. For both
applications, we minimize a custom cost function that
optimizes the quality of the classification or regression,
and fSV.

4. RESULTS

4.1. Star–Galaxy Separation

We use as inputs to the GA feature selection step all
magnitudes available for the PS1 data set: uCFHT, gP1, rP1, iP1,
zP1, and y ;P1 the spread_model values derived from each of
these bands; and the ellipticity measured on the c2 image, with
all colors. We also included a few quantities determined by
running the code lephare on these data: the photometric
redshift and the ratios of the minimum c2 using galaxy, star,
and quasar templates: c cgalaxy

2
star
2 , c cgalaxy

2
quasar
2 , and

c cquasar
2

star
2 . Including the transformations of these parameters

yields 96 input parameters to the GA-SVM feature selection
procedure.
The parameters selected by the GA with occurrence larger

than m s+ times in the posterior distribution are listed in

Figure 1. Example of posterior distribution for the parameters obtained from
the GA-SVM. This posterior distribution was derived for the application to
photometric redshifts (Section 4.2). The red solid line shows the average
occurrence of the parameters, the dashed blue line the occurrence at the mean
plus one standard deviation, and the dotted blue line the occurrence at the mean
plus two standard deviations. We use here all parameters that appear more
times than the mean plus one standard deviation in the posterior distribution.

Table 1
Star–Galaxy Separation: GA Output Parameters

Parameter Transform Occurrence Thresholda

uCFHT log m s+
rP1 lin m s+
rP1 log m s+ 2
spread_model_g exp m s+
spread_model_r lin m s+ 2
spread_model_r log m s+ 2
spread_model_i exp m s+ 2

-u gCFHT P1 lin m s+
-u zCFHT P1 lin m s+
-u yCFHT P1 lin m s+ 2

-g yP1 P1 log m s+
-r yP1 P1 exp m s+
-i yP1 P1 lin m s+
-z yP1 P1 exp m s+

zphot lin m s+

Note.
a Here, m s+ indicates that the parameter occurred at least m s+ times in
the posterior distribution of the GA, while m s+ 2 indicates that the parameter
occurred m s+ 2 times.

4
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Table 1. We also indicate the parameters whose occurrence is
larger than m s+ 2 times. The 15 selected parameters include
spread_model derived in gP1, rP1, and iP1, but are dominated
by colors (seven of 15). Using the parameters occurring more
than m s+ 2 yields similar results, although with significant
overfitting.

In order to quantify the quality of the star–galaxy separation,
we use the following definitions for the completeness c and the
purity p:

( )=
+

c
n

n m
3g

g

g g

( )=
+

p
n

n m
4g

g

g s

where nx is the number of objects of class x correctly classified,
and mx is the number of objects of class x misclassified. The
same definition holds for the star completeness and purity.

Based on these definitions, in the case of star–galaxy
separation, we use this as the cost function:

( )

=
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+
-
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2
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2
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2

In other words, we choose here to optimize the average
completeness and purity for stars and galaxies and also penalize
high fSV, which amounts to penalizing high fractional errors,
and overfitting as well. Other optimization schemes can be
adopted. We perform the optimization over the only SVM free
parameter here, the inverse of the width of the Gaussian kernel,

γ. We use a grid search using a log-spaced binning
for g< <0.01 10.
We show in Figure 2 the spread_model derived in the

PS1 i band as a function of iP1. Figure 2 shows that
spread_model enables us to recover a star sequence down
to ~i 22P1 . At fainter magnitudes, morphology alone is not
able to accurately separate stars from galaxies at the PS1
angular resolution. The color coding shows the result of the
GA-SVM classification. We classify objects down to

=i 24.5P1 . We choose this limit because the completeness of
the PS1 data drops significantly beyond 24.5, and also because
the training set we use is valid down to =F W814 25. Figure 1
suggests that the GA-SVM is able to recover the classification
at bright magnitudes but also to extend it at the faint end. We
list in Table 2 the percentage of objects classified correctly. Our
method correctly classifies 97% of the objects down to

=i 24.5P1 . We can compare our results to those from the
PS1 photometric classification server (Saglia et al. 2012),
which used SVM on bright objects using PS1 photometry.
They obtained 84.9% of stars correctly classified down to

=i 21P1 and 97% of galaxies down to = 20P1 . Our method
enables us to improve upon those, as we get 88.6% of stars
correctly classified and 99.3% of galaxies correctly classified in
the same magnitude range.
We examine in more detail in Figures 3 and 4 the colors of

the objects. These figures show that the bulk of stars that are
misclassified as galaxies are at the faint end, i 22, and that
these objects are in regions where the colors of stars and
galaxies are similar. Galaxies misclassified as stars are brighter,
<i 22, but again are in regions where the colors of stars and

galaxies overlap. There are also a handful of very bright stars
misclassified as galaxies, in a domain where the galaxy
sampling is very poor. Finally, we classify as galaxies a few
stars showing colors at the outskirts of the color distributions.
These objects might be misclassified by the ACS photometry,
or the color might be significantly impacted by photometric
scatter.
We show in Figure 5 the completeness (left) and purity

(right) of our classifications as a function of iP1.
We derive the completeness and purity for each cross-

validation subset and show in Figure 5 the average and as error
bars the standard deviation. Most of the features of our
classification seen in Figure 5 are due to the fact that the
training sample is unbalanced at the bright end and the faint
end: at the bright end, stars outnumber the galaxies, and the
other way around at the faint end. At the bright end ( <i 16P1 ,
which is also within the saturation regime), the completeness is
higher for stars than for galaxies, while noisy because of small
statistics. Some bright galaxies are misclassified as stars. At the
faint end ( >i 22P1 ), the star completeness decreases because

Figure 2. SExtractor morphological classifier spread_model measured in
the PS1 i band as a function of iP1. We also show the result of our baseline
classification (training on all objects): red points show objects classified as stars
by the GA-SVM, and blue points show objects classified as galaxies. Orange
and cyan points show misclassified objects: orange points are galaxies
according to the catalog of Leauthaud et al. (2007) classified as stars, and cyan
points are stars classified as galaxies.

Table 2
Star–Galaxy Separation: Performance

Type GA-SVM alla GA-SVM Bright/Faintb spread_modelc

All types 97.4 98.1 92.7
Galaxies 99.8 99.2 94.5
Stars 74.5 88.5 75.9

Notes. Percentage of correctly classified objects for each method:
a Training and prediction on the full sample.
b Training and prediction on bright and faint objects separately.
c SExtractor spread_model method.
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some stars are classified as galaxies. The impression given by
Figure 5 is striking, as the star completeness decreases to 0 at

~i 24P1 . Note, however, that the stars represent only 3% of the
overall population at this flux level (Leauthaud et al. 2007).
The purity shows a similar behavior at the bright end. At the
faint end, however, the purity of the stars is larger than 0.85 for

i 23P1 . For galaxies, both completeness and purity are lower
than 0.8 at the bright end ( <i 18P1 ), but the number of galaxies
is small at these magnitudes. At >i 18P1 , completeness and
purity are independent of magnitude down to =i 24.5P1 and
larger than 0.95.

We compare these results to the classification obtained with
spread_model derived in the iP1 band. We determine a
single cut in spread_model_i using its distribution for
reference stars and galaxies. Our cut is the value of
spread_model_i such that

spread model i spread model i( ∣ ) ( ∣ )=p g _ _ p s _ _ . We
show in Figure 5 the completeness and purity obtained with
spread_model_i as dotted lines. For iP122, the results
from spread_model_i and our method are similar: at the
PS1 resolution, point sources and extended objects are well
discriminated in this magnitude range. At >i 22P1 , our
baseline method performs better, in particular for galaxies,
which is expected as we add color information. While the
galaxies’ purity is similar for both methods, the completeness
obtained with spread_model_i drops to 0.75 at =i 24.5P1 ,
but our method yields a completeness consistent with 1 down
to this magnitude. For stars, the purity obtained with the two
methods is similar. However, the completeness we obtain drops
faster than that obtained with spread_model_i. In order to
see whether we can improve our baseline method, we optimize
the SVM parameters independently in two magnitude ranges:

<i 22P1 and >i 22P1 . Because galaxies at the faint end
outnumber stars by several orders of magnitude, we add an
extra free parameter for the optimization at >i 22P1 , which

attempts to correct this sampling issue. In practice, we use all
stars available, but only a fraction of the galaxies available,
from one to 10 times the number of stars. The results obtained
are shown in solid lines on Figure 5. The results for galaxies are
virtually unchanged compared to our baseline method. For
stars, we are able to improve at the faint end, where the purity
is better than that obtained with spread_model_i
for <i 23P1 .
As a final check, we also derive the star–galaxy separation

by using SVM only, without selecting the inputs with the GA.
The results are only marginally different. We note, however,
that a parameter space with lower dimensions is less prone to
overfitting with machine learning methods. On the other hand,
even with similar results, a SVM-based star–galaxy separation
with a smaller number of input parameters is more likely to
generalize properly.

4.2. Photometric Redshifts

We used 978 input parameters as inputs for the GA-SVM
optimization procedure: all magnitudes and colors available
from the COSMOS data set and the transformations of these
parameters, as described in Section 3.3. Hereafter we consider
the parameters that appear at least m s+ 1 times in the
posterior distribution, so we are left with 131 parameters. The
parameters retained by the GA-SVM are dominated by colors
(82%, 108/131), in particular colors involving intermediate
and narrow bands (71%, 93/131). Using the parameters that
appear m s+ 2 times in the GA posterior distribution yields 45
parameters, with similar proportions of colors and intermediate
and narrow bands. This is in line with the conclusions of
studies using SED fitting methods, which show that including
narrow and intermediate bands improves significantly the
estimation of photometric redshifts (e.g., Ilbert et al. 2009).
We quantify the errors on photometric redshifts as
( ) ( ) ( )= - +z z z zerr 1spec phot spec spec , using as a measure of

global accuracy σ, the normalized median absolute deviation,
defined as

( )s = *z 1.4826 median (∣ ( ) ( ( ))∣)-z zerr median errspec spec .
We define the following cost function for the SVM

optimization:

( ) ( )s
=

-
+

-⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟J

z f0.005

0.0001

0.1

0.01
. 6

2
SV

2

We perform the optimization over the two SVM free
parameters available here, γ and the trade-off parameter C. We
use a grid search using a log-spaced binning for g< <0.01 10
and < <C0.01 500.
We compare in Figure 6 the spectroscopic and photometric

redshifts. We obtain an overall accuracy of 0.013.5 The
percentage of outliers, defined as objects with
∣ ( )∣ >zerr 0.15spec , is below 1%. The average error (bias) is
equivalent to zero; our results do not show any significant bias
as a function of redshift. At high redshifts ( >z 1) the
spectroscopic sampling is small, so the model is less
constrained. Using the parameters that appear m s+ 2 times
in the GA-SVM posterior distribution yields similar results
( ( )s =z 0.014), which shows that by using three times fewer
parameters, the same accuracy can be achieved.

Figure 3. Color–magnitude diagram -g iP1 as a function of iP1. The color
coding is the same as in Figure 2.

5 Using objects with spectroscopic confidence class  <CC3 5 yields
similar results with an accuracy of ( )s =z 0.015.
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On a similar sample6, Ilbert et al. (2009), using an SED
fitting method, obtained an overall accuracy of 0.007. While
our results are slightly worse at face value, we note that we use
here only two free parameters for the photometric redshift
optimization and one model to derive the photometric redshifts
(the one from SVM). In contrast, Ilbert et al. (2009) rely on 21
SED templates, 30 zero-point offsets (one per band), and an
extra parameter describing the amount ( )-E B V of internal
dust attenuation. We also explicitly avoid overfitting, and doing
so guarantees the potential for generalization of these results.
Our tests show that we can obtain an overall accuracy of ∼0.01,
but this comes at the price of significant overfitting (the support
vectors are made up from the whole sample).

As above, we also derive the photometric redshifts by using
SVM only, without selecting the inputs with the GA. In this
case the results are much worse, yielding large errors:

( )s ~z 0.5. This shows that the combination of GA and
SVM yields better results than SVM alone.

We also test whether we can derive empirical error estimates
for each object using SVM. We use a variant of the k-fold
cross-validation, the so-called “inverse.” The usual k-fold
cross-validation consists of dividing the sample into k
subsamples (we use k= 10 here); for each subsample,
predictions are made using the SVM trained on the union of
the other -k 1 subsamples. To derive error estimates, we use
the inverse k-fold cross-validation such that we train the SVM
on one subsample, and we predict photometric redshifts for the
union of the other -k 1 subsamples. We have then -k 1
estimates of zphot. We derive an empirical error estimate ŝz,
which is the standard deviation of these estimates. We show in
Figure 7 the normalized distribution of the ratio
( ) ŝ-z zspec phot z. If our empirical estimate were an accurate
measurement of the actual error, this distribution should be a
normal one. A comparison with a normal distribution shows

that this is indeed the case, which suggests that our error
estimates are accurate.

5. CONCLUSIONS

We present a new combination of two machine learning
methods that we apply to two common problems in astronomy:
star–galaxy separation and photometric redshift estimation. We
use GA to select relevant features and SVM to estimate the
quantity of interest using the selected features. We show that
the combination of these two methods yields remarkable results
and offers an interesting opportunity for future large surveys
that will gather large amounts of data. In the case of star–
galaxy separation, the improvements over existing methods are
a consequence of adding more information, while for
photometric redshifts, it is rather the selection of the input
information fed to the machine learning methods. This shows
that the combination of GA and SVM is very efficient in the
case of problems with large dimensions.
We first apply the GA-SVM method to star–galaxy

separation in the PS1 Medium Deep Survey. Our baseline
method correctly classifies 97% of objects, in particular
virtually all galaxies. Our results improve upon the new
SExtractor morphological classifier, spread_model, which
is expected because we added color information instead of
morphology only. We show how these results can be further
improved for stars by training separately bright and faint
objects and by taking into account the respective numbers of
stars and galaxies to avoid being dominated by one population.
We then apply the GA-SVM method to photometric redshift

estimation for the zCOSMOS bright sample. We obtain an
accuracy of 0.013, which compares well with the results from
SED fitting, as we are using only two free parameters. We also
show that we can derive accurate error estimates for the
photometric redshifts.
We present here a proof of concept of a new method that can

be modified or improved depending on the problem at stake.

Figure 4. Color–color diagram -u rP1 as a function of -r iP1. The left panel shows objects with <i 22P1 and the right panel objects with >i 22P1 . The color coding
is the same as in Figure 2.

6 Ilbert et al. (2009) used an earlier version of the catalog we are using here.
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For instance, one can substitute another machine learning tool
to SVM (such as random forests) to derive the quantity of
interest. Furthermore, the criterion used to select the final
number of features from the GA posterior distribution can also
be optimized beyond the one we use here. All these tools will
enable us to use as much information as possible in an efficient
way for future large surveys.

The Pan-STARRS1 Surveys (PS1) have been made possible
through contributions of the Institute for Astronomy, the
University of Hawaii, the Pan-STARRS Project Office, the
Max-Planck Society and its participating institutes, the Max
Planck Institute for Astronomy, Heidelberg, and the Max
Planck Institute for Extraterrestrial Physics, Garching, The
Johns Hopkins University, Durham University, the University
of Edinburgh, Queen’s University Belfast, the Harvard-
Smithsonian Center for Astrophysics, the Las Cumbres
Observatory Global Telescope Network Incorporated, the
National Central University of Taiwan, the Space Telescope
Science Institute, the National Aeronautics and Space Admin-
istration under Grant No. NNX08AR22G issued through the

Planetary Science Division of the NASA Science Mission
Directorate, the National Science Foundation under Grant No.
AST-1238877, the University of Maryland, Eotvos Lorand
University (ELTE), and the Los Alamos National Laboratory.

APPENDIX
SVM: SHORT DESCRIPTION

We provide here a short description of the SVM. More
detailed presentations of the formalism can be found elsewhere
(e.g., Vapnik 1995, 1998, Smola & Schölkopf 1998). For the
sake of brevity, we present here only the equations relevant to
regression with SVM. Equations for classification are similar,
except for a few differences that we mention whenever
necessary.
The training data usually consists of a number of objects

with input parameters, x, of any dimension, and the known
values of the quantity of interest, y. The goal of SVM is to find
a function f such that

( )= +w xf b. 7

Figure 5. Quality of the GA-SVM star–galaxy classification. Top: galaxy and star counts. Middle: completeness as a function of PS1 i magnitude. Bottom: purity as a
function of PS1 i magnitude. On all panels, red is for stars, and blue is for galaxies. On the middle and bottom panels, lines show different classifications: the dashed
lines show the result of our classification when training with the full sample; solid lines when training on bright ( >i 22P1 ) and faint ( <i 22P1 ) objects separately;
dotted lines show the classification from spread_model.
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which yields y with a maximal error ò, and like f is as flat as
possible. In other words, the amplitude of the slope w has to be
minimal. One way to achieve this is to minimize the norm ∣ ∣w1

2
2

with the condition ∣ ∣ - -w xy b.i i . The margin in that

case is ∣ ∣w

2 . In other words, SVM attempts to regress with the

largest possible margin.

In a number of problems, the data cannot be separated using
a fixed, hard margin. It is then useful to allow some points to be
misclassified. One uses a “soft margin,” which enables us to
allow some errors in the results. The modified minimization
reads

∣ ∣ ( )*åx x+ +w Cminimize 8
i

i i
1

2
2

( )*

*










x

x

x x

- - +

- + + - +

⎧
⎨⎪

⎩⎪

y w x b

y w x bsubject to:

.

.

, 0

9

i i i

i i i

i i

where *x x,i i are “slack variables,” and C is a free parameter that
controls the soft margin. The larger the C, the harder is the
margin: larger errors are penalized.
Using Lagrange multiplier analysis, it can be shown that the

slope w can be written as

( ) ( )*å a a= -
=

w x 10
i

n

i i i
1

where *a a,i i are the Lagrange multipliers, which satisfy
*a aå - == 0i

n
i i1 and [ ]*a a Î C, 0,i i .

Equation (10) shows that the solution of the minimization
problem is a linear combination of a number of input data
points. In other words, the solution is based on a number of
support vectors, the number of training samples
where *a a- ¹ 0i i .
The above equations use the actual values of the data,

assuming that the separation can be performed linearly. For
most high-dimension problems, this assumption is not valid
any more. The fact that only a scalar product between the
support vectors and the input data is required enables us to use
the so-called “kernel trick.” The idea behind the trick is that
one can use functions that satisfy a number of conditions to
map the input space to another where the separation can be
performed linearly. Equation (10) then becomes

( ) ( ) ( )*å a a= - F
=

w x 11
i

n

i i i
1

where the kernel ( ) ( ) ( )¢ = áF F ¢ ñk x x x x, .
Finally, a slightly modified version of the algorithm (νSVR)

allows us to determine ò and control the number of support
vectors. A parameter [ ]n Î 0, 1 is introduced such that
Equation (8) becomes

∣ ∣ ( ) ( )* ån x x+ + +w Cminimize
1

2
. 12

i
i i

2

It can be shown that ν is the upper limit on the fraction of
errors and the lower limit of the fraction of support vectors.
In the regression case described here, the free parameters for

νSVR are the trade-off parameter C and all the kernel
parameters (assuming that one fixes ν, which allows control
of the error and the fraction of support vectors). In the
classification case (νSVC), the free parameters are only those
from the kernel which is used because ν replaces the trade-off
parameter C, and, again, one would usually fix ν.
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