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Abstract 

This paper presents a method for real-time online monitoring of shaft misalignment, which is 
a common problem in rotating machinery, such as the drive train of wind turbines. A non-
contact laser based measurement method is used to monitor positional changes of a rotating 
shaft in real time while in operation. The results are then used to detect the presence of shaft 
misalignment. An experimental test rig is designed to measure shaft misalignment and the 
results from the work show that the technique can be used for the monitoring of both offset 
and angular shaft misalignment, which will have applications in the condition monitoring and 
maintenance of various types of rotating machinery. 
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1 Introduction 

When performing maintenance on machinery, the following techniques are common: 1) run 
to failure where a piece of equipment must fail before any maintenance is performed; 2) 
preventative (or periodic) maintenance where maintenance is based on the length of the 
operating period, using criteria such as the mean time to failure (MTTF) measurement for the 
machine; 3) predictive maintenance where the operating condition of the machine is 
monitored to identify the need for repairs through data analysis and diagnosis [1]. 

Predictive maintenance strategies have led to the need for machinery condition monitoring. 
Condition monitoring can be defined as monitoring the physical parameters associated with 
the operation of the machine, such as vibration, temperature or pressure, to determine the 
operational condition of the machine. Improvements in maintenance strategies have 
economic benefits through improved production and less downtime, as well as indirect 
benefits through the need for fewer spare parts [2]. Examples of previous research on 
condition monitoring for rotating machines use vibration sensors for the monitoring of 
bearings to identify shaft rub and shaft misalignment [3], fault diagnosis using the empirical 
mode decomposition method [4] and acoustic noise measurements to predict the remaining 
useful life of a machine [5]. 

A typical application of condition monitoring for rotating machines is in wind turbines [6], 
specifically in offshore wind turbines, due to inaccessible locations [7], which may be 
expensive or difficult to access, with variable operating conditions. The drive train of the wind 
turbine consists of typically, a low speed shaft (on the rotor side), a gearbox, and a high-
speed shaft (on the generator side) as well as support bearings, one or more couplings 
(between the shaft and the gearbox) and a mechanical brake [8]. A study  [9] showed that 25% 
of the operational expenditure for an offshore wind farm is for operation and maintenance 
activities so any improvement in monitoring, leading to a reduction in maintenance costs, 
could eventually drive down the cost of energy. 
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2 Shaft misalignment 

A shaft is an essential part of the rotating machine; it is used to transmit power and motion. 
A common problem (estimated to cause over 70% of vibration problems [10]) in rotating 
machinery is shaft misalignment. Shaft misalignment occurs when the centre lines of rotation 
of two (or more) machinery shafts are not in line with each other [11]. This increases axial 
and radial forces on bearings, seals and couplings, increasing the amount of wear in these 
components, leading to an increase in vibration in the machine and bearings, it also 
increases bending of the shaft, increasing the risk of shaft failure and reducing the amount of 
power transmitted through the shaft [12]. Even if initially, or after adjustment, the shaft is 
aligned, during operation various factors such as thermal growth, piping pressure and 
foundation movements will alter the alignment [13]. 

Previous work on shaft misalignment monitoring has mainly been focused on looking at the 
vibration response. Arebi et al. [14] developed an on-line misalignment monitoring system 
using a wireless accelerometer mounted directly to the shaft, to measure the acceleration 
due to vibration. Work in rotor-dynamics shows that shaft misalignment caused by rotor 
imbalance leads to synchronous vibrations (frequency of vibration at twice the shaft speed) 
[15]. Dewell and Mitchell showed that the response to a misaligned coupling contained 
vibration frequencies of two times and four times the rotation speed [16], Xu and Marangoni 
also showed vibration frequencies at multiples of rotation speed [17, 18]. Patel and Darpe 
[10] describe a drawback in using vibration monitoring to monitor for shaft alignment, as 
shaft damage, shaft stiffness and the type of coupling used can also affect vibration 
response. Shaft misalignment should cause vibration in both the connected machines, if it is 
only on a single machine, this could indicate other problems such as a cracked case [19]. As 
well as using vibration measurements, analysis of the motor current has been applied to 
shaft misalignment monitoring, Chaudhury and Gupta [20]  and Verma et al. [21] used 
spectral characteristics of the stator current to identify shaft misalignment, Thomson and 
Fenger used motor current signature analysis to identify faults such as misalignment [22]. 
Similarly to the work on vibration measurements, Bossio et al. showed that angular 
misalignment has an effect on current at frequencies of two times the rotation frequency [23]. 

As well as measuring the response of the motor (current) or shaft (vibration) directly, indirect 
methods have been used to identify shaft misalignment. Rameshkumar et al. investigated 
the effect of misalignment on “coast down time” (time between the power cut off and the 
machine stopping rotating). They found that as shaft misalignment increased, the coast 
down time decreased, due to the increased power loss caused by the shaft misalignment 
and increased torque on the bearings [24]. Strain gauges have also been used to measure 
the presence of misalignment on turbine rotors [25] and to measure the increased gear 
loading caused by shaft misalignment [26]. Fulzele et al. used an optical sensor the measure 
shaft vibration by measuring the fluctuation of reflected light from the shaft [27]. Various 
methods have been developed to model or predict shaft misalignment; Sekhar and Prabhu 
used Finite Element Method (FEM) modeling to investigate the effect of coupling 
misalignment on the vibration response of a rotor-bearing system [28]. Cho et al. [29] and 
Fang et al. [12] used principal component regression (PCR) and partial least squares (PLS) 
to predict shaft parallel and angular misalignment. Yang and Tavner used empirical mode 
decomposition to reconstruct shaft orbit measurements to identify shaft misalignment [30]. 

Monitoring of shaft alignment during operation is needed as an effective tool in maintenance. 
A survey on rotating machinery in industry [31] showed that fewer than 10% of 160 
machines examined were within acceptable shaft alignment, also 30% of a machine’s down 
time is due to poor alignment [32]. Shaft misalignment consists of three types [33]: 

 

1) Offset where the two shafts are on two separate parallel centerlines (Figure 1a). 



2) Angular where the two shafts are coaxial but at an angle to each other (Figure 1b). 

3) In reality, shaft misalignment would be a combination of both of these effects (Figure 1c). 

 

 

Figure 1 Types of shaft misalignment 

 

Offset misalignment affects power consumption more than angular misalignment and the 
components of misalignment are additive irrespective of whether they are horizontal or 
vertical [31]. The process of shaft alignment is the positioning of the shaft centre lines of the 
driver machine and driven machine to create collinear shafts, where the rotational centre 
lines of the coupled shafts are parallel and intersect (like a single shaft), this is accomplished 
through either shimming or moving the machine. 

To measure the amount of shaft misalignment, the following methods are commonly used: 

 

1) Straight edge (Figure 2a). 

2) Dial indicator (reverse indicator method shown in Figure 2b). 

3) Laser indicator (Figure 2c). 

 

 

Figure 2 Misalignment measurement methods 

 

The straight edge is usually the first stage of inspection to get an approximate reading before 
moving onto the more accurate methods. The common method is to use dial indicators. 
Recently, these have been replaced by laser based misalignment measurement methods, 
which are more accurate and can be automated to calculate the amount of shaft 
misalignment automatically. 



Monitoring and predicting the shaft alignment condition is important for making decisions on 
when to perform maintenance of the rotating machine, by counting misalignment events or 
using the measurements to identify other fault types such as bearing damage. This work 
proposes an alternative to the previously mentioned shaft misalignment measurement 
methods: a non-contact laser based measurement technique to capture the on-line 
positional changes of a shaft, for improved shaft misalignment monitoring. 

 

3 Experimental study 

The most common method to counteract the presence of shaft misalignment is to use a 
coupling, where the coupling is inserted between the driving and driven shafts. Couplings 
are chosen based on various factors such as environment, vibration and stiffness [34]. The 
two main types of coupling are: 1) metallic, such as, chain, gear and disc couplings, which 
have high stiffness and tolerance to extreme environments and 2) elastomeric, such as, pin 
and bushing, jaw and sleeve couplings, which are torsionally soft and have vibration 
damping/shock absorbing qualities. In this work a set of huco elastomeric d-loop couplings 
are used, due to a large range of permissible operating misalignment (10° angular 
misalignment and 2.6mm offset misalignment) [35], allowing for a range of shaft 
misalignment to be examined. 

 

3.1 Test rig design 

To simulate a rotating drive train, an experimental test rig has been designed, as shown in 
Figure 3. The laser based measuring method is designed to be non-contact, so it can be 
easily applied to various types of rotating machinery. Laser distance measurements have 
engineering applications in areas such as vibrometry [36], coordinate measurement systems 
[37] and micro displacement measurement [38]. Laser mouse sensors have also been used 
for non-contact shaft speed measurements [39], as an alternative to electromagnetic 
sensors. 

 

 

Figure 3 Experimental test rig 



 

A Baumer photoelectric distance measuring sensor with a measuring range of 30mm to 
130mm, a resolution of 0.06mm and a response time of less than 10ms, is used to measure 
the amount of shaft misalignment present by measuring shaft positional changes (the 
distance from the laser to the shaft). The laser uses optical triangulation, where a pulsed red 
laser line is projected onto the surface of the shaft and part of the reflected light is measured 
using a photodiode detector, where the angle of incidence is used to calculate the distance. 

The motor is used to rotate the shaft (~37rpm) and an optoelectronic trigger is used to 
measure shaft rotation for ensemble averaging. The 6mm diameter steel shaft is supported 
by support bearings that are attached to lead screws (~1.25mm pitch) to give adjustable 
amounts of shaft misalignment (both offset and angular). Note that P1-P5 are shaft 
misalignment measuring positions. 

The first stage in a condition monitoring system is to acquire and process the data related to 
the condition of the machine [40]. The data acquisition is performed using a National 
Instruments USB-6218 card. The data acquisition software is developed using DAQmx 
drivers built into LabVIEW 2012. This software allows control of the motor speed and 
acquisition of the trigger signal and output from the two measurement lasers. Data from 
these measurements will allow the monitoring of any ongoing shaft misalignment from the 
changes in the distance measurement over time, an improvement over existing offline 
maintenance methods to monitor shaft misalignment [11]. The data is sampled at 300Hz to 
avoid Nyquist issues with the 10ms laser response time and 10 seconds of data are 
recorded. The data is then processed to give an estimation of real time shaft misalignment. 

 

3.2 Shaft misalignment tests 

To investigate the monitoring of shaft misalignment using the experimental test rig, the 
following tests were performed: 

 

1) Test one: Increase misalignment using lead screw one by one revolution (offset 
measured at 1.46mm). 

2) Test two: Increase misalignment using lead screw one by two revolutions (offset 
measured at 2.36mm). 

3) Test three: Increase misalignment using lead screw two by one revolution (offset 
measured at 0.57mm). 

4) Test four: Increase misalignment using lead screw two by two revolutions (offset 
measured at 1.18mm). 

5) Test five: Increase misalignment using both lead screw one and lead screw two both by 
one revolution. 

6) Test six: Increase misalignment using both lead screw one and lead screw two both by 
two revolutions. 

7) Test seven: Continuously increase the amount of misalignment using lead screw one 
and measure as it changes dynamically over time. 

 

3.3 Data processing 

The data is acquired as a voltage measurement from the lasers. It is converted to a distance 
using the relationship, Distance(mm) = 23.2 × Voltage(V) + 4.92, from the line fitted to the 



measurement data shown in Figure 4. For example, a laser output of 1.5V equates to a 
distance of 39.72mm. 

 

 

Figure 4 Laser distance calibration 

 

To remove noise from the data, the measurement is filtered using a weighted moving 
average filter from the LabVIEW Advanced Signal Processing Toolkit [41]. In this case, all of 
the data is read in and then the moving average filter operation is applied to smooth the data 
as shown in (1). 
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Where x is the vector of input data, y is the vector of filtered data and ar  is a set of user-
defined weights. In this case a Henderson 23-term moving average filter is used [42], here 
the number of weights must be odd, the weight array must be symmetric and 1 ra  as 

shown in (2). 
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The result of filtering the measurement data to smooth the data and remove outliers is 
shown in Figure 5. The dotted lines show the limit for outlier data (unusual values of data), in 
this case 1.5 times the interquartile range (middle 50% of the values in the data) [43]. 

 



 

Figure 5 Filtered data 

 

The mean value will then be used for distance calculations, in the example in Figure 5, the 
mean of both the original data and filtered data is 64.72mm, showing that in this case 
filtering removes extreme values with no change to the mean. 

When the data has been processed the mean over the periodic results (the revolutions of the 
shaft) can be calculated using the ensemble average. The difference between time average 
and ensemble average is shown in Figure 6. 

 

 

Figure 6 Types of averaging 

 

If Xi,j is the jth time element in the ith revolution the ensemble can be represented using the 
matrix in (3) [44]. 
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With N columns of evenly spaced time samples (300Hz = 3.33ms) and M rows of time series 
for each shaft revolution. For the ith revolution it is possible to compute the time average 
denoted by X , given by (4) [44]. 
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Similarly for the jth sample, the ensemble average, denoted by X , can be calculated over 

all rotations given by (5) [44]. 
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To identify the start of each shaft revolution, a trigger signal is used as shown in Figure 7, 
where the start and end of each rotation is denoted with an “X”. 

 

 

Figure 7 Trigger signals 

 

The triggering is based on an optoelectric sensor measuring the change from a dark area to 
a light area on the shaft as it rotates. In this case, each shaft rotation takes 1.6 seconds 



(37.5rpm). The data for each of the shaft revolutions acquired over the period can be 
separated as shown in Figure 8. 

 

 

Figure 8 Shaft revolution measurements 

 

Finally, the ensemble average is performed to calculate the average measurement per shaft 
revolution, for example the average value of the three points on each revolution at time 0.4 
seconds on Figure 8, would give the ensemble average value at 0.4 seconds (denoted by “X” 
on Figure 9), reducing the multiple periods of data for each shaft revolution to a single period. 

 

 

Figure 9 Shaft revolution ensemble average 

 

The mean of the ensemble-averaged data, the measurement over a single revolution, is then 
used to calculate the distance from the laser to the shaft, 64.72mm in Figure 9. The 
difference in the mean value from a baseline (shaft aligned) value will then be used to 
estimate the amount of shaft misalignment as shown in Figure 10. 

 



 

Figure 10 Measurement change from baseline value 

 

The measurement can be converted to cylindrical coordinates and displayed as the distance 
to the surface of the 6mm diameter shaft as shown in Figure 11. 

 

 

Figure 11 Shaft change from baseline value 

 

The difference in shaft centers show the amount of shaft misalignment and fluctuations in 
shaft circumference are variations in the rotation. The negative values indicate that the 
misalignment is towards the position of the measurement laser (the distance is decreasing). 

 

3.4 Results 

After a baseline measurement was performed (on the aligned shaft), the level of shaft 
misalignment was increased by adjusting the lead screws on the test rig and the distance to 
the shaft was measured using the distance measurement lasers. 

The results for the shaft misalignment tests will now be given. The results for misalignment 
test 1 and misalignment test 2 (measured at position P3 on Figure 3) are shown in Figure 12 
and the results for misalignment test 3 and misalignment test 4 (measured at position P5 on 
Figure 3) are shown in Figure 13. 



 

 

Figure 12 Shaft position change for misalignment test 1 and misalignment test 2 

 

 

Figure 13 Shaft position change for misalignment test 3 and misalignment test 4 

 

The results from these tests show that the increasing amounts of shaft misalignment can be 
identified, as the circles are shifted from the baseline value. As well as measuring the 
position at a single point on the shaft, by measuring the amount of misalignment at various 
positions on the shaft (moving a single distance measurement laser or using multiple 
distance measurement lasers), the type of shaft misalignment as shown in Figure 1 can be 
identified. The results for misalignment test 1 and misalignment test 2 (offset misalignment) 
are shown in Figure 14 and the results for misalignment test 3 and misalignment test 4 
(angular misalignment) are shown in Figure 15. 

 



 

Figure 14 Shaft misalignment results for misalignment test 1 and misalignment test 2 
(offset misalignment) 

 

 

Figure 15 Shaft misalignment results for misalignment test 3 and misalignment test 4 
(angular misalignment) 

 

Figure 14 shows that the area of the shaft between positions P3 and P4, attached to the first 
leadscrew, has been offset from the rest of the shaft as the amount of misalignment has 
been increased. Figure 15 shows that the angle of position P5 has been increased as the 
second leadscrew is adjusted. 

The distance measurements from the laser are also compared against manual distance 
measurements made using an electronic vernier caliper, as shown in Table 1, where both 
the measurement error and percentage error (in brackets) are given. 

 



Table 1 Error between laser measurement and manual measurement of shaft 
misalignment 

Test P1 P2 P3 P4 P5 

Misalignment test 
1 

-0.14mm 
(116%) 

0.04mm 
(419%) 

-0.24mm 
(16%) 

-0.13mm 
(9%) 

-0.10mm 
(12%) 

Misalignment test 
2 

-0.16mm 
(108%) 

0.05mm 
(177%) 

-0.15mm 
(6%) 

0.05mm 
(2%) 

-0.30mm 
(23%) 

Misalignment test 
3 

-0.11mm 
(96%) 

0.01mm 
(135%) 

-0.08mm 
(66%) 

0.14mm 
(42%) 

0.10mm 
(12%) 

Misalignment test 
4 

-0.05mm 
(117%) 

-0.02mm 
(34%) 

0.05mm 
(500%) 

-0.01mm 
(1%) 

-0.06mm 
(4%) 

 

As well as studying offset and angular types of shaft misalignment individually, the more 
realistic shaft misalignment can be studied by adjusting both leadscrews simultaneously, in 
misalignment test 5 and misalignment test 6, to add both types of shaft misalignment as 
shown in Figure 16. For comparison, the results of adding the individual amounts of offset 
and angular shaft misalignments are shown, indicating good agreement with this test result. 

 

 

Figure 16 Shaft misalignment results for misalignment test 5 and misalignment test 6 
(offset and angular misalignment combined) 

 

These measurements give a visual representation of both the type and amount of shaft 
misalignment. The distance measurements can be used to perform the required machine 
movements to return the systems to the baseline aligned condition. In addition, in condition 
monitoring applications, the measurements can be used to trigger an alarm if they exceed a 
threshold value. 

As well as measuring static values of shaft misalignment, the level of shaft misalignment was 
recorded as it was being adjusted over time (misalignment test 7). The result for the 
measured shaft misalignment (measured at position P3 on Figure 3) is shown in Figure 17 
and the corresponding shaft position changes over time (at one, two and three seconds) is 
shown in Figure 18. 

 



 

Figure 17 Shaft misalignment change over time for misalignment test 7 

 

 

Figure 18 Shaft position change over time for misalignment test 7 

 

This shows the main advantage over existing laser based shaft misalignment measurement 
methods, this is a non-contact method and it can be used while the rotating machine is in 
operation (unlike existing shaft misalignment measuring tools, which are attached to the 
shaft so the machine should be stopped). This on-line measurement procedure is a 
requirement for condition monitoring, as it can detect changes in shaft misalignment over 
time. 

 

4 Conclusions and future work 

A requirement exists in industry for rapid and reliable techniques to measure shaft 
misalignment, so that the condition of the rotating machines can be monitored and the shafts 
can be adjusted to achieve proper alignment. To achieve this, this work has presented a 
novel laser based measurement method for shaft misalignment monitoring. This uses a 
commercially available laser distance measuring device to measure the change in distance 
to a rotating shaft caused by the presence of shaft misalignment. This has advantages over 
existing misalignment measurement methods of being non-contact and suitable for on-line 
operation. Several misalignment tests have been performed to demonstrate the feasibility of 

test 3 (96%) (135%)  (66%) (42%) (12%)



the technique. Variations in misalignment have been identified as well as identification of the 
two common types of misalignment (offset and angular) and the measurement of changes in 
shaft misalignment over time. 

This technique has been used to measure shaft misalignment distances of between 0.5mm 
and 2.5mm on an experimental test rig. These are larger than practical shaft misalignment 
tolerances, which are usually based on the rotational speed of the machine, varying between 
0.02mm and 0.3mm [45], future work could be performed to measure alignment at this 
greater precision with higher specification laser measurement equipment (the resolution of 
the current laser measurement system is 0.06mm) as the feasibility of the technique has 
been demonstrated. It would also be useful to extend this work to data acquisition over long 
periods and machine diagnostics based on the acquired shaft misalignment measurements, 
plus investigation of the system performance in harsh environments. 
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