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Abstract 

Prefrontal cortex has long been implicated in tasks involving higher-order inference in 

which decisions must be rendered not only about which stimulus is currently rewarded but 

also which stimulus dimensions are currently relevant. However, the precise computational 

mechanisms used to solve such tasks have remained unclear. We scanned human 

participants with fMRI while they performed a hierarchical intra-dimensional / extra-

dimensional shift task to investigate what strategy subjects use while solving higher order 

decision problems. By using a computational model-based analysis we found behavioral 

and neural evidence that humans solve such problems not by occasionally shifting focus 

from one to the other dimension, but by considering multiple explanations simultaneously. 

Activity in human prefrontal cortex was better accounted for by a model that integrates 

over all available evidences than by a model in which attention is selectively gated. 

Importantly, our model provides an explanation for how the brain determines integration 

weights, according to which it could distribute its attention. Our results demonstrate that 

at the point of choice, the human brain and the prefrontal cortex in particular is capable of 

a weighted integration of information across multiple evidences. 
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Introduction 

The human prefrontal cortex has long been implicated in the ability to solve decision problems 

that contain a hierarchical dimensional structure, in which inferences must be rendered over 

different levels of a stimulus hierarchy (Koechlin et al. 2003). This type of decision problem is 

typified in the Wisconsin Card Sorting Task (Grant and Berg 1948) and its modern antecedents 

such as the intra-extra dimensional set shifting task (Downes et al. 1989). In such tasks, a 

participant is presented with stimuli that contain multiple dimensions such as color and shape, 

and at any one moment in time, one of these dimensions is causally linked to reward. However, 

within the “relevant” dimension, only one out of a set of possible within-dimension features is 

currently rewarded (e.g. if color is relevant, then either “red” or “green” might at a given point in 

time be rewarded). The decision problem faced by the participant is therefore two-fold: to 

identify which stimulus dimension is currently relevant, and within a given dimension to identify 

which feature is currently rewarded. This task can become especially challenging if the relevant 

dimensions and features change over time, as the participant must constantly update his/her 

inferences at each level of the decision hierarchy.  

 It is well established that lesions to the prefrontal cortex impair the capacity to perform 

such hierarchical decision problems (Dias et al. 1996; Drewe 1974; Milner 1963; Robinson et al. 

1980). However, the specific computations underlying the capacity of prefrontal cortex to solve 

such decision problems are much less well understood. This kind of problem could be solved by 

one of two strategies:  an attention-gated strategy, in which the agent first identifies which 

dimension is most likely to be relevant at a given point in time. The agent then focuses 

exclusively on what is considered to be the relevant dimension, deciding separately which 

feature is likely to be rewarding. The advantage of such an attention-gating approach is that by 

focusing only on the dimension for which there is the strongest evidence, there is no need to 

incorporate evidence for the features  in the less compelling dimension in the decision process, 

thereby imposing less demand on limited cognitive resources. An alternative integration strategy 

is to simultaneously evaluate evidence from both levels of the hierarchy weighted by how much 

this dimension is judged to be relevant. In other words, even if color is deemed very likely to be 

relevant, information about which feature could be correct if shape were the relevant dimension 

is also taken into account to some extent, and used in the decision over which compound 
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stimulus ultimately to select. This type of “integration” strategy typifies Bayesian analysis 

(Berger 1980). 

Here we aimed to address whether during the performance of a hierarchical reversal learning 

task, the human brain follows an attention-gated approach to problem solving or rather the 

integrative procedure whereby less likely explanations for observed phenomena still influence 

decisions. Our task is a probabilistic variant of a Wisconsin card-sorting task in which each 

stimulus possessed attributes along two dimensions: color and motion. Within each dimension 

there were two features, so that color was red or green, while motion (indicated by moving dots) 

was either leftward or rightward. At any one point in time, one dimension e.g. color was 

“relevant” while within this dimension one of the two features was correct (e.g. green), in that 

choice of a stimulus possessing that feature yielded monetary reward with a high probability and 

monetary loss with a low probability, while choice of the other stimulus yielded only a low 

probability of reward and loss with a high probability. We explicitly imposed a hierarchical 

structure between dimension and feature on this task by reversing the correct feature at a higher 

rate than the relevant dimension. 

Human subjects were scanned with fMRI while they participated in this probabilistic hierarchical 

decision task. We then used a variety of computational models in order to account for subjects’ 

behavioral performance on the task. After confirming that subjects used a hierarchical strategy 

over simply model-free learning of either stimulus or feature values, we compared two possible 

models: one that implemented an attention-gating strategy, and another that implemented an 

integration strategy. We then applied these models to the fMRI data in order to uncover brain 

regions in which activity at the time of decision-making reflected one or other of these 

computational strategies. In order to discriminate which of these models was contributing to the 

decision process, we used the value-signals estimated by each of the model and tested for regions 

of the prefrontal cortex correlating with such signals. We focused in particular on the 

ventromedial prefrontal cortex as this region has previously been found to encode value signals 

at the time of decision making (Boorman et al. 2009; Daw et al. 2006; FitzGerald et al. 2009; 

Hampton et al. 2006; Hare et al. 2008; Knutson et al. 2005; Wunderlich et al. 2009). We 

compared and contrasted the capacity of the integration and attention-gating models to capture 

value-related computations in this region of prefrontal cortex. We hypothesized that activity in 
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ventromedial prefrontal cortex would be best captured by the value-signal derived from the 

model that best explained participant’s behavioral choice patterns.  

 

 
Materials and Methods 

Subjects 

16 healthy subjects (drawn from the Caltech student population; 6 female; 18–28 years old) with 

no history of neurological or psychiatric illness participated in the study. The study was 

approved by the Institutional Review Board of the California Institute of Technology and all 

subjects provided informed consent before their participation.  

 

Task description 

The task is a variant of a hierarchical intra/extra-dimensional (ID/ED) shift task. In any given 

trial, subjects were presented with a choice between two stimuli, each of which consists of a 

feature in the motion dimension and one feature in the color dimension. The two features 

belonging to the same stimulus are shown horizontally next to each other, grouped together by a 

bone-shaped structure in the background (Fig. 1A). The motion dimension (always presented on 

the left side of the stimulus) consisted of a moving dot sequence where the dots moved either to 

the left or the right; the color dimension could take on either a red or green color filled rectangle. 

The features for the upper stimulus were assigned pseudo randomly in each trial and converse 

features were assigned to the lower stimulus, i.e. if green and right motion were assigned to the 

upper stimulus then the lower stimulus contained red and left motion. We implemented a 

constraint that identical color/motion pairings within the same stimulus did not occur more than 

two times in a row to avoid strings of trials in which subjects cannot associate the outcome 

unambiguously to a chosen motion or color feature. Subjects chose the upper or lower stimulus 

by pressing one of two distinct buttons on a button box with their right thumb. 

At any given time, only one stimulus dimension (color or motion) was causally linked to 

reinforcement and subjects were rewarded at a higher rate if they selected the stimulus that 

contained the correct feature (either red or green for color and leftward or rightward for motion) 
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based on the currently relevant dimension, i.e. one dimension was “relevant”, and within that 

dimension a particular feature was correct. For example, if “color” was the relevant dimension 

then within color, “green” may have been correct. Choice of the stimulus that had the correct 

feature yielded monetary rewards on a probabilistic basis with 80% probability, whereas 

selection of the other stimulus yielded reward with only 20% probability. Rewarded trials 

yielded a prize of 25 cents, while the other trials resulted in a loss of 25 cents (there were no 

neutral outcomes). This trial outcome, i.e. whether subjects gained or lost money on this trial, 

was the only feedback provided. Note that due to the probabilistic contingencies subjects may 

occasionally see a loss outcome (-25 cents) after they chose correctly, or see a rewarding 

outcome (+25 cents) after they chose incorrectly. After subjects chose the stimulus with the 

correct feature three times in a row (indicating that they learned the relevant dimension and 

correct feature), there was a 50% probability in each further trial that the correct feature would 

switch. Furthermore, after a variable number of such within-category switches (1-4; uniformly 

distributed), the relevant dimension also switched. The adaptive switching rule used here and 

previously (Hampton et al. 2006) served two purposes: it created a reasonable degree of 

unpredictability for the next switch and prevented feature switches from occurring before the 

subject detected which feature is correct. Such a situation is to be avoided, as it would no longer 

provide us with the desired dynamic range in certainty and value estimates in the imaging 

analysis. The total number of trials in the fMRI experiment varied across subjects due to these 

probabilistic switching rules and differences in how fast individual subjects learned the correct 

response. However, every subject experienced the same number of intra and extradimensional 

switches. One experiment always contained 9 dimensional switches (5 motion & 5 color blocks) 

and 30 feature switches (uniformly distributed and pseudorandomly arranged). At the end of the 

experiment subjects were paid a flat amount of 25$ plus their accumulated earnings (in total 26 – 

41$, sd = 4.3). 

This design imposes a hierarchical structure on the task with feature reversals occurring on a 

faster timescale than the dimensional switches. As in many real-life problems, participants in our 

experiment have more than one theory (“which is the relevant dimension?”) to go by in any trial, 

and corresponding characteristics (“which is the correct feature?”) on which to base their 

decisions between the upper or lower stimulus. Subjects were instructed that at any given time 

only one dimension was relevant for determining reward and within that dimension one feature 
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was correct. We told subjects that choice of the stimulus containing the correct feature would 

yield reward with a high probability and choice of the other stimulus with a much lower 

probability. Subjects were also provided with the information that the correct feature would 

change after a number of trials and that the relevant dimension would change at a slower 

timescale than the correct feature, i.e. the problem was specifically posed as a probabilistic 

hierarchical reversal task. However, subjects were not given any further explicit information 

about the exact reward probabilities or about the mechanism of how changes in correct features 

and dimension were realized. It is also important to note that participants never got direct 

feedback about whether their theory was currently correct, but only whether their choice proved 

successful or not. Immediately preceding the fMRI scan subjects underwent a series of practice 

blocks in which we familiarized them with the task by gradually increasing its complexity. This 

training consisted of three blocks: first, subjects worked on a simple reversal task with only one 

modality. Next, we introduced the second dimension but indicated every dimensional switch by 

an auditory signal. Finally, subjects practiced the task without the help of the auditory signal. 

Subjects experienced four dimensional switches during this stage, which happened according to 

the same rules as during the following fMRI experiment. As at all times reversals only 

progressed after subjects chose consistently the correct stimulus, this rule imposed a performance 

criterion before subjects progressed to the fMRI stage. 

The task was presented via back projection on a translucent screen, viewable through a headcoil 

mounted mirror.  

 

 

Algorithms 

We compared a number of computational strategies for how subjects would solve this task and 

will focus our investigation on the comparison of two hierarchical strategies, a selection versus 

an integration strategy.  

Attention-gating model 

The first model in this class, which we will call an attention-gating strategy, computes a decision 

in a two step procedure by first evaluating which dimension is currently relevant, and then 
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allocating attention to only that dimension, before subsequently working out which feature 

within the dimensional category is currently reinforced (Fig. 1B). Dimension relevance is 

evaluated using a reinforcement learning mechanism that integrates over the previous rewards 

obtained when selecting that dimension (Sutton and Barto 1998). 

In decision theoretic terms, this type of strategy is called maximizing, because probabilistic 

information about which feature is currently correct is used to guide choice only over the 

dimension deemed currently relevant (and hence gated by selective attention). For instance, if the 

model decides color is relevant then choice is computed by taking into account the probability 

that within color, red is correct or that green is correct, but probabilistic information over the 

unselected dimension of motion is ignored. The selection strategy relates to complexity reducing 

heuristics wherein choices are proposed to be taken using the best available evidence 

(Gigerenzer and Goldstein 1996). 

 

Integration model 

While the attention-gating model maintains only information deemed relevant, an alternative 

approach is to distribute attention and fully integrate over all of the probabilistic information 

available to the individual at that moment in time, and use this complete information to guide 

choice (Fig. 1C). In other words, even if color is deemed highly likely to be the relevant 

dimension (i.e. color has a high probability), the model not only takes into account the 

probability that red or green is correct, but also uses the information it has from the less likely 

motion dimension about which movement direction might be correct weighted by the low 

probability of motion being relevant. In decision theoretic terms such an integration strategy is 

formally called marginalization, and is one important step into the direction of the full Bayesian 

approach (see the supplementary materials). According to Bayesian theory (Berger 1980), an 

optimal estimate results from combining information across dimensions with evidence from past 

trials. The available information is integrated based on weights that are assigned to the 

dimension and correspond to the likelihood that the dimension is relevant (hereby no theory, 

even the least likely, is ever excluded). This issue of whether to commit to a theory is frequently 

encountered in the machine learning domain where it is well known that integrating over 
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parameters is optimal (MacKay 1999). The difference between this integration model and a full 

Bayesian approach is that the latter requires a change in the updating scheme from prediction 

error based to likelihood ratio based (Yang and Shadlen 2007). We also implemented a full 

Bayesian model (supplementary methods), which, in a test against behavior, did not result in any 

significant improvement of model likelihoods compared to the integration model.  

Hierarchical model implementations 

For modeling the data we assumed that subjects learned the relevant values assigned to the 

different stimuli on the basis of trial by trial experience using prediction error based updating 

(Sutton and Barto 1998). If stimulus s is selected on trial t, the value of its two features a (one 

from each color and motion dimension) are updated via a prediction error, d(t), as follows: 

( 1) ( ) ( )i
a aV t V t ta d+ = + where ai is a learning rate between 0 and 1. The prediction error d(t) is 

calculated by comparing the actual reward received, r(t), with the reward that the subject 

expected to receive from that action in that trial; that is,  Specifically for this 

task, three variables had to be learned and updated in each trial: Vgreen, Vright and Wcolor, keeping 

track respectively of the value of the green stimulus (versus red stimulus), rightwards motion 

stimulus (versus left stimulus) and the weight of the color versus motion modality. We assume 

that Vred = -Vgreen, Vleft = -Vright and Wmotion= -Wcolor. Hence, the updating can be done with the 

inverse prediction error –d(t) if the complementary action is chosen. 

 

In each trial, a subject chooses either UP or DOWN, and thus selects a combination of one color 

feature (red or green) and one motion feature (left or right). The values of these ‘intermodality’ 

choices are updated in each trial using the following RL scheme: 

( ) ( ) ( )i it r t V td = - , where i=red (green) if red (green) was chosen 

( ) ( ) ( )j jt r t V td = - , where j=right (left) if right (left) was chosen. 

The dimensional weight is updated according to: 

 

Wc(t +1) =Wc (t)+a
edc(t) with 

 

dc (t) = rt Vi(t) -Vj (t)( )-Wc (t) where ae is the learning rate for 

the dimensional weight. The dimensional weight is increased if the difference in expected value 

for each of the two modalities was larger than the expected dimensional weight. In terms of the 

( ) ( ) ( ).at r t V td = -
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typical RL model the dimensional weight is tracking the ability of one dimension to predict 

reward, relative to the other. 

 

Using these learned values we compared two ways to generate choices: 

 

1. Selection: Determine which dimension D has the highest expected value, WC or WM =-

WC. The decision whether the top or bottom stimulus is chosen is then based on that 

modality only by choosing the stimulus which contains the feature with the higher value 

within dimension D. Given choice between UP={Vi1,Vj1} and DOWN={Vi2,Vj2} calculate 

VUP=Vi1*H(WC)+Vj1*H(-WC) where H is the Heaviside operator, H(+)=1, H(-)=0.  

2. Integration: The value for choosing the top or bottom stimulus is calculated as a weighted 

sum of both feature values in each stimulus. The integration weights are determined by 

the current dimensional weight, i.e. weight the two features by how well their dimension 

has performed. The value for UP is then VUP=Vi1*wcolor+Vj1*(1-wcolor) where 

wcolor=exp(k*Wcolor) / (exp(k*Wcolor)+exp(k*Wmotion)). Using the definition of sigma from 

below this last equation simplifies to wcolor = s(2*k*Wcolor). 

  

We used a softmax procedure to generate choices where in every trial the probability (P) of 

choosing action a Î{UP,DOWN} over b is given by: , where  

 is the Luce choice rule or logistic sigmoid, and  determines the degree of 

stochasticity involved in making decisions. We fit the parameters for each model and each 

subject (learning rates ai, ae, softmax , as well as the extra parameter k for the integration 

model) such that the model best explained subjects’ choices (maximum likelihood, with 

likelihood 
 
where xt is the actual choice in trial t). 

 

 

 

, ( ( ( ) ( ))a t a bP V t V ts b= -

 

s(z) =1/(1+ e-z) b

b

,tx tt
l P=Õ
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Non-hierarchical-RL models  

In order to account for the possibility that subjects solved the task without considering the 

hierarchical structure at all, we considered various different non-hierarchical RL models.: 

(1)  A compound stimulus-based RL model. This model learns a value per stimulus s (the actual 

composite stimuli, not individual features). That is by separately learning the values of the four 

composite stimuli using a Rescorla-Wagner learning rule (Rescorla and Wagner 1972) for 

VRightRed, VRightGreen, VLeftRed, VLeftGreen. In each trial, the values of the two presented stimuli are 

considered for choice and only the value of the chosen stimulus is updated via a prediction error. 

In this model not only the information on hierarchical structure but also information about 

dimensional grouping are neglected. 

(2) A feature-based RL model in which each of the 4 features (red, green, left, right) are 

considered to be separate items for the RL model to learn about (i.e. Vred  and Vgreen are not 

assumed anti-correlated) and furthermore VColor  is also kept at 0 with the choice therefore 

based on a sum of the two features encountered within each stimulus (e.g. for 

UP={left,green}, VUP=(Vleft+Vgreen)/2). Thus after the choice (DOWN={red, left}, no 

updating would be done for Vgreen or Vright.  

 

(3) A 1 layer version of the hierarchical model above, where VColor is always kept at 0 and 

hence there is never any information with regard to which modality is more likely to be 

correct. This is equivalent to the special case of the Integration model with k=0. Such a 

learner mixes the dimensions equally (e.g. for UP={left,green}, VUP=(Vleft+Vgreen))/2 and 

since Vgreen=-Vred and Vright =-Vleft, for our simple setup effectively just chooses option with 

the larger value of the four stimuli {Vred, Vgreen=-Vred, Vleft, Vright =-Vleft }. 
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All other implementation details of models 2 and 3 were otherwise identical to the 

hierarchical models above. We used a softmax rule to generate choices and fitted the 2 

parameters (learning rate αi, softmax scaling β) by maximizing the likelihood of the subject 

choices. 

 

 

Behavioral model comparison 

To compare the behavioral fits for the different models while accounting for differences in model 

complexity we report the Bayesian Information Criterion (BIC) (Burnham and Anderson 2002) 

in Table S1, which corrects for the number of parameters, k, in a model based on the number of 

data points n: BIC=-2*log(l)+k*log(n). The model with the lower BIC explains the subjects’ 

behavior better. For the model comparison between integration and attention-gating we can also 

calculate an approximation to the log Bayes Factor (Kass and Raftery 1995) as log BF=-

0.5*(BICint – BICselect). The Bayes Factor specifies the ratio of marginal model likelihoods and a 

probability that the attention-gating model is more likely is thus given as Pattgated = exp(-log BF). 

This allows us to assign a probability to our null hypothesis that the attention-gating model is 

more likely and, in analogy to a p-value in statistical testing, reject the attention-gating model if 

Pselect<0.05. This criterion is met if the log BF > ~3 (i.e. BF > 20). To allow inference on the 

population we used a pairwise Bayesian model comparison (Stephan et al. 2009) between all our 

tested models using the BIC corrected likelihoods as model evidences. 

Note that we base our model comparison on log evidences of the models instead of the fraction 

of correctly predicted choices. This method is superior to comparing the number of correctly 

predicted choices (which are calculated from binary data) because such data introduce noise into 

the system when the model predictions are passed through softmax and fails to take into account 

parametric variations in the model predictions (Daw 2011). 

FMRI data acquisition  

Data were acquired with a 3T scanner (Trio, Siemens, Erlangen, Germany) using an eight-

channel phased array head coil. Functional images were taken with a gradient echo T2*-
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weighted echo-planar sequence (TR = 2.65 s, flip angle = 90°, TE = 30 ms, 64 ´ 64 matrix). 

Whole brain coverage was achieved by taking 45 slices (3 mm thickness, no gap, in-plane 

resolution 3 ´ 3 mm), tilted in an oblique orientation at -30deg to the AC-PC line to minimize 

signal dropout in OFC. Subjects’ head was restrained with foam pads to limit head movement 

during acquisition. A high resolution T1-weighted anatomical scan of the whole brain 

(MPRAGE sequence, 1x1x1 mm resolution) was also acquired for each subject. 

 

FMRI data analysis 

Imaging analysis was performed using SPM5 (Wellcome Trust Centre for Neuroimaging, 

Institute of Neurology, London, U.K.). Images were first slice time corrected to TR/2, realigned 

to the first volume to correct for subject motion, spatially normalized to a standard T2* template 

with a voxel size of 3mm, and spatially smoothed with an isotropic Gaussian kernel of 8mm 

FWHM to account for anatomical differences between subjects and to allow for valid statistical 

inference at the group level. Intensity normalization and high pass temporal filtering (using a 

filter width of 128s) were also applied to the data. 

First, we estimated for each individual subject a GLM for the attention-gating model and 

separately another GLM for the integration model, differing only in the model predicted 

parametric modulator values. Two events were modeled in each trial: the time of the stimulus 

presentation, parametrically modulated by the variables described below, and the time of the 

presentation of the outcome, modulated by the binary outcome (+1/-1).  

Parametric modulators 

The regressor at the time of choice was parametrically modulated by the following decision 

variables (in the two separate GLMs, the parametric modulators contained values from the 

respective model, selection or integration): 

(1) Stimulus value of the better choice (max(VUP, VDOWN)) 

We reasoned that if subjects make a value based decision between the upper or lower stimulus, 

we would necessarily find a representation of a decision variable in the brain that encodes the 
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stimulus value. This value differs between our two models: in the case of the integration model 

this value is a weighted combination of the two feature values within the stimulus, and in the 

attention-gating model it represents the feature value of only the dimension that subjects deem 

more likely (as indicated by the dimensional weight in our model).  

We also considered alternative representations of the stimulus values: one possibility are chosen 

values, which are stimulus values VUP, VDOWN weighted by subjects’ actual choices. We tested for 

chosen values in a separate GLM in which we replaced the max stimulus value by a chosen value 

modulator. In this test we find similar results as for the max stimulus value (although slightly 

weaker effect size) but as our study was not designed to distinguish between these highly 

correlated value signals this difference was not further explored. Another possibility is that the 

brain might encode the value difference between the top and bottom stimuli instead of the best 

stimulus. However, in our present task the values of the two stimuli are mutually dependent on 

each other, i.e. Vdown = 1-Vup. A value difference between the higher and lower valued stimuli 

(|Vup – Vdown|) is therefore in our case identical to a scaled representation of max(Vup, Vdown). 

Another alternative would be a representation of the choice probability Pup=σ(β(Vup-Vdown)), i.e. 

the value passed through the sigmoidal softmax function. Applying such a sigmoid essentially 

asks to what degree subjects use the available information: two subjects could have the exact 

same information but utilize it differently due to differences in the steepness of the softmax. 

Thus, the sigmoid transformed variables encode the usage of the available information rather 

than the available value. As the inverse temperatures (β, k) for most of our subjects are close to 

(or smaller than) 1, the sigmoidal transformation leads to an almost linear transformation over a 

large part of the input space and therefore value and the sigmoid transformed variable will be 

highly correlated anyways. 

(2) Within-dimensional certainty for color (max(Vred, Vgreen)), and (3) motion (max(Vright, Vleft)) 

We defined within-dimensional certainty as confidence about one feature being correct. A high 

value for one feature indicates that choice of a stimulus containing this feature was repeatedly 

rewarded. On the other hand, a feature value close to 0 means that in the recent past neither 

feature within this dimension was rewarded more often than the other and we expect that in this 

situation subjects have high uncertainty about which feature within this dimension is currently 
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correct. We can calculate certainty as argmax over the feature values because Vred and Vright 

fluctuate within the range [-1, 1] and Vgreen=1-Vred (Vleft=1-Vright). 

We also tested for neural signals related to uncertainty, which we defined in our case as 1-

certainty. Uncertainty is at maximum when subjects assign equal value to the two features (e.g. 

Vred and Vgreen), whereas the lowest uncertainty occurs when one value is much larger than the 

other (e.g. large Vred). We also considered alternative definitions for uncertainty, specifically the 

entropy Vred*Vgreen = Vred*(1-Vred). In practice this signal is highly correlated with 1-certainty and 

when we run an additional GLM with the entropy based uncertainty signals we found very 

similar activations to the ones reported here. 

(4) Across-dimensional certainty (max(WMOTION, WCOLOR)) 

The across dimension certainty was similarly defined as the relative ability to predict reward 

based on the dimension. 

 

In a separate GLM we tested alternatively for the signed values Vred, Vright (instead of the within-

dimensional certainties) and Wcolor (instead of the across-dimensional certainty). We did not find 

any activity at a corrected significance level in these contrasts. Note however that these contrasts 

are on a scale from red to green and left to right. As there is no common reference point for 

encoding the dimensions it is unlikely that the subject group encoded the features on the same 

scale (i.e., red to green or green to red). 

 

We entered all regressors and modulators described above under 1-4 independently (without 

serial orthogonalization) into the design matrix. Thereby only the additional variance that cannot 

be explained by any other regressor is assigned to the effect, preventing spurious confounds 

between regressors (Andrade et al. 1999; Draper and Smith 1998).   

The regressors were convolved with the canonical HRF, and low frequency drifts were excluded 

with a high-pass filter (128-s cutoff). Short term temporal autocorrelations were modeled using 

an AR(1) process. Motion correction regressors estimated from the realignment procedure were 
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entered as covariates of no interest. Statistical significance was assessed using linear compounds 

of the regressors in the GLM, generating statistical parametric maps (SPM) of t values across the 

brain for each subject and contrast of interest. 

The within-dimension certainty contrast shown in Figure 3A and 3B is an equally weighted 

linear combination of within-dimension certainty regressors (2) and (3). We also looked at 

correlations with (2) and (3) separately and found that areas activated by (2) and (3) overlap and 

are both exclusively located at the same region as the combined contrast shown in Figure 3.  

These contrast images were then entered into a second level random effects analysis using a one 

sample t-test against zero. The structural T1 images were coregistered to the mean functional EPI 

images for each subject and normalized using the parameters derived from the EPI images. 

Anatomical localization was carried out by overlaying the t-maps on a normalized structural 

image averaged across subjects, and with reference to an anatomical atlas (Duvernoy 1999). 

We used a Bayesian model comparison (Stephan et al. 2009) to determine which model 

(GLM_attention-gating or GLM_integration) better explained the neural activity in vmPFC. 

First, we computed log-likelihoods for the two models, averaged within a 12mm sphere (1.5x 

smoothing kernel size) in vmPFC. Since the attention-gating model activated cluster was 

completely contained by the integration model activated area, we centered the sphere on the 

group peak of the weaker attention-gating model (any selection bias towards the stronger 

correlating model would then be working against us). Next, we calculated posterior model 

probabilities in this region for every subject and the group of subjects. In brief, the procedure by 

Stephan et al. rests on treating the model as a random variable and estimating the parameters of a 

Dirichlet distribution, which describes the probabilities for all models considered. These 

probabilities then define a multinominal distribution over model space, allowing one to compute 

how likely it is that a model generated the subjects’ data. To decide which model is more likely, 

we use the conditional model probabilities to quantify an exceedance probability, i.e. a belief that 

a particular model is more likely than the other model, given the group data. For a detailed 

description of the technique also see the methods paper by Stephan, Friston and colleagues 

(Stephan et al. 2009). 
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All reported activations survive p<0.05 FWE corrections for multiple comparisons across the 

whole brain at the cluster level (p<0.001 height threshold for each voxel). Cluster level 

correction is more sensitive for activations with a larger spatial extent than for activations with 

very small clusters.. As our functional neuroanatomical hypotheses are all about cortical areas as 

opposed to sub-cortical areas (in which activations with smaller spatial extent are more typically 

detected), the use of cluster correction is appropriate in this case. 

 

Results 

Behavioral analysis and model comparison  

On average across subjects, participants performed 294 trials (sd=62), chose the correct stimulus 

60% of the time (sd=4) and got rewarded in 56% of the trials (sd=3). We tested if subjects’ 

performance improved over time by splitting the trials in half and comparing the fraction of 

correct choices in the first half with the correct choices in the second half. There was no 

difference in the number of correct choices (Tdf=15=0.26, p=0.80). To test if subjects became 

better at anticipating intra-and extra dimensional shifts during the task we further compared the 

number of trials required for the first half of switches (n1 = 146, sd = 31) with the second half of 

switches (n2 = 147, sd = 36) and did not observe any difference  (t-test p>0.93). 

Equally, response times between correct (rt=1.00 sec, sd=0.16) and incorrect (rt=1.02 sec, 

sd=0.17) trials were not different (paired t-test p>0.15). Subjects responded slightly faster when 

color was the relevant feature than when it was motion: color (rt=.97 sec, motion rt = 1.04 sec; 

paired t-test p<0.001).  

While all subjects experienced the same number of switches one would nevertheless predict that 

in relative terms (compared to the total number of trials), fast learners experience a higher 

proportion of switching trials. To investigate this hypothesis we correlated the learning rate 

against the proportion of switches / number of total trials and found a significant relation (r = 

0.83, p = 0.0002). 

 We found behavioral evidence that when solving our task, subjects tend to consider evidences 

from all dimensions concurrently and rely more on the integration strategy rather than on a 
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hierarchical strategy that only occasionally shifts attention between dimensions (Table S1). To 

statistically evaluate the fit of the selection and the integration model we next calculated Bayes 

Factors for the comparison of the integration with the selection strategy. Bayes Factors indicate 

the evidence that one model is more likely than the other, with a log Bayes Factor of 3 or greater 

corresponding to an exceedance probability of 95% (strong evidence) (MacKay 2003). Our 

results indicate that the integration model was more likely to explain subjects’ behavior than the 

attention-gating model in all subjects, and 13 out of 16 subjects showed strong evidence for the 

integration model (Fig. 1D; Table S2). Alternatively, as the models are nested, we performed a 

statistical likelihood ratio test which provides support for the integrating model based on all 

subject choices (X2
df=1=500.5, p<<0.00001; or on the individual subject level for every subject 

p<0.01). Strong support in favor of the integration model is also provided if we compare both 

models using a Bayesian Model Comparison (Stephan et al. 2009) (alpha = 17.0 for integration 

versus 1 for attention-gating; posterior probability = 0.94 versus 0.06, exceedance probability ≈ 

1.0 versus 0). Together, this suggests that subjects utilized information from the characteristics of 

both dimensions, rather than the alternative of concentrating only on the dimension that is 

believed more likely correct. Figure 2 shows profiles of hidden targets, subject’s choices and 

rewards, and the integration model predicted values of a representative subject. 

In addition to the attention-gating and integration models we also tested other model variants 

such as a fully Bayesian model or simpler none hierarchical variants of the RL model but found 

that none of these could explain subject behavior as well as our integrating RL model, even after 

correcting for the different levels of complexity of the models (Table 1). The attention-gating 

model can be seen as a special case of the integration model (i.e. a nested model). However, this 

only happens when the transformation from value to weighting w approximates a Heaviside 

function (when k->¥), as implemented in the attention-gating model. The fitted parameter k is 

shown in Figure S3 for all subjects. Notice that the function is far from being a Heaviside for 

most subjects. Although the extra parameter gives more flexibility in fitting for the integration 

model, the BIC correction takes this into account. 

Adhering to the model predicted choices is directly task relevant. Those subjects, whose choices 

could be relatively well explained by the integration strategy, also earned more money, as 

indicated by a significant correlation between the model likelihood of the integration model with 
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the average earned money / trial (r=0.50, p<0.05). Furthermore, the experienced ratio of switches 

in the task correlates both with the log likelihood of the integration model (r=0.86, p<0.001), and 

the average across-dimensional certainty (r=0.55, p=0.03). Subjects adhering to the model (good 

model fit) experience relatively high switch ratios as the task progresses fast. A high average 

certainty suggests that subjects have a better grasp of what dimension is correct, again this is 

related to how fast the task progresses. To analyze whether the success of one strategy over 

another depends on the frequency of the switches we correlated across subjects the fraction of 

experienced switches / total number of trials against the subjects’ Bayes Factors from the model 

comparison (indicating the relative model fit). This relationship is not significant (r = 0.35, p > 

0.17). 

 

Neural correlates of decision variables 

In order to identify neural correlates of the valuation process we separately regressed neural 

activity onto trial by trial value signals of the selection and integration models. In particular, we 

were interested in the maximum stimulus value signal on each trial as this is the key output 

variable of the decision making process. In the case of the attention-gating model, this value 

corresponds to the RL value of selecting the better stimulus within the dimension that the model 

predicts is currently relevant. In the integration model, this value is a linear combination of RL 

values for the color and motion features, weighted by the model predicted across dimension 

likelihood. 

Based on previous findings (Hare et al. 2008; Padoa-Schioppa and Assad 2006; Plassmann et al. 

2007; Wunderlich et al. 2010) we specifically predicted to find stimulus value signals in 

ventromedial prefrontal cortex (vmPFC). We found that the stimulus value signal correlated 

most strongly with activity in vmPFC, extending dorsally and medially along PFC (Fig. 3A). We 

also found chosen value signals in vmPFC (Fig. S1), though the effect size of the stimulus value 

was higher than that of the chosen value signal at the peak of the activation.  

We found analogous activation patterns correlating with the attention-gating model’s decision 

variables, albeit with a much weaker effect size and smaller extent (Fig. S2). In particular, neural 

activity in medial prefrontal cortex correlated both with the stimulus value of the gated and 
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integration model. The area correlating with the attention-gating model predicted variables was 

thereby entirely contained within the larger area activated by the integration model (Fig. 3B).  

 

Neurometric model comparison between attention-gating and integration models  

To discriminate between our two hypotheses about potential strategies, we tested if one 

model’s prediction correlated better with BOLD activation than the other model’s prediction.  

In order to perform a quantitative comparison of the value signals from both models within 

vmPFC, we estimated the two models in separate GLMs and determined their relative probability 

to explain the measured neural signal in every subject by means of a Bayesian model comparison 

approach (Stephan et al. 2009). The advantage of this method is that it circumvents any 

collinearity issues occurring from correlated regressors in a single GLM. Consistent with our 

behavioral results, we found that across subjects the integration model was more likely to be the 

underlying cause of the neural variability in vmPFC (Dirichlet alpha=13.34 for integration vs. 

alpha=4.66 for attention-gating posterior probability = 0.74, exceedance probability = 0.98; Fig. 

3C). The decisive measure in this comparison is the exceedance probability, which in our case 

indicates that the integration model explains neural data better than the attention-gating model 

with 98% confidence. 

 

Certainty and uncertainty related signals 

To further investigate the neural substrates of this hierarchical decision task, we next looked 

more closely at decision related variables of the integration model. Specifically, we tested for 

correlations between certainty signals and the fMRI data. The across-dimension certainty reflects 

how likely it is that one of the complementary dimensions is the correct one. The within-

dimensions certainty pertains to subjects getting the features for the two dimensions right, which 

in our model reflects a metric of subjects’ choices being reinforced. We also hypothesized that 

we would see increased activity relating to within-dimension uncertainty in areas related to the 

allocation of cognitive resources and control on the basis of task difficulty. Areas most 

prominently implicated in this function on the basis of past literature are the anterior cingulate 
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cortex and dorsolateral prefrontal cortex (dlPFC) (Kerns et al. 2004; MacDonald et al. 2000; 

Matsumoto and Tanaka 2004) 

We found that within-dimension certainty correlated with activity located in ventral medial PFC 

(Fig. 4A). The peak of this certainty related activity was located slightly anterior to the peak of 

the value related activity described above (Table 2).  

We found within-dimension uncertainty correlating with activity in dorsomedial PFC adjunct to 

the ACC, bilaterally in dorsolateral PFC, the frontal poles, and parietal cortex (Fig. 4B).  

No significant correlation was found between the BOLD signal and either our measure of 

certainty or uncertainty across dimensions even at p<0.001 uncorrected. A list of all activated 

regions is shown in Table 2. 

 

Discussion 

We investigated how humans deal with complex decision tasks with multiple dimensions, and 

evaluated the computations subserved by the prefrontal cortex in this function. We specifically 

compared two strategies: do humans first determine the most likely dimension that explains how 

rewards are tied to stimuli and then choose on the basis of that theory (attention gated), or choose 

by integrating over multiple evidences and weighting each dimension by the likelihood that it is 

correct (integration strategy). The integration model had a significantly higher likelihood for 

explaining behavior than the attention-gating model, and neural activity in vmPFC correlated 

more strongly with trial by trial valuations according to the integration model than the attention-

gating model.  

Although there is much prior evidence indicating that prefrontal cortex plays a critical role in 

hierarchical decision making (Dias et al. 1996; Downes et al. 1989; Drewe 1974; Lawrence et al. 

1996; Milner 1963; Owen et al. 1993; Owen et al. 1991; Robinson et al. 1980), up to now little 

was known about the specific computational processes underlying such a contribution. Our 

results begin to shed light on this question, by indicating that at the level of inference – when 

working out what choice to take next – the prefrontal cortex uses probability information in an 

integrated fashion. In this approach, even the least likely explanation of observed phenomena is 
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taken into account in order to generate a decision and its weight is commensurate with its 

likelihood. Such integration by likelihood has been formalized in Bayesian analysis. Bayesian 

like processes have been suggested to occur during cross-modal integration in terms of how 

information from perceptual cues in different sensory modalities is integrated together during 

perceptual decision making (Battaglia et al. 2003; Beers et al. 1999; Ernst and Banks 2002; Knill 

and Pouget 2004; Rao et al. 2002), to account for human cognition in perception (Jacobs 1999; 

Körding et al. 2007), action selection (Kording and Wolpert 2004; Trommershauser et al. 2003), 

and human causal inference (Gopnik et al. 2004; Griffiths and Tenenbaum 2005; Körding et al. 

2007; Tenenbaum 1999). Note that optimality in our task alludes to the integration of possible 

evidences rather than optimal updating of evidences. Indeed, our decision models do not differ at 

the learning level: both use the same reinforcement learning principles to update values, ensuring 

that gated and integration approaches to decision making were compared in a clean fashion. 

When we fit a fully Bayesian model (with Bayesian learning of likelihoods, see supplementary 

methods) to behavior, results were slightly inferior, although the fully Bayesian model still 

performed better than the attention-gating model. We further examined posthoc whether the 

integration weights would affect learning by fitting a model that allows for a variable learning 

rate based on the weights of a dimension. Such a model gave very similar fits and produced very 

similar regressors to those produced by the integration model used in the fMRI analysis, 

indicating that we have no evidence on the basis of the present results that the integration 

weights are being incorporated into the learning rate. Instead these weights appear only to exert 

influence at the time of choice.	 Taken together, these findings suggest that while we have 

evidence that subjects integrated evidence at the point of choice, we cannot rule out the 

possibility that during learning, the updating of values may proceed through a variant of 

reinforcement learning as opposed to full Bayesian updating. 

Our findings add significantly to current understanding about the role of the ventromedial 

prefrontal cortex in computing value during choice. The present results show that at the point of 

choice, the computations appear to involve dynamic integration of relevant information from the 

environment in order to compute value, as opposed to selectively representing the value of the 

most relevant features. These findings build on previous evidence that value signals in vmPFC 

dynamically reflect knowledge of the underlying structure in a task as opposed to solely 

reflecting the predictions of a reinforcement learning model (Hampton et al. 2006), as well as 
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findings that value signals in this area reflecting strategic computations during social decision 

making (Hampton et al. 2008). It is important to note that the present findings do not rule out a 

role for attention in the computation of value (Krajbich et al. 2010). Rather, our findings can be 

interpreted as suggesting that during the choice process attention might get distributed between 

the features of relevant stimuli during value computations.  

 

The most prominent performance deficit reported on such hierarchical tasks following lesions of 

prefrontal cortex is perseveration, a tendency to persist in responding on the previously 

reinforced category following a change in stimulus contingencies (Milner 1963; Nelson 1976). 

These deficits have led to the proposal that prefrontal cortex, and particularly its lateral aspect, 

contributes to facilitating the switching of attentional focus between relevant cues (Dias et al. 

1996; Rogers et al. 2000), which is predicated on the notion that attention is allocated selectively 

to only one dimension at a time. A failure to switch behavior following a change in 

contingencies would therefore, according to this suggestion, occur due to an inability to 

disengage attention from the previously reinforced category and relocate it toward the new 

category. Our results suggest that rather than facilitating the allocation of attention to only 

one dimension selectively at a time, prefrontal cortex instead may contribute toward the 

distribution of attention across multiple probable causes. Thus, prefrontal cortex keeps track 

of multiple contingencies, even if some of them are temporarily unlikely to be correct. 

Therefore, the pattern of impairment following lesions in prefrontal cortex could result from an 

inability to integrate across contingencies, and hence, an inability to distribute attention (or 

indeed readjust the distribution of attention) optimally across multiple causes, rather than 

exclusively controlling the attentional focus toward the most likely cause. In the evidence 

integration approach, trust in one’s decision is best measured by our within-dimension certainty 

measure, which combines the likelihood that one has identified the right feature for both color 

and motion dimensions. Accordingly, we discovered positive correlations between the within-

dimension certainty measure and activation in anterior medial PFC.  

We found a correlation with within-dimensional uncertainty in dorsomedial prefrontal cortex, 

dorsolateral prefrontal cortex, the frontal poles, and parietal cortex. These latter areas are more 

active in those trials in which subjects are unsure about the correct choice. Our finding of 
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uncertainty related signals in dorsomedial PFC resonates with a recent implication of this region 

in tracking the volatility in the environment to adjust the rate at which learning occurs (Behrens 

et al. 2007). Furthermore, ACC and dlPFC have long been suggested to interact together for the 

purposes of cognitive control (Kerns et al. 2004; Koechlin et al. 2003; MacDonald et al. 2000; 

Matsumoto and Tanaka 2004); while frontopolar cortex has previously been associated with 

uncertainty (Yoshida and Ishii 2006) and exploring multiple behavioral alternatives in order to 

maximize reward (Koechlin et al. 1999; Koechlin and Hyafil 2007). It is not efficient to maintain 

a high level of control all the time because cognitive control requires effort and the brain 

therefore regulates control according to demand. The best strategy for this regulation is, in our 

task, a variation according to the uncertainty about the correct choice, which is captured by our 

within-dimension uncertainty signal. Note that in a two-step attention gated approach, for the 

effective allocation of attention between dimensions, cognitive control would have to be 

recruited in relation to uncertainty about what dimension is relevant. High uncertainty across 

dimensions would then render the task more difficult for subjects because they first have to settle 

on one dimension before they decide on the feature. In contrast, the continuously integrating 

model utilizes a one-step procedure and thus task difficulty is only reflected in the uncertainty of 

the final output. Indeed our findings indicate that areas involved in recruiting cognitive control 

correlated only with the general uncertainty about the correct features (within-dimension 

uncertainty) but not the across dimension uncertainty, suggesting that in our task cognitive 

control is recruited as a result of general uncertainty about which stimulus is correct rather than 

which dimension.  

A number of previous studies have attempted to differentiate the functional contributions of 

different regions of prefrontal cortex in hierarchical decision making (Badre et al. 2010; Bechara 

et al. 2000; Goldman-Rakic 1996; Hampton et al. 2006; Koechlin and Summerfield 2007; Owen 

1997; Wallis et al. 2001). Using a selective lesion approach it was recently shown that damage to 

a number of different areas of prefrontal cortex can cause impairment on hierarchical decision 

making in monkeys, including the orbitofrontal cortex, anterior cingulate and ventral and dorsal 

prefrontal cortices, and moreover that these regions may make distinct contributions underlying 

performance (Buckley et al. 2009). Our finding of distinct task relevant computational signals 

within prefrontal cortex is broadly consistent with these findings. While ventromedial prefrontal 

cortex is involved in computing the value of particular choices on the basis of prior 
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reinforcement history in order to guide choice, lateral prefrontal cortex, frontopolar cortex and 

dorsomedial prefrontal cortex may contribute to the allocation of attention across the stimuli 

according to the degree of uncertainty (or indeed conflict) about which feature is currently 

correct.  

It is also important to consider the relationship between the present results and previous trial 

based analyses (Cools et al. 2002; Ghahremani et al. 2010; Hampton et al. 2006; O'Doherty et al. 

2001) and neurochemical investigations (e.g. (Clarke et al. 2005; Robbins and Roberts 2007; 

Roberts et al. 1994)) of reversal learning. Most importantly, these prior studies have reported 

activity in lateral orbital and adjacent prefrontal cortex following a change in reinforcement 

contingencies leading to a switch in behavior (Cools et al. 2002). Those previous findings have 

implicated these areas in either the evaluation of negative reinforcement per se, or in the 

facilitation of behavioral switches through response inhibition and/or response selection, or the 

detection of contingency changes.  The present results are not incompatible with those previous 

findings on reversal, but rather address a separate issue. Here we address the issue about how 

value computations are generated at the point of choice when information about value is 

available through multiple dimensions, while those previous studies pertain to the mechanism by 

which choice is alternated between different stimulus/action pairs. In order to assess the extent to 

which these previous results could be replicated in the present data, we ran an analysis in which 

we looked for activity immediately preceding a switch in stimulus choice and replicated at least 

some of the findings from this previous literature (see Figure S4).  However, it should be noted 

that because in the present study we used a probabilistic structure at both levels of the hierarchy, 

the present task design is not optimized for analyzing the data in such a trial based manner. This 

is because we cannot unambiguously ascertain when subjects subjectively understood a switch in 

contingencies had occurred for a particular stimulus dimension. Here, each stimulus contained 

both dimensions and subjects’ choices were therefore not unique in the decomposition of 

whether their choice was based on color or motion, or in case of the integration model a 

weighted combination of both.  Instead, the design of the task was optimized for a computational 

model based analysis as opposed to the trial based “switch” analysis used in those previous 

studies. Specifically, switches in our task were more rapid than in previous studies, increasing 

sensitivity for differentiating between integrating and selection: in a stable environment, the 

weight for the irrelevant dimension in the integration model would become very small over time 
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and the integration model would eventually predict identical outcomes as the attention-gating 

model. 

One possible concern with the present approach is that it is difficult to determine whether 

attention is distributed at the same time to both dimensions or switched stochastically from one 

to the other on a trial by trial basis. In this scenario, gated-attention is noisy and the dimensions 

are considered one at a time, but stochastically. However, this can produce similar fits to the 

integration model only if alternative dimensions are not considered purely randomly, but with a 

frequency that mimics integrating behavior. Importantly, such a strategy still relies on 

quantifying the relevance of the two dimensions, which is captured by the weights in our model. 

Furthermore, stochastic switching would still require a two-stage decision with a choice about 

dimension in every trial. In order to perform such a behavior the subject would require 

knowledge about the certainty of the most relevant dimension (across dimensional certainty), a 

signal that is conspicuously absent from the imaging data, even though other signals such as the 

within-dimensional certainty were present at robust statistical significance levels. Although we 

cannot rule out the presence of this signal on the basis of a null result, the most parsimonious 

explanation for our imaging data seems to be an integrative account rather than a stochastic 

switching account. In general it remains also possible, that if humans are faced with a 

hierarchical problem of sufficient complexity (for example requiring integration over many more 

than two dimensions), keeping track of all theories simultaneously becomes both cognitively too 

challenging and normatively ill-advised (Bröder and Schiffer 2003; Diaconis and Freedman 

1986). In those instances, subjects might switch to a simpler strategy like attention gating, which 

employs fewer resources. 

Our results indicate that the human brain and the prefrontal cortex in particular, is capable of 

integrating information in an optimally weighted manner. These findings could be used as a basis 

to promote better decision making strategies in everyday life and in policy making, whereby 

decision makers are encouraged to take into account probabilistic information about multiple 

causes simultaneously rather than being trained to generate decisions based on sequential 

assumptions that may ultimately prove false.  
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Figure Captions 

Figure 1: Task and Models 

(A)  Subjects chose one of two items, of which each had a color (red or green) and a motion 

(left or rightwards moving dots) attribute. The features were randomly assigned to both items. 

Once the subject selected an item, a box was placed around the target and remained on the screen 

until 2s after stimulus onset. After a 3s delay they either received a 25 cent reward or a 

subtraction of 25 cents from their payout. One feature was designated the correct feature, and the 

choice of the item carrying that feature led to a reward on 80% of the occasions and a loss 20% 

of the time. Consequently, by choosing this correct item subjects accumulated monetary gain. 

The other item was incorrect, and choosing it led to a reward 20% of the time and a loss 80% of 

the time, leading to a cumulative monetary loss. After subjects chose the correct item on three 

consecutive occasions, the contingencies reversed with a probability of 50% in every consecutive 

trial. After two to four of such within-dimension reversals the relevant dimension changed 

(extra-dimensional switch). The inter-trial-interval was variable. 

(B)  Hierarchical decision model based on attentional-shifts. Stimulus-outcome associations 

are learned for color (C) and motion direction (M). According to this model, subjects choose in a 

two-step process: they first form a hypothesis about which dimension is relevant (either C or M) 

and then base their reward expectation and choice exclusively on the information learnt about 

that dimension. 

(C)  In the integration model, the available information from both dimensions (C and M) is 

integrated as a weighted sum and the decision is based on a linear combination of evidence from 

both dimensions. Subjects form a hypothesis about the likelihoods that each dimension is 

relevant, corresponding to weights in the linear combination. Weights are updated on every trial. 

(D) Bayes Factors of the comparison of the integration versus attention-gating model. The 

integration model fits better to subjects’ behavior in every single subject and for 13 out of 16 

subjects the log Bayes Factor indicated strong evidence in favor of the integration model.  
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Figure 2: Integration model predictions and behavior 

(A)  Top: model predicted value for tracking the color feature. Bottom: model predicted value 

for tracking the motion feature. Middle: Learned weight for the dimension. X-axis is time, unit is 

trial. The relevant dimension is indicated by a gray background in either the color or motion plot. 

Feature reversals within this block are shown as black lines and the icon directly above this line 

denotes the new correct feature. The green/red boxes below the timecourses show whether 

subject’s choice on the trial was correct/incorrect and a blue box indicates that the trial was 

rewarded. Data is shown for a representative subject over the time of the entire experiment. 

(B) Model certainty for the two features (red = color; blue = motion) and the relevant 

dimension. 

(C) Model predicted choice versus actual choice for the subject shown in A-B. The 

proportion of choices of the upper stimulus (dark) increases with higher model predicted value 

for the upper stimulus. The proportion of bottom stimulus choices (light) follow the opposite 

course. The model predicted value for the bottom stimulus is 1-(top stimulus value). 

 

Figure 3: Neural correlates of decision value and model comparison 

(A) BOLD responses in medial PFC correlate significantly with the stimulus value signal 

from the integration model. 

(B) Neural activity in vmPFC correlates with the trial-by-trial stimulus value signal. Shown is 

the area that is commonly activated by both the integration and the attention-gating model at 

p<0.001 corrected. The comparison between the two models in (c) is based on this commonly 

activated region. 

(C) We used a Bayesian Model comparison to identify the model that can better explain 

neural activity in this area. Overall, the integration model (I) explains activity in this vmPFC area 

better than the attention-gating model (A). The exceedance probability for the integration model 

is 0.98. The exceedance probability is the probability that one model is more likely than the other 

one, i.e that the posterior probability for the integration model is larger than 0.5. 
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Figure 4: Certainty and uncertainty of the integration model 

(A) BOLD responses in a sub-cluster of medial PFC correlate significantly with the within-

dimension certainty (averaged across color and motion) from the integration model. 

 (B) Dorsomedial & dorsolateral  PFC and the frontal poles show negative correlations with 

the within-dimension certainty (thus indicating a positive correlation with uncertainty). 

The color-coding is identical to Figure 3.  

 
 
 
 
 
Table Captions 

Table 1:  
 
Pairwise model comparison using Bayesian Model Comparison. Numbers indicate exceedance 

probabilities of the column model versus the row model. 

 

Table 2:  

Locations of significant correlation with value signals of the integration model (threshold 

p<0.001 uncorrected and 20 voxels extent; * p<0.05 FWE corrected for multiple comparisons at 

the cluster level). MNI coordinates denote the group peak voxel of each cluster. 

	
 


