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Abstract

We present an hp-adaptive continuous Galerkin (hp-CG) method for approximating eigenvalues
of elliptic operators, and demonstrate its utility on a collection of benchmark problems having
features seen in many important practical applications—for example, high-contrast discontinuous
coefficients giving rise to eigenfunctions with reduced regularity. In this continuation of our bench-
mark study, we concentrate on providing reliability estimates for assessing eigenfunction/invariant
subspace error. In particular, we use these estimates to justify the observed robustness of eigenvalue
error estimates in the presence of repeated or clustered eigenvalues. We also indicate a means for
obtaining efficiency estimates from the available efficiency estimates for the associated boundary
value (source) problem. As in the first part of the paper we provide extensive numerical tests
for comparison with other high-order methods and also extend the list of analyzed benchmark
problems.
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1. Introduction

In Part 1 of this work [15], we presented an hp-adaptive discontinuous Galerkin (hp-DG) method
for approximating eigenvalues of elliptic operators, and demonstrated its utility on a collection of
benchmark problems having features seen in many important practical applications—for example,
high-contrast discontinuous coefficients giving rise to eigenfunctions with reduced regularity. This
approach was shown to be highly efficient in terms of cost per correct digit, and provided computed
error estimates which were asymptotically identical to the actual errors. Our DG work did not,
however, provide a means of assessing eigenfunction/invariant subspace error; nor did it justify
the observed robustness of eigenvalue error estimates in the presence of repeated eigenvalues. In
this continuation of our benchmark study, we present a continuous Galerkin hp-adaptive (hp-
CG) method which addresses these issues. As in Part 1, we provide extensive numerical tests for
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comparison with other high-order methods. Our CG work builds on the abstract framework of [21, 7]
for eigenvalue/invariant subspace error estimation, as outlined in Section 2, providing a more robust
theory than was possible in our previous approach. Concerning hp-adaptive approximation methods
for eigenvalue problems, much more has been written about their a priori error analysis than their
a posteriori error analysis, and we mention [5, 26, 31], as well as the more comprehensive general
survey [11], as recent references in this vein. A recent contribution to a posteriori analysis which is
most readily compared with our own is that of [4], and we make relevant comparisons and contrasts
with this work in Sections 3 and 4 .

Our model problem is as follows. Let Ω ⊂ R2 be a bounded polygonal domain, and let ∂ΩD ⊂ ∂Ω
have positive (1D) Lebesgue measure. We define the space H = {v ∈ H1(Ω) : v = 0 on ∂ΩD},
where these boundary values are understood in the sense of trace. We are interested in the eigen-
value problem:

Find (λ, ψ) ∈ R×H so that B(ψ, v) = λ(ψ, v) and ψ ̸= 0 for all v ∈ H , (1)

where

B(w, v) =

∫
Ω
A∇w · ∇v + cwv dx , (w, v) =

∫
Ω
wv dx . (2)

We assume that the diffusion matrix A is piecewise constant and uniformly positive definite a.e., and
the scalar c is also piecewise constant and non-negative. The assumption that A and c are piecewise
constant, as opposed to just piecewise smooth, is a theortical convenience, as is the assumption
that Ω is a polygon. These are not practical limitations to our approach. The discontinuities in
these coefficients permit investigation of many interesting eigenvalue model problems for composite
materials, such as those which are of interest for methods of nondestructive sensing (cf. [1, 2]).
Our interest in problems of this sort is motivated by considerations of photonic crystals and related
problems, (cf. [3, 14]). Such applications are not directly addressed in this work, but many of their
inherent computational challenges are captured in our model problem.

The assumptions on the coefficients A and c are sufficient to guarantee that the bilinear form
is both bounded and coercive on H1(Ω),

B(v, w) ≤ β1∥v∥1∥w∥1 , B(v, v) ≥ β0∥v∥21 for all v, w ∈ H ,

for some constants β0, β1 > 0. So B(·, ·) is an inner product on H, whose induced energy-norm ||| · |||
is equivalent to ∥ · ∥1. Here and elsewhere, | · |1 and ∥ · ∥1 denote the usual semi-norm and norm
on H1(Ω), and ∥ · ∥0 denotes the norm on L2(Ω). For some results, it is convenient to restrict the
norms/semi-norms to a subset S ⊂ Ω (in the obvious way), and we denote these restrictions by
∥ · ∥0,S , | · |1,S , ∥ · ∥1,S and ||| · |||S . The we point out that ||| · |||S may actually be a semi-norm, though
our assumptions on the coefficients A and c guarantee that there are local constants β0S , β1S > 0
such that β0S |v|21,S ≤ |||v|||2S ≤ β1S∥v∥21,S , and the seminorm in the lower bound can be replaced
with the full norm (after modifying β0S if necessary) if c(x) ≥ cS > 0 on S.

The variational eigenvalue problem (1) is satisfied by the positive sequence of eigenvalues

0 < λ1 ≤ λ2 ≤ · · · ≤ λq ≤ · · · (3)

and a sequence of eigenvectors (ψi)i∈N,

B(ψi, v) = λi(ψi, v) for all v ∈ H , and (ψi, ψj) = δij . (4)
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Here we have counted the eigenvalues according to their multiplicity. Furthermore, the sequence
(λi)i∈N has no finite accumulation points. For path-wise connected domains Ω, we know via the
Peron-Frobenius Theorem, that λ1 < λ2 holds and that ψ1 can be chosen to be continuous and
strictly positive in Ω. We will also use the notation

SpecB = {λi : i ∈ N} , M(λ) = span{ψ ∈ H : B(ψ, ϕ) = λ(ψ, ϕ) for all ϕ ∈ H}

to denote the spectrum of the variational eigenvalue problem, and the spectral subspace (invariant
subspace) associated to λ ∈ SpecB, noting that these subspaces are finite dimensional in our setting.
Furthermore, let Eλ be the L2-orthogonal projection onto M(λ). Then∑

λ∈SpecB

Eλ = I

and the spaces M(λ) = RanEλ and M(µ) = RanEµ are mutually orthogonal for distinct λ, µ ∈
SpecB. We finally note that

B(ψ, ϕ) =
∑

λ∈Spec(A)

λ(ψ,Eλϕ), ψ, ϕ ∈ H

and so we obtain an alternative representation of the energy norm

|||ψ|||2 = B(ψ,ψ) =
∑

λ∈Spec(A)

λ(ψ,Eλψ), ψ ∈ H. (5)

The rest of this paper is organized as follows. In Section 2 we introduce basic notation related
to the hp-discretization, and discuss approximation defects as ideal error estimates, with key results
from [21, 7] extended for use in the present context. These extensions make possible the incor-
poration of results from [28, Section 3] to obtain efficient and reliable estimates of eigenvalue and
eigenvector approximations. This development is given in Section 3, where our key eigenvalue and
eigenvector results, Theorem 3.4 and Theorem 3.8, are presented. Section 4, which constitutes the
bulk of the paper, is devoted to numerical experiments on a variety of different kinds of problems
to assess the practical behavior of the proposed approach.

2. Discretization and ideal error estimates

We discretize (1) using hp-finite element spaces, which we now briefly describe. Let T =
Th be a triangulation of Ω with the piecewise-constant mesh function h : Th → (0, 1), h(K) =
diam(K) for K ∈ Th. Throughout we implicitly assume that all meshes – even on the coarsest
level – are aligned with all discontinuities of the data A and c, as well as any locations where the
(homogeneous) boundary conditions change between Dirichlet and Neumann. Given a piecewise-
constant distribution of polynomial degrees, p : Th → N, we define the space

V = V p
h = {v ∈ H ∩ C(Ω) : v

∣∣
K

∈ Pp(K) for each K ∈ Th} ,

where Pj is the collection of polynomials of total degree no greater than j on a given set. Suppressing
the mesh parameter h for convenience, we also define the set of edges E in T , and distinguish
interior edges EI , and edges on the Neumann boundary EN (if there are any). Additionally, we
let T (e) denote the one or two triangles having e ∈ E as an edge, and we extend p to E by
p(e) = maxK∈T (e) p(K). As is standard, we assume that the family of spaces satisfy the following
regularity properties on Th and p: There is a constant γ > 0 for which
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(C1) γ−1[h(K)]2 ≤ area(K) for K ∈ T ,

(C2) γ−1(p(K) + 1) ≤ p(K ′) + 1 ≤ γ(p(K) + 1) for adjacent K,K ′ ∈ T , K ∩K ′ ̸= ∅.

It is really just a matter of notational convenience that a single constant γ is used for all of these
upper and lower bounds. The shape regularity assumption (C1) implies that the diameters of
adjacent elements are comparable.

In what follows we consider the discrete versions of (1):

Find (λ̂, ψ̂) ∈ R× V such that B(ψ̂, v) = λ̂(ψ̂, v) for all v ∈ V . (6)

We also assume, without further comment, that the solutions are ordered and indexed as in (3),
with (ψ̂i, ψ̂j) = δij . We are interested in assessing approximation errors in collections of computed
eigenvalues and associated invariant subspaces. Let sm = {µk}mk=1 ⊂ (a, b) be the set of all eigenval-
ues of B, counting multiplicities, in the interval (a, b), and let Sm = span{ϕk}mk=1 be the associated
invariant subspace, with (ϕi, ϕj) = δij . The discrete problem (6) is used to compute corresponding

approximations ŝm = {µ̂k}mk=1 and Ŝm = span{ϕ̂k}mk=1, with (ϕ̂i, ϕ̂j) = δij .

Remark 2.1. When sm consists of the smallest m eigenvalues, we use the absolute labelling
sm = {λk}mk=1 and Sm = span{ψk}mk=1 instead of the relative labelling involving (µk, ϕk); and the

analogous statement holds for the discrete approximations ŝm and Ŝm. This distinction is used in
some of our results, such as Theorems 2.2 and 2.4.

Given computed approximations ŝm and Ŝm as described above, we define the corresponding
approximation defects as:

η2i (Ŝm) = max
S⊂Ŝm

dimS=m−i+1

min
f∈S
f ̸=0

|||u(f)− û(f)|||2

|||u(f)|||2
, (7)

where u(f) and û(f) satisfy the boundary value problems:

B(u(f), v) = (f, v) for every v ∈ H (8)

B(û(f), v) = (f, v) for every v ∈ V . (9)

In Theorems 2.2 and 2.4 below, we state key theorems from [20] and its published version [17],
which were used for finite element computations in [21, 7]. The results of [20, 17] show that these
approximation defects would yield ideal error estimates for eigenvalue and eigenvector computation
if they could be computed. Note that for the results of [20, 17] to hold we do not haave to make
any assumptions save that B is a positive definite quadratic form and that V is from its associated
form domain.

Theorem 2.2. For a fixed m ∈ N, assume that λm < λm+1, and let Ŝm = span{ψ̂1, · · · , ψ̂m} be
the invariant subspace associated with the first m Ritz values λ̂1, . . . , λ̂m of (6). If Ŝm is such that
ηm(Ŝm)

1−ηm(Ŝm)
< λm+1−λ̂m

λm+1+λ̂m
then

λ̂1

2λ̂m

m∑
i=1

η2i (Ŝm) ≤
m∑
i=1

λ̂i − λi

λ̂i
≤ Cm

m∑
i=1

η2i (Ŝm). (10)

The constant Cm depends solely on the relative distance to the unwanted component of the spectrum
(e.g. λm−λm+1

λm+λm+1
).
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The constant Cm is given by an explicit formula which is a reasonable practical overestimate,

see [21, 7, 20, 17, 16] for details. In particular the requirement ηm(Ŝm)

1−ηm(Ŝm)
< λm+1−λ̂m

λm+1+λ̂m
is according to

[16, 17] a reasonable restriction to guarantee a second order – in thew norm of the residual – pairing
between Ritz values and eigenvalues. A similar result holds for the eigenvectors. We point the
interested reader to [21, Theorem 4.1 and equation (3.10)] and [7, Theorem 3.10] for the use of the
abstract results from [20, 17, 16, 18] in the finite element setting. Specifically, let us emphasize that
neither B has to be a divergence type quadratic form nor does V does have to be a finite element
space for the results to hold. Subsequently all of the constants which appear are independent of
the mesh parameters and are solely problem dependent.

Remark 2.3. Although λ1 < λ2 for the particular problems we consider numerically in the present
work, much of the theory carries over to problems where Ω is not pathwise connected, or the
boundary conditions are periodic (as examples). In these cases the Peron-Frobenius theorem does
not apply, and it is quite possible that the smallest eigenvalue is degenerate. If this is the case, and
λ1 = λm, then the constant λ̂1/2λ̂m in (10) can be replaced by 1.

Another notable feature of these ideal estimates is that they are asymptotically exact, both
as eigenvalue and eigenvector error estimators, as the following theorem indicates in the case of a
single degenerate eigenvalue and its corresponding invariant subspace.

Theorem 2.4. Let λq be a degenerate eigenvalue of multiplicty m, λq−1 < λq = λq+m−1 < λq+m.

Let Ŝm = Ŝm(T ) = span(ϕ̂k) ⊂ V = V (T ) be the computed approximation of the invariant subspace
corresponding to λq. Then, taking the pairing of eigenvectors ϕi and Ritz vectors ϕ̂i as in [21], we
have

lim
h→0

∑m
i=1

|µ̂i−λq |
µ̂i∑m

i=1 η
2
i (Ŝm)

= 1 , lim
h→0

∑m
i=1

|||ϕ̂i−ϕi|||2
|||ϕi|||2∑m

i=1 η
2
i (Ŝm)

= 1 . (11)

Remark 2.5. We emphasize that max-min formulation for the approximation defects has at it
heart relative errors for source problems (8)-(9), for which a posteriori error estimation techniques
are better developed. It will be clear from the development below that our computable estimates of
the approximation defects will inherit the strengths and weaknesses, both theoretical and practical,
of the underlying a posteriori techniques for source problems. For a theoretical study of the
convergence rates as well as comparisons with other approaches see [17].

2.1. Error estimates in a Riesz vector basis

We now turn to practical estimates of the approximation defects, and we must first address their
max-min variational definition. Recall that we use u(·) and û(·) to denote the solution operators
from (8) and (9). Taking ϕ̂1, . . . , ϕ̂m to be the Ritz vectors from Ŝm as described above, we define
the matrices E,G ∈ Rm×m by

Eij = B
(
u(ϕ̂i)− û(ϕ̂i), u(ϕ̂j)− û(ϕ̂j)

)
(12)

Gij = B
(
u(ϕ̂i), u(ϕ̂j)

)
. (13)

It was shown in [21] that η2i (Ŝm) = λi(E,G), where λ1(E,G) ≤ · · · ≤ λm(E,G) are the eigenvalues
of the generalized eigenproblem for the matrix pair (E,G). Furthermore, since G is positive definite,
these eigenvalues are precisely those of G−1/2EG−1/2, η2i (Ŝm) = λi(G

−1/2EG−1/2)
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At this stage we see that max-min problem is reduced to a small (generalized) eigenvalue
problem, but we must still approximate the entries of E and G in a useful way. In [21, 7], which
concerned low-order h-methods, we used hierarchical basis techniques to approximate the error
functions u(ϕ̂j) − û(ϕ̂j) = u(ϕ̂j) − 1

µ̂j
ϕ̂j , not just some norm of them, and these were used to

approximate each entry in E and G. We cannot take the analogous hierarchical basis approach
for our high-order work, because key theoretical results (e.g. reliability) in the hp-setting are not
yet available. We instead employ the residual-based error estimates of [28], for which efficiency
and reliability are proven, and these results are adapted for use in our setting in Section 3. The
residual-based approach is designed to estimate the norm errors, |||u(ϕ̂j)−û(ϕ̂j)|||, so we can no longer
approximate the off-diagonal entries of E and G in a useful way. To address this, we “diagonalize”
the max-min problem as follows, to close out this section.

Letting D = diag(µ̂−1
1 , . . . , µ̂−1

m ), we define Dl = ∥D−1/2(G−D)D−1/2∥, the relative norm-error
in approximating G by D. Because it is a relative estimate, it is expected that Dl < 1 even for
finite element spaces V of fairly small dimension. In any case, we have D ≤ G ≤ (1 +Dl)D. Here
we use ≤ to denote the Löwner order relation between Hermitian matrices, for further properties
and definition see [8, 23]. Therefore,

trace(D−1/2ED−1/2) ≤ trace(G−1/2EG−1/2) ≤ trace(D−1/2ED−1/2) . (14)

or, equivalently,

1

1 +Dl

m∑
i=1

Eiiµ̂i ≤
m∑
i=1

η2i (Ŝm) ≤
m∑
i=1

Eiiµ̂i . (15)

Finally, recognizing that µ̂iEii = µ̂−1
i |||u(µ̂iϕ̂i)− û(µ̂iϕ̂i)|||2, we obtain the following result.

Lemma 2.6. It holds that

1

1 +Dl

m∑
i=1

µ̂−1
i |||u(µ̂iϕ̂i)− û(µ̂iϕ̂i)|||2 ≤

m∑
i=1

η2i (Ŝm) ≤
m∑
i=1

µ̂−1
i |||u(µ̂iϕ̂i)− û(µ̂iϕ̂i)|||2 . (16)

3. Error estimation for hp-approximations of eigenvalues and eigenvectors

Using Lemma 2.6, we have reduced the problem of estimating the approximation defects, and
hence the error in our eigenvalue/eigenvector computations, to that of estimating error in associated
boundary value problems. In particular, we must estimate |||u(µ̂iϕ̂i)−û(µ̂iϕ̂i)|||2 = |||u(µ̂iϕ̂i)−ϕ̂i|||2 for
each Ritz vector, where Ŝm = span{ϕ̂1, . . . , ϕ̂m} is our approximation of Sm = span{ϕ1, . . . , ϕm}.
We modify key results from [28], which were stated only for the Laplacian, to our context. We
define the element residuals Ri for K ∈ T , and the edge (jump) residuals ri for e ∈ E , by

Ri|K = µ̂iϕ̂i − cϕ̂i +∇ ·A∇ϕ̂i , (17)

ri|e =

{
−(A∇ϕ̂i)|K · nK − (A∇ϕ̂i)|K′ · nK′ , e ∈ EI
−(A∇ϕ̂i)|K · nK , e ∈ EN

. (18)

For interior edges e ∈ EI , K and K ′ are the two adjacent elements, having outward unit normals
nK and nK′ , respectively; and for Neumann boundary edges e ∈ EN (if there are any), K is the
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single adjacent element, having outward unit normal nK . We note that R is a polynomial of degree
no greater than p(K) on K, and r is a polynomial of degree no greater than p(e) on e, because of
our assumption that A and c are piecewise constant.

Our estimate of ε2i =
∑

K∈T ε
2
i (K) ≈ |||u(µ̂iϕ̂i)− û(µ̂iϕ̂i)|||2 is computed from local quantities,

ε2i (K) =

(
h(K)

p(K)

)2

∥Ri∥20,K +
1

2

∑
e∈EI(K)

h(e)

p(e)
∥ri∥20,e +

∑
e∈EN (K)

h(e)

p(e)
∥ri∥20,e , (19)

where EI(K) and EN (K) denote the interior edges and Neumann boundary edges of K, respectively.
An inspection the proof of [28, Lemma 3.1] (which was stated for the Laplacian) makes the following
assertion clear.

Lemma 3.1. There is a constant C > 0 depending only on the hp-constant γ and the coercivity
constant β0, such that |||u(µ̂iϕ̂i)− û(µ̂iϕ̂i)|||2 ≤ Cε2i .

A few remarks are in order concerning the lemma above and how it relates to [28, Lemma 3.1].
First, the bound in [28, Lemma 3.1] includes an additional term involving the difference between
the righthand side (in our case µ̂iϕi) and its projection on K into a space of polynomials. This
additional term only arises in their result because they have chosen to use the projection of the
righthand side, instead of the righthand side itself, to define the element residual (here called
Ri). They do this in order to employ certain polynomial inverse estimates, which hold in our
case outright because our righthand sides are piecewise polynomial. Their result also involves a
parameter α ∈ [0, 1], which we have taken to be 0. The result [28, Lemma 3.1] is based on Scott-
Zhang type quasi-interpolation, which naturally gives rise to errors measured in H1. Mimicking
their arguments with our indicator, one would arrive at a result of the form

|||u(µ̂iϕ̂i)− û(µ̂iϕ̂i)||| ≤ C̃εi∥u(µ̂iϕ̂i)− û(µ̂iϕ̂i)∥1 ,

where C̃ depends only on γ. The constant in the coercivity bound β0∥v∥21 ≤ |||v|||2 enters Lemma 3.1
at this final stage. Similarly, a careful reading of the proofs of [28, Lemma 3.4 and 3.5] show that
their efficiency results, as stated in [28, Theorem 3.6] , are readily extended to elliptic operators of
the type considered here.

Lemma 3.2. For any ϵ > 0, there is a constant c = c(ϵ) > 0 depending only on the hp-constant γ
and the global continuity constant β1, such that ε2i (K) ≤ cp2+2ϵ

K |||u(µ̂iϕ̂i)− û(µ̂iϕ̂i)|||2ωK
.

Here, ωK is the patch of elements which share an edge with K. The global continuity constant β1
could be replaced in Lemma 3.2 by a local continuity constant β1ωK if desired.

Remark 3.3. The p-dependence in local efficiency bound of Lemma 3.2 is unfortunately unavoid-
able in the proof, and would suggest decreased efficiency of the estimator as pK is increased if this
estimate were sharp. Our numerical experiments do seem to indicate that there may be a modest
decrease in the efficiency of the estimator under hp-refinement in practical computations.

With these results we now state the main theorem concerning relative eigenvalue error estimates

Theorem 3.4. Under the assumptions of Theorem 2.2, we have the following upper- and lower-
bounds on eigenvalue error,

C1

m∑
i=1

λ̂−1
i ε2i ≤

m∑
i=1

λ̂i − λi

λ̂i
≤ C2

m∑
i=1

λ̂−1
i ε2i . (20)
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The constant C1 depends solely on the ratio λ̂1/(2λ̂2), the hp-regularity constant γ, the continuity
constant β1, and the maximal polynomial degree p̄ = maxK∈T p(K). The constant C2 depends solely
on the relative distance to the unwanted component of the spectrum, the hp-regularity constant γ
and the coercivity constant β0.

Proof. Let Ŝm = span{ϕ̂1, . . . , ϕ̂m} be our approximation of Sm = span{ϕ1, . . . , ϕm}. We start
from the inequality (10)

λ̂1

2λ̂m

m∑
i=1

η2i (Ŝm) ≤
m∑
i=1

λ̂i − λi

λ̂i
≤ Cm

m∑
i=1

η2i (Ŝm).

Using (16), we obtain the estimate

λ̂1

2λ̂m

1

1 +Dl

m∑
i=1

µ̂−1
i |||u(µ̂iϕ̂i)− û(µ̂iϕ̂i)|||2 ≤

m∑
i=1

λ̂i − λi

λ̂i
≤ Cm

m∑
i=1

µ̂−1
i |||u(µ̂iϕ̂i)− û(µ̂iϕ̂i)|||2. (21)

From (21) and Lemmas 3.1 and 3.2 the assertions of the theorem now follow directly. In particular
due to the uniform estimate Dl ≤ 1 we have

λ̂1

2λ̂m

1

2 c p2+2ϵ

m∑
i=1

λ̂−1
i ε2i . ≤

m∑
i=1

λ̂i − λi

λ̂i
≤ CmC

m∑
i=1

λ̂−1
i ε2i .

From this we readily deduce the claims on the constants C1 and C2.

Remark 3.5. It is relative local indicators λ̂−1
i ε2i (K) which will be used to mark elements for

refinement, as described in Section 4.

Remark 3.6. The dependence of the efficiency constant C1 on the maximal polynomial degree is
solely due to the conclusion of Lemma 3.2. If one were to use instead of (19) a different boundary
value estimator for which the efficiency estimate, similar to Lemma 3.2, involves constants which
do not depend on the polynomial degree, then the constant C1 from Theorem 3.4 would directly
inherit such a property. One possible class of estimators which could exhibit such a feature would
be a generalization of hierarchical error estimators, cf. [7]. This will be a topic for further research.

A similar result holds for the eigenvectors and eigenspaces. We let

E(λm) =
∑

λ∈SpecB
λ≤λm

Eλ

be the L2 orthogonal projection onto the eigenspace belonging to the firstm eigenvalues of the form
B as given in Theorem 3.4. We also take ∥ · ∥S2 to be the Hilbert-Schmidt norm on the ideal of all
Hilbert-Schmidt operators (see [32]), which is the natural extension of the matrix Frobenius norm,
∥A∥S2 = ∥A∥F =

√
trace(A∗A). Note that we are considering subsets of the space of bounded (and

compact) operators from L2 to L2. Our first approximation result is

8



Theorem 3.7. Let Ŝm = Ŝm(T ) = span(ϕ̂k) ⊂ V = V (T ) be the computed approximation of the
invariant subspace corresponding to λi, i = 1, · · · ,m and let P̂ (T ) be the L2 orthogonal projection
onto Ŝm(T ). Under the assumptions of Theorem 2.2, we have

∥E(λm)− P̂ (T )∥S2 ≤ Cm,T

√√√√ m∑
i=1

λ̂−1
i ε2i . (22)

The constant Cm,T depends solely on the relative distance to the unwanted component of the spec-

trum (e.g. λm−λm+1

λm+λm+1
), the hp-regularity constant γ and the continuity constant β1.

Proof. The conclusion follows readily from [19, Theorem 4.2] and Lemmas 2.6 and 3.1.

This result is a robust reliability estimate which ensures the convergence of invariant subspaces.
With additional information on eigenvalue separation we present more detailed efficiency and re-
liability estimate in an eigenvector setting. Let λ1 = λs1 < · · · < λsk be all elements of the set
{λi : i = 1, · · · ,m}. We define the following gap measure

Gapm := max
i̸=j

|λsi − λsj |
λsi + λsj

.

Theorem 3.8. Let ψi and ψ̂i ∈ V p
h , i = 1, · · · ,m be eigenvectors and Ritz vectors which sat-

isfy both the assumptions of Theorem 2.2 and the paring of Theorem 2.4, as well as ηm(Ŝm) <

1/2min{Gapm,
λm−λm+1

λm+λm+1
}. Then there exist constants CV and cV such that

cV

m∑
i=1

λ̂−1
i ε2i ≤

m∑
i=1

|||ψ̂i − ψi|||2

|||ψi|||2
≤ CV

m∑
i=1

λ̂−1
i ε2i .

The constant cV depends solely on the ratio λ̂1/(2λ̂2), the hp-regularity constant γ, the continuity
constant β1, and the maximal polynomial degree p̄ = maxK∈T p(K). The constant CV depends solely
on the relative distance to the unwanted component of the spectrum, the hp-regularity constant γ
and the coercivity constant β0.

Proof. Due to [16, Theorem 6.2] and [21, Proposition 2.5], because of the assumption

ηm(Ŝm) <
1

2
min

{
Gapm,

λm − λm+1

λm + λm+1

}
,

we may choose eigenvectors ψi and Ritz vectors ψ̂i, i = 1, · · · ,m such that the paring of Theorem
2.4 holds for every λsi , i = 1, · · · , k. Using [21, Proposition 2.5] and [7, Section 4.1] we obtain
estimate

λ̂1

2λ̂m

m∑
i=1

η2i (Ŝm) ≤
m∑
i=1

|||ψ̂i − ψi|||2

|||ψi|||2
≤ 2 GapmCvec

m∑
i=1

η2i (Ŝm).

The conclusion of the theorem now follows from Lemmas 2.6, 3.1 and 3.2.
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We close this section with a few remarks concerning [4], which uses a similar eigenvalue/eigen-
vector approximation error estimator, also based on the estimator from [28]. Although the final
practical estimates are similar, the theoretical developments are not. Our approach provides a more
robust analysis of the reliability of the eigenvalue/eigenvector estimator for multiple and clustered
eigenvalues, whereas theoretical results from [4] were for simple eigenvalues (cf. [4, Proposition 3.1]).
Note here that although ϵi do depend on the chosen Riesz vector basis of Ŝm, the sum

∑m
i=1 λ̂

−1
i ε2i

does not. According to (14) it is trace type invariant and so it is meaningful to reduce it as a
basis independent characteristic of the Riesz space Ŝm. This is the basis of our basis independent
claim for the resolution of eigenvalue multiplicity and for computing a subspace dependent mesh
refinement. We note that multiple or clustered eigenvalues appear as result of symmetries or near
symmetries of the problem and are a typical feature of 2D or 3D eigenvalue problems. In a later
work, [30, Section 7.1], these authors suggest that one might work around the issue of multiple
eigenvalues arising due to symmetries by exploiting these symmetries to reduce the problem to a
different domain. We see in our work that this is not necessary in theory or practice.

4. Experiments

In the numerical experiments we illustrate the efficiency of the estimator (20) on several prob-
lems of the general form

Lψ = λψ in Ω , ∥ψ∥ = 1 , (23)

for a second-order, linear elliptic operator L, where homogeneous Dirichlet or Neumann conditions
are imposed on the boundary.

Following [6], we assume an error model of the form

λ̂i = λi + Ce−2α
√
DOFs

for problems whose eigenvectors are expected to be smooth, and

λ̂i = λi + Ce−2α 3√DOFs,

for problems such as those on non-convex polygonal domains and/or discontinuous coefficients,
whose eigenvectors are expected to have isolated singularities. We use DOFs = dim(V p

k ) to denote
the size of the discrete problem. The constants C and α are determined by least-squares fitting,
and α is reported for each problem. Plots are given of the total relative error, its a posteriori
estimate, and the associated effectivity index, shown, respectively, below:

m∑
i=1

λ̂i − λi

λ̂i
,

m∑
i=1

λ̂−1
i ε2i ,

∑m
i=1

λ̂i−λi

λ̂i∑m
i=1 λ̂

−1
i ε2i

.

In the case of a single eigenvalue λi the effectivity index reduces (λ̂i − λi)/ε
2
i , and we make the

following comparison with what is presented in [4], in which hp-adaptivity is also used for eigenvalue
problems. The effectivities reported in [4] are in terms of eigenfunction error, which corresponds
closely with the square root of the effectivities reported here. This difference should be taken
into consideration when comparing the effectivities reported here with those in [4] or other similar

10



Figure 1: Some of the domains under consideration.

contributions. For problems in which the exact eigenvalues are known, we use these values in our
error analysis. For most problems, we use highly accurate computations on very large problems to
produce “exact eigenvalues” for our comparisons, as discussed in the introduction.

In all simulations we used an hp-adaptive algorithm in order to get the best convergence possible.
To drive the hp-adaptivity we use the element-wise contributions to the quantity

∑m
i=1 λ̂

−1
i ε2i ,

to provide local error indicators. Then, we apply a simple fixed-fraction strategy to mark the
elements to adapt. For each marked element, the choice of whether to locally refine it or vary its
approximation order is made by estimating the local analyticity of the computed eigenvectors in
the interior of the element by computing the coefficients of the L2-orthogonal polynomial expansion
(cf. [13, 22]). In contrast, the authors of [4] make this decision by comparing the local indicator on
a given marked triangle with a prediction of that error derived from the indicator of its parent.

Our algorithm, presented as Algorithm 1, has a very simple structure that consists of a repeat-
until loop. During each iteration of the loop a new approximation of the eigenpair(s) of interest is
computed, then the (group) error estimator is calculated and, if the global group error estimator∑m

i=1 λ̂
−1
i ε2i is smaller than the prescribed tolerance tol the algorithm stops; otherwise the mesh

T and the space V p
k are refined and another iteration follows. The algorithm is also dependent on

two parameters θ, θ̃ ∈ ⟨0, 1]. The parameter θ controls the fixed fraction element marking strategy.
The parameter θ̃ controls the convergence rate by coupling the p refinement with the h-refinement
strategy, for details see [12, 13, 22]. Our p refinement strategy is, as in [13, 22], based on testing
for local analyticity.

11



Algorithm 1 Cluster oriented hp-adaptive algorithm

{(λ̂i, ûi) : i ∈ C} := Adapt(T , V p
k , C, θ, θ̃, tol)

n := 0
Tn := T
repeat

Compute the eigenpairs (λ̂i, ûi), i ∈ C on Tn
Compute εi,K for all K ∈ Tn and i ∈ C
if

∑m
i=1

∑
K∈Tn λ̂

−1
i ε2i (K) < tol then

exit
else

(Tn, V p
k ) := Refine(Tn, V p

k , θ, θ̃, {εi(K) : i ∈ C,K ∈ Tn})
n := n+ 1

end if
until

The function Refine does three things: marks the elements for refinement, decides the refinement
pattern for each marked element choosing either h- or p-adaptivity, and refines the finite element
space. When h-adaptivity is applied to marked elements, those elements are refined using red-
refinement, and red-refinement is also applied to the neighbours to avoid any constraints on the
newly created degrees of freedom on the marked elements. This will typically introduce “hanging
nodes” on the neighbors of marked elements, which is why we consider one-irregular meshes. On
the other hand, when p-adaptivity is applied to some elements, the orders of such elements are
increased by one and also the orders of the neighbourhood elements are accordingly increased to
avoid any new constrained degrees of freedom.

4.1. Dirichlet Laplacian on the unit triangle

As a simple problem for which the eigenvalues and eigenvectors are explicitly known (cf. [27]),
we consider the problem where: L = −∆, Ω is equilateral triangle of having unit edge-length, and
ψ = 0 on ∂Ω. The eigenvalues can be indexed as

λmn =
16π2

9
(m2 +mn+ n2) ,

and we refer interested readers to [27] for explicit descriptions of the eigenvectors.
In Figure 2(a) we plot the total relative error for the first four eigenvalues, together with the

associated error estimate; and in Figure 2(b) we plot the effectivity quotient. In this case we have
obtained α = 0.5070. It is clear that the convergence is exponential in this case, and that the
effectivity undergoes a mild degradation as the problem size increases. This modest decrease in
effectivity is in line with Remark 3.3, and it is also seen in several of our remaining experiments.

4.2. Dirichlet Laplacian on the unit triangle with a hole

We now consider the problem where L = −∆, Ω is the equilateral triangle having edge-length
2 with an equilateral triangle having edge-length 1/2 removed from its center (see Figure 1), and
ψ = 0 on ∂Ω. For such a problem, it is expected that some of the eigenvectors will have an r3/5-
type singularity at each of the three interior corners, where r is the distance to the nearest corner.
In this case, the exact eigenvalues are unknown, so we computed the following reference values of
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(b) Effectivity indices

Figure 2: Triangle Problem: Total relative errors and a posteriori estimates for the first four eigenvalues. The solid

line corresponds to the error model Ce−2α
√

DOFs, with α = 0.5070.

them on a very large problem: 40.4650426 for the first eigenvalue and 43.4868466 for the second
and third, which form a double eigenvalue. These values are accurate at least up to 1e-6.

In Figure 3(a) we plot the relative error and error estimates together, for the first three eigen-
values, and in Figures 3(b) we plot the corresponding values of the effectivity quotient. We again
see exponential convergence with α = 0.2190 and a modest deterioration of effectivity.

4.3. Square domain with discontinuous reaction term

For this pair of problems we take Ω = (0, 1)2, ∇ψ · n = 0 on ∂Ω, and Lψ = −∆ψ + κVMD · ψ,
where VMD is the characteristic function of the touching squares labelled M1 in Figure 4. We
consider two values of the constant parameter, κ = 10, 100. It is straightforward to see that the
corresponding bilinear form is an inner-product in this case (no zero eigenvalues), and that all
eigenvectors are at least in H2.

For κ = 10, we have in Figure 5(a) the total relative error and error estimates for the first
four eigenvalues; and the effectivity quotient is given in Figure 5(b). For these simulations we used
the following reference values for the first four eigenvalues, which are 1e-8 accurate: 4.150242455,
10.706070962, 18.779725462, 25.150325247. The analogous plots for the first four eigenvalues in
the case κ = 100 are given in Figure 6(a) and Figure 6(b). For these simulations, we used the
following reference values for the first four eigenvalues, which are 1e-8 accurate: 13.210576406,
13.990033964, 60.294151672, 64.840268299. In both cases we see apparent exponential convergence
with α = 0.2495 and α = 0.1827 respectively, and reasonable effectivity behavior. It is clear from
the error plots that for both values of κ the convergence is exponential.

4.4. Square domain with discontinuous diffusion term

Using the domain Ω = (0, 1)2, partitioned into regions M1 and M2 as in Figure 4, and homo-
geneous Dirichlet conditions ψ = 0 on ∂Ω, we consider the operator L = −∇· (a∇), where a = 1 in
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Figure 3: Triangle with Hole: Total relative errors and a posteriori estimates for the first three eigenvalues. The

solid line corresponds to the error model Ce−2α
3√
DOFs, with α = 0.2190
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Figure 4: A modification of the touching squares example of M. Dauge.

M2 and a = κ in M1. Such problems can have arbitrarily bad singularities at the cross-point of the
domain depending on the relative sizes of a in the two subdomains—see, for example, [24, 25, 9, 10]
and [29, Example 5.3].

We have considered two values for κ in M1: 10 and 100. Since the exact eigenvalues are not
available, we computed the following three reference values for the first three eigenvalues when
κ = 10: 64.226529416, 75.028156269, 141.161506328; and the following three reference values for
the first three eigenvalues when κ = 100: 77.800981966, 78.564198245, 193.916538067. All reference
values are at least 1e-8 accurate. The relative error and effectivity plots for both cases are given
in Figures 7(a)-8(b), and again we see apparent exponential convergence with α = 0.5630 and
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Figure 5: Square Domain, Discontinuous Reaction Term, κ = 10: Total relative errors and a posteriori estimates for

the first four eigenvalues. The solid line corresponds to the error model Ce−2α
√

DOFs, where α = 0.2495.

0 10 20 30 40 50 60
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

DOFs1/2

 

 

error
a post

(a) Relative errors

0 10 20 30 40 50 60
0.015

0.02

0.025

0.03

0.035

0.04

0.045

DOFs1/2

E
ffe

ct
iv

ity

 

 

hp

(b) Effectivity indices

Figure 6: Square Domain, Discontinuous Reaction Term, κ = 100: Total relative errors and a posteriori estimates

for the first four eigenvalues. The solid line corresponds to the error model Ce−2α
√

DOFs, where α = 0.1827.

α = 0.5669 respectively. Moreover in Figure 9 we reported the final mesh and the final distribution
of polynomials orders for κ = 100.

4.5. A Kellogg problem

We here consider a variant of the previous problem type for which we can give more specific
information about the kinds of singularities which can be expected in terms of the size of the jump
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Figure 7: Square Domain, Discontinuous Diffusion Term, κ = 10: Total relative errors and a posteriori estimates for

the first three eigenvalues. The solid line corresponds to the error model Ce−2α
3√
DOFs, where α = 0.5630.
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Figure 8: Square Domain, Discontinuous Diffusion Term, κ = 100: Total relative errors and a posteriori estimates

for the first three eigenvalues. The solid line corresponds to the error model Ce−2α
3√
DOFs, where α = 0.5669.

discontinuity. More specifically, we consider problems of the form∫
Ω
a∇ψ · ∇v dx = λ

∫
Ω
aψv dx , (24)

where a has jump discontinuities across certain internal interfaces. We refer to this type of prob-
lem (24) as a Kellogg eigenvalue problem, in reference to the work of that author on boundary value
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Figure 9: Square Domain, Discontinuous Diffusion Term, κ = 100: Final mesh and order of polynomials for the
central region of the domain (the region of the singularity).

problems of this sort—although an argument could be made for calling the previous problem type
by this name.

If Ω is the unit disk and a = κ = β2 in the first and third quadrants, and a = 1 in the second and
fourth quadrants (see Figure 1), we can describe the eigenpairs explicitly. We assume that β > 1.
The eigenvalues and functions can be split into three different classes, which we now describe.

Class 1. For k ≥ 0 and m ≥ 1, let z
(1)
km be the mth positive root of the first-kind Bessel function

J2k. The eigenvalues of this class are λ
(1)
km = (z

(1)
km)2, and each of them, with the exception of those

for k = 0, are double-eigenvalues. The corresponding eigenvectors are

ψ
(1)
km = J2k(z

(1)
kmr) cos(2kθ) , Ψ

(1)
km = a−1/2J2k(z

(1)
kmr) sin(2kθ) .

Obviously, Ψ
(1)
km is discarded when k = 0. We see that the eigenvalues of this type are independent

of β, as are the eigenvectors ψ
(1)
km, which are analytic. On the other hand, eigenvectors Ψ

(1)
km do

depend on β.

Class 2. For k ≥ 0 and m ≥ 1, let z
(2)
km be the mth positive root of the first-kind Bessel function Jσk

,

where σk = 2k+ 4
πarccot(β). The eigenvalues are λ

(2)
km = (z

(2)
km)2, and the corresponding eigenvectors
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are ψ
(2)
km = a−1/2Jσk

(z
(2)
kmr) gk(θ), where

gk(θ) =


− cos(σk(π/4− θ)) , θ ∈ [0, π/2)

− sin(σk(3π/4− θ)) , θ ∈ [π/2, π)

cos(σk(5π/4− θ)) , θ ∈ [π, 3π/2)

sin(σk(7π/4− θ)) , θ ∈ [3π/2, 2π)

when k is even ,

gk(θ) =


− sin(σk(π/4− θ)) , θ ∈ [0, π/2)

− cos(σk(3π/4− θ)) , θ ∈ [π/2, π)

sin(σk(5π/4− θ)) , θ ∈ [π, 3π/2)

cos(σk(7π/4− θ)) , θ ∈ [3π/2, 2π)

when k is odd .

Class 3. For k ≥ 1 and m ≥ 1, let z
(3)
km be the mth positive root of the first-kind Bessel function Jρk ,

where ρk = 2k− 4
πarccot(β). The eigenvalues are λ

(3)
km = (z

(3)
km)2, and the corresponding eigenvectors

are ψ
(3)
km = a−1/2Jρk(z

(3)
kmr)hk(θ), where

hk(θ) =


cos(ρk(π/4− θ)) , θ ∈ [0, π/2)

− sin(ρk(3π/4− θ)) , θ ∈ [π/2, π)

− cos(ρk(5π/4− θ)) , θ ∈ [π, 3π/2)

sin(ρk(7π/4− θ)) , θ ∈ [3π/2, 2π)

when k is even ,

hk(θ) =


sin(ρk(π/4− θ)) , θ ∈ [0, π/2)

− cos(ρk(3π/4− θ)) , θ ∈ [π/2, π)

− sin(ρk(5π/4− θ)) , θ ∈ [π, 3π/2)

cos(ρk(7π/4− θ)) , θ ∈ [3π/2, 2π)

when k is odd .

It is clear from these expressions that singularities of type rγ for any γ ∈ (0, 1) may be achieved by
choosing β large enough—these may be obtained by Class 2 eigenvectors when k = 0, for example.

If we choose κ = β2 = 10 for the circle domain, the eigenvectors associated with the smallest
three eigenvalues are

ψ
(1)
01 = J0(z

(1)
01 r) z

(1)
01 ≈ 2.40482555769577276862163187933

ψ
(2)
01 = a−1/2Jσ0(z

(2)
01 r) g0(θ) z

(2)
01 ≈ 2.98441716493307959785930755397

ψ
(3)
11 = a−1/2Jρ1(z

(3)
11 r)h1(θ) z

(3)
11 ≈ 4.63619589773483218127343087762

The second of these has an rσ0-type singularity at the origin, where σ0 ≈ 0.389964; the third of
these has an rρ1-type singularity at the origin, where ρ1 ≈ 1.61004. So it is clear that the second
eigenvector is the most singular.

We compute eigenvalues on the analogous square domain (Figure 4), with a = 1 in M2 and
a = κ = β2 = 10 in M1. The singular behavior of the eigenvectors near the cross point will be the
same as for the circular domain. In Figures 10(a)-10(b) we report the total relative error and error
estimates for the first three eigenvalues, and the effectivity index. For these simulations we used
the following reference values for the first three eigenvalues: 19.739208802 (1e-8), 30.264820 (1e-5),
70.310149038 (1e-8). Again we see apparent exponential convergence, with α = 0.2624.
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Figure 10: Kellogg Problem on Square Domain, κ = 10: Total relative errors and a posteriori estimates for the first

three eigenvalues. The solid line corresponds to the error model Ce−2α
3√
DOFs, where α = 0.2642. We also include

the analogous data for pure h-adaptive refinement using quadratic elements to illustrate the difference in performance
from the hp version.

4.6. Square domain with a slit

For this problem, L = −∆ and Ω = (0, 1)2 \ S, where S = {(x, 1/2) : 1/2 ≤ x ≤ 1}; this
is pictured in Figure 1, with S as the dashed segment. Homogeneous Neumann conditions are
imposed on both “sides” of S and homogeneous Dirichlet boundary conditions are imposed on
the rest of the boundary of Ω. For this example we used the following reference values for the
first four eigenvalues, with accuracies given in parentheses: 20.739208802 (1e-8), 34.485320 (1e-5),
50.348022005 (1e-8), 67.581165196 (1e-8).

To give some indication of the nature of the eigenvectors in the interior, we briefly consider a
related problem where Ω is the unit disk with a slit along the positive x-axis, as pictured in Figure 1,
with the same boundary conditions. In this case, the eigenvalues and eigenvectors are known
explicitly. For k ≥ 0 and m ≥ 1, let zkm be the mth positive root of the first-kind Bessel function
Jk/2. It is straightforward to verify that, up to renormalization of eigenvectors, the eigenpairs can
be indexed by

λkm = z2km , ψkm = Jk/2(zkmr) cos(kθ/2) , k ≥ 0 , m ≥ 1 .

We see that ψkm ∼ cos(kθ/2)
(
zkmr
2

)k/2
as r → 0, so singularities of type rk/2 occur infinitely many

times in the spectrum. The strongest of these singularities is of type r1/2, and it occurs in the
eigenvector associated with the second eigenvalue, for example. The same asymptotic behavior of
the eigenvectors near the crack tip is expected for the square and circular domains, and in Figure 11
we show a contour plot of the second eigenvalue for the square domain.

In Figure 12 we plot the total relative errors and error estimates for the first four eigenvalues
with α = 0.3314, and in Figure 13 the individual eigenvalue errors are shown. It is clear from
the second of these figures that the second eigenvalue, which corresponds to the most singular
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Figure 11: Square Domain with Neumann-Neumann Slit: Contour plot of second eigenvector.

eigenvector, clearly has the worst convergence rate (as expected), and that this is what “spoils”
the convergence of the cluster of the first four eigenvalues. This becomes even more apparent when
Figure 14 (with α = 0.3121), which corresponds to the second eigenvalue alone, is compared with
Figure 12—they are nearly identical. Moreover in Figures 15 and 16 we report the final mesh and
the final distribution of polynomials orders for the second eigenvalue. As can be seen, the adaptive
procedure has automatically heavily refined in the center, where the singularity is located.

Acknowledgements
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Figure 12: Square Domain with Neumann-Neumann Slit: Total relative errors and a posteriori estimates for first

four eigenvalues. The solid line corresponds to the error model Ce−2α
3√
DOFs, where α = 0.3314.
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