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EuSe is a simple magnetic system that appears to show many complicated features.
Under applied pressure it undergoes a transition from an antiferromagnet (AF)
to a ferromagnet (FM). This transition provides a means of testing certain basic
fundamentals of magnetic theory and an opportunity to explore the complexities
of EuSe. Using the muon-spin rotation and relaxation technique (uSR), EuSe was
measured at pressures ranging from ambient to 11 kbar. In ambient-pressure EuSe,
muon data reveal two local fields, but show only a single field in the FM state formed
under pressure. The uSR measurements appear to show a continuous transition at Tc,
contrary to previous Mossbauer results that were interpreted as being evidence of a
first-order transition. Values determined for the critical exponent, S, in AF and FM
EuSe, differ and therefore appear to be a clear counterexample to the Universality
Hypothesis. The values of 8 also are indicative of EuSe’s being a 2D magnet for
pressures up to 11 kbar. The nature and values of the local fields seen by the
muons is discussed and analyzed. © 2016 Author(s). All article content, except where
otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported
License. [http://dx.doi.org/10.1063/1.4943235]

I. INTRODUCTION

The magnetic properties of EuSe offer a unique opportunity to provide answers to some
fundamental questions in the theory of magnetic behavior of simple insulating magnetic systems.
In this study we undertook an experimental investigation to test two things: firstly, can a three-
dimensionally (3D) coupled magnetic system such as EuSe display pure 2D magnetic behavior, and
secondly, is such behavior in accord with the Universality Hypothesis of critical phenomena.

At first glance, the magnetism of EuSe, unlike that of the other chalcogenides (EuCh: EuO,
EuS, and EuTe), appears to be anything but simple.! Below the magnetic ordering temperature of
4.7 K, EuSe transforms successively into three different magnetic structures (two antiferromag-
netic [AF] and one ferrimagnetic [FIM]). EuSe exhibits magnetic-phase hysteresis on thermal or
applied field cycling.? Application of small pressures (see Fig. 1(a)) results in the formation of a
ferromagnetic [FM] state.’

All of the magnetic structures found in EuSe can be described by different stackings of ferro-
magnetically aligned sheets of spins lying in the (111) planes. When cooled below 7, ~ 4.7 K, a
single NNSS (77/l) structure normally forms. On cooling the sample below ~2.8 K this magnetic
phase changes to the FIM NNS (T1]) structure, and on further cooling below ~ 1.8 K, a NSNS (T/T])
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FIG. 1. (a) Schematic diagram of EuSe magnetic ordering temperature 7. vs. applied pressure based on combined results of
previous susceptibility and NMR measurements (references in text). (b) Our SQUID magnetometer susceptibility measure-
ments as a function of temperature made on cooling, then warming (arrows). Curves indicate a hysteresis in magnetic-phase
composition, but a fixed T at 4.7K. (c) The uSR measurements at ambient pressure showing two distinct fields or two
inequivalent muon sites in EuSe. Temperature dependences were measured for various cool-downs (CD) and warm-ups
(WU), with the first CD from well above T down to 3.5K. (d) Critical-region fall-off of the magnetization (as measured
by the lower muon field) in ambient-pressure EuSe, and critical and intermediate region fall-off in the ferromagnetic state at
10.6 kbar (on CDs and WUs).

structure forms. When EuSe is heated from lower temperatures, the above transformations are not
repeated. Instead, coexisting mixtures of these phases” are formed and can persist up to 7. Fig. 1(b)
illustrates SQUID magnetization measurements of our sample, showing a very precise 7, = 4.7 K,
and the hysteresis on cooling to just below 2 K and then warming the sample back up to 6 K.*

This seeming complexity can be understood in a simple way by hypothesizing that the (111)
sheets of spins are strongly exchange-coupled by two-neighbor-exchange interactions, J; and J,,
but become de-coupled from each other when J, ~ —J|, forming a 2D magnetic system, in which
the much weaker interactions between these sheets determine the stacking arrangements. A recent
review of this perspective, and evidence for this explanation is discussed by Bykovetz et al.,! and
motivated the current study.

An early Mossbauer study® was interpreted as showing that EuSe undergoes a first-order mag-
netic phase transition at 7. Several subsequent papers repeated this claim without providing any
further direct evidence. It is very difficult to differentiate the fast fall-off of a 2D second-order
transition from a 3D first-order transition. A stong motivation for undertaking these studies and
using uSR was to obtain clearer evidence of whether EuSe undergoes a first-order transition and if
not, to measure its 5.

Il. EXPERIMENTAL ISSUES AND OUTCOMES

Our experiments were carried out at the PSI General Purpose spectrometer (GPD) using a high-
energy u* beam incident on a sample of EuSe immersed in Daphne oil to ensure uniform hydrostatic
pressure and encased in a BeCu pressure cell. Because we intended to follow the ambient-pressure
measurements with measurements at high pressure on the same sample, we used the BeCu cell though-
out the meaurements despite larger backgrounds at 1 bar. Below 7, the raw data were fitted using
the Musrfit program with an oscillatory function plus a Kubo-Toyabe term® to account for the BeCu
pressure cell. The values of the local muon magnetic fields were determined from the oscillation
frequencies. The uSR data are similar to those for EuO’ and EuS,® showing a single oscillation (single
field) for the FM EuSe, but two oscillations (two fields), at presumed two different muon sites at
ambient-pressure. Our initial interest was to study the critical region of ambient-pressure EuSe, and
thus we restricted T to > 3.5K, to avoid mixed magnetic phases. Fig. 1(c) shows the results. The
sample was cooled from higher temperatures to 3.5K, and then warmed (Warm-upl [WU1]) to 6K
for a quick overview scan. Data acquisition was terminated at each temperature after 2 — 10 x 10°
events (~1hrs or less per point). Two distinct fields are clearly evident in the p ~ 0 data, suggesting
that muons are localized at two inequivalent sites. The sample was then cooled back down to 3.5K
(Cool-down 2 [CD2]) and careful, fine-temperature-mesh data acquired during a warm-up (WU?2).
The lower-field, Hy, data collected in WU2 is shown in Fig. 1(d). After the critical region scans were
completed, a decision was made to do a quick exploratory run to observe the behavior below 3.5K.
Five points were taken, and are shown as CD-WU3. The higher field, Hy, behaved consistently here,
but H; showed an unexpected excursion.
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The pressure in the cell was then raised to 10.6 kbar, to insure a complete FM state, per Ref. 3.
Fig. 1(d) shows the resulting curves that include WU and CD cycles. Again, the focus was on the
critical region, so only the region T’ > 3.5K was investigated. As in the case of previous NMR data’
no discernible hysteresis was observed in the FM state on cycling the temperature, but we obtained a
T, higher by more than one degree from that obtained by macroscopic measurements.>

Based on these preliminary results, we obtained more beam time to test the hypothesis that
EuSe behaves as a 2D magnet and may not be in accord with the Universality Hypothesis. The goals
were to explore the pressure region shown in Fig. 1(a) where EuSe undergoes a transformation from
a pure NNSS phase (existing between ~2 and ~5 kbar) to a FM phase (starting at > 5 kbar).”> uSR
measurements in this region could give a more direct determination of any change(s) in the critical
exponent . The low-temperature behavior of the magnetization curves, would also be useful in
distinguishing 2D from 3D behaviors.

Detailed measurements at p = 10.8 kbar were carried out and are shown in Fig. 2(a). Measure-
ments were then made at 5.25 kbar, down to 0.25 K. These data gave a very precise quantitative
characterization of the “intermediate region™! of the magnetization curve, and were reasonably pre-
cise at the low-temperature end (down to 0.25 K). The 5.25 kbar data show a pure FM phase down to
~ 2.8 K, but then formation of a complex magnetic state that could not be described by the standard
fitting forms available with the Musrfit program. Additional attempts were made at 4.33 and then
3.8 kbar to get the presumed pure NNSS curves, but no clean data could be extracted here either.

lll. ANALYSIS OF DATA

The ambient-pressure measurements yielded some useful results but elicited questions that will
need additional studies to resolve. Two fields were observed as expected within the three magnetic
structures (as we’ll outline later). Some new hysteresis issues appeared to result from the use of
the muon probes. When the sample is cooled from ~ 6 K (CD2) the muons appear to respond to
short-range order effects, seeing dynamical fields before magnetic ordering takes place. This has
recently been reported in some uSR literature,'” and will need further study in the case of EuSe.
The quick WU1 measurements (Fig. 1(d)) show an H field that falls off more slowly than the
very slow measurements made during WU2, in which the temperature was changed by very small
steps (~ 2 mK) over a small temperature interval (4.2 - 4.6 K). Since thermal equilibrium of the
sample and cell appeared to take place quickly, this discrepancy is hard to understand, and will
need further investigation. The data for the gradual AT WU2 measurements for both H; and Hy
do appear to scale with the measured T, (Fig. 1(b)). Despite the substantial statistical scatter of data
points, we see that there is no evidence of discontinuous behavior in Hy, (Fig. 1(d)), i.e., no indica-
tion of a first-order transition. Fitting the data to the critical-region equation, H = DHy(1 — T/T,.)?
over the “extended critical region,”!' we obtain 8 = 0.14 + 0.02, using the procedure described
in Ref. 11, and values of D = 1.03 (from NMR') and an NMR-scaled? extrapolation, which gave
H; =2.75+0.1 kOe at (T = 0). This low value of f is a clear indication of 2D behavior, and is
supported by theoretical predictions that for J, = —Jj, in the FCC lattice, the magnetic dispersion
in the [111] directions becomes flat, i.e., the (111) spin-planes becomes decoupled.'”> We now argue
that the data of the two ~10 kbar measurements and the data in the FM part of the 5.25 kbar
curve give evidence that 2D behavior persists in the EuSe system over the entire range of measured

““““ 10.8 kbar- 5.25 kbar

TIK] TIKI

FIG. 2. (a) Precision measurements of the single muon field observed in the ferromagnetic (FM) state of EuSe at 10.8 kbar,
on cooling down to 0.25K. (b) Critical and intermediate region behavior of FM EuSe at 5.25 kbar, plotted as H3vs.T (see
Ref. 1), showing a critical exponent 8 of ~0.33 in the “intermediate region” and a faster fall-off (8 ~0.25+0.05) as T, is
approached. (A pure FM state exists only in the region 2.8K <T <5K; c.f., Fig. 1(a) near ~ 5 kbar.).
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pressures (from p ~ 0 up to at least 11 kbar). Our most precise data, the 10.8 kbar data shown in
Fig. 2(a), show an excellent fit to S = 1/3 over an extended region of the magnetization curve. As
discussed in Refs. 1 and 11, this is characteristic of 2D FMs. (3D FMs, such as EuS, showa 8 = 1/3
only close to 7., and have a much larger D~1.20.!") Additionally, the low-temperature data show
the magnetization dropping off nearly linearly, as in cases like CrCls,!" a well studied 2D FM. The
CD2 10.6 kbar data in Fig. 1(d), also show a good critical equation fit, with 8 = 1/3, but the 4
points closest to T, fit to 8 = 0.25, T, = 7.14 K. An analysis of the FM portion of the 5.25 kbar
data shows similar results. Fig. 2(b) displays a plot'' of H? vs. T near 7,.. We see that again, the data
lie on a straight line!' (i.e., 8 = 1/3), but show a deviation to a smaller S close to T.. A fit gave
B =0.25+0.05.

A comparison of the critical exponents 8 obtained for ambient-pressure EuSe (0.14 + 0.02),
and for FM EuSe under pressure (0.25 + 0.05), shows that the change in g so incurred is outside of
experimental error, despite the limits on the statistical accuracy of our uSR measurements. The Uni-
versality Hypothesis of critical theory holds that if the dimensionality of the magnetic system, the
spin dimensionality, and the range of interaction stay the same, then the critical exponents should
be the same. Our measurements may constitute the first good counter-example to the Universality
Hypothesis, since for EuSe under pressure, dimensionality, spin S, and the short-range exchange
interaction do not change as we go from 0 to 11 kbar. We expect that higher-precision data will
confirm this result.

Apart from testing certain assertions that are fundamental to magnetic theory, our measure-
ments also give insights into the use of uSR techniques in studying the EuCh and similar magnetic
compounds, where it may be important to know the number of non-equivalent muon local fields,
and what gives rise to these fields. In general, the local field, Hj,. seen by a muon is deter-
mined by the dipole field, Hy,, produced by the magnetic ions (Eu), a long-range effect; and the
contact hyperfine field, Hj ¢, which in insulating materials is short-range, and typically related to
the electron-spin polarization of the electron cloud by neighboring (Eu) magnetic ions that also
cause the transferred hyperfine fields at the neighboring magnetic and ligand nuclei. In simple FCC
(NaCl) lattices, stopped muons are found to locate at the (1/4,1/4,1/4) positions’ of the unit cell
(see Fig. 2(a) of Ref. 7). This means that the muons locate on planes that are 1/4 and 3/4 of the
distance between successive Eu ion (1,1,1) planes (and midway between (1,1,1) neighboring Eu and
Se planes). Using this premise and symmetry considerations, we have calculated the dipole fields
at muon locations in the four magnetic structures of EuSe, using the usual Lorentz approximation.
In the latter, Hg;, = field produced by all dipoles within a large Lorentz sphere + the Lorentz field
(4nM/3).

Symmetry considerations show that in the NNN and the NSNS structures there can be only
one muon field. In NNSS there can be two, and in NNS, there are three possible dipolar fields.
Rounding off the results, we found that (at p ~ 0, T = 0) Hgps = +4.6 kOe and in NSNS +7.7 kOe.
For NNSS we get +7.7 kOe for sites between NS, and +4.5 kOe for muon sites between NN (and
likewise, SS) . For NNS the three different values from the Lorentz sphere are 9.2, 6.2, and 3.0.
However, when the Lorentz field of +1.5 kOe is added appropriately, the numbers degenerate to
only two values, +7.7 and +4.5 kOe. In all cases, the + sign means the dipolar fields are parallel to
the direction of the moments of the closest Eu (111) planes. The upshot is that only two different
dipolar field values are possible within all three non-FM structures, namely, +7.7 (at sites between
NS) and +4.5 kOe (at sites between NN planes).

Consideration of the hyperfine-field contributions, Hy,r, at the muon sites are relatively straight-
forward for the FM case, but not so clear-cut for the other magnetic structures. However, reason-
able arguments can be made. The extrapolated (to T=0) muon fields, Hj,., observed in FM EuSe at
5.25 and 10.8 kbar are 3.30 and 3.60 kOe. The difference in magnitude of |AHj,c| = [AH) + AH |
= ]0.30] kOe is too large to be accounted for by the expected increase of the (positive) dipolar field.
Since the hyperfine field, Hjy, at the muon sites is always negative,’ AHj¢ could be either a size-
able negative increase or a small positive decrease in H,z. NMR measurements’ show that the Eu
transferred hf fields get more negative with applied pressure, and therefore so must Hy, ¢ at the muon
sites. Thus, the |0.30| kOe increase must be negative and so must the measured 3.30 and 3.60 kOe
fields. Since Hy;, ~ +4.6 kOe, the H), contributions must be ~ —7.8 kOe at 5.25 kbar and ~ —8.2 at
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10.8 kbar. Since NMR also shows® that the magnetic curves in EuSe are identical for p between 0 and
5 kbar (to within ~ 0.1%),'3 it is reasonable to assume that Hpp stays at ~ —7.8 kOe down to p = 0.

Now, as we’ve seen, at p ~ 0 two-muon fields were actually observed. When extrapolated to
T = 0, they become Hy = 7.3 kOe (using a linear extrapolation of the points in Fig. 1(c)) and
Hp = 2.7 kOe (as discussed previously). The higher field Hy = 7.3 kOe must correspond to muon
sites between NS planes, since Hy,y and Hg, have opposite signs and therefore cannot add up to
such a large-magnitude number between the NN planes. Thus, H;, = 2.7 kOe must represent muon
sites between the NN planes. If we assume Hjy ~ —7.8 kOe between NN planes (as it is in the
FM structure at 5.25 kbar), we would conclude that H; should equal ~ —7.8 + 4.5 = —-3.3 kOe.
Since we are ignoring zero-point spin deviations, this is in ballpark agreement with the measured
Hjp = 2.7kOe, and thus the latter value must be negative. Similarly, Hy = 7.3 kOe, must be positive
and is roughly explainable by the Hg;, value of 7.7 kOe. The hyperfine field between the NS planes
must to a large degree cancel, and may possibly be completely negligible, since the Eu moments
at neighboring planes induce electron-spin polarizations in opposite directions (and at the Se nuclei
cancel exactly by symmetry). It may be possible in the future to check these arguments by doing
applied-field measurements.

IV. CONCLUSIONS

We have conducted uSR measurements in ambient and under-pressure EuSe and found solid
evidence that EuSe behaves as a 2D magnet throughout the range of pressures O < p < 11 kbar. We
found no evidence supporting the first-order magnetic transition previously claimed in Mdssbauer
measurements. Our measurements across the AF to FM transition support the claim that the Uni-
versality Hypothesis of critical exponents may not hold up in this system. The various muon fields
measured were analyzed, and a plausible and consistent picture developed.
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