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1 Higgs-top sector at the LHC

The recent discovery of a light, narrow, and likely fundamental Higgs boson [1–7] makes

studies of the properties of this new particle one of the key tasks of the upcoming LHC run.

While the Higgs coupling structure in the Higgs-gauge sector can be extracted from precise

tree-level information, our understanding of Higgs couplings to fermions largely relies on

loop-induced couplings. This is obvious when we look at our currently very limited and

model-dependent understanding of the top Yukawa coupling [8–24]. Its measurement from

associated Higgs and top pair production with a proper reconstruction of the three heavy

states is challenging [25–37].

In generic models for physics beyond the Standard Model [38] the effective gluon-

gluon-Higgs vertex will receive contributions from dimension-6 operators proportional to

H2GµνGµν and H2Q̄LH̃tR. One example of new physics which can generate sizable pertur-

bative corrections to the Higgs-gluon coupling are light supersymmetric top squarks [62–68].

Because of the non-decoupling structure of the Standard Model with Yukawa couplings we

can integrate out the top quark in the low-energy limit, which describes the interactions

between gluons and any Higgs bosons in a simple effective Lagrangian [39–42]. For the top

quark this effective Lagrangian provides a very good prediction of the inclusive Higgs pro-

duction rate with at most O(10%) deviations in typical inclusive distributions for gg → H

production [43–48]. On the other hand, the same description fails spectacularly once the

process becomes sensitive to specific kinematic features, for instance for Higgs pair produc-

tion [49–51]. Similarly, it fails for kinematic observables which generate large momentum

scales, such as off-shell Higgs production with large invariant masses or the production

of Higgs bosons with large transverse momenta. In these cases, the top quark cannot be

integrated out anymore, since the cross section does not only include ratios of the kind

mH/mt, but also ratios of Q/mt with Q being an additional hard scale. In this paper

we consider effects of such additional large scales induced by the observables, namely the

production of single Higgs bosons at large transverse momenta or far off-shell.
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Being produced at large transverse momenta the Higgs boson will recoil against a hard

jet system. For additional jets in the single Higgs production process it is well known that

the Higgs transverse momentum distribution shows a logarithmic top mass dependence [52,

53]. Recently, this effect has been proposed as a handle to test the structure of the loop-

induced coupling and the underlying Standard Model assumption that the Higgs-gluon

coupling is exclusively due to heavy quark loops [54–60]. In phase space regions where this

logarithmic dependence occurs, the two-jet contribution cannot be neglected [61]. This is

because it exhibits the same logarithmic structure as the one-jet contribution and its rate

at large transverse Higgs momenta is not suppressed compared to the one-jet rate. This

necessitates an accurate description of hard jet radiation beyond the simple parton shower.

An alternative method to probe the loop-induced Higgs-gluon coupling is linked to

off-shell production of the Higgs with a subsequent decay into four leptons. Initially, it

was noticed that off-shell Higgs production and decay in this channel does not exhibit the

usual Γ/m suppression [69–72]. The reason for this is that the off-shell suppression of

the Higgs propagator is partially compensated by lifting the off-shell suppression of the

softer of the Z propagators. The interference with the ZZ background further modifies

this profile via a negative contribution. This problem can be turned into a virtue when we

add off-shell Higgs production with its modified dependence on the Higgs width to the set

of Higgs measurements [73–75]. The initial claim that this defines a ‘model independent’

measurement of the Higgs width ignores the fact that the Higgs-gluon coupling is induced

by loops and hence its momentum dependence only follows once we make an assumption

of the particles contributing to this loop [76].

Alternatively, we can relate the width measurement to a determination of the full

set of dimension-6 operators and their coefficients induced by an unspecified new physics

scenario [77]. Again, we can make use of a logarithmic top mass dependence, now in

the distribution of the momentum flowing through the Higgs propagator [78, 79]. While

this interpretation runs into problems with a consistent effective theory description we

can ask a slightly different question: can we track the top mass dependence of the loop-

induced Higgs-gluon coupling and is there any indication for a more generic dimension-6

interaction? This is exactly the same question which we ask in boosted Higgs plus jets

production, which means that we can directly compare the potential of the two kinematic

measurements. Moreover, because we know that the top loop contributes to the effective

Higgs-gluon coupling we can link direct measurements of the top Yukawa to the study of

the effective Higgs-gluon coupling and compare their respective prospects [8, 9].

To link boosted Higgs production with off-shell Higgs production for this specific

physics question we define a theoretical framework. It should allow us to test if the top

Yukawa coupling is indeed responsible for the observed Higgs-gluon coupling, or if other

particles contribute to the corresponding dimension-6 operator. The relevant part of the

Higgs interaction Lagrangian including a finite top mass and free couplings reads [56, 61]

L = LSM +
[
∆t gggH + ∆g

αs
12π

] H
v
GµνGµν −∆t

mt

v
H (t̄RtL + h.c.) SFitter [8, 9]

= L

∣∣∣∣∣
κj=0

+
[
κt gggH + κg

αs
12π

] H
v
GµνG

µν − κt
mt

v
H (t̄RtL + h.c.) ref. [56]. (1.1)
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This Higgs-top Lagrangian will be the basis for the analysis presented in this paper. The

SFitter conventions show how κt as well as κg are directly accessible in LHC coupling anal-

yses. While the effective coupling gggH retains the full top mass dependence, the dimension-

6 operator is defined without any reference to the top mass and assuming that the entire

momentum dependence arises from the gluon field strengths. We will use the SFitter

interpretation to eventually compare the expected performance of the distribution-based

search strategies to the usual Higgs coupling analysis. The Standard Model limit is given

by ∆g = 0 = ∆t. Our two reference points will be

(κt, κg)SM = (1, 0) and (κt, κg)BSM = (0.7, 0.3) . (1.2)

In the second point the contributions from a top partner to a good approximation compen-

sate for the reduced top Yukawa in the Higgs-gluon coupling, leaving the observed Higgs

cross section at the LHC unchanged. This last condition is crucial to get a realistic estimate

of the power of distribution-based Higgs analyses, because a significant deviation of the

Higgs production rate in gluon fusion will be experimentally accessible long before boosted

or off-shell Higgs analysis will become sensitive.

2 Top mass effects in Higgs rates

As long as we limit ourselves to the total cross section of the Standard Model Higgs boson,

the heavy top limit or low-energy limit provides an accurate prediction for the total rate.

The effective Higgs-gluon coupling is then given by a single coupling value [39–42]

LggH ⊃ gggH
H

v
GµνGµν

gggH
v

= lim
τ→∞

αs
8π

1

v
τ [1 + (1− τ)f(τ)]

with f(τ)
on-shell

=

(
arcsin

√
1

τ

)2
τ→∞

=
1

τ
+

1

3τ2
+O

(
1

τ3

)
, (2.1)

all in terms of τ = 4m2
t /m

2
H > 1. The usual scalar three-point function is written in the

dimensionless form f(τ) = −m2
HC

(
m2
H ;mt,mt,mt

)
/2. In principle, the above Lagrangian

describes the interaction of up to four gluons with one Higgs bosons and can be generalized

to several Higgs bosons. However, if the vertex involves more than two gluons, the given

form of gggH is only correct for the leading term in mH/mt. Sub-leading terms in mH/mt

also arise from other tensor structures once more than two gluons are involved. Moreover,

for the gluon-gluon-Higgs vertex the effective coupling gggH only accounts for top mass

effects if the Higgs and the gluons are on their mass shells. Beyond the assumption of three

on-shell particles gggH fails to describe the dynamics. For example, applied to differential

distributions including additional jets, like the transverse momentum of the Higgs boson in

LHC production, the low-energy approximation in the dimension-6 operator breaks down.

In this regime, the top contribution in the loop starts to be resolved and leads to effects

in the distributions. Similarly, when we allow the singly produced Higgs boson to be off-

shell, the effective Higgs-gluon coupling gggH becomes a non-trivial function of the mass

scales involved.
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Figure 1. Sample Feynman diagrams contributing for Higgs production with up to 2 jets at

leading order.

Figure 2. Transverse momentum distribution pT,H for H → WW+jets production at LO with

Sherpa (left panel) and Pythia8 (right panel). We present the distributions for exclusive and

merged jet samples with finite top mass effects (mt = 173 GeV) and in the low-energy approximation

(mt →∞). We assume the LHC at
√
S = 13 TeV.

In this section we present a state-of-art event simulation including top mass effects

beyond the low-energy limit. It relies on the general purpose Monte Carlo event generator

Sherpa [81–84]. We use Sherpa to generate events for Higgs boson production in associ-

ation with up to 2 jets and the corresponding backgrounds, WW and top pair production.

In all cases we apply multi-jet merging of the matrix elements and the parton showers at

LO with the algorithm presented in refs. [85, 86] or, where not otherwise stated at NLO

according to the Meps@Nlo algorithm [87, 88]. In each case, the implementation is au-

tomated once the respective virtual matrix elements are available. This way we generate

NLO-merged events for Higgs production with jets in the low-energy limit [89]. In this

paper we extend this implementation by top (and bottom) mass effects at leading order

accuracy by using loop–level matrix elements provided by OpenLoops [90–93], which we

use for reweighting the effective theory.

As a starting point, we study the impact of the top mass corrections in the Higgs

boson transverse momentum using LO multi-jet merging with up to two jets. A sample of

the representative Feynman diagrams are displayed in figure 1. We assume fully leptonic

Higgs decays H → W`W`+jets. In the left panel of figure 2 we display the LO-merged

– 4 –
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results from Sherpa. Because this automized implementation relies on the low-energy

limit for the Higgs-gluon coupling described in eq. (2.1), we reweight all tree-level matrix

elements in the effective theory with their full loop counterparts. This defines a correction

factor [94–96]

r
(n)
t =

|M(n)(mt)|2

|M(n)(mt →∞)|2
(2.2)

for each jet multiplicity n. In the right panel of figure 2 we also show the corresponding

results from Pythia8 [100], based on the CKKW-L merging. The parton level events for

the Pythia merging in the 0-jet bin come from MadGraph5 [101], in the 1-jet bin we

use MCFM [102, 103], and in the 2-jet bin we use VBFNLO [104].

At the analysis level, jets are defined using the anti-kT algorithm implemented in

Fastjet with R = 0.5 and we assume basic acceptance cuts

pT,` > 20 GeV |η`| < 2.5

pT,j > 30 GeV |ηj | < 4.5 . (2.3)

The individual curves for the different jet bins account for the number of jets passing these

acceptance cuts, rather than the number of hard jets entering the merging procedure. The

results from Sherpa and Pythia8 broadly agree with each other. In both simulations we

observe that for all contributions the low-energy limit and the full results scale the same

way as long as pT,H . mt. In this regime the only difference is a constant scaling factor

1.065 for the Higgs-gluon coupling. Although b-quark loops become relevant in this regime

and need to be accounted, they present sub-leading contributions in the boosted regime.

Since we will be mostly concerned with boosted Higgs of pT,H & mt these contributions

can be safely neglected [107–109].

Above this energy scale the effective and full theory start to visibly diverge. Looking

at the jet multiplicities we confirm that this effect is driven by Higgs production with two

jets, where the top mass effects are not only larger than in the one-jet process relative to

the respective cross section, but also larger in absolute terms [61]. In the lower panels of

figure 2 we see that the top mass effects lead to contributions as large as a factor four in the

rate at transverse momenta of 600 GeV.1 Another remarkable feature which we observe in

figure 2 is that the top mass effects factorize: the full top mass dependence provides the

same pT,H -dependent correction factor for each jet bin, and consequently for the merged

result. Thus, the leading contribution could be approximately described by the production

of the Higgs boson with one hard jet accompanied by extra jet emissions accounted by

the Parton Shower. Notice, however, that the used merging prescription (besides properly

capturing these effects, see figure 2) leads to a more precise description of the event rate

and kinematics since it also captures the full matrix element information in each jet multi-

plicity. Finally, the lower panels of figure 2 indicate that an experimental analysis including

systematic and theoretical uncertainties can rely on the range pT,H < mt as a safe reference

region, searching for a distinct turn-over in the distribution around pT,H = mt.

1The size of these effects suggest that for any strongly boosted Higgs analysis a proper modelling of the

top mass effects is of vital importance.
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This observed factorization at leading order strengthens the basic assumption un-

derlying our precision study, namely that top mass effects in Higgs production are fully

associated with the hard process. This is know to not apply to bottom mass effect, which

we assume to be small and not critical for the phase space regions we consider [107–109].

Hence, we can use the Sherpa results in the low-energy limit and reweight them on an

event-by-event basis with the corresponding heavy-quark matrix element.

The Meps@Nlo algorithm [87, 88] for multi-jet merging of NLO matrix elements can

be viewed, intuitively, as stacking towers of individual Mc@Nlo simulations [97] on top

of each other, without a double counting of emissions. The only subtlety in the Sherpa

implementation [98, 99] is that the actual implementation of the Mc@Nlo algorithm has

been slightly changed to also include sub-leading color effects in the Sudakov form factor.

To see in more detail how this works at NLO, let us consider the structure of the S-

Mc@Nlo cross section (including the first emission)

dσS-Mc@Nlo = dΦn

[
B + V +

∫
dΦ1 D

](
∆(t0)+

∫
dΦ1
D
B

∆(t)

)
+ dΦn+1

[
R−D

]
, (2.4)

where B, V and R denote the Born, virtual and real emission contributions associated

with the n and n+ 1 particle phase space integrals. The S-Mc@Nlo resummation kernel

D = B̃ ⊗K is constructed from a color-correlated and spin-correlated Born matrix element

B̃ and a suitable splitting function K [97, 110, 111]. By construction, D coincides with the

real emission matrix element in the soft and/or collinear limit. Note that in S-Mc@Nlo

the ratio D/B also constitutes the kernel of the Sudakov form factor for the first emission,

in difference to the original Mc@Nlo method.

In a second step we reweight all tree-level matrix elements in the low-energy limit with

their full loop counterparts. This gives rise to correction factors r
(n)
t defined in eq. (2.2)

modifying the merged rate prediction in eq. (2.4),

dσS-Mc@Nlo=dΦn r
(n)
t

[
B+V+

∫
dΦ1D

](
∆(t0)+

∫
dΦ1
D
B

∆(t)

)
+dΦn+1

[
r

(n+1)
t R−r(n)

t D
]
.

(2.5)

The NLO corrections in the low-energy limit and the top mass corrections are thus applied

in a factorized form. This prescription offers a gauge invariant interpolation between

both types of corrections. It is worth noting that the resummation properties of the S-

Mc@Nlo kernel are not altered, because its argument is a ratio of matrix elements. The

infrared safety of the fixed-order correction is guaranteed as long as r
(n+1)
t → r

(n)
t in the

infrared limit. Our approach generalizes the Meps@Nlo method [87, 88], now including

next-to-leading order corrections in the low-energy approximation as well as the top mass

dependence at leading order for all jet multiplicities considered. Eventually, it needs to be

tested once the two-loop multi-scale diagrams can be evaluated over the full phase space.

Following this implementation we upgrade our boosted Higgs analysis in figure 2 to the

NLO level. The 0-jet and 1-jet bins include the NLO corrections, while the 2-jet bin remains

at leading order. In figure 3 we display a sample of the Feynman diagrams in the NLO

corrections. The upgraded NLO distributions are presented in figure 4. In the left panel we

show that apart from the different total rate all top mass features are completely analogous

– 6 –
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Figure 3. Sample one-loop Feynman diagrams contributing to the Higgs and Higgs-jet production.

On the top we display the NLO real corrections and on the bottom the virtual contributions.

Figure 4. Transverse momentum distribution pT,H for H → WW+jets production with Sherpa

at NLO (left panel). We present the distributions for exclusive and merged jet samples with finite

top mass effects (mt = 173 GeV) and in the low-energy approximation (mt → ∞). In the right

panel we show the pT,H -dependent K-factor for H and H + 1 jet production.

to the leading order case. The ratio between the full calculation and low-energy limit shows

the same profile. In the right panel, we shown that the NLO corrections factorize, i.e. the

relative NLO corrections for the full theory and for the low-energy approximation agree

independently for the H and H + 1 jet rate.

3 Boosted Higgs production

For boosted Higgs production the effect of a finite top mass has been known for an eternity:

adding jets to the hard process pushes one or two gluon propagators off their respective

mass shell. In that case the matrix elements for Higgs production in association with one

– 7 –
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jet [52–54] and two jets [61] develop a top mass dependence

MHj(j) ∝
m2
t

pT,H

(
C0 + C1 log

p2
T,H

m2
t

+ C2 log2
p2
T,H

m2
t

)
, (3.1)

where C0, C1 and C2 are formed by the combination of constants and mt independent

terms. Beyond this mt logarithmic dependence absorptive parts of the one-loop integrals

exist, but are unfortunately too small to be observed in the coming LHC run(s) [61]. If

we follow eq. (1.1) and allow for a top quark as well as an unspecified heavy state in the

loop-induced Higgs-gluon coupling, we can write the matrix element for Higgs production

in gluon fusion as

M = κtMt + κgMg . (3.2)

The index t marks the top contributions, while g the contributions from the dimension-6

Higgs-gluon operator in the low-energy limit. All prefactors except for the κj are absorbed

in the definitions of Mj .

Following the bench mark point in eq. (1.2) we will be specially interested in deviations

from the Standard Model, where the two couplings satisfy κt + κg = 1. The transverse

momentum distribution will then allow us to disentangle the effects of κt and κg while

respecting the experimental constrains on the Higgs production cross section σ ∼ |κt + κg|2.

For a kinematic distribution like the Higgs transverse momentum this means

dσ

dpT,H
= κ2

t

dσtt
dpT,H

+ κtκg
dσtg
dpT,H

+ κ2
g

dσgg
dpT,H

. (3.3)

To access the different components in the Higgs-gluon coupling one needs to decouple

the soft and hard momentum components flowing in this loop-induced coupling. The

separation of these factors can be efficiently achieved through the kinematics of Higgs plus

jets production. This feature was studied for the 1-jet or 2-jet cases, indicating that we can

achieve a decent sensitivity for ratio for integrated luminosities of O(1 ab−1) [54–56, 61, 68].

Because the logarithmic dependence in eq. (3.1) is the same for the 1-jet and 2-jet hard

matrix elements, and because our discussion in section 2 shows that the same holds true

even for relatively low pT,H & mt, we have to use multi-jet merging to provide a reliable

estimate of these effects. This also implies that in an optimized combined analysis we

should focus on jet-inclusive observables like pT,H to combine different jet multiplicities.

As a side effect, the merged approach guarantees a reliable description for the distributions

over the full momentum range, as we can see in figures 2 and 4.

In figure 5 we show two of the key distributions which allow us to separate the Higgs

signal from the different background. The azimuthal angle between the two forward jets

is a well known probe for the Lorentz structure of the hard process [112–119]. Because

it is only defined for at least two additional hard jets, it is one of the key improvements

of our merged analysis over Higgs production with a single hard jet. The corresponding

background rejection cuts are given in table 1. The signal events are generated with NLO

predictions for the 0-jet and 1-jet processes and LO precision for the hard 2-jet process.

The tt̄+jets background includes the NLO prediction for the 0-jet bin and up to 3 hard

– 8 –
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Figure 5. Normalized pT,ll (left) and ∆φjj (right) distributions for the H → WW signal and the

dominant backgrounds. All universal cuts listed in table 1 are already applied. We assume the

LHC at
√
S = 13 TeV.

(H →WW ) + (0 + 1)j (H →WW )jj inclusive

cuts H+jets WW+jets tt̄+jets H+jets WW+jets tt̄+jets

pT,j > 40 GeV, |yj | < 4.5
87.9 3220 9640 6.50 203 5890

pT,` > 20 GeV, |y`| < 2.5

Nb = 0 84.9 3180 7400 5.09 189 2790

m`` ∈ [10, 60] GeV 69.0 628 1470 4.22 36.2 503

/ET > 45 GeV 49.7 504 1250 3.55 32.6 493

∆φ`` < 0.8 24.0 195 561 2.78 20.2 237

mT < 125 GeV 23.7 74.5 250 2.75 10.8 119

pT,H > 300 GeV 0.27 1.41 1.24 0.42 2.12 5.32

pT,ll > 180 GeV 0.15 0.58 0.35 0.24 0.98 1.87

∆φjj < 1.8 0.21 0.69 0.90

Table 1. Cut flow for H+jets, WW+jets and tt̄+jets. All events are generated with Sherpa using

the MEPS@NLO algorithm. The rates are given in fb.

jets at the LO level. The QCD component from WW+jets production is loop induced and

it is generated with up to 1-jet with LO precision. The electroweak WW+jets component

includes NLO corrections up to the 1-jet bin and up to 3 hard jets at LO. The analysis

largely correspond to the WW analysis proposed for the 2-jet channel in ref. [61].

In particular when we link different experimental measurements to the same La-

grangian interpretation given by eq. (1.1) the question arises how the experimental ap-

proaches compare. In figure 6 we show an idealized projection of the reach in the boosted

Higgs analyses. Based on a 2-dimensional CLs analysis of the number of jets and the

transverse momentum of the Higgs, (njets, pT,H), we estimate how much luminosity would

be required to rule out our BSM reference point given in eq. (1.2). We find that in the

absence of systematic and theoretical uncertainties it would take around 700 fb−1 of data

– 9 –
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jets
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95% exclusion

σ1 
σ2 

expected 95% CL

=(0.7,0.3)tgk

 WW→H

Figure 6. Confidence level for separating the BSM hypotheses κt,g = (0.7, 0.3) from the Standard

Model. We show results for H →WW decays based on the 2D distribution (njets, pT,H).

to achieve a 95% C.L. exclusion. Even if we rely on the reference region at pT,H . mt to

efficiently reduce the uncertainties, a meaningful study of boosted Higgs production might

require attobarn integrated luminosities. On that time scale it appears unlikely that such

a detailed kinematic analysis will be able to compete with a dedicated hypothesis test

based on Higgs couplings and including tt̄H production with the combined Higgs decays

H → bb̄, ττ, γγ [8, 9, 25–31].

4 Off-shell Higgs production

One of novel LHC measurement in 2014 is the Higgs width limit from off-shell Higgs produc-

tion [69–71, 73–75]. For example, CMS published the first results on a rate measurement

of pp → Z(∗)Z(∗) → 4 leptons at high invariant mass m4` [73–75]. This process relies on

off-shell contributions from s-channel Higgs production. This way, it carries information

on the Higgs couplings at different energy scales which could, similarly to the boosted

case, probe the energy dependence of the higher-dimensional operators. In this spirit, we

exploit the off-shell Higgs regime of ZZ production to probe the Higgs-top sector of the

Standard Model [79, 80].

The Higgs contribution to Z-pair production is generated via gluon fusion through

heavy quark loops. It faces two dominant backgrounds: qq̄ → ZZ and gg → ZZ. The

qq̄ component is generated already at the tree level and constitutes the most important

contribution. It is approximately one order of magnitude larger than the gluon fusion part.

On the other hand, the gluon fusion contribution features an interference with the Higgs

signal in the off-shell mZZ regime. In figure 7 we display a sample of the contributing

Feynman diagrams to ZZ production.

At high invariant mass mZZ the Higgs decays mostly into longitudinal gauge bosons.

This means that the signal amplitude can be understood from the longitudinal compo-

nents [78–80]

M++00
t = −2

m2
4` − 2m2

Z

m2
Z

m2
t

m2
4` −m2

H + iΓHmH

[
1 +

(
1− 4m2

t

m2
4`

)
f

(
4m2

t

m2
4`

)]
, (4.1)
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Figure 7. Sample Feynman diagrams for the continuum background qq̄ (gg) → ZZ (left) and for

the signal gg → H → ZZ (right) with full top mass dependence and in the mt →∞ approximation.

where ΓH is the Higgs boson width and f = −m2
4`C(m2

4`;mt,mt,mt)/2 represents the

dimensionless scalar three-point function. This form corresponds to the on-shell case in

eq. (2.1), replacing τ=4m2
t /m

2
H with its off-shell analogue 4m2

t /m
2
4` and relying on the form

f(τ) = −1

4

(
log

1 +
√

1− τ
1−
√

1− τ
− iπ

)2

(4.2)

for the scalar integral with τ < 1. In the low-energy limit far above the Higgs mass shell,

mt � m4` � mH ,mZ , the scalar integral scales like f ∼ m2
4`/(4m

2
t ) and gives the usual

finite effective Higgs-gluon coupling gggH defined in eq. (2.1). Obviously, this assumption

is not correct once we include the actual mass values. Instead, for Mt we better assume

m4` � mt & mH ,mZ , giving us

M++00
g ≈ −

m2
4`

2m2
Z

with mt � m4` � mH ,mZ

M++00
t ≈ +

m2
t

2m2
Z

log2 m
2
4`

m2
t

with m4` � mt & mH ,mZ

M++00
c ≈ − m2

t

2m2
Z

log2 m
2
4`

m2
t

with m4` � mt & mZ . (4.3)

In the proper limit a logarithmic dependence on m4`/mt develops far above the Higgs mass

shell. It is very similar to the transverse momentum dependence in the boosted regime, as

seen in eq. (3.1). The ultraviolet logarithm cancels between the correct Higgs amplitude

and the continuum, ensuring the proper ultraviolet behavior of the full amplitude. Most

importantly, there appears a sign difference between the full top mass dependence and

the low-energy limit. For the interference pattern with the continuum process gg → ZZ

the full top mass dependence predicts a destructive interference whereas in the low-energy

limit the interference far above mass shell should be constructive.

Following the parametrization in eqs. (1.1) and (3.2) and including the interference

with the continuum background arising from the box diagrams, we can write the gluon-

induced amplitude gg → ZZ as

MZZ = κtMt + κgMg +Mc . (4.4)

Correspondingly, the differential cross section can be expressed as

dσ

dm4`
=

dσc
dm4`

+ κt
dσtc
dm4`

+ κg
dσgc
dm4`

+ κ2
t

dσtt
dm4`

+ κtκg
dσtg
dm4`

+ κ2
g

dσgg
dm4`

. (4.5)
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Figure 8. m4l distributions for the qq̄(gg) → ZZ (left panel) and gg → H(∗) → ZZ (right

panel) for the different signal hypothesis and the dominant background. We assume the LHC at√
S = 13 TeV.

Using this parametrization, we can access each of the different components by switching

on and off the coefficients κt and κg.

The gluon-initiated and quark-initiated pp→ e+e−µ+µ− signal and background events

are generated with MCFM-6.8 [102, 103], respectively at LO and NLO. We modify the

original MCFM code to separately access all components defined in eq. (4.5). All our

results follow the CMS cut-flow analysis [73–75]

pT,µ > 5 GeV |ηµ| < 2.4

pT,e > 7 GeV |ηe| < 2.5

m``′ > 4 GeV m4` > 100 GeV . (4.6)

For the decay leptons we require transverse momenta above 20 (10) GeV for the leading

(sub-leading) lepton and invariant masses of 40 < m`` < 120 GeV (12 < m`` < 120 GeV)

for the leading (sub-leading) same-flavor lepton pair. We take the renormalization and

factorization scales to be m4`/2 and use the PDF set CTEQ6L1 [120].

The Higgs production process gg → H(∗) → ZZ has been computed to very high

precision. This includes NNLO and NNLL contributions for inclusive production and at

NNLO for the mZZ distribution [121]. On the other hand, the continuum production

gg → ZZ is only known to leading order. However, it was recently demonstrated that the

NLO and NNLO effects for the signal and the signal-background interference contributions

have a very similar perturbative QCD enhancement [122]. Therefore, we could include

these QCD effects by assuming K-factors for the signal, signal-background interference

and background contributions. In this study we include a differential NLO K-factor only.

In figure 8 we present the distributions for the different signal hypotheses defined in

eq. (4.4) along with the quark-induced background. In the bottom panel we show the

ratio between the top mass dependent coupling κt,g = (1, 0) and the low-energy form

κt,g = (0, 1). As expected from eq. (4.3), in the full process gg → ZZ we observe an

– 12 –
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enhancement in the tail for the low-energy limit and a suppression for the full top mass

result. In the right panel we focus on Higgs production gg → H(∗) → ZZ and neglect

the dominant continuum interference. For this process we observe three threshold effects

which largely control the m4` distribution profile: first, we see the on-shell Higgs production

peak around mH ≈ 125 GeV; second, there is a threshold at 2mZ ≈ 180 GeV which leads

to an abrupt enhancement in the cross section without which the off-shell measurements

would not be possible [73–75]; third, a peak appears when both tops in the loop-induced

coupling are simultaneously on-shell, 2mt ≈ 350 GeV. This last threshold is only present

when we include the full top mass dependence. This leads to a clear enhancement from

the absorptive top threshold with respect to the effective coupling approach, tantamount

to a maximum correction factor of O(3) shown in the bottom-right panel of figure 8.

While there are no spin correlations between production and decay in the Higgs ampli-

tudes |Mt,g|2, they appear through the interference with the continuum background Mc.

This way, the Cabibbo-Maksymowicz-Dell’Aquila-Nelson angles [123–126] help to extract

top mass effects and allow us to further suppress the background in the off-shell regime.

The set of five angles completely capture the kinematics of the decay H → ZZ → 4`,

including the correlation with the incoming protons. The momenta from the Higgs decay

are given by

pH = pZe + pZµ pZe = pe− + pe+ pZµ = pµ− + pµ+ . (4.7)

For each of these momenta and the beam direction we define unit three-momenta p̂i in the

Higgs rest frame and in the two Ze,µ rest frames

cos θe = p̂e− · p̂Zµ
∣∣∣
Ze

cos θµ = p̂µ− · p̂Ze
∣∣∣
Zµ

cos θ∗ = p̂Ze · p̂beam

∣∣∣
H

cosφe =
(
p̂beam×p̂Zµ

)
·
(
p̂Zµ×p̂e−

) ∣∣∣
Ze

cos ∆φ = (p̂e− × p̂e+)·
(
p̂µ− × p̂µ+

) ∣∣∣
H
. (4.8)

In figure 9 we present the the normalized angular distributions. Notice that the main

sensitivity at high m4` appears in the two polarization angles cos θ`.

To roughly compare the potential of the boosted Higgs production and off-shell Higgs

production in probing the effective Higgs-gluon coupling we analyze the information from

the different m4` bins using the CLs method. To enhance the signal sensitivity we use the

angular correlations in two ways. First, we suppress the qq̄ → ZZ background by requiring

that | cos Θ∗| < 0.7. Second, we include the leading angle in a 2-dimensional CLs analysis

of (cos θe,m4`). In figure 10 we see that even using an overly optimistic setup, where we

neglect systematic as well as theory uncertainties, the off-shell channel will only allow for

an exclusion of our BSM hypothesis defined in eq. (1.2) based on a few inverse attobarns of

integrated luminosity. Compared to the reach of the idealized results from boosted Higgs

production shown in figure 6 this is not promising. Moreover, measuring the top Yukawa

using tt̄H production and the combined Higgs decays H → bb̄, ττ, γγ will easily constrain

a modified structure of the Higgs-gluon coupling beyond this level [8, 9].

– 13 –
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Figure 9. Normalized distributions for the angular correlations in the gg → ZZ assuming different

signal hypothesis κt,g. We also show the quark-induced background qq̄ → ZZ for m4` > 600 GeV.

We assume the LHC at
√
S = 13 TeV.
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Figure 10. Confidence level for separating the BSM hypotheses κt,g = (0.7, 0.3) from the Standard

Model. We show results for gg → ZZ decays based on the 2D distribution (cos θe,m4`).

5 Width measurement

If combined with on-shell rate measurements, the additional off-shell rate measurements

described in section 4 can be used to test the assumptions on the recently proposed Higgs

width measurement [69–71, 73–75]. Fundamentally, this proposal aims to break the degen-
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eracy present on the on-shell Higgs couplings analysis, namely

σon-shell
i→H→f ∝

g2
i (mH)g2

f (mH)

ΓH
= constant for gi,f (mH)→ ξgSM

i,f (mH) ΓH → ξ4ΓH . (5.1)

For example in the SFitter approach this degeneracy is broken through the assumption

that the total Higgs width be the sum of all observed particle Higgs widths [8, 9]. Al-

ternatively, in HiggsSignals [17] the unitarization of the WW scattering amplitude is

turned into an upper limit on the Higgs couplings to break this degeneracy. Using off-

shell rates we exploit the subleading dependence on the Higgs width ΓH in the off-shell

regime, σoff-shell
i→H∗→f ∝ g2

i

(√
ŝ
)
g2
f

(√
ŝ
)
. While it is an interesting idea, it is clearly not a

model independent width measurement [76]. The model dependence immediately follows

from eqs. (2.1) and (4.1), which reflect the non-trivial momentum dependence of the loop-

induced Higgs-gluon coupling. For tree-level Higgs couplings we could assume a weak,

well-defined logarithmic running, while for such a loop-induced couplings the momentum

structure can be anything. For instance, in our framework the κt and κg corrections to

the on-shell rate factorize. In contrast, in the off-shell regime we obtain a non-trivial

dependence,

σon-shell
gg→H→ZZ ∝ (κt + κg)

2
g2
ggH(mH)g2

HZZ(mH)

ΓH

σoff-shell
gg→H∗→ZZ ∝ (κtgggH(m4`) + κggggH(mH))2 g2

HZZ(m4`) . (5.2)

If we assume a scaling factor ξ4 = 25, the Higgs width will vary by Γ = 25ΓH while the

on-shell signal strength will still be at µon-shell = 1. In figure 11 we display the outcome of

this parameter changing. We observe that the on-shell peak still has the same size as the

SM one, as expected from eq. (5.2). However, the interference between the Higgs diagram

gg → H∗ → ZZ and the continuum process gg → ZZ shows a very different behavior as a

function of m4`, also shown in eq. (5.2).

This comparison of a top-induced Higgs-gluon coupling with the full top mass depen-

dence and in the low-energy limit might be the easiest way of observing the limitation

of model independent Higgs width measurements at the LHC. We need to assume that

the quantum structure of the effective top-Higgs coupling is exactly as in the Standard

Model κt,g = (1, 0) to interpret the current off-shell rate measurement as a measurement

of the Higgs width. Additional states increasing the Higgs width cannot contribute to

the Higgs-gluon coupling without significantly changing the relation between on-shell and

off-shell rates.

6 Summary

Top mass effects in Higgs production in gluon fusion can be linked to experimentally

relevant changes in some of the fundamental distributions, namely the Higgs transverse

momentum and reconstructed mass of the Higgs decay products. We have introduced

a state-of-the-art simulation tool based on next-to-leading order multi-jet merging. Our

results show that the top mass effects factorize for each number of hard jets to leading
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Figure 11. m4l distributions for the qq̄(gg) → ZZ (left panel) and gg → H(∗) → ZZ (right

panel) for the different signal hypothesis and the dominant background. For illustration purposes

we assume an increased Higgs ΓH = 25ΓSM.

order and next-to-leading order. This approach allows us to combine Higgs production

in association with one and with two hard jets to optimally probe the structure of the

Higgs-gluon coupling. Once we include two jets an experimental analysis based on Higgs

decays to WW pairs might well be the most promising search channel.

Off-shell production and boosted Higgs production can be interpreted in the same

physics framework. While keeping the total Higgs production rate constant we can vary

the top Yukawa coupling and an additional dimension-6 Higgs-gluon coupling and search

for deviations in key distributions. For a benchmark point with a 30% reduction of the

top Yukawa coupling compensated by a dimension-6 contribution from physics beyond the

Standard Model we estimate the required luminosity for a 95% C.L. exclusion in both

channels. In the absence of systematic and theory uncertainties the boosted Higgs channel

will require luminosities close to 1 ab−1. Off-shell Higgs production will only rule out the

same benchmark value with close to 2 ab−1 of integrated luminosity. These numbers can

be compared to a standard Higgs coupling analysis: including a conservative estimate

of systematic and theoretical uncertainties a coupling extraction of 7 independent Higgs

couplings can measure the top Yukawa with a precision of 12% based on 3 ab−1 of LHC

data [127].

Finally, we study the top mass dependence of the Higgs-gluon coupling and its impact

on the proposed direct Higgs width measurement. It turns out that the width measurement

essentially requires the knowledge of the quantum structure of the Higgs-gluon coupling.

Additional states responsible for unobserved Higgs decays cannot be linked to this loop-

induced interaction.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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