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ABSTRACT

We introduce a technique for generating tubular magnetic fields with arbitrary axial geometry and internal topology. As an initial
application, this technique is used to construct two magnetic flux ropes that have the same sigmoidal tubular shape, but have different
internal structures. One is twisted, the other has a more complex braided magnetic field. The flux ropes are embedded above the
photospheric neutral line in a quadrupolar linear force-free background. Using resistive-magnetohydrodynamic simulations, we show
that both fields can relax to stable force-free equilibria whilst maintaining their tubular structure. Both end states are nonlinear force-
free; the twisted field contains a single sign of alpha (the force-free parameter), indicating a twisted flux rope of a single dominant
chirality, the braided field contains both signs of alpha, indicating a flux rope whose internal twisting has both positive and negative
chirality. The electric current structures in these final states differ significantly between the braided field, which has a diffuse structure,
and the twisted field, which displays a clear sigmoid. This difference might be observable.
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1. Introduction

Magnetic flux ropes are observed in the Sun’s coronal region
over all activity cycles. They are believed to play a critical role
in active region phenomena, such as sigmoid formation, coro-
nal eruptions and coronal mass ejections (e.g. Mandrini et al.
2005; Okamoto et al. 2008; Cheng et al. 2011; Inoue et al. 2015).
Additionally flux ropes can be observed in non active regions
(e.g. Gibson et al. 2006b; Su et al. 2015). Through modelling it
has been argued that flux ropes can either enter the corona by ris-
ing through the Sun’s convection zone (e.g. Archontis & Török
2008; Fan 2009; Manchester IV et al. 2004; MacTaggart 2011)
or, alternatively, be formed in the coronal region due to gradual
shearing (van Ballegooijen & Martens 1989) or strong shear-
ing motions (e.g. Aulanier et al. 2010; Longcope & Beveridge
2007).

Often, however, authors address the subsequent behaviour of
a toroidal flux rope placed at the heart of a background field.
This approach is particularly prevalent in active-region mod-
elling where flux ropes with an internal twisted structure are
forced into instability through various mechanisms, often lead-
ing to ejection (e.g. Fan & Gibson 2007; Kliem et al. 2004, 2010,
2012; Leake et al. 2014). This “kink” instability drives the flux
rope to adopt a kinked structure through rotation about its apex
(see Fig. 1). Such geometries appear as either S or Z shapes in
projection, and are commonly referred to a “sigmoidal” in ref-
erence to the assumption that they explain the S- and Z-shaped
sigmoid current structures viewed in soft-X-ray emission (e.g.
Titov & Démoulin 1999; Gibson et al. 2006a; Green et al. 2007).
It should be noted that the simulations mentioned above often
yield S or Z shapes with significant symmetry, whilst in gen-
eral there is a much larger variety of sigmoidal morphologies
observed in the corona (Prior & Berger 2012).

(a) (b)

Fig. 1. Idealisation of the process by which an initially toroidal tube
a) rotates about its apex to form a kinked structure b). This tube in b)
appears as an S shape when projected down. The morphology of b) is
characteristic of a sigmoidal geometry.

In addition to active-region modelling, a second area of in-
terest in coronal magnetic field modelling concerns the internal
structure of tubular fields. A rough interpretation of Parker’s hy-
pothesis (Parker 1972; Janse et al. 2010) is that the unusually
high temperature of the coronal region can be explained by the
creation of significantly complex field structure due to turbulent
photospheric motions. This would lead to the formation of dense
regions of current within the field, because of either field discon-
tinuities or sharp field gradients. These sheets provide regions in
which reconnection is promoted, enabling magnetic energy to be
converted to heat in the surrounding region.

Geometrically, the existence of a large number of small cur-
rent sheets manifests itself in complex entanglement of the mag-
netic field lines (see e.g. Janse et al. 2010). Field lines are curves
f associated with B through solutions of the O.D.E

d f
ds

=
B
||B||
· (1)
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With this in mind a number of authors have addressed the ques-
tion: what effect do complex (braided) patterns have on a mag-
netic field’s evolution? A significant number of studies have con-
sidered the problem of developing magnetic braiding through
boundary motion. Magnetic fields defined in a Cartesian box,
with the initial field structure a set of vertical lines, are subjected
to a variety of boundary motions such as shearing flows of var-
ious scales. Various relaxation techniques are used to calculate
the evolving field and current structure; often these techniques
are quasi-static. Typically the evolution leads to the formation of
thin layers of current and much interest is focused on the width
of these layers (see Wilmot-Smith 2015). In addition a number
of studies have attempted to estimate the amount of heating that
braided reconnection could produce, in order to test Parker’s
hypothesis (e.g. Galsgaard & Nordlund 1996; Craig & Sneyd
2005; Berger & Asgari-Targhi 2009; Ng et al. 2012; Rappazzo
& Parker 2013; Yeates et al. 2014; Pontin et al. 2011).

Of particular relevance to this study, van Ballegooijen et al.
(2014) explored the relationship between footpoint motions and
the possible formation of braided structures, finding braiding to
be a dynamic rather than quasi-static phenomenon. This raises
the possibility that complex braided structures could be built be-
fore the field relaxes to equilibrium. Of most relevance to this
study are a series of numerical experiments which compare the
effect of pre-existing braided structures in a cylindrical domain
on the field’s eventual evolution, by comparison to twisted cylin-
drical fields (e.g. Yeates et al. 2010, 2015; Wilmot-Smith et al.
2011; Wyper & Pontin 2014). One notable finding was that the
braided fields typically released more energy than their twisted
counterparts (for the same given starting energy). It was also
found that the final end state differed, with the braided field split-
ting into two separate force free flux tubes of opposing chirality
and the twisted field remaining as one tube with a single chiral-
ity. To the best of our knowledge there has been no systematic
attempt to study the effect of significantly entangled field line
configurations in flux ropes with realistic sigmoidal geometry
(Wilmot-Smith 2015). The extra degree of freedom afforded by
the (possibly) changing morphology of the rope might have a
significant effect on the field’s evolution.

It is currently not possible to resolve the precise internal
structure of coronal flux ropes using existing observations (Reale
2010). However, it may be possible to infer aspects of the inter-
nal structure indirectly if observable properties of flux ropes –
such as their stability or overall shape – depend in a clear manner
on the internal structure. For example the helical kink instability
of twisted flux tubes can be used to link the eruption of toroidal
magnetic flux rope to the presence of a twisted internal field
structure (e.g. Linton et al. 1996, Titov & Démoulin 1999, Kliem
et al. 2004). To determine whether such a clear dependency ex-
ists in coronal geometries is the overall goal of this work. There
is no clear evidence either way of whether flux ropes with in-
ternally braided structure either exist or persist for any length of
time in the coronal region, although recent high-resolution ob-
servations by Cirtain et al. (2013) have been interpreted as the
apparent braiding of coronal loop strands.

There is good reason then to consider modelling flux tubes
with both realistic sigmoidal shape and complex internal struc-
ture, to see whether the observed evolution of a flux rope can
reliably yield any information about its internal structure. With
this in mind we detail here a technique for generating magnetic
fields with arbitrarily complex tubular shape and internal struc-
ture. An example is shown in Fig. 2, where a braid is super-
imposed onto a sigmoidal tube, (a) to (b), a process described
in Sect. 2. This tube is then embedded along the neutral line

(a) (b)

(c)

Fig. 2. Visualising the field creation process. a) Depicts a set of braided
curves (in the form of the pigtail braid) on the left, and a set of twisted
curves on the right. b) Depicts the pigtail braid embedded within a sig-
moidal tube shape. c) Depicts the embedding of this tube in a Cartesian
coordinate system, over the neutral line of a background quadrupolar
flux distribution defined at the plane z = 0 (which plays the role of the
photosphere in what follows).

of a boundary flux distribution, (b) to (c), a process described
in Sect. 3. Our technique gives complete control over both the
global and internal structure of the flux rope, and hence pro-
vides a means by which we can explore the effect of internal flux
rope topology on its eventual evolution. In Sect. 4 we compare
tubes with the same sigmoidal morphology but both braided and
twisted internal structures.

2. Creating a tubular field

In this section we describe the mathematical technique for con-
structing magnetic fields inside tubular domains of arbitrary axis
shapes. We consider fields embedded in a Cartesian coordinate
system with coordinates (x, y, z). Each field is defined by choos-
ing (i) the tube axis curve; (ii) the tube cross-sectional radius
as a function of length along the axis; and (iii) a twist param-
eter describing the internal structure of the tube. In this paper,
“twisted” flux ropes consist of a single one of these tubular do-
mains, while “braided” ropes are generated by combining sev-
eral of these tubular domains.
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d1
d2

d3r

(a) (b)

(c)

Fig. 3. Tubular domains and curves. a) Depicts the tubular co-ordinate
system T defined in Eq. (2). b) Depicts a tubular domain with u3(s) =
0, ∀s. The curves drawn in this domain are curves of constant R and θ
values. We see that the curves follow the shape of the tube. b) Depicts
a tubular domain with the same axis curve as a), but with u3(s) , 0 so
that the curves of constant (R, θ) value wind internally in the tube.

2.1. Tubular domains

Our tubular domain takes the form of a tube of circular cross-
section centred on an axis curve r(s) : [0, L] → R3, whose start
and end points lie in the z = 0 plane. An example is shown
in Fig. 3a. We allow the tube radius R(s) to vary with s; this
possibility might be crucial to try to capture the rapid change
in tube radius which occurs in the photosphere-corona transition
region (e.g. van Ballegooijen et al. 2014).

To define a coordinate system in our tubular domain T , we
choose an orthonormal framing (d1, d2, d3) for r using its unit

tangent vector d3 = r′ (total derivatives with respect to s will
be denoted with a prime), and a vector field d1 which lies in
the normal plane of d3 (d3 · d1 = 0,∀s). This basis is com-
pleted with the vector product d2 = d3 × d1. This frame is then
extended to form a curvilinear coordinate system by defining a
map T (s, ρ, θ) : [0, L] × [0, 1] × S1 → R3 as

T (s, ρ, θ) = r(s) + ρR(s) (d1(s) cos θ + d2(s) sin θ) . (2)

2.1.1. Coordinate frame

To fully specify the coordinate system T for a given axis curve r,
we must specify d1 as a function of s. Intuitively, this controls
how much the coordinate frame rotates around the axis as we
move along the tube. As the basis {di} is orthonormal, it is con-
venient to write its evolution with s in terms of a triplet of scalar
functions (u1(s), u2(s), u3(s)) (see e.g. Antman 2005, Chp. 7)
where d′1

d′2
d′3

 =

 0 u3 −u2
−u3 0 u1
u2 −u1 0


 d1

d2
d3

 · (3)

The functions u1(s) and u2(s) define rotations of the coordinate
frame due to bending of the axis curve (about two independent
directions), and in our case are fixed by the chosen axis curve r.
More precisely, given r we define the functions u1(s) and u2(s)
in terms of curvature κ and torsion τ of r, with

u1(r, s) = κ(r, s) cos γ(r, s) , u2(r, s) = κ(r, s) sin γ(r, s) ,

(4)

γ(r, s) =

∫ s

0
τ(r, t) dt

κ(r, s) =
|r′ × r′′|
|r′|3

, τ(r, s) =
(r′ × r′′) · r′′′

|r′ × r′′|2
·

These specific forms for u1 and u2 are not the only possible
choice (which amounts to a choice of the vector d1), but they
are the only forms for which the value of u3 is independent of
the specific form of r (Bishop 1975).

The function u3(s) then identifies the relative twisting of the
frame about d3, (with u3 = d3 · d1 × d′1). It represents the de-
gree of freedom we have in choosing the direction of d1 as a
function of s. For example, Fig. 3b shows an untwisted frame
(u3(s) = 0,∀s) with indicated lines of constant (ρ, θ). By com-
parison Fig. 3c depicts the same coordinate curves of a twisted
coordinate frame (u3 , 0). Both curves have the same curva-
tures (u1, u2). The latter, twisted, frame is actually the Frénet
frame for this example. To avoid introducing unnecessary twist
through our choice of coordinate frame, we do not use the Frénet
frame but rather an untwisted frame u3 = 0, meaning that γ , 0
in general.

2.1.2. Metric geometry

Much of the analytic calculations which follow are performed
in our curvilinear coordinate system T . To employ differential
operators in this coordinate system we need to know the metric
structure of T . Under our choice that u3 = 0, using the partial
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derivatives,

∂T
∂s

= (5)

(1 + ρR(u1 sin θ − u2 cos θ))d3 + ρR′(s)(cos θd1 + sin θd2),
∂T
∂ρ

= R(s)
(

cos θd1 + sin θd2

)
,

∂T
∂θ

= ρR(s)
(
− sin θd1 + cos θd2

)
,

we find the metric tensor gi j = (∂T/∂xi)(∂T/∂x j), with x1 = s,
x2 = ρ, x3 = θ for this coordinate system, to be

gi j = (6) (1 + ρR(u1 sin θ − u2 cos θ)2 + ρ2(R′)2 ρRR′ 0
ρRR′ R2 0

0 0 ρ2R2

 .
For constant tube cross-section R this simplifies to

gi j =

 (1 + ρR(u1 sin θ − u2 cos θ))2 0 0
0 R2 0
0 0 ρ2R2

 . (7)

In both cases the Jacobian g =
√

det(gi j) can be found to be
g = ρR2(1 + ρR(u1 sin θ − u2 cos θ)) = ρR2(1 + ρRκ sin(θ − γ))
(using Eq. (4)). Thus we require that R(s) < 1/κ(s) so that a
tubular domain will not overlap itself locally, i.e. the coordinate
system is locally well defined (see e.g. Frankel 2011). This does
not preclude the tube from overlapping itself non-locally, though
for the purpose of this study we will be choosing curves such that
this is not the case.

2.2. Field lines and the unit vector field

We define the magnetic field inside our tubular domain in two
stages: first we choose a unit vector field N that determines
the field line structure, then we create a divergence-free field B
whose field lines are the same as those of N.

We define the unit vector field N in our tubular domain T by
specifying its integral curves f [ρ0, θ0](s), s ∈ [0, L], which will
become the field lines of B. A specific curve is identified by its
starting point (ρ0, θ0) on the end s = 0 of the tube. Each curve
is chosen to lie on a tubular surface of constant ρ, but to twist
around this surface as we move along the tube, so that

f [ρ0, θ0](s) = T (s, ρ0, θ0 + ψ(s)), (8)

where ψ(s) is a function (the same for all curves) that controls
the twisting of the field, relative to the coordinate frame. Thus if
ψ(s) ≡ 0 (and R(s) ≡ 0), the curves have the same morphology as
the tube axis (the curves in Fig. 3b are such a case). If ψ(s) , 0,
then the curves twist around the tube axis. We do not require
ψ(s) to be constant or even positive-definite (the curves in Fig. 3c
have ψ(s) = τ(s)). The set F =

{
f [ρ, θ0]|ρ ∈ [0, 1], θ0 ∈ S

1
}

will
cover the whole tubular domain as s varies from 0 to L. This
specification means that the curves satisfy d f /ds > 0 i.e. the
curves only pierce each disc of constant s once. Whilst it is per-
fectly possible to define curves which turn back on themselves
along the direction of the tube axis, it is a harder task to define a
set of curves which do this and also cover the whole domain. For
our purpose the set of field line topologies covered by the defi-
nition F allows for sufficient complexity to be of interest, whilst
not complicating matters.

Another possible further consideration would be to consider
fields for which the functions R and ψ also depend on the ρ and
θ coordinates in order to obtain more complex configurations.
In what follows we prefer to allow for such further complexity
by defining fields composed of multiple tubes (Sect. 2.4); this
approach greatly simplifies the analytic considerations of what
follows.

2.3. Divergence-free field

Our unit vector field N is turned into a divergence-free mag-
netic field B = φN by specifying its magnitude φ ≡ ||B|| at each
point. This is determined entirely by choosing the distribution of
φ on the boundary s = 0 of the tube. To see this, note that the
divergence-free condition ∇ · B = 0 implies that

∇φ · N + φ∇ · N = 0, (9)

⇒
1
φ

dφ
dl

= −∇ · N. (10)

By integrating along a field line f [ρ0, θ0](l) (where l is the ar-
clength parameter with N = d f /dl), we find that

B( f (l)) = Nφ0e−
∫

f ∇·N dl
, (11)

where φ0 is the value of φ at the field line’s base point
f [ρ0, θ0](0) = (ρ0, θ0, 0).

To obtain an explicit expression for N for the set F, we take
the derivative of a field line with respect to s, the arclength pa-
rameter of the central curve r. Thus

N(s, ρ, θ0, ψ) =
1
λ

d f
ds
, λ =

∣∣∣∣∣∣∣∣∣∣d f
ds

∣∣∣∣∣∣∣∣∣∣ · (12)

The factor λ accounts for the fact that s will differ in general
from l, coinciding only when κ = 0 and u3 = 0. The derivative is

d f [ρ0, θ0](s)
ds

=
(
1 + ρR(u1 sin(θ0 + ψ) − u2 cos(θ0 + ψ))

)
d3

+ ρRψ′ (− sin(θ0 + ψ)d1 + cos(θ0 + ψ)d2)
+ ρR′ (cos(θ0 + ψ)d1 + sin(θ0 + ψ)d2) . (13)

We may then find ∇ · N, for which an explicit expression is de-
rived in Appendix A. Note that if ψ′ = 0 and R′ = 0 then N is
already divergence-free and φ is simply conserved along field
lines.

2.4. Braided fields

As mentioned above, we construct “braided” fields by combin-
ing n tubular fields of the type defined above, inside a larger
tubular domain Tb(s, ρ, θ). Thus our braid is defined by a set
of n curves ri(s) = Tb(s, ρi(s), θi(s)), i = 1, . . . n (an example is
shown in Fig. 4a). These curves ri can then be each individually
identified as the axis curve r above and we can create a tubu-
lar field surrounding each ri. It is this mechanism by which we
add further complexity to the set of fields that we can generate.
Various algorithms described in Berger (2001) or Bangert et al.
(2002) could be used to construct the ri for a particular braid; we
give an explicit example in Sect. 3. We first construct this braid
on a cylinder, providing functions ρi(s) and θi(s) in cylindrical
coordinates for each ri. We then use these functions as the tubu-
lar coordinates ρi(s), θi(s) in the overall domain Tb. A “stirring”
boundary motion which could be used to create this braided field
in an initially unbraided tube (with u3 = 0) is shown in Fig. 4b
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(a)

(b)

Fig. 4. Braiding geometry. Panel a) depicts a pigtail braid whose centre-
lines are curves ri embedded in a tube Tb. Panel b) illustrates a stirring
boundary motion which could be used to create the pigtail structure
in a).

(a similar idea was used in Berger & Asgari-Targhi 2009). There
is a formal mathematical relationship between the stirring of
a fluid in a two-dimensional environment and the mathemati-
cal braids produced by creating three-dimensional space curves
which follow the time dependent stirring geometry. The pigtail
pattern shown in Fig. 4b is the most complex possible stirring
motion (Boyland et al. 2000).

We can additionally define the individual strands of the braid
to have a net twist (a non trivial twisting function ψi(s)). This
kind of field might mimic the effect of both static (unbraided)
and moving vortex motions at the photospheric boundary. This
idea will be explored further in part II of this study.

2.5. Practical matters

2.5.1. Interpolating the field

We intend to use these tubular fields (hereafter denoted Bt)
in numerical simulations on a Cartesian grid. This means we
need to interpolate our field from the tubular coordinate sys-
tem (s, ρ, θ) onto a Cartesian grid. To do so we first take a
Cartesian point Cp = (x, y, z) and check if it is in the tube by
calculating its minimum distance to the tube axis. That is we
find the solution sCp to(
Cp − r(s)

)
· d3(s) = 0, on s ∈ [0, L] (14)

that minimises ||(Cp− r(s)||. This can be done using any standard
algorithm for root finding. If this minimum has

∣∣∣∣∣∣Cp − r(sCP )
∣∣∣∣∣∣ >

R(s), then CP does not lie inside the tube and we set Bt =
(0, 0, 0). If

∣∣∣∣∣∣Cp − r(sCP )
∣∣∣∣∣∣ ≤ R it does lie inside the tube and

we calculate its (s, r, θ) coordinates. We already have the s co-
ordinate sCP from our root finding algorithm; we get the radial
coordinate from ρR =

∣∣∣∣∣∣Cp − r(sCP )
∣∣∣∣∣∣, finally we can solve

ρR
[
d1(sCP ) cos(θ0 + ψ(sCP )) + d2(sCP ) sin(θ0 + ψ(sCP ))

]
=

Cp − r(sCP ) (15)

to obtain the principal value of θ0. Once these coordinates have
been obtained we know which field line f [ρ0, θ0] the point Cp
lies on and we can integrate Eq. (11) to obtain the components
of B.

2.5.2. Ensuring the field is divergence-free

Whilst B is divergence free by construction, we found in prac-
tice that the interpolation error led to non-zero divergence when
transferred to a finite Cartesian grid. Since maintaining the
divergence-free condition to a high-degree of accuracy is impor-
tant in MHD simulations (Tóth 2000), we added an additional
divergence cleaning step. We take the field B produced by the
interpolation routine described in Sect. 2.5.1, and find a vector
potential A such that B = ∇ × A (this procedure is performed
on a Cartesian grid) . This vector potential can then be curled
numerically to give a field B that is numerically divergence-free
to machine precision. The choice of A used in this procedure has
an effect on how faithfully the magnetic field direction is main-
tained. We found the Biot-Savart gauge of Prior & Yeates (2014)
to work well for this task, as it ensured averaging of the errors
over space rather than concentrating them along certain lines.

We found the process of transferring Bt to the Cartesian
grid to be much more successful when the field strength func-
tion φ(ρ0, θ0) tends smoothly to zero as ρ → R. For the exam-
ples in Sects. 3 and 4, we use the azimuthally-symmetric func-
tion φ0(ρ0, θ0) = 0.5 φc (cos(πρ0) + 1), where φc is a constant.
However, we should note that, other than differentiability, there
are no strict conditions on the function’s radial decay; this func-
tion was merely a convenient choice. It avoids a discontinuous B
at the edge of the tubular domain, and associated problems with
interpolation. One could create distributions with far sharper ra-
dial decay, but care would be needed to ensure that the Cartesian
grid used could resolve it sufficiently.

3. Example: twisted and braided flux ropes

This section describes the creation of some specific magnetic
configurations designed to represent different possible internal
structures (twisted and braided) of the same overall magnetic
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(a)

(b)

Fig. 5. Field lines of twisted a) and braided b) flux ropes (primary
colours) and the background linear force free field (light colouring).
Field lines can be seen to peel of the ropes as a result of the influence
of the background field Bb. These are the initial conditions for the sim-
ulations in Sect. 4.

flux rope in the low corona. These fields are designed to be ini-
tial conditions for the comparative resistive-MHD simulations
performed in Sect. 4 on each field.

3.1. Background field

In the coronal region flux ropes do not tend to exist in isolation.
Typically the rope is embedded in and connected to a surround-
ing field. In this initial study, we embed our tubular field Bt in
in a force-free background Bb, ∇ × Bb = αBb, an appropriate
choice for the low corona where the magnetic pressure domi-
nates the plasma pressure (e.g. Priest 2003). For simplicity here,
we choose a linear force-free field in the volume z > 0 specified
by choosing a constant α and a boundary flux distribution for Bz0
on z = 0. We define a quadrupolar distribution (found to be the
distribution most commonly underlying solar filaments; Mackay
et al. 2008), which we specify as a sum of Gaussians

Bz0(x, y) =

4∑
i=1

Ai exp
(
−Bi

(
(x − xi)2 + (y − yi)2

))
(16)

where two of the Ai are positive and two negative. This
produces a set of 2D Gaussian peaks centred at the

co-ordinates (xi, yi). In this particular study we use the param-
eters A1/2 = 1, A3/4 = −1, Bi = 5, i = 1, 2, 3, 4 and positions
(x1, y1) = (−0.68π,−0.3π), (x2, y2) = (−0.2π, 0.5π), (x3, y3) =
(0.3π,−0.5π) and (x4, y4) = (0.7π, 0.4π), with the distribution
restricted to a square −π ≤ x ≤ π, −π ≤ y ≤ π and an alpha
value α = 0.5. The parameter Ai is chosen so that the maximum
field strength of the background field is 1. This will allow us
to set the relative strength of the embedded flux rope against 1.
The parameter Bi chosen so that the flux sources are sufficiently
narrow so as not to overlap. This flux distribution can be seen
in Fig. 2c along with its neutral line which has has a z-shaped
morphology. We then generate the field on the domain z > 0 us-
ing the method detailed in Prior & Berger (2012). Field lines of
the initial composite field Bb + Bt, for twisted and braided tubes,
after interpolating to the Cartesian grid and divergence cleaning,
are shown in Fig. 5. These examples are the initial fields whose
subsequent evolution is simulated in Sect. 4. Field lines can be
seen to peel off the tube structure, an effect which is more preva-
lent in the braided field. This is not a numerical artefact but is a
result of the superposition of the two fields.

3.2. Tube morphology

To find an appropriate shape for the centreline rt of the overall
tube Tb, we use the general observation that solar filaments are
located above neutral lines of the photospheric flux distribution
(Mackay et al. 2010). The Z-shaped neutral line, Bz0(x, y) = 0,
of our background boundary flux distribution Bb forms a two-
dimensional curve (nx(t), ny(t)) t ∈ [−1, 1]. This can be seen in
Fig. 2c. We define a three-dimensional curve s to be

rt =

(
nx(t), ny(t),

h
(1/2 − fp1)(1/2 − fp2)

(t − fp1)(t − fp2)
)
, (17)

where t ∈ [− fp1, fp2], 0 ≤ fp1 < fp2 ≤ 1 and h is the max-
imum height (z-coordinate) of rt. Since the neutral line strad-
dles the whole domain (Fig. 2c), choosing fp1 = 0 and fp2 = 1
would mean that the curve rt had its footpoints on the box bound-
aries; this would not be helpful as part of the tube would then lie
outside the domain. We found values h = 3, fp1 = 0.15 and
fp2 = 0.85 gave a reasonable flux rope as depicted in Fig. 2c.
This forms the axis curve of the overall tubular manifold Tb,
within which we can either create a twisted field or a braided
field (with several sub-tubes).

Care has to be taken as the parametrisation t will not be
the arclength of the curve. Whilst arclength is a convenient
parametrisation for analytic work, it is generally hard to use
in practice. This means that all arclength derivatives detailed in
Sect. 2 have to be calculated using

dg
ds

=
dg
dt

dt
ds
,

ds
dt

=

√
drt

dt
.
drt

dt
· (18)

3.2.1. Practical matters

The neutral lines in Bz0 distributions of the type in Eq. (16) can
be particularly sharp, while our field generation technique re-
quires curves are at least C3 differentiable. To deal with this, we
smoothed the initial neutral line curve (nx, ny) using a moving
average and used a spline fitting routine in Mathematica 10 to
obtain an analytic curve for the centreline.

Another feature of the 2D neutral line curve is that the sharp
transition in its mid-section can lead to curves rt with high curva-
ture values around their apex. The fact that the tubular coordinate
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system becomes ill-defined when the product κR ≥ 1 would lead
to a failure in the field generating algorithm of Sect. 2 (the field
strength diverges). Thus we would have to limit the tube to be
significantly thin (make R small). Alternatively we found that by
either shuffling the positions of the Gaussian sources (changing
the (xi, yi) in Eq. (16)) or applying filtering techniques could re-
duce the curvature of rt without significantly affecting the basic
morphology of the tube. This allowed for thicker tubes allowing
us to include more interesting topological structure within the
tube.

We also found that if the product κR became near to 1 then
the resolution used to discretize the integral in Eq. (11) had to be
significantly high (>50 000) in order to lead to a faithful recre-
ation of the tubular field Bt after the cleaning process. This issue
was overcome by using an adaptive integration grid based on the
value of the product κR.

3.3. Internal structure

In this study we are not addressing the challenging process of
generating braided structures by some time-dependent physical
process. Instead we compare two different internal structures
within the same tube of radius R = 5 whose axis rt was de-
fined in Sect. 3.2 (Fig. 2b). The first is a twisted field with axis
rt, R = 5, and ψ = T /L, where L is the arclength of rt (so that T
is the total twisting). This is compared with a braided structure,
made up of three untwisted (ψi = 0) internal strands of radius
Ri = 0.2 which are linked in a pigtail braid

rpi =
(
0.5 sin(2πt + di), 0.5 cos(4πt + di), 10t

)
, (19)

d1 = 0, d2 = 1/3, d3 = 2/3,

as illustrated in Fig. 2a. The curves are contorted to fit in the
overall tube with axis rt.

Finally, the distribution φ0(ρ0, θ0) must be specified, which,
through Eq. (11), gives the magnetic flux on the boundary
z = 0. The boundary flux of the background field Bb is given
by Eq. (16), it has a maximum value of 1, which is also
the maximum value of the whole field since it decays in z.
We have chosen the azimuthally-symmetric form φ0(ρ0, θ0) =
0.5 φc (cos(πρ0) + 1), where φc is a constant determining the
maximum value of φ0. This controls the relative strength of the
tubular field with respect to the background field. In this study
we choose φc = 1 to contrast and compare the behaviour of a
flux tube of roughly equal strength to the background field, we
also report briefly on results of φc = 3 and φc = 6, flux tubes
significantly stronger than their background .

4. Numerical simulation

The superposition Bt + Bb, as described in Sect. 3, defines an
initial configuration. This field will not generally be in equilib-
rium, unlike the toroidal twisted fields used in Fan & Gibson
(2007), Kliem et al. (2004, 2010, 2012), Leake et al. (2014) for
which an equilibrium within the background dipole field can be
found (Titov & Démoulin 1999). The relative complexity of our
background field, tube morphology and internal structure, make
finding an analytical equilibrium unfeasible. That said, we note
that there is evidence that braiding is a dynamic phenomenon
(van Ballegooijen et al. 2014), and it is reasonable that we might
see complex internal structures built up relatively quickly in the
corona. In this paper, we investigate whether our twisted and
braided configurations are physically feasible by studying their

structural stability in resistive-MHD simulations. To keep things
simple, we also avoid boundary motions. This allows us to focus
on the questions of how the processes of ideal evolution and re-
sistive reconnection alter the field, and whether an equilibrium
that retains the magnetic structure can be found.

4.1. MHD equations

We evolve the initial field Bt + Bb by using the Lare3D
Lagrangian-remap code (Arber et al. 2001) to solve the resistive-
MHD equations on a Cartesian box {−π ≤ x, y ≤ π, 0 ≤ z ≤ 3π},
at resolution 264×264×396. The initial tube’s maximum height
is less than 4 so this gives room for any reasonable vertical ex-
pansion. For simplicity, we apply line tied boundary conditions
on all boundaries. This means that we must stop the simulations
before reflecting waves from the boundary come to dominate.
The code solves the following equations

∂ρd

∂t
= −∇ · (ρdu), (20)

ρd
du
dt

= j × B − ∇p + ∇ · σ, (21)

∂B
∂t

= ∇ × (u × B) − ∇ × (η j), (22)

ρd
∂ε

∂t
= −p∇ · u + η j2 + e : σ, (23)

p = ρdε(γ − 1), (24)
µ0 j = ∇ × B. (25)

Here ρd is the mass density, u the plasma velocity, B the mag-
netic field, j the current density, p the plasma pressure, σ the
stress tensor, ε the specific internal energy, η the resistivity, e the
strain tensor, and γ = 5/3. The viscous term ∇ · σ in Eq. (21)
includes no background viscosity, but only shock viscosity to
prevent unphysical oscillations and approximate the jump in en-
tropy across shocks. The shock viscosity takes the form given in
Bareford et al. (2013), and we use the same successful parame-
ter values ν1 = 0.1, ν2 = 0.5. There is a corresponding heating
term ε : σ in Eq. (23). We initially set ν = 1 and ε = 0.01 in
non-dimensional units. In these units, one unit of time is equal
to the time taken by an Alfvén wave with B = ρ = 1 to move
a unit distance in the box. The simulations presented here use
a uniform resistivity of 5 × 10−4, a value found from experi-
ence to be just above the numerical resistivity at this resolution.
This system and parameter set is the same as that used in Yeates
et al. (2015). The initial velocity is assumed to vanish every-
where so that any motion will result from the field attempting
to relax to equilibrium. The diffusion time of the rope/braid, the
square of its radius divided by the resistivity, is approximately
500. In practice our simulations ended a long time before this,
so any significant global evolution of the rope is likely due to
dynamical behaviour.

4.2. Resulting relaxation

The results presented are for φc = 1, so that Bt is roughly of
equal strength to its background Bt. The simulations were run
until boundary effects became too significant and the timestep
increased dramatically. In both cases we shall see the chang-
ing energy had begun to plateau at this point and in both cases
had reached a force-free state. The twisted simulation ran for
just over twice as long (t ∈ [0, 9.8]) as the braided simulation
(t ∈ [0, 4.2]).
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(a)

(b)

(c)
.

Fig. 6. Snapshots of the twisted core at t = 0 a), t = 4.9 b) and t = 9.8 c).
The field is seen to expand and flatten slightly. There also appears to be
a counter-clockwise (from above) rotation of field lines at the apex of
the rope.

The evolution of the field lines composing the cores of the
twisted and braided tubes is shown in Figs. 6 and 7 respectively.
The field lines are drawn by choosing a set of curves anchored
at locations in the initial footpoints of the twisted tube and in the
individual strands of the braid. The twisted curves clearly ex-
pand during the evolution. It can also be seen they rotate (anti-
clockwise as seen from above). A number of field lines peel
away from the structure (there is a significant change in their end
points), and the increasing number of such field lines suggests
that reconnection between the flux rope and the background field
is occurring. The evolution of the braided field lines of Fig. 7 is
less clear, other than a general radial expansion of the tube and
a decrease in the height of the core’s apex. Again, there also ap-
pears to be substantial reconnection with the background field
with an increasing number of field lines which begin at the foot-
point of the original braid being directed away from the core of
the rope/braid.

(a)

(b)

(c)
.

Fig. 7. Snapshots of the braided cores at t = 0 a), t = 2.1 b) and
t = 4.2 c). The curves are coloured based on their start points as belong-
ing to one of the three initial braid footpoints. The interference of the
background field is clear as an increasing number of field lines which
would have originally belonged to the braid can be seen to have recon-
nected with the background field.

Contour plots of the current density (|| j||), shown in Figs. 8
(twisted) and 9 (braided), give more clarity. We choose a fixed
level of 0.5, half of the maximum in the background field. The
braided structure can be seen with much greater clarity than for
the field line plots. In both cases the outer layer of current (be-
tween the tube and the surrounding background field) expands to
leave a core of current. The twisted core is itself a tube, whilst the
braided curve has a fractured structure. This is consistent with
the results of Wilmot-Smith et al. (2011), who found fields with
complex braiding to develop a more diffuse small-scale current
structure. In our simulations the outer expanding front continues
until it reaches the line-tied boundary of the domain where it is
reflected back and the simulation is stopped.

Plots of the Lorentz force magnitude (|| j × B||) are shown in
Figs. 10 and 11; both fields relax such that the Lorentz force is
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(a)

(b)

(c)
.

Fig. 8. Snapshots of contours of constant current density || j|| = 0.5 for
the twisted rope at t = 0 a), t = 4.9 b) and t = 9.8 c). In a) we see the
flux rope’s initial morphology, in b) the outer layer of current expanding
to expose the rope’s remaining core, and in c) that the core is clear and
forms a tubular shape similar in radius to the initial tube but with a lower
apex.

significantly reduced (except at the line tied boundary). For the
t = 9.8 braid configuration the maximum Lorentz force (away
from the boundary) is 0.69 and the mean value 0.006, by com-
parison at t = 0 the maximum value is 20.6254 and the mean is
0.093. For the t = 4.2 braid configuration the maximum Lorentz
force (away from the boundary) is 0.47 and the mean value
0.00195, by comparison at t = 0 the maximum value is 44.96
and the mean is 0.040. Also shown in Fig. 12 are plots of the
change in magnetic, kinetic, and internal energy and their sum.
The magnetic energy is converted into kinetic and internal en-
ergy, whilst the total sum is well conserved. The change in each
quantity is larger for the twisted field, though we note that the
initial magnetic energy of the twisted field over the braided field
has a ratio ≈1.65, and taking this ratio into account the changes

(a)

(b)

(c)
.

Fig. 9. Snapshots of contours of constant current density || j|| = 0.5 for
the braided flux rope at t = 0 a), t = 2.1 b) and t = 4.2 c). In a) the braid
structure is clear. In b) the outer layer of current expands exposing a
clear core seen in c); by comparison to the twisted case it is significantly
fractured.

are comparable. Initially the magnetic energy is converted into
mostly kinetic energy, after which this kinetic energy decreases
steadily at a slow rate. With our line-tied boundaries and in the
absence of a uniform viscosity, small scale motions persist in our
simulation. Comparing the braided and twisted plots we see that
the change in kinetic energy occurs at a significantly faster rate
for the braided field, in which the more complex field structure
generates dissipative losses at a faster rate (Fig. 13a). After this,
the internal energy increases significantly before levelling off, as
a result of both ohmic heating and viscous heating (Fig. 13a);
in common with previous simulations by Bareford et al. (2013).
There is more viscous heating than ohmic heating, also the val-
ues of both quantities are larger for the twisted field. However,
when the difference in initial energy is accounted for, we find
both types of dissipation to be roughly similar for the two fields
(Fig. 13b). So in both cases the fields have relaxed to fairly stable
structures. That the initial kinetically driven change is insensi-
tive to the resistivity was suggested by re-running the simulation
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(a)

(b)

(c)
.

Fig. 10. Snapshots of contours of the Lorentz force magnitude for the
twisted rope, at t = 0 a), t = 4.9 b) and t = 9.8 c). In a) the background
is force-free whilst the tube has an associated Lorentz force. In b) we
see the force beginning to dissipate.c) the force has all but disappeared
except on the boundary.

with a resistivity 5×10−3 (an order of magnitude larger); barring
a small increase in the amount of ohmic dissipation the plots re-
mained almost unchanged.

Figures 14 and 15 show the distribution of a proxy of the
emission which might be viewed by line-of sight imaging in
extreme-ultraviolet or X-ray wavelengths (Cheung & DeRosa
2012). We average the square of the current density ( j · j) along
all field lines in the domain, then integrate this quantity vertically
to mimic the line of sight view. The initial sigmoidal shape can
be seen in (a) for both the twisted and braided fields. The field
lines which peel off the ropes are also present, these field lines
have significantly contorted geometry and high current. In (b),
for both fields, we see the expansion of the outer current layer.
In Figs. 14b and c the outline of the emergent core flux rope
seen in Fig. 8c is again visible; relative to the initial sigmoid (a)
it is far less kinked. The indicated rotation of the tube is of the

(a)

(b)

(c)
.

Fig. 11. Snapshots of contours of the Lorentz force magnitude for the
braided rope, at t = 0 a), t = 0.49 b) and t = 4.2 c). In a) the background
is force-free whilst the braid structure has an associated Lorentz force.
The force has reduced significantly in b), leaving a fracture structure.
c) The force has all but disappeared except on the boundary.

same chirality as the rotation of the twisted field lines seen in
Fig. 6. By comparison the final braided shape in 15c is much
more complex and diffuse.

To summarise: both twisted and braided fields relax to a sta-
ble state for which the tubular structure is still clearly present.
In both cases there is an initial current expansion to leave a core
structure with sigmoidal morphology. The final braided state is
much more complex than the twisted state in that its current
structure is diffuse and composed of small scale current islands,
whilst the twisted case retains a more regular tubular morphol-
ogy. The integrated current plots (Figs. 14 and 15) are of partic-
ular interest as they raise the possibility that one might be able
to recognise the signature of a more complex internal tube mor-
phology through line-of-sight observation.

Whilst we can clearly observe large scale rotation of the
twisted field, it is not clearly apparent what is happening inter-
nally in the (initially) braided tube. To investigate the internal
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Fig. 12. Plots of the magnetic, kinetic, internal and (normalised) total
energy as a function of time for both the braided and twisted simula-
tions. The, magnetic, kinetic and internal energy plots show the differ-
ence from their values at t = 0. In both cases the magnetic energy is
converted into kinetic and internal energy. Two phases can be identi-
fied. The first is a rapid change as the magnetic is converted into ki-
netic energy and internal energy increase (t ∈ [0, 0.1] for the braid and
t ∈ [0, 35] for the twisted field). In the second phase the kinetic energy
levels off and then falls steadily, whilst the internal energy increases
gradually. The loss of magnetic energy of the twisted field is larger than
the braided field.

topology, we consider an average local twisting rate along field
lines.

For a field line f (l) of arclength Lf whose footpoint coordi-
nates are (xf , yf), we define the integrated quantity

Lf( f (l)) =
1
L

∫ Lf

0

j · B
B · B

dl =
1
L

∫ Lf

0

B · ∇ × B
B · B

dl, (26)

which represents the mean rotation of the local field lines around
f (l). For a linear force-free field j · B = αB · B and Lf is
just the linear force-free parameter α, which would be constant
throughout the domain. This quantity was calculated for relax-
ing braided and twisted cylindrical fields in Wilmot-Smith et al.
(2011), Yeates et al. (2015). These authors found that a twisted
field relaxed to a force-free state with a single sign of α within
the tube, although the surrounding background field prevented
it from reaching the spatially constant α predicted by the Taylor
relaxation hypothesis. By contrast, they found braided tubes to
relax to form two force-free flux tubes with α values of equal
and opposite sign, entirely contrary to the Taylor hypothesis.
Here we consider the distribution Lf(x, y) of local twisting for
each field line anchored at points (x, y). Since we are really
interested in the flux rope core we concentrate on the domain
−1.320365 ≤ x ≤ −0.010365, −2.3702 ≤ y ≤ −1.1702, which
contains the flux rope’s starting footpoint.

Evolution of Lf(x, y) for the twisted field is shown in Fig. 16.
It has one dominant (negative) sign consistent with the sign of
twisting initially imposed in the tube. The magnitude of twist-
ing decreases with time, consistent with the loss of twisting
through rotation induced writhing of the tube, which was ob-
served in Figs. 8 and 14. The twist-writhe decomposition of he-
licity (Berger & Prior 2006) tells us to expect a loss of twisting
upon global rotation of the tube. The other feature is the region
of positive Lf values on the tube edge. This corresponds to the
set of field lines which connect to the background field, as seen
in Fig. 6. The increase in size of this positive Lf region is consis-
tent with the reconnection of the tube and the background field

(a)

(b)

Fig. 13. Viscous (unbroken lines) and ohmic (dashed lines) heating dur-
ing the simulations. In a) we see, similar to the energy plots, the braided
quantities increase at a quicker rate than the twisted quantities. In both
cases the viscous dissipation is larger than the ohmic heating by roughly
a factor of 5. b) Shows the same quantities with the braided quantities
scaled by the ratio of the initial twisted to braided energy (1.65), at the
point where the simulations end the viscous dissipation is roughly the
same.

observed in Figs. 6b and c. Outside the tube there is a constant
value of Lf = 0.5 from the background linear force-free field.

The distribution of Lf(x, y) for the braided field is shown in
Fig. 17. At all three times both signs of Lf are observed and
present with significant magnitudes. Comparing (b) and (c) to (a)
we see an increase in the area of which the magnitude of L(x, y)
is greater than 2 (for both signs), indicating a move towards more
inhomogeneous and extreme twisting geometries; this contrasts
to the general decrease in magnitude of Lf in the tube’s interior,
due to writhing of the twisted field. In (b) and (c) there are sev-
eral observable regions of a particular sign of Lf , in particular
there are two large regions with a dominant sign Lf , one positive
one negative, though neither are homogeneous. Whilst it is not
the clear splitting into two tubes found in Wilmot-Smith et al.
(2011), Yeates et al. (2015), it is indicative that the tube has not
relaxed to a linear force-free state. Unlike the twisted field it is
not clear what the effect of reconnection with the background
field has had on the distribution.

We remark that the same set of simulations and analysis were
performed for fields with φc = 3 and φc = 6, i.e. flux ropes
of strength significantly greater than the background field Bb.
The relative weakness of the background field meant that the
field lines of both tubes expanded to greater radii. However, we
did not observe any significant kinking reminiscent of the type
of eruptive event seen in the toroidal twisted tube simulations
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(a)

(b)

(c)

Fig. 14. Snapshots of the vertically integrated current for the twisted
field at t = 0 a), t = 4.9 b) and t = 9.8 c). In a) we see the Z-sigmoidal
shape of the initial tube. b) Shows that the tube’s outer current layer has
expanded. In c) the outer shell has further expanded leaving an inner
rope structure which is far less kinked than in a). The rotation of the
tube core from a) to c) is counter-clockwise.

(a)

(b)

(c)

Fig. 15. Snapshots of the vertically integrated current at t = 0 a), t =
2.1 b) and t = 4.2 c). In a) we see the braided structure projected.
b) Shows that the tube’s outer current layer has expanded. In c) the outer
shell has further expanded leaving an inner shell with a significantly
fractured set of current peaks.
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(a)

(b)

(c)

Fig. 16. Snapshots of the local twisting distribution Lf(x, y) on a subdo-
main of the boundary plane which contains the initial tube footpoint, at
the beginning a), middle b) and end c) of the twisted field simulation.
The sign is largely negative except at the tube edge.

(a)

(b)

(c)

Fig. 17. Snapshots of the local twisting distribution Lf(x, y) on a sub-
domain of the boundary plane which contains the initial tube footpoint,
at the beginning a), middle b) and end c) of the braided field simula-
tion. Both positive and negative values are present and the magnitude
increases in b) and c).
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(Fan & Gibson 2007; Kliem et al. 2004, 2010, 2012; Leake
et al. 2014). The current structure was qualitatively similar to the
results reported above (their magnitude aside) and in all cases the
field relaxed to a force-free state with the energy plots levelling
off as in Fig. 12. Finally, accounting for magnitude, the Lf dis-
tributions were very similar. We do not present that data here as
it does not add significantly to the conclusions. We remark that
it is possible the line tied boundary conditions of the simulation
could have affected these simulations more significantly than the
φc = 1 case. Performing the simulations in a larger box might
have allowed the flux tube to displace the background field in
a more significant manner, allowing for more dramatic changes
in morphology. This possible effect would be more marked for
the higher φc simulations as they expand to a greater degree. In
this study we wanted a reasonable resolution for which we could
perform a number of simulations in order obtain an understand-
ing of how such sigmoidal braided structures would respond.
Increasing the domain size whilst maintaining the same resolu-
tion would lead to a significant increase in simulation time and
this task is left for a future study.

5. Conclusions

A new technique for generating magnetic flux tubes of arbitrary
axial geometry, varying radius and internal geometry, was in-
troduced in Sect. 2. A procedure for embedding this field over
the neutral line of a boundary flux distribution was also estab-
lished (Sect. 3). The ultimate aim for introducing this technique
is to explore the relationship between the internal structure and
evolving global morphology of coronal flux ropes with realistic
geometry. It is hoped that this will provide insight to comple-
ment the currently available observational data for the corona.

Sect. 4 reports the results of initial simulations of a sig-
moidal flux tube embedded in a linear force-free field, generated
by a quadrupolar distribution. Tubes were created containing
both twisted and braided internal fields. In both cases the tube
was seen to relax to a state with significantly reduced Lorentz
force, whilst its magnetic, kinetic and internal energies began
to plateau, indicating the tube had stabilised itself. The current
structure of the two fields differed significantly, with the braided
field developing a more complex structure. The current density
projected onto the photospheric boundary differed significantly
for the two tubes in their relaxed state, with the twisted field ex-
hibiting the usual sigmoidal morphology, whilst the braided field
yielded a more complex small scale distribution. This suggests a
possible means of observing evidence of flux tubes with signifi-
cantly tangled internal structures.

The main advantage of this procedure is its flexibility. Apart
from a certain level of smoothness, the axial geometry is not con-
strained. The control over the internal structure is also significant
as one can use either multiple sub-tubes or overlapping fields to
generate a significant variety of internal geometries. The fields
produced are divergence free to a high degree of accuracy. By
allowing for varying tube radii one might also be able to account
for the rapidly varying tube radii seen in the photosphere-corona
transition layer. There are some technical issues that must be
considered when creating the fields. For axial curves with sig-
nificant curvature the tube radius must be limited in order to
ensure the tubular co-ordinate system Eq. (2) is well defined
(Sect. 2.1.2). Also, more complex tubular structures will require
either large or adaptive grids in order to be resolved. One poten-
tial drawback is the fact that the composite field of the braided
flux rope Bt and the background field Bb will not generally be

in equilibrium. There is no way of knowing that the structure
created will be stable. This may not be too much of a problem
as the corona is a dynamic environment, so starting at a static
equilibrium is not essential in principle. That said, there are sig-
nificant advantages to beginning at an equilibrium state, such as
the ability to perform parameter studies which can highlight the
effect of a particular parameter, or change in state, in trigger-
ing the various MHD instabilities which flux ropes can undergo
(see Schmieder et al. 2013, for a review). If a stable force-free
state is required one could apply an ideal relaxation (e.g. van
Ballegooijen 2004; Pontin et al. 2011). The example simulations
of Sect. 4 suggest that placing the tube over the photospheric
neutral line could be a means of producing a force-free tube with
complex internal topology and specific sigmoidal structure. A
limitation of the current method for specifying the internal field
is the fact that it is not easy to include singular points in the field.

The simulations provide some tentative evidence that tangled
flux ropes could persist for significant time periods in the corona.
That said, there are a number of questions raised by the simula-
tions which deserve attention in future studies. Would the flux
tubes have remained stable if they had been contained in a larger
domain which may have given more freedom for the tube to dis-
place the containing background field? If the reflecting waves
caused by the line tied boundary conditions had not forced the
simulation to be terminated, could reconnection have eventu-
ally rendered the fields unstable, or alternatively reach a genuine
linear force free state? What would have happened with back-
ground fields Bb of differing α, a potential field with the same
boundary flux or a nonlinear force-free field, and how important
is the distribution of the boundary flux sources? Can some dis-
tributions stabilise the flux rope where others cannot? Finally,
we chose a somewhat idealised initial pigtail braid distribution.
There is a huge range of different internal distributions which
differ significantly from this pigtail in both braided and twisted
field structure; are there certain classes of internal topologies
which behave in a similar manner?

Part II of this study will tackle some of these questions
through a multitude of simulations in which the parameters men-
tioned in the previous paragraph are varied systematically. An
additional study will recreate erupting twisted toroidal flux rope
simulations and compare the same initial system with an inter-
nally braided flux rope replacing the twisted one. In this case we
know that there is a guaranteed loss of stability of the twisted
field, so one could test whether a braided distribution could sta-
bilise the flux rope when a twisted geometry does not. Beyond
this, the next step would be to include boundary motions. A good
number of the studies summarised in Wilmot-Smith (2015) take
initially straight fields in Cartesian box and attempt to braid them
with small scale shearing motions. Using the techniques detailed
here one could perform the a similar study in a sigmoidal flux
rope whose initial internal structure is undistorted (a field speci-
fied by the map T with u3 = 0).
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Appendix A: Explicit Expression for ∇ · N

In order to obtain the magnetic field N from Eq. (11) we need
the divergence of N. Since we can express this field generally
in tubular coordinates (ρ, θ, s), it would be easier to calculate the
divergence in this coordinate system. In an arbitrary coordinate
system (x1, x2, x3) the divergence takes the form

∇ · N =
1
g

∂

∂xi
(gNi) , g =

√
det(gi j), (A.1)

where Ni are the coordinates of N in tubular co-ordinates {∂/∂xi}

(see e.g. Frankel 2011). Comparing Eqs. (13) to (5), we see that,
in our tubular coordinates,

d f
ds

=
∂

∂s
+ ψ′

∂

∂θ
+
ρ

R
R′

∂

∂ρ
· (A.2)

For our tubular coordinate system, we found in Sect. 2.1.2 that
g = ρR2 + ρ2R3(u1 sin θ − u2 cos θ

)
. With Ns = 1/λ, Nθ = ψ′/λ,

and Nρ = R′ρ/(Rλ), we obtain

∇ · N =
1
g

 ∂g
∂sλ −

∂λ
∂s g

λ2

 +
ψ′

g

 ∂g
∂θ
λ − ∂λ

∂θ
g

λ2


+
ρ

R
R′

g

 ∂g
∂ρ
λ − ∂λ

∂ρ
g

λ2

 +
R′

R
1
λ
, (A.3)

∂g

∂s
= 2ρRR′ + 3ρR2R′(u1 sin θ − u2 cos θ) (A.4)

+ ρ2R3(u′1 sin θ − u′2 cos θ),
∂g

∂θ
= ρ2R3(u1 cos θ + u2 sin θ), (A.5)

∂g

∂ρ
= R2 + 2ρR3(u1 sin θ − u2 cos θ) (A.6)

∂λ

∂s
=

1
λ

[
(ρR′(u1 sin θ − u2 cos θ) (A.7)

+ ρR(u′1 sin θ − u′2 cos θ))(1 + ρ(u1 sin θ − u2 cos θ))

+ ρ2R2ψ′′ψ′ + ρ2RR′(ψ′)2 + ρ2R′R′′
]
,

∂λ

∂θ
=

1
λ

[
ρR(u1 cos θ + u2 sin θ)(1 + ρR(u1 sin θ − u2 cos θ))

]
,

(A.8)
∂λ

∂ρ
=

1
λ

[
(u1 sin θ − u2 cos θ)(1 + ρR(u1 sin θ − u2 cos θ)) (A.9)

+ ρR2(ψ′)2 + ρ(R′)2
]
.

Note that λ has an additional dependency on s, as the function
θ is not just the co-ordinate but varies through the relation θ =
θ0 +ψ(s). This is not the case for the derivatives of gwhich relate
to the co-ordinate map T not the field line f .
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