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ABSTRACT

We introduce a technique for generating tubular magnetic fields with arbitrary axial geometry and internal topology.
As an initial application, this technique is used to construct two magnetic flux ropes that have the same sigmoidal
tubular shape, but have different internal structures. One is twisted, the other has a more complex braided magnetic
field. The flux ropes are embedded above the photospheric neutral line in a quadrupolar linear force-free background.
Using resistive-magnetohydrodynamic simulations, we show that both fields can relax to stable force-free equilibria
whilst maintaining their tubular structure. Both end states are nonlinear force-free; the twisted field contains a single
sign of alpha (the force-free parameter), indicating a twisted flux rope of a single dominant chirality, the braided field
contains both signs of alpha, indicating a flux rope whose internal twisting has both positive and negative chirality.
The electric current structures in these final states differ significantly between the braided field, which has a diffuse
structure, and the twisted field, which displays a clear sigmoid. This difference might be observable.
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1. Introduction

Magnetic flux ropes are observed in the Sun’s coronal region
over all activity cycles. They are believed to play a critical
role in active region phenomena, such as sigmoid formation,
coronal eruptions and coronal mass ejections (e.g. Mandrini
et al. 2005; Okamoto et al. 2008; Cheng et al. 2011; In-
oue et al. 2015). Additionally flux ropes can be observed in
non active regions (e.g. Gibson et al. 2006; Su et al. 2015).
Through modelling it has been argued that flux ropes can
either enter the corona by rising through the Sun’s convec-
tion zone (e.g. Archontis & Török 2008; Fan 2009; Manch-
ester IV et al. 2004; MacTaggart 2011) or, alternatively, be
formed in the coronal region due to gradual shearing (van
Ballegooijen & Martens 1989) or strong shearing motions
(e.g. Aulanier et al. 2010; Longcope & Beveridge 2007).

Often, however, authors address the subsequent be-
haviour of a toroidal flux rope placed at the heart of a
background field. This approach is particularly prevalent
in active-region modelling where flux ropes with an inter-
nal twisted structure are forced into instability through
various mechanisms, often leading to ejection (e.g. Fan &
Gibson 2007; Kliem et al. 2004, 2010, 2012; Leake et al.
2014). This “kink” instability drives the flux rope to adopt
a kinked structure through rotation about its apex (see Fig-
ure 1). Such geometries appear as either S or Z shapes in
projection, and are commonly referred to a “sigmoidal” in
reference to the assumption that they explain the S- and
Z-shaped sigmoid current structures viewed in soft-X-ray
emission (e.g. Titov & Démoulin 1999; Gibson et al. 2006;
Green et al. 2007). It should be noted that the simulations
mentioned above often yield S or Z shapes with significant
symmetry, whilst in general there is a much larger variety

of sigmoidal morphologies observed in the corona (Prior &
Berger 2012).

(a) (b)

Fig. 1. Idealisation of the process by which an initially toroidal
tube (a) rotates about its apex to form a kinked structure (b).
This tube in (b) appears as an S shape when projected down.
The morphology of (b) is characteristic of a sigmoidal geometry.

In addition to active-region modelling, a second area of
interest in coronal magnetic field modelling concerns the
internal structure of tubular fields. A rough interpretation
of Parker’s hypothesis (Parker 1972; Janse et al. 2010) is
that the unusually high temperature of the coronal region
can be explained by the creation of significantly complex
field structure due to turbulent photospheric motions. This
would lead to the formation of dense regions of current
within the field, because of either field discontinuities or
sharp field gradients. These sheets provide regions in which
reconnection is promoted, enabling magnetic energy to be
converted to heat in the surrounding region.

Geometrically, the existence of a large number of small
current sheets manifests itself in complex entanglement of
the magnetic field lines (see e.g. Janse et al. 2010). Field
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lines are curves f associated with B through solutions of
the O.D.E
df

ds
=

B

||B||
. (1)

With this in mind a number of authors have addressed the
question: what effect do complex (braided) patterns have on
a magnetic field’s evolution? A significant number of studies
have considered the problem of developing magnetic braid-
ing through boundary motion. Magnetic fields defined in a
Cartesian box, with the initial field structure a set of ver-
tical lines, are subjected to a variety of boundary motions
such as shearing flows of various scales. Various relaxation
techniques are used to calculate the evolving field and cur-
rent structure; often these techniques are quasi-static. Typ-
ically the evolution leads to the formation of thin layers of
current and much interest is focused on the width of these
layers (see Wilmot-Smith 2015). In addition a number of
studies have attempted to estimate the amount of heat-
ing that braided reconnection could produce, in order to
test Parker’s hypothesis (e.g. Galsgaard & Nordlund 1996;
Craig & Sneyd 2005; Berger & Asgari-Targhi 2009; Ng et al.
2012; Rappazzo & Parker 2013; Yeates et al. 2014a; Pontin
et al. 2011).

Of particular relevance to this study, van Ballegooi-
jen et al. (2014) explored the relationship between foot-
point motions and the possible formation of braided struc-
tures, finding braiding to be a dynamic rather than quasi-
static phenomenon. This raises the possibility that complex
braided structures could be built before the field relaxes to
equilibrium. Of most relevance to this study are a series
of numerical experiments which compare the effect of pre-
existing braided structures in a cylindrical domain on the
field’s eventual evolution, by comparison to twisted cylin-
drical fields (e.g. Yeates et al. 2010; Wilmot-Smith et al.
2011; Wyper & Pontin 2014; Yeates et al. 2014b). One no-
table finding was that the braided fields typically released
more energy than their twisted counterpart (for the same
given starting energy). It was also found that the final end
state differed, with the braided field splitting into two sep-
arate force free flux tubes of opposing chirality and the
twisted field remaining as one tube with a single chirality.
To the best of our knowledge there has been no systematic
attempt to study the effect of significantly entangled field
line configurations in flux ropes with realistic sigmoidal ge-
ometry (Wilmot-Smith 2015). The extra degree of freedom
afforded by the (possibly) changing morphology of the rope
might have a significant effect on the field’s evolution.

It is currently not possible to resolve the precise internal
structure of coronal flux ropes using existing observations
(Reale 2010). However, it may be possible to infer aspects
of the internal structure indirectly if observable properties
of flux ropes – such as their stability or overall shape –
depend in a clear manner on the internal structure. For
example the helical kink instability of twisted flux tubes
can be used to link the eruption of toroidal magnetic flux
rope to the presence of a twisted internal field structure
(e.g. Linton et al. 1996; Titov & Démoulin 1999; Kliem
et al. 2004). To determine whether such a clear dependency
exists in coronal geometries is the overall goal of this work.
There is no clear evidence either way of whether flux ropes
with internally braided structure either exist or persist for
any length of time in the coronal region, although recent
high-resolution observations by Cirtain et al. (2013) have

(a) (b)

(c)

Fig. 2. Visualising the field creation process. (a) depicts a set of
braided curves (in the form of the pigtail braid) on the left, and
a set of twisted curves on the right. (b) depicts the pigtail braid
embedded within a sigmoidal tube shape. (c) depicts the em-
bedding of this tube in a Cartesian coordinate system, over the
neutral line of a background quadrupolar flux distribution de-
fined at the plane z = 0 (which plays the role of the photosphere
in what follows).

been interpreted as the apparent braiding of coronal loop
strands.

There is good reason then to consider modelling flux
tubes with both realistic sigmoidal shape and complex in-
ternal structure, to see whether the observed evolution of
a flux rope can reliably yield any information about its
internal structure. With this in mind we detail here a tech-
nique for generating magnetic fields with arbitrarily com-
plex tubular shape and internal structure. An example is
shown in Figure 2, where a braid is superimposed onto a
sigmoidal tube, (a) to (b), a process described in Section
2. This tube is then embedded along the neutral line of a
boundary flux distribution, (b) to (c), a process described in
Section 3. Our technique gives complete control over both
the global and internal structure of the flux rope, and hence
provides a means by which we can explore the effect of inter-
nal flux rope topology on its eventual evolution. In Section
4 we compare tubes with the same sigmoidal morphology
but both braided and twisted internal structures.
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2. Creating a tubular field

In this section we describe the mathematical technique for
constructing magnetic fields inside tubular domains of arbi-
trary axis shapes. We consider fields embedded in a Carte-
sian coordinate system with coordinates (x, y, z). Each field
is defined by choosing (i) the tube axis curve, (ii) the tube
cross-sectional radius as a function of length along the axis,
and (iii) a twist parameter describing the internal struc-
ture of the tube. In this paper, “twisted” flux ropes consist
of a single one of these tubular domains, while “braided”
ropes are generated by combining several of these tubular
domains.

2.1. Tubular domains

Our tubular domain takes the form of a tube of circular
cross-section centred on an axis curve r(s) : [0, L] → R3,
whose start and end points lie in the z = 0 plane. An exam-
ple is shown in Figure 3(a). We allow the tube radius R(s)
to vary with s; this possibility might be crucial to try to
capture the rapid change in tube radius which occurs in the
photosphere-corona transition region (e.g. van Ballegooijen
et al. 2014).

To define a coordinate system in our tubular domain T ,
we choose an orthonormal framing (d1,d2,d3) for r using
its unit tangent vector d3 = r′ (total derivatives with re-
spect to s will be denoted with a prime), and a vector field
d1 which lies in the normal plane of d3 (d3·d1 = 0,∀s). This
basis is completed with the vector product d2 = d3 × d1.
This frame is then extended to form a curvilinear coordinate
system by defining a map T (s, ρ, θ) : [0, L]×[0, 1]×S1 → R3

as

T (s, ρ, θ) = r(s) + ρR(s) (d1(s) cos θ + d2(s) sin θ) . (2)

2.1.1. Coordinate frame

To fully specify the coordinate system T for a given axis
curve r, we must specify d1 as a function of s. Intuitively,
this controls how much the coordinate frame rotates around
the axis as we move along the tube. As the basis {di} is
orthonormal, it is convenient to write its evolution with s
in terms of a triplet of scalar functions (u1(s), u2(s), u3(s))
(see e.g. Antman 2005, Chp 7) where d′1
d′2
d′3

 =

(
0 u3 −u2
−u3 0 u1
u2 −u1 0

)(
d1
d2
d3

)
. (3)

The functions u1(s) and u2(s) define rotations of the coor-
dinate frame due to bending of the axis curve (about two
independent directions), and in our case are fixed by the
chosen axis curve r. More precisely, given r we define the
functions u1(s) and u2(s) in terms of curvature κ and tor-
sion τ of r, with

u1(r, s) = κ(r, s) cos γ(r, s) , u2(r, s) = κ(r, s) sin γ(r, s) ,

(4)

γ(r, s) =

∫ s

0

τ(r, t) dt

κ(r, s) =
|r′ × r′′|
|r′|3

, τ(r, s) =
(r′ × r′′) · r′′′

|r′ × r′′|2
.

d1
d2

d3r

(a) (b)

(c)

Fig. 3. Tubular domains and curves. (a) depicts the tubular co-
ordinate system T defined in (2). (b) depicts a tubular domain
with u3(s) = 0, ∀s. The curves drawn in this domain are curves
of constant R and θ values. We see that the curves follow the
shape of the tube. (b) depicts a tubular domain with the same
axis curve as (a), but with u3(s) 6= 0 so that the curves of
constant (R, θ) value wind internally in the tube.

These specific forms for u1 and u2 are not the only pos-
sible choice (which amounts to a choice of the vector d1),
but they are the only forms for which the value of u3 is
independent of the specific form of r (Bishop 1975).

The function u3(s) then identifies the relative twisting of
the frame about d3, (with u3 = d3 · d1 × d′1). It represents
the degree of freedom we have in choosing the direction
of d1 as a function of s. For example, Figure 3(b) shows
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an untwisted frame (u3(s) = 0,∀s) with indicated lines of
constant (ρ, θ). By comparison 3(c) depicts the same co-
ordinate curves of a twisted coordinate frame (u3 6= 0).
Both curves have the same curvatures (u1, u2). The latter,
twisted, frame is actually the Frénet frame for this example.
To avoid introducing unnecessary twist through our choice
of coordinate frame, we do not use the Frénet frame but
rather an untwisted frame u3 = 0, meaning that γ 6= 0 in
general.

2.1.2. Metric geometry

Much of the analytic calculations which follow are per-
formed in our curvilinear coordinate system T . To employ
differential operators in this coordinate system we need
to know the metric structure of T . Under our choice that
u3 = 0, using the partial derivatives,
∂T

∂s
(5)

= (1 + ρR(u1 sin θ − u2 cos θ))d3 + ρR′(s)(cos θd1 + sin θd2),

∂T

∂ρ
= R(s)

(
cos θd1 + sin θd2

)
,

∂T

∂θ
= ρR(s)

(
− sin θd1 + cos θd2

)
,

we find the metric tensor gij = (∂T/∂xi)(∂T/∂xj), with
x1 = s, x2 = ρ, x3 = θ for this coordinate system, to be

gij = (6) (1 + ρR(u1 sin θ − u2 cos θ)
2 + ρ2(R′)2 ρRR′ 0

ρRR′ R2 0
0 0 ρ2R2

 .

For constant tube cross-section R this simplifies to

gij =

 (1 + ρR(u1 sin θ − u2 cos θ))
2 0 0

0 R2 0
0 0 ρ2R2

 . (7)

In both cases the Jacobian g =
√
det(gij) can be found

to be g = ρR2(1 + ρR(u1 sin θ − u2 cos θ)) = ρR2(1 +
ρRκ sin(θ − γ)) (using 4). Thus we require that R(s) <
1/κ(s) so that a tubular domain will not overlap itself lo-
cally, i.e. the coordinate system is locally well defined), (see
e.g. Frankel 2011). This does not preclude the tube from
overlapping itself non-locally, though for the purpose of this
study we will be choosing curves such that this is not the
case.

2.2. Field lines and the unit vector field

We define the magnetic field inside our tubular domain in
two stages: first we choose a unit vector field N that deter-
mines the field line structure, then we create a divergence-
free field B whose field lines are the same as those of N .

We define the unit vector fieldN in our tubular domain
T by specifying its integral curves f [ρ0, θ0](s), s ∈ [0, L],
which will become the field lines of B. A specific curve is
identified by its starting point (ρ0, θ0) on the end s = 0 of
the tube. Each curve is chosen to lie on a tubular surface
of constant ρ, but to twist around this surface as we move
along the tube, so that

f [ρ0, θ0](s) = T (s, ρ0, θ0 + ψ(s)), (8)

where ψ(s) is a function (the same for all curves) that con-
trols the twisting of the field, relative to the coordinate
frame. Thus if ψ(s) ≡ 0 (and R(s) ≡ 0), the curves have
the same morphology as the tube axis (the curves in Figure
3(b) are such a case). If ψ(s) 6= 0, then the curves twist
around the tube axis. We do not require ψ(s) is constant
or even positive-definite (the curves in Figure 3(c) have
ψ(s) = τ(s)). The set F =

{
f [ρ, θ0]|ρ ∈ [0, 1], θ0 ∈ S1

}
will

cover the whole tubular domain as s varies from 0 to L.
This specification means that the curves satisfy df/ds > 0
i.e. the curves only pierce each disc of constant s once.
Whilst it is perfectly possible to define curves which turn
back on themselves along the direction of the tube axis, it
is a harder task to define a set of curves which do this and
also cover the whole domain. For our purpose the set of field
line topologies covered by the definition F allows for suffi-
cient complexity to be of interest, whilst not complicating
matters.

Another possible further consideration would be to con-
sider fields for which the functions R and ψ also depend on
the ρ and θ coordinates in order to obtain more complex
configurations. In what follows we prefer to allow for such
further complexity by defining fields composed of multiple
tubes (Section 2.4); this approach greatly simplifies the an-
alytic considerations of what follows.

2.3. Divergence-free field

Our unit vector field N is turned into a divergence-free
magnetic field B = φN by specifying its magnitude φ ≡
||B|| at each point. This is determined entirely by choosing
the distribution of φ on the boundary s = 0 of the tube. To
see this, note that the divergence-free condition ∇ ·B = 0
implies that

∇φ ·N + φ∇ ·N = 0, (9)

⇒ 1

φ

dφ

dl
= −∇ ·N . (10)

By integrating along a field line f [ρ0, θ0](l) (where l is the
arclength parameter with N = df/dl),

we find that

B(f(l)) =Nφ0e
−

∫
f
∇·N dl, (11)

where φ0 is the value of φ at the field line’s base point
f [ρ0, θ0](0) = (ρ0, θ0, 0).

To obtain an explicit expression for N for the set F ,
we take the derivative of a field line with respect to s, the
arclength parameter of the central curve r. Thus

N(s, ρ, θ0, ψ) =
1

λ

df

ds
, λ =

∣∣∣∣∣∣∣∣dfds
∣∣∣∣∣∣∣∣ . (12)

The factor λ accounts for the fact that s will differ in gen-
eral from l, coinciding only when κ = 0 and u3 = 0. The
derivative is

df [ρ0, θ0](s)

ds

=
(
1 + ρR(u1 sin(θ0 + ψ)− u2 cos(θ0 + ψ))

)
d3

+ ρRψ′ (− sin(θ0 + ψ)d1 + cos(θ0 + ψ)d2)

+ ρR′ (cos(θ0 + ψ)d1 + sin(θ0 + ψ)d2) . (13)
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We may then find ∇ ·N , for which an explicit expression
is derived in Appendix A. Note that if φ′ = 0 then N
is already divergence-free and φ is simply conserved along
field lines.

2.4. Braided fields

(a)

(b)

Fig. 4. Braiding geometry. Panel (a) depicts a pigtail braid
whose centrelines are curves ri embedded in a tube Tb. Panel
(b) illustrates a stirring boundary motion which could be used
to create the pigtail structure in (a)

As mentioned above, we construct “braided” fields by
combining n tubular fields of the type defined above, inside
a larger tubular domain Tb(s, ρ, θ). Thus our braid is defined
by a set of n curves ri(s) = Tb(s, ρi(s), θi(s)), i = 1, . . . n
(an example is shown in Figure 4(a)). These curves ri can
then be each individually identified as the axis curve r

above and we can create a tubular field surrounding each
ri. It is this mechanism by which we add further complexity
to the set of fields that we can generate. Various algorithms
described in Berger (2001) or Bangert et al. (2002) could be
used to construct the ri for a particular braid; we give an
explicit example in Section 3. We first construct this braid
on a cylinder, providing functions ρi(s) and θi(s) in cylin-
drical coordinates for each ri. We then use these functions
as the tubular coordinates ρi(s), θi(s) in the overall domain
Tb. A "stirring" boundary motion which could be used to
create this braided field in an initially unbraided tube (with
u3 = 0) is shown in Figure 4(b) (a similar idea was used in
Berger & Asgari-Targhi (2009)). There is a formal math-
ematical relationship between the stirring of a fluid in a
two-dimensional environment and the mathematical braids
produced by creating three-dimensional space curves which
follow the time dependent stirring geometry. The pigtail
pattern shown in Figure 4(b) is the most complex possible
stirring motion (Boyland et al. 2000).

We can additionally define the individual strands of the
braid to have a net twist (a non trivial twisting function
ψi(s)). This kind of field might mimic the effect of both
static (unbraided) and moving vortex motions at the pho-
tospheric boundary. This idea will be explored further in
part II of this study.

2.5. Practical matters

2.5.1. Interpolating the Field

We intend to use these tubular fields (hereafter denotedBt)
in numerical simulations on a Cartesian grid. This means
we need to interpolate our field from the tubular coordinate
system (s, ρ, θ) onto a Cartesian grid. To do so we first take
a Cartesian point Cp = (x, y, z) and check if it is in the
tube by calculating its minimum distance to the tube axis.
That is we find the solution sCp

to(
Cp − r(s)

)
· d3(s) = 0, on s ∈ [0, L]. (14)

that minimises ||(Cp − r(s)||. This can be done using any
standard algorithm for root finding. If this minimum has
||Cp − r(sCP

)|| > R(s), then CP does not lie inside the
tube and we set Bt = (0, 0, 0). If ||Cp − r(sCP

)|| ≤ R it
does lie inside the tube and we calculate its (s, r, θ) coor-
dinates. We already have the s coordinate sCP

from our
root finding algorithm; we get the radial coordinate from
ρR = ||Cp − r(sCP

)||, finally we can solve

ρR [d1(sCP
) cos(θ0 + ψ(sCP

)) + d2(sCP
) sin(θ0 + ψ(sCP

))]

= Cp − r(sCP
). (15)

to obtain the principal value of θ0. Once these coordinates
have been obtained we know which field line f [ρ0, θ0] the
point Cp lies on and we can integrate (11) to obtain the
components of B.

2.5.2. Ensuring the field is divergence-free

Whilst B is divergence free by construction, we found in
practice that the interpolation error led to non-zero di-
vergence when transferred to a finite Cartesian grid. Since
maintaining the divergence-free condition to a high-degree
of accuracy is important in MHD simulations (Tóth 2000),
we added an additional divergence cleaning step. We take
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the field B produced by the interpolation routine described
in Section 2.5.1, and find a vector potential A such that
B = ∇ × A (this procedure is performed on a Cartesian
grid) . This vector potential can then be curled numeri-
cally to give a field B that is numerically divergence-free to
machine precision. The choice of A used in this procedure
has an effect on how faithfully the magnetic field direction
is maintained. We found the Biot-Savart gauge of Prior &
Yeates (2014) to work well for this task, as it ensured av-
eraging of the errors over space rather than concentrating
them along certain lines.

We found the process of transferring Bt to the Carte-
sian grid to be much more successful when the field strength
function φ(ρ0, θ0) tends smoothly to zero as ρ → R. For
the examples in Sections 3 and 4, we use the azimuthally-
symmetric function φ0(ρ0, θ0) = 0.5φc (cos(πρ0) + 1),
where φc is a constant. However, we should note that, other
than differentiability, there are no strict conditions on the
function’s radial decay; this function was merely a conve-
nient choice. It avoids a discontinuous B at the edge of
the tubular domain, and associated problems with inter-
polation. One could create distributions with far sharper
radial decay, but care would be needed to ensure that the
Cartesian grid used could resolve it sufficiently.

3. Example: twisted and braided flux ropes

This section describes the creation of some specific mag-
netic configurations designed to represent different possi-
ble internal structures (twisted and braided) of the same
overall magnetic flux rope in the low corona. These fields
are designed to be initial conditions for the comparative
resistive-MHD simulations performed in Section 4 on each
field.

3.1. Background field

In the coronal region flux ropes do not tend to exist in isola-
tion. Typically the rope is embedded in and connected to a
surrounding field. In this initial study, we embed our tubu-
lar fieldBt in in a force-free backgroundBb,∇×Bb = αBb,
an appropriate choice for the low corona where the magnetic
pressure dominates the plasma pressure (e.g. Priest 2003).
For simplicity here, we choose a linear force-free field in
the volume z > 0 specified by choosing a constant α and a
boundary flux distribution for Bz0 on z = 0. We define a
quadrupolar distribution (found to be the distribution most
commonly underlying solar filaments; Mackay et al. 2008),
which we specify as a sum of Gaussians

Bz0(x, y) =

4∑
i=1

Ai exp
(
−Bi((x− xi)2 + (y − yi)2)

)
(16)

where two of the Ai are positive and two negative. This
produces a set of 2-D Gaussian peaks centred at the co-
ordinates (xi, yi). In this particular study we use the param-
eters A1/2 = 1, A3/4 = −1, Bi = 5, i = 1, 2, 3, 4 and posi-
tions (x1, y1) = (−0.68π,−0.3π), (x2, y2) = (−0.2π, 0.5π),
(x3, y3) = (0.3π,−0.5π) and (x4, y4) = (0.7π, 0.4π), with
the distribution restricted to a square −π ≤ x ≤ π, −π ≤
y ≤ π and an alpha value α = 0.5. The parameter Ai is cho-
sen so that the maximum field strength of the background
field is 1. This will allow us to set the relative strength of

(a)

(b)

Fig. 5. Field lines of twisted (a) and braided (b) flux ropes
(primary colours) and the background linear force free field (light
colouring). Field lines can be seen to peel of the ropes as a result
of the influence of the background field Bb. These are the initial
conditions for the simulations in Section 4.

the embedded flux rope against 1. The parameter Bi chosen
so that the flux sources are sufficiently narrow so as not to
overlap. This flux distribution can be seen in Figure 2(c)
along with its neutral line which has has a z-shaped mor-
phology. We then generate the field on the domain z > 0
using the method detailed in Prior & Berger (2012). Field
lines of the initial composite field Bb+Bt, for twisted and
braided tubes, after interpolating to the Cartesian grid and
divergence cleaning, are shown in Figure 5. These examples
are the initial fields whose subsequent evolution is simulated
in Section 4. Field lines can be seen to peel off the tube
structure, an effect which is more prevalent in the braided
field. This is not a numerical artefact but is a result of the
superposition of the two fields.

3.2. Tube morphology

To find an appropriate shape for the centreline rt of the
overall tube Tb, we use the general observation that so-
lar filaments are located above neutral lines of the pho-
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tospheric flux distribution (Mackay et al. 2010). The Z-
shaped neutral line, Bz0(x, y) = 0, of our background
boundary flux distribution Bb forms a two-dimensional
curve (nx(t), ny(t)) t ∈ [−1, 1]. This can be seen in Figure
2(c). We define a three-dimensional curve s to be

rt =

(
nx(t), ny(t),

h

(1/2− fp1)(1/2− fp2)
(t− fp1)(t− fp2)

)
,

(17)

where t ∈ [−fp1, fp2], 0 ≤ fp1 < fp2 ≤ 1 and h is the
maximum height (z-coordinate) of rt. Since the neutral line
straddles the whole domain (Figure 2(c)), choosing fp1 = 0
and fp2 = 1 would mean that the curve rt had its footpoints
on the box boundaries; this would not be helpful as part
of the tube would then lie outside the domain. We found
values h = 3, fp1 = 0.15 and fp2 = 0.85 gave a reasonable
flux rope as depicted in Figure 2(c)). This forms the axis
curve of the overall tubular manifold Tb, within which we
can either create a twisted field or a braided field (with
several sub-tubes).

Care has to be taken as the parametrisation t will not be
the arclength of the curve. Whilst arclength is a convenient
parametrisation for analytic work, it is generally hard to
use in practice. This means that all arclength derivatives
detailed in Section 2 have to be calculated using

dg

ds
=

dg

dt

dt

ds
,

ds

dt
=

√
drt
dt
.
drt
dt
. (18)

3.2.1. Practical matters

The neutral lines in Bz0 distributions of the type in (16))
can be particularly sharp, while our field generation tech-
nique requires curves are at least C3 differentiable. To deal
with this, we smoothed the initial neutral line curve (nx, ny)
using a moving average and used a spline fitting routine in
Mathematica 10 to obtain an analytic curve for the centre-
line.

Another feature of the 2-D neutral line curve is that
the sharp transition in its mid-section can lead to curves rt
with high curvature values around their apex. The fact that
the tubular coordinate system becomes ill-defined when the
product κR ≥ 1 would lead to a failure in the field gener-
ating algorithm of Section 2 (the field strength diverges).
Thus we would have to limit the tube to be significantly
thin (make R small). Alternatively we found that by either
shuffling the positions of the Gaussian sources (changing
the (xi, yi) in (16)) or applying filtering techniques could
reduce the curvature of rt without significantly affecting
the basic morphology of the tube. This allowed for thicker
tubes allowing us to include more interesting topological
structure within the tube.

We also found that if the product κR became near to
1 then the resolution used to discretize the integral in (11)
had to be significantly high (> 50000) in order to lead to
a faithful recreation of the tubular field Bt after the clean-
ing process. This issue was overcome by using an adaptive
integration grid based on the value of the product κR.

3.3. Internal structure

In this study we are not addressing the challenging process
of generating braided structures by some time-dependent

physical process. Instead we compare two different internal
structures within the same tube of radius R = 5 whose axis
rt was defined in Section 3.2 (Figure 2(b)). The first is a
twisted field with axis rt, R = 5, and ψ = T /L, where L
is the arclength of rt (so that T is the total twisting). This
is compared with a braided structure, made up of three
untwisted (ψi = 0) internal strands of radius Ri = 0.2
which are linked in a pigtail braid

rpi =
(
0.5 sin(2πt+ di), 0.5 cos(4πt+ di), 10t

)
, (19)

d1 = 0, d2 = 1/3, d3 = 2/3,

as illustrated in Figure 2(a). The curves are contorted to fit
in the overall tube with axis rt.

Finally, the distribution φ0(ρ0, θ0) must be specified,
which, through (11), gives the magnetic flux on the bound-
ary z = 0. The boundary flux of the background field Bb

is given by (16), it has a maximum value of 1, which is
also the maximum value of the whole field since it de-
cays in z. We have chosen the azimuthally-symmetric form
φ0(ρ0, θ0) = 0.5φc (cos(πρ0) + 1), where φc is a constant
determining the maximum value of φ0. This controls the
relative strength of the tubular field with respect to the
background field. In this study we choose φc = 1 to contrast
and compare the behaviour of a flux tube of roughly equal
strength to the background field, we also report briefly
on results of φc = 3 and φc = 6, flux tubes significantly
stronger than their background .

4. Numerical simulation

The superposition Bt +Bb, as described in Section 3, de-
fines an initial configuration. This field will not generally
be in equilibrium, unlike the toroidal twisted fields used
in Fan & Gibson (2007); Kliem et al. (2004, 2010, 2012);
Leake et al. (2014). for which an equilibrium within the
background dipole field can be found (Titov & Démoulin
1999). The relative complexity of our background field, tube
morphology and internal structure, make finding an analyt-
ical equilibrium unfeasible. That said, we note that there is
evidence that braiding is a dynamic phenomenon (van Bal-
legooijen et al. 2014), and it is reasonable that we might
see complex internal structures built up relatively quickly
in the corona. In this paper, we investigate whether our
twisted and braided configurations are physically feasible
by studying their structural stability in resistive-MHD sim-
ulations. To keep things simple, we also avoid boundary
motions. This allows us to focus on the questions of how
the processes of ideal evolution and resistive reconnection
alter the field, and whether an equilibrium that retains the
magnetic structure can be found.

4.1. MHD equations

We evolve the initial field Bt + Bb by using the
Lare3D Lagrangian-remap code (Arber et al. 2001) to
solve the resistive-MHD equations on a Cartesian box
{−π ≤ x, y ≤ π, 0 ≤ z ≤ 3π}, at resolution 264×264×396.
The initial tube’s maximum height is less than 4 so this
gives room for any reasonable vertical expansion. For sim-
plicity, we apply line tied boundary conditions on all bound-
aries. This means that we must stop the simulations before
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reflecting waves from the boundary come to dominate. The
code solves the following equations

∂ρd
∂t

= −∇ · (ρdv), (20)

ρd
dv

dt
= j ×B −∇p+∇ · σ, (21)

∂B

∂t
= ∇× (v ×B)−∇× (ηj), (22)

ρd
∂ε

∂t
= −p∇ · v + ηj2 + e : σ, (23)

p = ρdε(γ − 1), (24)
µ0j = ∇×B. (25)

Here ρd is the mass density, v the plasma velocity, B the
magnetic field, j the current density, p the plasma pres-
sure, σ the stress tensor, ε the specific internal energy, η
the resistivity, e the strain tensor, and γ = 5/3. The vis-
cous term∇·σ in (21) includes no background viscosity, but
only shock viscosity to prevent unphysical oscillations and
approximate the jump in entropy across shocks. The shock
viscosity takes the form given in Bareford et al. (2013),
and we use the same successful parameter values ν1 = 0.1,
ν2 = 0.5. There is a corresponding heating term ε : σ in
(23). We initially set ν = 1 and ε = 0.01 in non-dimensional
units. In these units, one unit of time is equal to the time
taken by an Alfvén wave with B = ρ = 1 to move a unit
distance in the box. The simulations presented here use
a uniform resistivity of 5 × 10−4, a value found from ex-
perience to be just above the numerical resistivity at this
resolution. This system and parameter set is the same as
that used in Yeates et al. (2014b). The initial velocity is
assumed to vanish everywhere so that any motion will re-
sult from the field attempting to relax to equilibrium. The
diffusion time of the rope/braid, the square of its radius
divided by the resistivity, is approximately 500. In practice
our simulations ended a long time before this, so any signif-
icant global evolution of the rope is likely due to dynamical
behaviour.

4.2. Resulting relaxation

The results presented are for φc = 1, so that Bt is roughly
of equal strength to its background Bt. The simulations
were run until boundary effects became too significant and
the timestep increased dramatically. In both cases we shall
see the changing energy had begun to plateau at this point
and in both cases had reached a force-free state. The twisted
simulation ran for just over twice as long (t ∈ [0, 9.8]) as
the braided simulation (t ∈ [0, 4.2]).

The evolution of the field lines composing the cores of
the twisted and braided tubes is shown in Figures 6 and 7
respectively. The field lines are drawn by choosing a set of
curves anchored at locations in the initial footpoints of the
twisted tube and in the individual strands of the braid. The
twisted curves clearly expand during the evolution. It can
also be seen they rotate (anti-clockwise as seen from above).
A number of field lines peel away from the structure (there
is a significant change in their end points), and the increas-
ing number of such field lines suggests that reconnection
between the flux rope and the background field is occur-
ring. The evolution of the braided field lines of Figure 7 is
less clear, other than a general radial expansion of the tube

(a)

(b)

(c)
.

Fig. 6. Snapshots of the twisted core at t = 0 (a), t = 4.9 (b) and
t = 9.8 (c). The field is seen to expand and flatten slightly. There
also appears to be a counter-clockwise (from above) rotation of
field lines at the apex of the rope.

and a decrease in the height of the core’s apex. Again, there
also appears to be substantial reconnection with the back-
ground field with an increasing number of field lines which
begin at the footpoint of the original braid being directed
away from the core of the rope/braid.

Contour plots of the current density (||j||), shown in
Figures 8 (twisted) and 9 (braided), give more clarity. We
choose a fixed level of 0.5, half of the maximum in the back-
ground field. The braided structure can be seen with much
greater clarity than for the field line plots. In both cases the
outer layer of current (between the tube and the surround-
ing background field) expands to leave a core of current.
The twisted core is itself a tube, whilst the braided curve
has a fractured structure. This is consistent with the results
of Wilmot-Smith et al. (2011), who found fields with com-
plex braiding to develop a more diffuse small-scale current
structure. In our simulations the outer expanding front con-
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(a)

(b)

(c)
.

Fig. 7. Snapshots of the braided cores at t = 0 (a), t = 2.1
(b) and t = 4.2 (c). The curves are coloured based on their start
points as belonging to one of the three initial braid footpoints.
The interference of the background field is clear as an increasing
number of field lines which would have originally belonged to
the braid can be seen to have reconnected with the background
field.

tinues until it reaches the line-tied boundary of the domain
where it is reflected back and the simulation is stopped.

Plots of the Lorentz force magnitude (||j × B||) are
shown in Figures 10 and 11; both fields relax such that the
Lorentz force is significantly reduced (except at the line tied
boundary). For the t = 9.8 braid configuration the maxi-
mum Lorentz force (away from the boundary is) 0.69 and
the mean value 0.006, by comparison at t = 0 the maximum
value is 20.6254 and the mean is 0.093. For the t = 4.2 braid
configuration the maximum Lorentz force (away from the
boundary is) 0.47 and the mean value 0.00195, by compar-
ison at t = 0 the maximum value is 44.96 and the mean is
0.040. Also shown in Figure 12 are plots of the change in
magnetic, kinetic, and internal energy and their sum. The

(a)

(b)

(c)
.

Fig. 8. Snapshots of contours of constant current density ||j|| =
0.5 for the twisted rope at t = 0 (a), t = 4.9 (b) and t = 9.8
(c). In (a) we see the flux rope’s initial morphology, in (b) the
outer layer of current expanding to expose the rope’s remaining
core, and in (c) that the core is clear and forms a tubular shape
similar in radius to the initial tube but with a lower apex.

magnetic energy is converted into kinetic and internal en-
ergy, whilst the total sum is well conserved. The change
in each quantity is larger for the twisted field, though we
note that the initial magnetic energy of the twisted field
over the braided field has a ratio ≈ 1.65, and taking this
ratio into account the changes are comparable. Initially the
magnetic energy is converted into mostly kinetic energy,
after which this kinetic energy decreases steadily at a slow
rate. With out line-tied boundaries and in the absence of a
uniform viscosity, small scale motions persist in our simula-
tion. Comparing the braided and twisted plots we see that
the change in kinetic energy occurs at a significantly faster
rate for the braided field, in which the more complex field
structure generates dissipative losses at a faster rate (Fig-
ure 13)(a)). After this, the internal energy increases signifi-
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(a)

(b)

(c)
.

Fig. 9. Snapshots of contours of constant current density ||j|| =
0.5 for the braided flux rope at t = 0 (a), t = 2.1 (b) and t = 4.2
(c). In (a) the braid structure is clear. In (b) the outer layer of
current expands exposing a clear core seen in (c); by comparison
to the twisted case it is significantly fractured.

cantly before levelling off, as a result of both ohmic heating
and viscous heating (Figure 13)(a); in common with pre-
vious simulations by Bareford et al. (2013). There is more
viscous heating than ohmic heating, also the values of both
quantities are larger for the twisted field. However, when
the difference in initial energy is accounted for, we find both
types of dissipation to be roughly similar for the two fields
(Figure 13)(b). So in both cases the fields have relaxed to
fairly stable structures. That the initial kinetically driven
change is insensitive to the resistivity was suggested by re-
running the simulation with a resistivity 5×10−3 (an order
of magnitude larger); barring a small increase in the amount
of ohmic dissipation the plots remained almost unchanged.

Figures 14 and 15 show the distribution of a proxy of
the emission which might be viewed by line-of sight imag-
ing in extreme-ultraviolet or X-ray wavelengths (Cheung &
DeRosa 2012). We average the square of the current den-
sity (j · j) along all field lines in the domain, then integrate

(a)

(b)

(c)
.

Fig. 10. Snapshots of contours of the Lorentz force magnitude
for the twisted rope, at t = 0 (a), t = 4.9 (b) and t = 9.8 (c). In
(a) the background is force-free whilst the tube has an associated
Lorentz force. In (b) we see the force beginning to dissipate.(c)
the force has all but disappeared except on the boundary.

this quantity vertically to mimic the line of sight view. The
initial sigmoidal shape is can be seen in (a) for both the
twisted and braided fields. The field lines which peel off the
ropes are also present, these field lines have significantly
contorted geometry and high current. In (b), for both fields,
we see the expansion of the outer current layer. In Figures
14(b) and (c) the outline of the emergent core flux rope seen
in Figure 8(c) is again visible; relative to the initial sigmoid
(a) it is far less kinked. The indicated rotation of the tube is
of the same chirality as the rotation of the twisted field lines
seen in Figure 6. By comparison the final braided shape in
15(c) is much more complex and diffuse.

To summarise: both twisted and braided fields relax to
a stable state for which the tubular structure is still clearly
present. In both cases there is an initial current expansion
to leave a core structure with sigmoidal morphology. The
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(a)

(b)

(c)
.

Fig. 11. Snapshots of contours of the Lorentz force magnitude
for the braided rope, at t = 0 (a), t = 0.49 (b) and t = 4.2 (c).
In (a) the background is force-free whilst the braid structure has
an associated Lorentz force. The force has reduced significantly
in (b), leaving a fracture structure. (c) the force has all but
disappeared except on the boundary.

final braided state is much more complex than the twisted
state in that its current structure is diffuse and composed of
small scale current islands, whilst the twisted case retains
a more regular tubular morphology. The integrated current
plots (Figures 14 and 15) are of particular interest as they
raise the possibility that one might be able to recognise
the signature of a more complex internal tube morphology
through line-of-sight observation.

Whilst we can clearly observe large scale rotation of the
twisted field, it is not clearly apparent what is happening
internally in the (initially) braided tube. To investigate the
internal topology, we consider an average local twisting rate
along field lines.

Fig. 12. Plots of the magnetic, kinetic, internal and (nor-
malised) total energy as a function of time for both the braided
and twisted simulations. The, magnetic, kinetic and internal en-
ergy plots show the difference from their values at t = 0. In both
cases the magnetic energy is converted into kinetic and internal
energy. Two phases can be identified. The first is a rapid change
as the magnetic is converted into kinetic energy and internal
energy increase (t ∈ [0, 0.1] for the braid and t ∈ [0, 35] for the
twisted field). In the second phase the kinetic energy levels off
and then falls steadily, whilst the internal energy increases grad-
ually. The loss of magnetic energy of the twisted field is larger
than the braided field.

For a field line f(l) of arclength Lf whose footpoint
coordinates are (xf , yf ), we define the integrated quantity

Lf (f(l)) =
1

L

∫ Lf

0

j ·B
B ·B

dl =
1

L

∫ Lf

0

B · ∇ ×B
B ·B

dl, (26)

which represents the mean rotation of the local field lines
around f(l). For a linear force-free field j ·B = αB ·B and
Lf is just the linear force-free parameter α, which would
be constant throughout the domain. This quantity was cal-
culated for relaxing braided and twisted cylindrical fields
in Wilmot-Smith et al. (2011); Yeates et al. (2014b). These
authors found that a twisted field relaxed to a force-free
state with a single sign of α within the tube, although the
surrounding background field prevented it from reaching
the spatially constant α predicted by the Taylor relaxation
hypothesis. By contrast, they found braided tubes to relax
to form two force-free flux tubes with α values of equal and
opposite sign, entirely contrary to the Taylor hypothesis.
Here we consider the distribution Lf (x, y) of local twisting
for each field line anchored at points (x, y). Since we are
really interested in the flux rope core we concentrate on
the domain −1.320365 ≤ x ≤ −0.010365, −2.3702 ≤ y ≤
−1.1702, which contains the flux rope’s starting footpoint.

Evolution of Lf (x, y) for the twisted field is shown in
Figure 16. It has one dominant (negative) sign consistent
with the sign of twisting initially imposed in the tube. The
magnitude of twisting decreases with time, consistent with
the loss of twisting through rotation induced writhing of the
tube, which was observed in Figures 8 and 14. The twist-
writhe decomposition of helicity (Berger & Prior 2006) tells
us to expect a loss of twisting upon global rotation of the
tube. The other feature is the region of positive Lf values
on the tube edge. This corresponds to the set of field lines
which connect to the background field, as seen in Figure 6.
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(a)

(b)

Fig. 13. Plot of the viscous (unbroken lines) and ohmic (dashed
lines) heating during the simulations. In (a) we see, similar to
the energy plots, the braided quantities increase at a quicker rate
than the twisted quantities. In both cases the viscous dissipation
is larger than the ohmic heating by roughly a factor of 5. (b)
shows the same quantities with the braided quantities scaled
by the ratio of the initial twisted to braided energy (1.65), At
the point where the simulations end the viscous dissipation is
roughly the same.

The increase in size of this positive Lf region is consistent
with the reconnection of the tube and the background field
observed in Figures 6(b) and (c). Outside the tube there is
a constant value of Lf = 0.5 from the background linear
force-free field.

The distribution of Lf (x, y) for the braided field is
shown in Figure 17. At all three times both signs of Lf
are observed and present with significant magnitudes. Com-
paring (b) and (c) to (a) we see an increase in the area of
which the magnitude of L(x, y) is greater than 2 (for both
signs), indicating a move towards more inhomogeneous and
extreme twisting geometries; this contrasts to the general
decrease in magnitude of Lf in the tube’s interior, due to
writhing of the twisted field. In (b) and (c) there are sev-
eral observable regions of a particular sign of Lf , in partic-
ular there are two large regions with a dominant sign Lf ,
one positive one negative, though neither are homogeneous.
Whilst it is not the clear splitting into two tubes found in
Wilmot-Smith et al. (2011); Yeates et al. (2014b), it is in-
dicative that the tube has not relaxed to a linear force-free
state. Unlike the twisted field it is not clear what the effect
of reconnection with the background field has had on the
distribution.

(a)

(b)

(c)
.

Fig. 14. Snapshots of the vertically integrated current for the
twisted field at t = 0 (a), t = 4.9 (b) and t = 9.8 (c). In (a) we
see the Z-sigmoidal shape of the initial tube. (b) shows that the
tube’s outer current layer has expanded. In (c) the outer shell
has further expanded leaving an inner rope structure which is
far less kinked than in (a). The rotation of the tube core from
(a) to (c) is counter-clockwise.
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(a)

(b)

(c)
.

Fig. 15. Snapshots of the vertically integrated current at t = 0
(a), t = 2.1 (b) and t = 4.2 (c). In (a) we see the braided
structure projected. (b) shows that the tube’s outer current layer
has expanded. In (c) the outer shell has further expanded leaving
an inner shell with a significantly fractured set of current peaks.

(a)

(b)

(c)

Fig. 16. Snapshots of the local twisting distribution Lf (x, y) on
a subdomain of the boundary plane which contains the initial
tube footpoint, at the beginning (a), middle (b) and end (c) of
the twisted field simulation. The sign is largely negative except
at the tube edge.
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(a)

(b)

(c)

Fig. 17. Snapshots of the local twisting distribution Lf (x, y) on
a subdomain of the boundary plane which contains the initial
tube footpoint, at the beginning (a), middle (b) and end (c) of
the braided field simulation. Both positive and negative values
are present and the magnitude increases in (b) and (c).

We remark that the same set of simulations and analy-
sis were performed for fields with φc = 3 and φc = 6, i.e.
flux ropes of strength significantly greater than the back-
ground field Bb. The relative weakness of the background
field meant that the field lines of both tubes expanded to
greater radii. However, we did not observe any significant
kinking reminiscent of the type of eruptive event seen in
the toroidal twisted tube simulations (Fan & Gibson 2007;
Kliem et al. 2004, 2010, 2012; Leake et al. 2014). The cur-
rent structure was qualitatively similar to the results re-
ported above (their magnitude aside) and in all cases the
field relaxed to a force-free state with the energy plots lev-
elling off as in Figure 12. Finally, accounting for magnitude,
the Lf distributions were very similar. We do not present
that data here as it does not add significantly to the conclu-
sions. We remark that it is possible the line tied boundary
conditions of the simulation could have affected these simu-
lations more significantly than the φc = 1 case. Performing
the simulations in a larger box might have allowed the flux
tube to displace the background field in a more significant
manner, allowing for more dramatic changes in morphology.
This possible effect would be more marked for the higher
φc simulations as they expand to a greater degree. In this
study we wanted a reasonable resolution for which we could
perform a number of simulations in order obtain an under-
standing of how such sigmoidal braided structures would
respond. Increasing the domain size whilst maintaining the
same resolution would lead to a significant increase in sim-
ulation time and this task is left for a future study.

5. Conclusions

A new technique for generating magnetic flux tubes of arbi-
trary axial geometry, varying radius and internal geometry,
was introduced in Section 2. A procedure for embedding
this field over the neutral line of a boundary flux distri-
bution was also established (Section 3). The ultimate aim
for introducing this technique is to explore the relationship
between the internal structure and evolving global morphol-
ogy of coronal flux ropes with realistic geometry. It is hoped
that this will provide insight to complement the currently
available observational data for the corona.

Section 4 reports the results of initial simulations of a
sigmoidal flux tube embedded in a linear force-free field,
generated by a quadrupolar distribution. Tubes were cre-
ated containing both twisted and braided internal fields. In
both cases the tube was seen to relax to a state with signif-
icantly reduced Lorentz force, whilst its magnetic, kinetic
and internal energies began to plateau, indicating the tube
had stabilised itself. The current structure of the two fields
differed significantly, with the braided field developing a
more complex structure. The current density projected onto
the photospheric boundary differed significantly for the two
tubes in their relaxed state, with the twisted field exhibit-
ing the usual sigmoidal morphology, whilst the braided field
yielded a more complex small scale distribution. This sug-
gests a possible means of observing evidence of flux tubes
with significantly tangled internal structures.

The main advantage of this procedure is its flexibility.
Apart from a certain level of smoothness, the axial geome-
try is not constrained. The control over the internal struc-
ture is also significant as one can use either multiple sub-
tubes or overlapping fields to generate a significant variety
of internal geometries. The fields produced are divergence
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free to a high degree of accuracy. By allowing for varying
tube radii one might also be able to account for the rapidly
varying tube radii seen in the photosphere-corona transi-
tion layer. There are some technical issues that must be
considered when creating the fields. For axial curves with
significant curvature the tube radius must be limited in
order to ensure the tubular co-ordinate system (2) is well
defined (Section 2.1.2). Also, more complex tubular struc-
tures will require either large or adaptive grids in order to
be resolved. One potential drawback is the fact that the
composite field of the braided flux rope Bt and the back-
ground field Bb will not generally be in equilibrium. There
is no way of knowing that the structure created will be sta-
ble. This may not be too much of a problem as the corona is
a dynamic environment, so starting at a static equilibrium
is not essential in principle. That said, there are signifi-
cant advantages to beginning at an equilibrium state, such
as the ability to perform parameter studies which can high-
light the effect of a particular parameter, or change in state,
in triggering the various MHD instabilities which flux ropes
can undergo (see Schmieder et al. 2013, for a review). If a
stable force-free state is required one could apply an ideal
relaxation (e.g. van Ballegooijen 2004; Pontin et al. 2011).
The example simulations of Section 4 suggest that plac-
ing the tube over the photospheric neutral line could be a
means of producing a force-free tube with complex internal
topology and specific sigmoidal structure. A limitation of
the current method for specifying the internal field is the
fact that it is not easy to include singular points in the field.

The simulations provide some tentative evidence that
tangled flux ropes could persist for significant time periods
in the corona. That said, there are a number of questions
raised by the simulations which deserve attention in future
studies. Would the flux tubes have remained stable if they
had been contained in a larger domain which may have
given more freedom for the tube to displace the containing
background field? If the reflecting waves caused by the line
tied boundary conditions hadn’t forced the simulation to
be terminated, could reconnection have eventually rendered
the fields unstable, or alternatively reach a genuine linear
force free state? What would have happened with back-
ground fields Bb of differing α, a potential field with the
same boundary flux or a nonlinear force-free field, and how
important is the distribution of the boundary flux sources?
Can some distributions stabilise the flux rope where oth-
ers cannot? Finally, we chose a somewhat idealised initial
pigtail braid distribution. There is a huge range of differ-
ent internal distributions which differ significantly from this
pigtail in both braided and twisted field structure; are there
certain classes of internal topologies which behave in a sim-
ilar manner?

Part II of this study will tackle some of these questions
through a multitude of simulations in which the parameters
mentioned in the previous paragraph are varied systemat-
ically. An additional study will recreate erupting twisted
toroidal flux rope simulations and compare the same initial
system with an internally braided flux rope replacing the
twisted one. In this case we know that there is a guaran-
teed loss of stability of the twisted field, so one could test
whether a braided distribution could stabilise the flux rope
when a twisted geometry does not. Beyond this, the next
step would be to include boundary motions. A good number
of the studies summarised in Wilmot-Smith (2015) take ini-
tially straight fields in Cartesian box and attempt to braid

them with small scale shearing motions. Using the tech-
niques detailed here one could perform the a similar study
in a sigmoidal flux rope whose initial internal structure is
undistorted (a field specified by the map T with u3 = 0).
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Appendix A: Explicit Expression for ∇ ·N

In order to obtain the magnetic field N from (11) we need
the divergence of N . Since we can express this field gen-
erally in tubular coordinates (ρ, θ, s), it would be easier to
calculate the divergence in this coordinate system. In an ar-
bitrary coordinate system (x1, x2, x3) the divergence takes
the form

∇ ·N =
1

g

∂

∂xi
(gNi) , g =

√
det(gij), (A.1)

where Ni are the coordinates of N in tubular co-ordinates
{∂/∂xi} (see e.g. Frankel 2011). Comparing (13) to (5), we
see that, in our tubular coordinates,

df

ds
=

∂

∂s
+ ψ′

∂

∂θ
+
ρ

R
R′

∂

∂ρ
. (A.2)

For our tubular coordinate system, we found in Section
2.1.2 that g = ρR2 + ρ2R3

(
u1 sin θ − u2 cos θ

)
. With Ns =

1/λ, Nθ = ψ′/λ, and Nρ = R′ρ/(Rλ), we obtain

∇ ·N =
1

g

(
∂g
∂sλ−

∂λ
∂s g

λ2

)
+
ψ′

g

(
∂g
∂θλ−

∂λ
∂θ g

λ2

)

+
ρ

R

R′

g

(
∂g
∂ρλ−

∂λ
∂ρ g

λ2

)
+
R′

R

1

λ
, (A.3)

∂g

∂s
= 2ρRR′ + 3ρR2R′(u1 sin θ − u2 cos θ) (A.4)

+ ρ2R3(u′1 sin θ − u′2 cos θ),

∂g

∂θ
= ρ2R3(u1 cos θ + u2 sin θ), (A.5)

∂g

∂ρ
= R2 + 2ρR3(u1 sin θ − u2 cos θ) (A.6)

∂λ

∂s
=

1

λ

[
(ρR′(u1 sin θ − u2 cos θ) (A.7)

+ ρR(u′1 sin θ − u′2 cos θ))(1 + ρ(u1 sin θ − u2 cos θ))

+ ρ2R2ψ′′ψ′ + ρ2RR′(ψ′)2 + ρ2R′R′′
]
,

∂λ

∂θ
=

1

λ
[ρR(u1 cos θ + u2 sin θ)(1 + ρR(u1 sin θ − u2 cos θ))] ,

(A.8)
∂λ

∂ρ
=

1

λ

[
(u1 sin θ − u2 cos θ)(1 + ρR(u1 sin θ − u2 cos θ))

(A.9)

+ ρR2(ψ′)2 + ρ(R′)2
]
.

Note that λ has an additional dependency on s, as the func-
tion θ is not just the co-ordinate but varies through the re-
lation θ = θ0+ψ(s). This is not the case for the derivatives
of g which relate to the co-ordinate map T not the field line
f .
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