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Abstract. In this paper, we show that via a novel construction every rank-3 root system
induces a root system of rank 4. Via the Cartan-Dieudonné theorem, an even number of
successive Coxeter reflections yields rotations that in a Clifford algebra framework are described
by spinors. In three dimensions these spinors themselves have a natural four-dimensional
Euclidean structure, and discrete spinor groups can therefore be interpreted as 4D polytopes.
In fact, we show that these polytopes have to be root systems, thereby inducing Coxeter groups
of rank 4, and that their automorphism groups include two factors of the respective discrete
spinor groups trivially acting on the left and on the right by spinor multiplication. Special
cases of this general theorem include the exceptional 4D groups D4, F4 and H4, which therefore
opens up a new understanding of applications of these structures in terms of spinorial geometry.
In particular, 4D groups are ubiquitous in high energy physics. For the corresponding case in
two dimensions, the groups I2(n) are shown to be self-dual, whilst via a similar construction
in terms of octonions each rank-3 root system induces a root system in dimension 8; this root
system is in fact the direct sum of two copies of the corresponding induced 4D root system.

1. Introduction
Root systems are useful mathematical abstractions, which are polytopes that generate reflection
(Coxeter) groups. Certain families of root systems exist in any dimension, whereas others –
exceptional ones – only exist as accidental structures in specific dimensions. Root systems in
different dimensions are largely thought to be independent of each other (with the exception of
sub-root systems). The Freudenthal-Tits magic square [1] makes some non-trivial connections,
but geometric insight as to why these should exist is scarce. In this paper, we present a novel
connection between root systems in different dimensions that has a geometric origin.

Clifford’s Geometric Algebra provides a mathematical framework that generalises the more
familiar vector space and matrix methods. In this setup, orthogonal transformations are encoded
(in fact, doubly covered) by versors, which are the Clifford geometric product of several unit
vectors, via a sandwiching prescription. In particular, the rotations (i.e. the special orthogonal
group) are doubly covered by geometric products of an even number of unit vectors, resulting
in spinors, or ‘rotors’. These elements in the even-subalgebra can themselves have a Euclidean
structure and can thus be reinterpreted as vectors in a different space. Here, we show that such
a construction can induce a root system (in the same or another dimension) from a given root
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system. This systematises the observations made in [2, 3, 4], and opens up a new – spinorial –
view of the geometry of root systems (where by spinorial we mean something related to the double
cover of the rotations i.e. special orthogonal transformations), with interesting applications
particularly concerning the interplay of three and four dimensions, and notably the exceptional
root systems D4, F4 and H4: D4, the root system related to SO(8) with exceptional triality
symmetry, F4, the largest crystallographic group in 4D, and the largest non-crystallographic
group, H4.

The rest of this paper is organised as follows. Section 2 introduces Coxeter groups and
root systems, and Section 3 gives the necessary Clifford algebra background. The Induction
Theorem is stated and proven in Section 4, and the self-duality of the two-dimensional case is
discussed in Section 5. We extend our approach to a related octonionic construction in Section
6. Conclusions are given in Section 7.

2. Coxeter Groups
Definition 2.1 (Coxeter group). A Coxeter group is a group generated by some involutive
generators si, sj ∈ S subject to relations of the form (sisj)

mij = 1 with mij = mji ≥ 2 for i 6= j.

The finite Coxeter groups have a geometric representation where the involutions are realised
as reflections at hyperplanes through the origin in a Euclidean vector space E (essentially just
the classical reflection groups). In particular, let (·|·) denote the inner product in E , and λ,
α ∈ E .

Definition 2.2 (Reflections and roots). The generator sα corresponds to the reflection

sα : λ→ sα(λ) = λ− 2
(λ|α)

(α|α)
α (1)

at a hyperplane perpendicular to the root vector α.

The action of the Coxeter group is to permute these root vectors, and its structure is thus
encoded in the collection Φ ∈ E of all such roots, which form a root system:

Definition 2.3 (Root system). Root systems are defined by the two axioms

(i) Φ only contains a root α and its negative, but no other scalar multiples: Φ ∩ Rα =
{−α, α} ∀ α ∈ Φ.

(ii) Φ is invariant under all reflections corresponding to vectors in Φ: sαΦ = Φ ∀ α ∈ Φ.

Root systems and their associated Coxeter groups describe polyhedral symmetries such as
the symmetries of the Platonic Solids, and are also central in Lie Theory [5, 6]. They have
manifold practical applications, for instance to crystals and quasicrystals [7, 8, 9], the structure
of viruses [10] and other polyhedral objects [11, 12, 13, 14], as well as high energy theory
[15, 16, 17] and singularities [18, 19]. A recent characterisation and visualisation of the relevant
groups in two and three dimensions in a conformal framework was given in [20, 21, 22]. Some
of the 4-dimensional root systems have unusual accidental properties, such as triality in D4 (or
better known in the physics literature as the triality between vector and spinor representations of
SO(8), important in showing the equivalence of the Green-Schwarz and Ramond-Neveu-Schwarz
strings), the largest non-crystallographic Coxeter group H4 (which contains the GUT group
A4 = SU(5) as a subgroup), or the largest symmetry group F4 of a lattice in four dimensions
(which also contains the little groups of String and M-Theory, D4 and B4, respectively). These
peculiarities are discussed in more detail elsewhere [2, 4] – here, we stress the general nature of
our argument without the need to discuss individual root systems and their applications.
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3. Geometric Algebra
The study of Clifford algebras and Geometric Algebra originated with Grassmann’s, Hamilton’s
and Clifford’s geometric work [23, 24, 25]. However, the geometric content of the algebras
was soon lost when interesting algebraic properties were discovered in mathematics, and
Gibbs advocated the use of the hybrid system of vector calculus in physics. When Clifford
algebras resurfaced in physics in the context of quantum mechanics, it was purely for their
algebraic properties, and this continues in particle physics to this day. Thus, it is widely
thought that Clifford algebras are somehow intrinsically quantum mechanical in nature. The
original geometric meaning of Clifford algebras has been revived in the work of David Hestenes
[26, 27, 28]. Here, we follow an exposition along the lines of [29].

In a manner reminiscent of complex numbers carrying both real and imaginary parts in the
same algebraic entity, one can consider the geometric product of two vectors defined as the sum
of their scalar (inner/symmetric) product and wedge (outer/ exterior/antisymmetric) product

ab ≡ a · b+ a ∧ b. (2)

The wedge product is the outer product introduced by Grassmann, as an antisymmetric product
of two vectors, which naturally defines a plane. Unlike the constituent inner and outer products,
the geometric product is invertible, as a−1 is simply given by a−1 = a/(a2). This leads to many
algebraic simplifications over standard vector space techniques, and also feeds through to the
differential structure of the theory, with Green’s function methods that are not achievable with
vector calculus methods. This geometric product can be extended to the product of more vectors
via associativity and distributivity, resulting in higher grade objects called multivectors. There
are a total of 2n elements in the algebra, since it truncates at grade n multivectors due to the
scalar nature of the product of parallel vectors and the antisymmetry of orthogonal vectors.
Essentially, a Clifford algebra is a deformation of the exterior algebra by a quadratic form, and
for a Geometric Algebra this is the metric of space(time).

The geometric product provides a very compact and efficient way of handling reflections in
any number of dimensions, and thus by the Cartan-Dieudonné theorem also rotations [30]. For a
unit vector n, we consider the reflection of a vector a in the hyperplane orthogonal to n. Thanks
to the geometric product in Clifford algebra the two terms in Eq. (1) combine into a single term
and thus a ‘sandwiching prescription’:

Theorem 3.1 (Reflections). In Geometric Algebra, a vector ‘a’ transforms under a reflection
in the (hyper-)plane defined by a unit normal vector ‘n’ as

a′ = −nan. (3)

This is a remarkably compact and simple prescription for reflecting vectors in hyperplanes.
More generally, higher grade multivectors of the form M = ab . . . c (so-called versors) transform
similarly (‘covariantly’), as M = ab . . . c → ±nannbn . . . ncn = ±nab . . . cn = ±nMn. Even
more importantly, from the Cartan-Dieudonné theorem, rotations are the product of successive
reflections. For instance, compounding the reflections in the hyperplanes defined by the unit
vectors n and m results in a rotation in the plane defined by n ∧m.

Proposition 3.2 (Rotations). In Geometric Algebra, a vector ‘a’ transforms under a rotation
in the plane defined by n ∧ m via successive reflection in hyperplanes determined by the unit
vectors ‘n’ and ‘m’ as

a′′ = mnanm =: RaR̃, (4)

where we have defined R = mn and the tilde denotes the reversal of the order of the constituent
vectors R̃ = nm.
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Theorem 3.3 (Rotors and spinors). The object R = mn generating the rotation in Eq. (4)
is called a rotor. It satisfies R̃R = RR̃ = 1. Rotors themselves transform single-sidedly under
further rotations, and thus form a multiplicative group under the geometric product, called the
rotor group. Since R and −R encode the same rotation, the rotor group is a double-cover of the
special orthogonal group, and is thus essentially the Spin group. Objects in Geometric Algebra
that transform single-sidedly are called spinors, so that rotors are normalised spinors.

Corollary 3.4 (Discrete spinor groups). Discrete spinor groups are of even order.

Higher multivectors transform in the above covariant, double-sided way as MN →
(RMR̃)(RNR̃) = RMR̃RNR̃ = R(MN)R̃.

The Geometric Algebra of three dimensions Cl(3) spanned by three orthogonal unit vectors
e1, e2 and e3 contains three bivectors e1e2, e2e3 and e3e1 that square to −1, as well as the
highest grade object e1e2e3 (trivector and pseudoscalar), which also squares to −1.

{1}︸︷︷︸
1 scalar

{e1, e2, e3}︸ ︷︷ ︸
3 vectors

{e1e2 = Ie3, e2e3 = Ie1, e3e1 = Ie2}︸ ︷︷ ︸
3 bivectors

{I ≡ e1e2e3}︸ ︷︷ ︸
1 trivector

. (5)

Theorem 3.5 (Quaternions and spinors of Cl(3)). The unit spinors {1,−Ie1,−Ie2,−Ie3} of
Cl(3) are isomorphic to the quaternion algebra H.

This completes the background that we shall need for our proof of the Induction Theorem.

4. Induction Theorem
In this section, we show that every root system of rank 3 induces a root system in dimension 4.

Proposition 4.1 (O(4)-structure of spinors and quaternions). The space of Cl(3)-spinors and
quaternions have a 4D Euclidean signature.

Proof. For quaternions, this is given via conjugation defined by q̄ = q0 − qiei, as (p, q) =
1
2(p̄q + pq̄), |q|2 = q̄q = q20 + q21 + q22 + q23. For a spinor R = a0 + a1Ie1 + a2Ie2 + a3Ie3,

the norm is given by RR̃ = a20 + a21 + a22 + a23 (or via Theorem 3.5), and the inner product is

(R1, R2) = 1
2(R1R̃2 +R2R̃1).

Lemma 4.2 (Discrete quaternion groups give root systems). Any finite subgroup G of even
order in H is a root system.

Proof. This is stated and proven in [31].

Lemma 4.3 (Rank-3 Coxeter groups and finite even quaternion groups). The spinors defined
from any rank-3 Coxeter group are isomorphic to an even subgroup of the quaternions.

Proof. From Corollary 3.4, the spinor group generated by a Coxeter group is discrete and even.
Because of Theorem 3.5, for a Coxeter group of rank 3 this spinor group is isomorphic to a finite
even order quaternion group.

Lemma 4.4 (Discrete spinor groups in 3D give 4D root systems). A discrete group of spinors
in three dimensions is a four-dimensional root system.

Proof. Due to Lemma 4.3, the discrete spinor group is even and isomorphic to an even quaternion
group. From Lemma 4.2 it follows that this is a root system.

Theorem 4.5 (Induction Theorem). Any rank-3 root system induces a root system of rank 4.

30th International Colloquium on Group Theoretical Methods in Physics (Group30) IOP Publishing
Journal of Physics: Conference Series 597 (2015) 012027 doi:10.1088/1742-6596/597/1/012027

4



Proof. A root system in three dimensions gives rise to corresponding Coxeter reflections (Section
2), acting in Geometric Algebra as given by Eq. (3). An even number of successive reflections
yields spinors via Theorem 3.3, and from Corollary 3.4, this group is even. Via Lemma 4.4, this
even spinor group yields a root system in four dimensions.

Alternatively, one can check the root system axioms from Definition 2.3 directly. The first is
satisfied, since trivially for an element in a discrete spinor group its negative is also in the
discrete spinor group by Corollary 3.4. One can easily check the axiom of closure of the
root system under reflections by using Eq. (1) in 4D using the Euclidean inner product in
Proposition 4.1. For spinors R1 and R2 this amounts to R2 → R′2 = R2−2(R1, R2)/(R1, R1)R1 =

R2−((R1R̃2+R2R̃1)R1/(R1R̃1) = −R1R̃2R1/(R1R̃1). Closure of the root system is thus ensured
by closure of the spinor group. This also has very interesting consequences for the automorphism
group of these root systems, which contains two factors of the spinor group acting from the left
and the right [4] (in this sense, the above closure under reflections amounts to a certain twisted
conjugation).

Theorem 4.6 (Automorphism groups of the induced root systems). The automorphism groups
of these induced root systems contain two factors of the respective spinor group (i.e. the root
system itself), acting on the left and on the right (trivially, in the spinorial picture, as group
multiplication in the spinor group, by group closure).

Theorem 4.7 (Non-existence of a reduction theorem). Not every rank-4 root system can be
induced by a rank-3 root system.

Proof. A counterexample is provided by I2(4)×A1 ×A1.

In the above proof no reference was made to any particular root system, and it is thus valid in
generality. However, the number of such root systems is limited, so that one can list the induced
root systems on a case-by-case basis. Table 1 contains the list of 4D root systems that are
induced by 3D root systems, as well as the results of later sections. It is particularly noteworthy
that the exceptional four-dimensional root systems arise via our Clifford spinor construction;
in particular, the fact that irreducible root systems arise in this way. One might speculate
philosophically whether their existence in some sense hinges on the accidentalness of this 3D
Clifford spinor construction.

Example 1. The simple roots of A1 × A1 × A1 can be taken as α1 = e1, α2 = e2 and
α3 = e3. Closure of these under reflections via Eq. (3) gives (±1, 0, 0) and permutations thereof,
which are the 6 vertices of the root system, the octahedron. Combining two reflections yields a
spinor, so forming rotors according to Rij = αiαj gives, e.g. R11 = α2

1 = 1 ≡ (1, 0, 0, 0), or
R23 = α2α3 = e2e3 = Ie1 ≡ (0, 1, 0, 0), where we denote components as given in Theorem 3.5.
Explicit calculation of all cases generates the 8 permutations of (±1, 0, 0, 0). When interpreted as
a 4D polytope, these are the vertices of the 16-cell, which is the root system of A1×A1×A1×A1.

Example 2. Other specific examples are the inductions A3 → D4 (cuboctahedron to 24-cell),
B3 → F4 and H3 → H4 (icosidodecahedron to 600-cell) [2, 3, 4]. This demonstrates how
exceptional phenomena in dimension four could arise from regular root systems (i.e. An and Bn
for n = 3), and hints that a spinorial view of their geometry can shed light on many of their
applications.

5. Spinors in dimension two
The space of spinors ψ = a + be1e2 ≡ a + bI in two-dimensional Euclidean space is also two-
dimensional, and has a natural Euclidean structure given by ψψ̃ = a2+b2. This induces a rank-2
root system from any rank-2 root system in a similar way to the construction above. However,
this construction does not yield any new root systems by the following theorem.
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Theorem 5.1 (Self-duality of I2(n)). Two-dimensional root systems are self-dual under the
Clifford spinor construction.

Proof. A 2D root vector αi = a1e1 + a2e2 is in bijection with a spinor by αi → α1αi = e1αi =
a1 + a2e1e2 = a1 + a2I (taking α1 = e1 without loss of generality). This is the same as forming
a spinor between those two root vectors. The infinite family of two-dimensional root systems
I2(n) is therefore self-dual. The order of the Coxeter group |W | matches the number of roots
|Φ|, even for the well-known crystallographic cases in 2D: for instance, for the An family one has
the general formulae |W | = (n+ 1)! and |Φ| = n(n+ 1), with equality for n = 2, as A2 = I2(3).
For B2 = I2(4), |W | = 2nn! and |Φ| = 2n2, such that equality holds for n = 2. For G2 = I2(6),
one also has |W | = |Φ| = 12.

6. An octonion construction: eight-dimensional root systems
The crucial fact that our 3D and 2D (nD) constructions depended on was that Clifford algebra
allowed us to construct a group of spinors with 2n−1 components, that – when thought of as
a set of vectors in 2n−1-dimensional space – fulfilled the first axiom of a root system, i.e. that
α and −α are contained in the set, by construction. This 2n−1-dimensional space also had a
Euclidean metric. The second part of the proof that these sets are in fact root systems was then
to show closure under reflections in these roots as defined by the Euclidean metric. For instance,
this is no longer the case in 4D, where the space of spinors is 8-dimensional. However, here we
follow an analogous construction in terms of octonions, that does yield root systems in 8D.

The octonions O are a generalisation of the quaternions, complex and real numbers. It is a
(non-associative division) algebra with one scalar and seven imaginary units that satisfy certain
commutativity properties. In analogy with complex and quaternionic conjugation, there is an
octonionic conjugation, which defines an 8-dimensional Euclidean metric.

In order to mimic our Clifford construction above, we take the simple roots of the 3D root
systems to be along the first three imaginary units i, j and k, i.e. the simple roots of A3

1 would be
α1 = i, α2 = j and α3 = k. We then consider the closure of this set of octonions under octonion
multiplication (here 16 octonions, namely the 8 unit octonions and their negatives). Again this
gives a set (group) of octonions which contains ±αi by construction. It is also straightforward to
show that these sets of octonions are closed under reflections with respect to the 8-dimensional
Euclidean metric, as this reflection essentially amounts to octonion multiplication and the above
procedure of taking the closure under octonion multiplication therefore guarantees closure under
reflections. The resulting set of vectors is therefore a root system in eight dimensions (here A8

1).
However, the resulting root system in each case is just the direct sum of two copies of the
corresponding induced 4D root system, e.g. H3 induces H4 in 4D and H4 ⊕ H4 in 8D. The
argument in the paper is general and does not make reference to any particular root system.
Table 1 therefore summarises the results for each of the limited number of root systems for
illustrative purposes.

7. Conclusions
We have shown how via a Clifford spinor construction, any root system of rank 3 induces a root
system in four dimensions. This was done in full generality without reference to any particular
root system. However, since the number of root systems in 3D is finite, one gets a concrete list of
cases. One finds that the 4D root systems induced in this way contain mostly the exceptional root
systems that generate the exceptional Coxeter groups D4 (triality), F4 (largest crystallographic
group in 4D) and H4 (largest non-crystallographic group). This construction therefore offers a
novel perspective on exceptional phenomena in four dimensions and the peculiar structure of
their automorphism groups, in terms of spinorial geometry.
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Table 1. Summary of the induced root systems in two, four and eight dimensions.

start root system induced root system

I2(n) I2(n)

A1 ⊕ I2(n) I2(n)⊕ I2(n)
A3 D4

B3 F4

H3 H4

A1 ⊕ I2(n) I2(n)⊕ I2(n)⊕ I2(n)⊕ I2(n)
A3 D4 ⊕D4

B3 F4 ⊕ F4

H3 H4 ⊕H4

Via an analogous construction in terms of octonions, each such 3D root system also induces
a root system in eight dimensions; however, this root system is reducible and in fact consists of
two copies of the induced 4D root system in each case. In the two-dimensional case, root systems
(i.e. I2(n)) were shown to be self-dual. This spinorial view sheds light on the peculiarities of root
systems, in particular certain rank-4 root systems and their automorphism groups (see [2, 4]),
and more generally, opens up a new field of study in the spinorial geometry of root systems.
This could be particularly interesting for applications in high energy physics, where the rank-4
groups are ubiquitous.
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helpful discussions.

References
[1] Baez J C 2002 Bull. Amer. Math. Soc. 39 145–205
[2] Dechant P P 2013 Advances in Applied Clifford Algebras 23 301–321 (Preprint 1205.1451)
[3] Dechant P P 2014 Advances in Applied Clifford Algebras 24 89–108 (Preprint 1207.5005)
[4] Dechant P P 2013 Acta Crystallographica Section A: Foundations of Crystallography 69 592–602
[5] Kac V G 1994 Infinite-Dimensional Lie Algebras (Progress in mathematics vol 44) (Cambridge: Cambridge

University Press)
[6] Fuchs J and Schweigert C 2003 Symmetries, Lie Algebras and Representations (Cambridge: Cambridge

University Press)
[7] Patera J and Twarock R 2002 Journal of Physics A: Mathematical and General 35 1551–1574
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[21] Hestenes D and Holt J W 2007 Journal of Mathematical Physics 48 023514
[22] Hitzer E and Perwass C 2010 Advances in Applied Clifford Algebras 20(3) 631–658
[23] Grassmann H 1844 Die lineale Ausdehnungslehre (Leipzig: Otto Wigand)
[24] Hamilton W R 1844 Philos. Mag. 25 489
[25] Clifford W 1878 American Journal of Mathematics 1 pp. 350–358
[26] Hestenes D 1966 Space-Time Algebra (New York: Gordon and Breach)
[27] Hestenes D and Sobczyk G 1984 Clifford algebra to geometric calculus: a unified language for mathematics

and physics Fundamental theories of physics (Dordrecht: Reidel)
[28] Hestenes D 1999 New foundations for classical mechanics; 2nd ed. Fundamental theories of physics

(Dordrecht: Kluwer)
[29] Doran C and Lasenby A N 2003 Geometric Algebra for Physicists (Cambridge: Cambridge University Press)
[30] Garling D J H 2011 Clifford Algebras: An Introduction (Cambridge: Cambridge University Press)
[31] Humphreys J E 1990 Reflection groups and Coxeter groups (Cambridge: Cambridge University Press)

30th International Colloquium on Group Theoretical Methods in Physics (Group30) IOP Publishing
Journal of Physics: Conference Series 597 (2015) 012027 doi:10.1088/1742-6596/597/1/012027

8




