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1 Introduction

The problem of divergences affecting large orders in perturbation theory is well known [1–5],

and is often seen as an academic problem which reflects the asymptotic nature of perturba-

tive series. This problem however is brought to an entirely new level when the perturbation

theory breakdown is realised already at the leading order. The physical quantities of inter-

est in this case are associated with the scattering processes involving high multiplicities n

of particles produced in the final state in the n� 1 limit. At sufficiently high energies the

production of such high multiplicity final states with n greater than the inverse coupling

constant, becomes kinematically allowed and the n-point scattering amplitudes can become

large already at leading order — i.e. tree level in a weakly coupled theory.

The motivation of this paper is to study the behaviour of scattering processes involving

large numbers massive vector bosons and Higgs bosons produced at high energy collisions.

The underlying model is a spontaneously broken gauge theory, and the amplitudes will be

computed on and off the multi-particle threshold, thus generalising the previously available

results for the on-threshold amplitudes in [6, 7].

In the case of the φ4-type scalar field theories, there is a direct link between the

number of contributing Feynman diagrams, which grows as n! at large n, and the and

the overall expressions for the scattering amplitudes An. Multi-particle amplitudes in

scalar theory were studied in detail in the 90s and were found to exhibit factorial growth
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leading to the ultimate breakdown of the standard weakly-coupled perturbation theory,

as reviewed in [8, 9], see also refs. [10–17]. However, this direct connection between the

on-shell quantities and the number of Feynman diagrams does not hold in gauge theory

because of the cancellations between individual diagrams which is a consequence of gauge

invariance and the on-shell conditions. Nevertheless, it was shown in [6, 7] that in the

case of spontaneously broken gauge theories, the amplitudes still grow factorially with the

numbers of emitted Higgses as well as massive vector bosons.

There are two objectives for our study: one is to demonstrate that the breakdown

of perturbation theory previously found in scalar QFTs also applies to the weak sector

of the Standard Model — or more precisely in any spontaneously broken gauge theory,

and for amplitudes in a generic non-relativistic kinematics. Our second point is to empha-

sise that the energies and multiplicities involved are not unreachable with future particle

experiments. There is an exciting possibility that these processes can be probed at the

next generation of hadron colliders. The simple estimates carried out in this paper, how-

ever, will assume a conservative non-relativistic limit which is not well-suited for drawing

phenomenological conclusions about the lower limit on the energy scale where the weakly

coupled perturbation theory would become strong.

Another motivation for studying the high-multiplicity production in the electroweak

sector at high energies is their analogy and a potential complementarity with the topolog-

ically non-trivial transitions over the sphaleron barrier [18–22] which violate the Baryon

plus Lepton (B + L) number in the SM. The common point between these two types of

processes is the high multiplicities of the vector bosons and Higgs particles in the final

state. In both cases this is the regime where ordinary perturbation theory breaks down.

The paper is organised as follows. In the following section we will describe the method

for computing the amplitudes on and off the multi-particle threshold in the double-scaling

high-multiplicity low-kinetic-energy limit we introduce. This technique is first applied to

a scalar theory with a non-trivial vacuum expectation value of the field. In section 3 this

method is applied to our main case of interest — the Gauge-Higgs theory. The phase-

space integration is described in section 4, and our conclusions are presented in section 5.

Our main results for the amplitudes are in eqs. (3.49)–(3.50), and the cross section in the

non-relativistic limit is given in eqs. (4.6), (5.6).

2 Summing tree graphs on and off the multi-particle threshold

Our approach for computing tree-level high-multiplicity amplitudes in the Gauge-Higgs

theory is based on solving recursion relations between the n-point amplitudes involving

massive vector and Higgs bosons for different values of n. In the high-multiplicity regime,

the outgoing particles will have non-relativistic velocities as they are produced not far

above their mass thresholds, thus we can simplify the amplitudes recursion relations by

assuming the non-relativistic limit.

– 2 –
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The main features of the method are best explained following a simple example of a

single real scalar field h(x) with non-vanishing VEV 〈h〉 = v

L(h) =
1

2
∂µh ∂µh −

λ

4

(
h2 − v2

)2
. (2.1)

This scalar theory with the spontaneously broken h→ −h Z2 symmetry can be seen as a

simplified version of the Higgs sector of the SM in the unitary gauge. In the following section

we will apply this approach to our main case of interest — the Gauge-Higgs theory. The

goal of the present section is to derive a simple prescription for writing down the relevant

recursion relations between the amplitudes in the example of a relatively straightforward

scalar QFT case (2.1). Our results for the scalar theory (2.1) are new, while our approach

is similar to ref. [16] where the unbroken φ4 theory was considered.

Tree-level amplitudes for production of n bosons from a virtual single-boson state,

An := A1→n, are classical objects (no loops, ~→ 0), it is well-known that their generating

functionals satisfies classical equations of motion with an external source. By differentiating

n times with respect to the source and setting it to zero, one obtains the recursion recursion

relations for the tree amplitudes, or currents, see e.g. [23, 24]. We introduce the physical

VEV-less scalar ϕ(x) = h(x) − v, describing bosons of mass Mh =
√

2λ v. It satisfies the

classical equation arising from (2.1),

− (∂µ∂µ +M2
h)ϕ = 3λv ϕ2 + λϕ3. (2.2)

This classical equation in momentum space allows one to read-off directly the structure of

the recursion relation for tree-level scattering amplitudes as follows:

(P 2
in −M2

h)An(p1 . . . pn) = 3λv

n∑
n1,n2

δnn1+n2

∑
P
An1(p

(1)
1 , . . . , p(1)n1

)An2(p
(2)
1 . . . p(2)n2

)

+λ

n∑
n1,n2,n3

δnn1+n2+n3

∑
P
An1(p

(1)
1 . . . p(1)n1

)An2(p
(2)
1 . . . p(2)n2

)An3(p
(3)
1 . . . p(3)n2

) . (2.3)

Here Pµin =
∑n

i=1 p
µ
i is the incoming momentum, and the sums over P involve permutations

across the sets of momenta {p(1)i }, {p
(2)
i }, and/or {p(1)i }, {p

(2)
i } and {p(3)i } of the the

individual amplitudes on the right hand side of eq. (2.3).

The special case of (2.3) where all outgoing n particles are produced on their mass

threshold, i.e. with vanishing spatial momenta ~pi ≡ 0, is particularly simple. Here the

amplitudes are constants, the kinematics is trivial and one can sum over the permutations

with the result,

M2
h(n2 − 1)An=3λv

n∑
n1,n2

δnn1+n2

n!

n1!n2!
An1 An2 +λ

n∑
n1,n2,n3

δnn1+n2+n3

n!

n1!n2!n3!
An1 An2 An3 .

(2.4)

The solution of this momentum-independent recursion relation can be captured and recast

in terms of the the amplitudes generating function which solves the original Euler-Lagrange

equation (2.2) for the ~x-independent field ϕ(t) with the initial condition [14],

ϕ(t) = z(t) +O(z2) , where z(t) := z0 e
iMht = z0 e

i
√
2λ v t . (2.5)

– 3 –
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The generating function for the on-shell amplitudes is a complex-valued solution of (2.2)

which contains only the positive-energy harmonics, einMht. For a fixed n each plain wave

describes the n-particle final state at rest with n bosons of mass Mh =
√

2λ v. Hence the

generating function is a holomorphic function of the complex argument z,

ϕ(z) =
∞∑
n=1

dn z
n , with d1 = 1 , (2.6)

with the individual n-point amplitudes on the multi-particle threshold given by,

An =

(
∂

∂z

)n
ϕ(z)

∣∣∣∣
z=0

= n! dn . (2.7)

Substituting the Taylor expansion (2.6) into the classical equation (2.2), one immediately

finds the recursion relation between the coefficients dn,

(n2 − 1) dn = 3
λv

M2
h

n∑
n1,n2

δnn1+n2
dn1 dn2 +

λ

M2
h

n∑
n1,n2,n3

δnn1+n2+n3
dn1 dn2 dn3 , (2.8)

which, as expected, is equivalent to eq. (2.4) (note that there are no n! factors when the

recursion relations are expressed in terms of the Taylor coefficients dn, rather than An).

The generating function ϕ(z) which solves (2.2), is known analytically1 [14],

ϕ =
z

1− z/(2v)
, hence dn = (2v)1−n , and An = n! (2v)1−n (2.9)

The main lesson of this exercise was to show that our tree-level threshold amplitudes

Athreshold
1→n grow factorially with the number of final particles n. However, our main concern

are the amplitudes above the threshold, and so we need to recover their dependence on the

kinematics of the final state.

Away from the multi-particle threshold, the external particles 3-momenta ~pi are non-

vanishing and in the non-relativistic limit which we will adopt, they are small compared to

the particle masses. In this limit we can characterise the process in the COM frame by the

non-relativistic kinetic energy E kin
n of the final particles. In general kinematics, the ampli-

tudes are determined by the recursion relation (2.3) which we need to solve. Amplitudes

on the threshold were already found in (2.9); they correspond to E kin
n = 0. At small values

of E kin
n /(nMh) the leading correction to these amplitudes turns out to be proportional to

E kin
n itself. This fact is simply the consequence of the permutation symmetry acting on

the particle momenta ~pi and of the Galilean invariance of the amplitude [16]. Hence, the

scattering amplitude in the non-relativistic approximation takes the form:

An(p1 . . . pn) = An + MnE
kin
n := An + Mn n ε , (2.10)

where An is the threshold amplitude, Mn n ε denotes the leading order momentum-

dependent contribution, and ε is the kinetic energy per particle per mass,

ε =
1

nMh
E kin
n =

1

n

1

2M2
h

n∑
i=1

~p 2
i . (2.11)

1In fact h(z) = v + ϕ(z) in (2.9) corresponds the well-known kink solution in Euclidean time which

interpolates between the two vacua at h = ±v.
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In the non-relativistic limit we have ε� 1.

Working in the CoM frame the incoming momentum is Pµin = (nMh(1 +

ε),~0) and the left hand side of the recursion relation (2.3) takes the form,

M2
h

(
n2(1 + ε)2 − 1

)
An(p1 . . . pn). Using the relation (2.10) and working at the order-ε1,

the recursion relations (2.3) amount to:

(
n2 − 1

)
n εMn + 2n2 εAn = 6

λv

M2
h

n∑
n1,n2

δnn1+n2

∑
P
E kin
n1
Mn1 An2 (2.12)

+ 3
λ

M2
h

n∑
n1,n2,n3

δnn1+n2+n3

∑
P
E kin
n1
Mn1 An2 An3 .

This is the equation forMn. On its right hand side we have used the notation E kin
n1

(rather

than e.g. n1ε) to denote the total kinetic energy of the outgoing particles of the sub-process

1→ n1. This quantity is defined by E kin
n1

:= 1
2Mh

∑n1
i=1

(
~pi − 1

n1
~p0

)2
, where we have taking

into account that the initial state of this sub-process is no longer at rest, ~p0 :=
∑n1

i=1 ~pi 6= ~0.

Hence,

E kin
n1

=
1

2Mh

[
n1∑
i=1

~p 2
i −

1

n1
~p 2
0

]
=

1

2Mh

(1− 1

n1

) n1∑
i=1

~p 2
i −

1

n1

n1∑
i=1

n1∑
j 6=i

~pi~pj

 (2.13)

To simplify this, we note that all n external momenta ~p1 . . . ~pn will contribute in the sums

on the right hand side of the recursion relation (2.12). This allows us to effectively include

all n momenta in the double sum above and use the substitution,

n1∑
i=1

n1∑
j 6=i

~pi~pj =⇒ n1(n1 − 1)

n(n− 1)

n∑
i=1

n∑
j 6=i

~pi~pj = − n1(n1 − 1)

n(n− 1)

n∑
i=1

~p 2
i . (2.14)

This gives the expression for the kinetic energy,

E kin
n1

=⇒ n (n1 − 1)

n− 1
ε , (2.15)

which we can use on right hand side of (2.12).

We will also use the amplitude’s coefficients dn and fn defined via:

An(p1 . . . pn) = n! (dn + fn ε) , (2.16)

rather than the amplitudes An and Mn in (2.10)). The expression (2.8) is the recursion

relation at the order-ε0, and at the order-ε1 from eqs. (2.12) and (2.15) we have:

n− 1

n

((
n2 − 1

)
fn + 2n2 dn

)
= 6

λv

M2
h

n∑
n1,n2

δnn1+n2

n1 − 1

n1
fn1 dn2 (2.17)

+ 3
λ

M2
h

n∑
n1,n2,n3

δnn1+n2+n3

n1 − 1

n1
fn1 dn2 dn3 .

– 5 –
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The factors of n−1
n and n1−1

n1
on the left and right hand sides of this equation arise from

the kinetic energy formula (2.15).

The recursion relation (2.8) for the amplitudes on the multi-particle threshold is solved

as before (cf. eq. (2.9)) and determines the full set of the dn coefficients, dn = (2v)1−n.

We can now go ahead and solve the second recursion relation (2.17) to determine the

coefficients fn. Our result is

fn = −
(

7

6
n +

1

6

n

n− 1

)
dn , for all n ≥ 2 . (2.18)

This result is obtained by solving an ordinary differential equation (as will be explained

below) by iterations with Mathematica. The resulting amplitude to the order-ε is then

given by

An(p1 . . . pn) = n! (2v)1−n
(

1− 7

6
n ε − 1

6

n

n− 1
ε + . . .

)
. (2.19)

There are corrections to this expression at higher orders in ε, but it holds to the order ε1

for any value of n.

An important observation, first made in [16], is that by exponentiating the order-

nε contribution, one obtains the expression for the amplitude which solves the original

recursion relation (2.3) to all orders in (nε)m in the large-n non-relativistic limit,

An(p1 . . . pn) = n! (2v)1−n exp

[
−7

6
n ε

]
, n→∞ , ε→ 0 , nε = fixed . (2.20)

Simple corrections of order ε, with coefficients that are not-enhanced by n are expected, but

the expression on right hand side of (2.20) is correct to all orders nε in the double scaling

large-n limit. This observation follows from the fact that the exponential factor in (2.20)

can be absorbed into the z variable so that the expression in (2.6) with the rescaled z on

the right hand side,

ϕ(z) =

∞∑
n=1

dn

(
z e−

7
6
ε
)n

, (2.21)

remains a solution to the classical equation

− (d2t +M2
h)ϕ = 3λv ϕ2 + λϕ3. (2.22)

This implies that the individual n-point amplitudes will satisfy the recursion relations (2.4)

and by the same token the general-kinematics recursion (2.3). This is because the operator

P 2
in−M2

h on the left hand side of (2.3) becomes M2
h

(
n2(1 + ε)2 − 1

)
= M2

h

(
n2 − 1

)
in the

n → ∞, ε → 0 double-scaling limit. Then as soon as (2.21) satisfies (2.4), it also satisfies

the general-kinematics recursions (2.3) in the double-scaling limit.

Note that the exponentiated expression (2.20) solves (2.22) for any constant factor

in the exponent, but having solved the order-ε recursions explicitly we have determined

in (2.18) the value of the constant to be = −7/6.2

2In the φ4 theory with no spontaneous symmetry breaking the authors of ref. [16] have shown that the

amplitudes scale with energy as ∝ n! exp
[
− 5

6
n ε

]
. We will re-derive their result in the appendix.

– 6 –
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Rescaled variables: to simplify the form of the recursion relations — especially in view

of the applications to the coupled Gauge-Higgs equations in the following section — we

define new rescaled dimensionless variables:

tnew = Mh t , znew =
z

2v
and φ :=

1

2v
ϕ =

∞∑
n=1

dnewn znnew , (2.23)

so that dnewn = (2v)n−1dn which amounts to a particularly simple form of the recursive

solution dnewn = 1 or all n = 1, 2, . . .∞ in eq. (2.9), and is the reason why we introduced

factors of 2 in the rescaling (2.23).

In terms of these new variables (and suppressing the superscript ‘new’) the classical

equation (2.22) takes the form

− (d2t + 1)φ = 3φ2 + 2φ3 , (2.24)

and the amplitudes on the multi-particle threshold (cf. (2.7)) are given by:

An = (2v)1−n
(
∂

∂z

)n
φ(z)

∣∣∣∣
z=0

= n! (2v)1−n dn , (2.25)

where

φ(z) =

∞∑
n=1

dn z
n , and dn ≡ 1 , n = 1, 2, . . . ,∞ . (2.26)

With the equation (2.24) defining the generating function for amplitudes on the multi-

particle threshold, the order-ε correction to the generating function (in our rescaled vari-

ables) is determined by the differential equation (cf. (2.17)):

n− 1

n

((
n2 − 1

)
fn + 2n2 dn

)
= 6

(
Fφ + Fφ2

)
|zn , (2.27)

where we defined the new function

F (z) =
∞∑
n=2

n− 1

n
fn z

n . (2.28)

Solving eq. (2.27) by iterations with Mathematica gives the fn coefficients in (2.18), which

amounts to the exponentiated form for the amplitude off the multiparticle mass-shell in

the non-relativistic limit ε→ 0, with nε =fixed,

An(p1 . . . pn) = n! (2v)1−n exp

[
−7

6
n ε

]
. (2.29)

This is our main result for the tree-level high-multiplicity amplitudes in the scalar theory

with SSB in the ε→ 0, with nε = fixed limit.

– 7 –
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3 Multiparticle production in the gauge-Higgs theory

We are now ready to consider our main case of interest — the electroweak sector of the

Standard Model. In the limit of the vanishing mixing angle θW, the weak interactions

are described by the SU(2) gauge theory spontaneously broken by the vacuum expectation

value v of the Higgs doublet,

L = −1

4
F aµνF aµν + |DµH|2 − λ

(
|H|2 − v2

2

)2

. (3.1)

We adopt the standard unitary gauge where the Goldstone bosons are gauged away, and

the Higgs doublet is described by a single real scalar h(x),

H =
1√
2

(0, h) , (3.2)

The Higgs potential in terms of h takes the same form as in eq. (2.1). The particle content

of the model is given by the neutral Higgs state, h, and a triplet of massive vector bosons,

W± and Z0, described by Aaµ with a = 1, 2, 3, which we will collectively refer to as V . The

Higgs mass and the mass of the vector boson triplet are given by,

Mh =
√

2λ v ' 125.66 GeV , MV =
gv

2
' 80.384 GeV , (3.3)

where we have also shown their numerical values, set by the SM Higgs and W boson masses,

which will be uses in our calculations of the amplitudes below.

We want to study the processes where colliding protons first produce an intermediate

virtual state, which can be either the Higgs or a gauge boson. This intermediate highly

virtual boson then decays into n Higgs bosons and m vector bosons 1 → n + m, which is

the multi-particle production process we concentrate upon. The multiplicity of the final

state n+m is assumed to be large so that most of the energy carried by the virtual state

is spent to achieve the multi-particle mass threshold for the n + m final particles. Above

the threshold, the momenta of the final state particles are assumed to be non-relativistic.

It is convenient to describe the kinematics working in the Lorentz frame where the initial

virtual boson is at rest. In this frame,

Pµin = (P 0
in,~0) =

n∑
j=1

pµj +
m∑
k=1

pµk , (3.4)

where the first sum on the right hand side is over the n Higgs bosons, and the second

sum is over the m vector bosons produced in the final state. We will make an additional

simplifying assumption that the total momentum is conserved separately in the Higgs, and

in the vector boson sectors, i.e.

n∑
j=1

~pj = 0 , and

m∑
k=1

~pk = 0 . (3.5)

In the rest frame of Pµin = (P 0
in,
~0) this amounts to a single constraint on the overall

kinematics of the multi-particle final state and imposing it should not affect the result of

– 8 –
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integrating over the (n+m)-particle phase space in the n+m� 1 high-multiplicity limit.

With these considerations in mind we can thus express the initial virtual-state momentum

in the form,

Pµin =
(
nMh(1 + εh) +mMV (1 + εV ) , ~0

)
, (3.6)

where εh and εV denote the average non-relativistic kinetic energies of the Higgs bosons,

and of the vector bosons, per particle per mass,

εh =
1

n

1

2M2
h

n∑
j=1

~p 2
j , εV =

1

m

1

2M2
V

m∑
k=1

~p 2
k . (3.7)

In the non-relativistic limit for the final state we have 0 ≤ εh � 1 and 0 ≤ εV � 1.

3.1 Recursion relations for amplitudes on the multi-particle threshold

Following the approach of [6, 7] we will consider the amplitudes for processes with final

states which do not contain transverse polarisations of the vector bosons, and concentrate

on the production of longitudinal polarisations, AaL and Higgses h. The classical equations

for spacialy-independent fields readily follow from the Lagrangian (3.1) in the unitary gauge

(these are eqs. (3.8)-(3.9) of [6, 7]),

− d2th = λh3 − λv2 h+
g2

4
(AaL)2h , (3.8)

− d2tAaL =
g2

4
h2AaL . (3.9)

The generating function of the amplitudes on the multi-h, multi-VL threshold, is the clas-

sical solution of this system of equations given by analytic functions of two variables,

z(t) = z0 e
iMht , and wa(t) = wa0 e

iMV t , (3.10)

with the leading-order terms being,

h(t) = v + z(t) + . . . , and AaL(t) = wa(t) + . . . . (3.11)

The double Taylor expansion for the two generating functions in terms of the z and wa

variables takes the form:

h(z, wa) = v + 2v

∞∑
n=0

∞∑
k=0

d(n, 2k)
( z

2v

)n (wawa
(2v)2

)k
, (3.12)

AaL(z, wa) = wa
∞∑
n=0

∞∑
k=0

a(n, 2k)
( z

2v

)n (wawa
(2v)2

)k
, (3.13)

where z(t) and wa(t) are given by eqs. (3.10), and the lowest-order Taylor coefficients are

d(0, 0) = 0 and a(0, 0) = 1 in agreement with (3.11). The explicit scaling factors of 2v are

introduced on the right hand side of the above equations to maximally simplify the form

of the solutions for the Taylor expansion coefficients. In particular, in this notation we
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will have d(n, 0) = 1 for all values of n ≥ 1, in agreement with the solution of the scalar

equation (2.26) in the previous section.

To simplify the form of the classical equations and to emphasise that they depend only

on a single numerical parameter κ,

κ :=
g

2
√

2λ
=

MV

Mh
, (3.14)

we introduce the rescaled dimensionless variables as in (2.23),

tnew = Mht , znew =
z

2v
=

z0
2v
eitnew , wanew =

wa

2v
=

wa0
2v

eiκtnew , (3.15)

and also define the dimensionless fields, φ for the VEVless scalar, and A for the vector

bosons, via:

h = v (1 + 2φ) , AaL = waA = 2v wanew A . (3.16)

Note that the vector boson configuration A on the right hand side of the second equation

in (3.16) no longer contains the isospin index a = 1, 2, 3 which has been factored out

into the wa prefactor. We use these new dimensionless variables and fields to re-write

eqs. (3.8)–(3.9) in the form,

− (d2t + 1)φ = 3φ2 + 2φ3 + 2κ2 (1 + 2φ) (wawa) A2 , (3.17)

− (d2t + κ2)waA = 4κ2(φ+ φ2)waA . (3.18)

As expected, this system of equations depends on a single dimensionless parameter κ

and we note that in the κ → 0 limit the equation (3.17) reproduces the scalar-field

equation (2.24) of section 2. The Taylor expansions (3.12)–(3.13) are also simplified in

terms of the rescaled variables,

φ =

∞∑
n=0

∞∑
k=0

d(n, 2k) znW k , A =

∞∑
n=0

∞∑
k=0

a(n, 2k) znW k , (3.19)

where we have introduced the squared w variable,

W = wawa . (3.20)

The recursion relations for the coefficients d(n, 2k) and a(n, 2k) are obtained by substi-

tuting the Taylor expansions (3.19) into the classical equations (3.17)–(3.18) and selecting

the znW k monomials,[
(n+ 2k κ)2 − 1

]
d(n, 2k) =

[
3φ2 + 2φ3 + 2κ2 (1 + 2φ)WA2

]∣∣
znWk , (3.21)[

(n+ κ+ 2k κ)2 − κ2
]
a(n, 2k) =

[
4κ2(φ+ φ2) A

]∣∣
znWk . (3.22)

These equations were solved in [6, 7] by iterations using the numerical value of κ =

MW /Mh = 80.384/125.66 ' 0.6397. First we set k = 0 and solve the Higgs equations (3.21)
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Figure 1. Coefficients d(n,m) and a(n,m) for generating functions of amplitudes (3.23)–(3.24) at

threshold, from refs. [6, 7]. The label n = 0, 1, . . . , 32 is shown along the horizontal axis and the

sequences of curves correspond to m = 0, 2, . . . , 32 from bottom to top. κ = MW /Mh ' 0.6397.

for all values of n ≥ 1 thus determining all coefficients3 d(n, 0). Then we solve the A-

equations (3.22) for the coefficients a(n, 0) for each n. Next we set k = 1, and solve equa-

tions (3.21) for all n to determine d(n, 2). Following this, the coefficients a(n, 2) are found

by solving (3.22) at k = 1 for all values of n. This procedure is repeated for all values of k.

This iterative algorithm was implemented in [6, 7] in Mathematica. One can solve for

d(n, 2k) and a(n, 2k) to any desired values of n and k numerically. Tables 1-4 in refs. [6, 7]

list numerical values of the coefficients4 up to d(32, 32) and a(32, 32). In figure 1 we show

the logarithmic plots of all d(n,m) and a(n,m) for n = 0 . . . 32 and m = 0, 2, . . . , 32. These

plots can be interpreted as sequences of curves, each curve representing d(n,m) and a(n,m)

as functions of n for a fixed value of m. Increasing values of m = 0, 2, . . . , 32 corresponds

to moving upwards from lower to higher curves.

The amplitudes on the multi-particle threshold are given by the following expressions

in terms of the Taylor expansion coefficients d(n, 2k) and a(n, 2k),

A(thr)
h∗→n×h+m×ZL

= (2v)1−n−m n!m! d(n,m) , (3.23)

and for the longitudinal Z decaying into n Higgses and m+ 1 vector bosons we have,

A(thr)
Z∗L→n×h+(m+1)×ZL

=
1

(2v)n+m
n! (m+ 1)! a(n,m) . (3.24)

The amplitudes with all varieties of W±L and ZL in the final state, one should simply

differentiate with respect to wa with the appropriate values of the isospin index a = 1, 2, 3.

At m = 0 the coefficients d(n, 0) = 1 for all n ≥ 1 provide a useful reference point.

After switching on m > 0, the coefficients of the generating functions grow steadily with

m, reaching d(n,m) ∼ 108 at m ≥ 16 and n ≥ 27; and d(n,m) ∼ 1013 at m = 32 and

3The solution is d(n, 0) = 1 for all n ≥ 1 which is in agreement with the pure scalar theory result

in (2.26).
4Note that in the notation of [6, 7] the value of d(0, 0) was 1/2 while in the notation of the present paper

d(0, 0) ≡ 0. This is the consequence of working with the scalar field φ shifted by the VEV rather than with

h. The rest of the coefficients in the tables 1-4 of [6, 7] are unchanged.
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n = 31 and similar growth with m occurs for the a(n,m) coefficients of the gauge field

generating function [6, 7]. This numerical growth of the coefficients is on top of n! and m!

factors in the expressions for the amplitudes (3.23)–(3.24).

3.2 Amplitudes above the threshold

The operator d2t + M2 on the left hand side of the equations of motion away from the

threshold becomes P 2
in + M2. Using the expression for the incoming momentum in (3.6)

together with the rescaled dimensionless variables5 (3.7) this amounts to the substitutions

− (d2t + 1)φ =⇒
[
(n(1 + εh) + 2k κ (1 + εV ))2 − 1

]
φ(n, 2k) , (3.25)

− (d2t + κ2)A =⇒
[
(n(1 + εh) + (2k + 1)κ (1 + εV ))2 − κ2

]
A(n, 2k) , (3.26)

on the left hand sides of eqs. (3.17) and (3.18) respectively. The quantities φ(n, 2k) and

A(n, 2k) appearing on the right hand sides are the Taylor coefficients of the amplitudes

including the dependence on the external Higgs and the vector bosons kinematics. Based

on the results of section 2, we expect that in the large multiplicity limit n, 2k → ∞ with

nεh and 2kεV held fixed,

φ(n, 2k) = d(n, 2k) exp [−Ch n εh − CV 2k εV ] , (3.27)

A(n, 2k) = a(n, 2k) exp [−Ch n εh − CV 2k εV ] . (3.28)

These expressions correspond to a rescaling z → z e−Ch and W → W e−CV in the Taylor

expansions for the generating functions in (3.19). As we already noted in section 2, in the

large-multiplicity limit at hand, these expressions with the rescaled variables satisfy the

full recursion relations for the amplitudes on and above the threshold. But in order to

determine the values of the constants Ch and CV we should first consider the εh → 0 and

εV → 0 limit at finite general values of n and 2k.

We will first set 2k = 0 and expand (3.27)–(3.28) to the first order in εh as follows,

φ(n, 0) = d(n, 0) + εhf(n, 0) , A(n, 0) = a(n, 0) + εhb(n, 0) , (3.29)

making no a priori assumptions about the form of f(n, 0) and b(n, 0), and solving for these

coefficients to determine the value of Ch and the applicability of (3.27)–(3.28).

Next, we will set n = 0 and determine the constant CV .

3.2.1 n-Higgs production: solving gauge and Higgs equations for 2k=0 for all

n

Here we consider the case where no additional gauge bosons were produced in the final

state. We thus set 2k = 0 and substitute for the amplitudes coefficients the leading-order

expansion in terms of the Higgs kinetic energy, d(n, 0) + εhf(n, 0) and a(n, 0) + εhb(n, 0),

Ah∗→n×h(εh) = (2v)1−n n! (d(n, 0) + εhf(n, 0)) , (3.30)

5Note that the number of vector bosons is m = 2k for the amplitude Ah∗→n×h+2k×VL , and m = 2k + 1

for the amplitude AV ∗
L
→n×h+(2k+1)×VL

.
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AZ∗L→n×h+ZL
(εh) =

1

(2v)n
n! (a(n, 0) + εhb(n, 0)) . (3.31)

Expanding the left hand sides of the classical equations (3.25)–(3.26) up to the order-ε1h
we have:[

n2(1 + εh)2 − 1
]

(d(n, 0) + εhf(n, 0)) = (n2 − 1) d(n, 0) (3.32)

+ε1h ×
[
(n2 − 1)f(n, 0) + 2n2d(n, 0)

]
,[

(n(1 + εh) + κ)2 − κ2
]

(a(n, 0) + εhb(n, 0)) = (n2 + 2nκ) a(n, 0) (3.33)

+ε1h×
[
(n2+2nκ) b(n, 0)+2(n2+nκ) a(n, 0)

]
The εh-independent contributions give rise to the familiar equations for amplitudes on the

threshold, (these are eqs. (3.21)–(3.22) restricted to k = 0) which have provided us with

the expressions for d(n, 0) and a(n, 0).

The order-ε1h contributions result in the equations for the off-threshold corrections to

the amplitudes which take the form,

n− 1

n

[
(n2 − 1)f(n, 0) + 2n2d(n, 0)

]
= 6

(
Fφ + Fφ2

)∣∣
znW 0 , (3.34)

n− 1

n

[
(n2 + 2nκ) b(n, 0) + 2(n2 + nκ) a(n, 0)

]
= 4κ2

[
(F + 2Fφ) A + (φ+ φ2)B

]∣∣
znW 0 ,

(3.35)

where the function F (z) is the same as in (2.28), and we have similarly defined the new

function B(z) appearing in (3.35) via:

F (z) =

∞∑
n=2

n− 1

n
f(n, 0) zn , B(z) =

∞∑
n=2

n− 1

n
b(n, 0) zn . (3.36)

The equations (3.34)–(3.35) are the recursion relations for the coefficients f(n, 0) and

b(n, 0) which determine the amplitudes’ dependence on the kinematics. These equations

are obtained following the same prescription as we have used in deriving (2.27) in the

scalar theory. In fact, the first equation (3.34) is identical to (2.27) as it does not contain

gauge-fields in the W 0 selection rule we have imposed.6

Specifically, the left hand sides of the equations (3.34)–(3.35) are given by the order-ε1h
contributions to the kinetic terms (3.32)–(3.33) times the overall factor of n−1

n appearing

for the same reason as in (2.17). The expressions on the right hand side in (3.34)–(3.35)

arise as the leading order ε1h expansion of the expressions on the right hand side of (3.21)–

(3.22) with the substitution φ→ d(n, 0) + εhf(n, 0) and A→ a(n, 0) + εhb(n, 0), and again

accompanied by the relevant n−1
n factors, as reflected in the definitions (3.36).

The scalar field equation (3.34) was solved in section 2 with the solution given by (2.18).

We can now solve the equation (3.35) for the gauge field recursively with Mathematica. We

thus determine the coefficients b(n, 0) for all values of n ≥ 2. In the large-n limit we

6The the last term on the right hand side of containing the gauge field A vanishes for W = 0.
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find that solving each of the equations result in the same leading-order behaviour for the

coefficients,
f(n, 0)

d(n, 0)
→ − 7

6
n ,

b(n, 0)

a(n, 0)
→ − 7

6
n . (3.37)

This result (which we also checked does not depend on the value of κ) is not a coincidence.

Given the n-Higgs amplitude behaviour which we derived in (2.20), it must be the case that

in the double-scaling nεh =fixed large-n limit the amplitudes (3.30)–(3.31) exponentiate

Ah∗→n×h(εh) = (2v)1−n n! d(n, 0) exp

[
−7

6
n εh

]
, (3.38)

AZ∗L→n×h+ZL
(εh) =

1

(2v)n
n! a(n, 0) exp

[
−7

6
n εh

]
. (3.39)

These expressions for the amplitudes away from the threshold correspond to the rescaling

z → z e−
7
6 in the Taylor expansions for the generating functions in (3.19).

Our next goal is to determine the constant CV in the exponential factor for the am-

plitudes (3.27)–(3.28) when the gauge bosons are present in the final state.

3.2.2 2k-vector production: solving gauge and Higgs equations for n=0 for all

k

We now consider the case where only the vector bosons are produced in the final state,

thus we keep 2k general and set n = 0. The equations (3.27)–(3.28) are expanded to the

first order in εV for εh = 0. We have,

φ(0, 2k) = d(0, 2k) + εV f(0, 2k) , A(0, 2k) = a(0, 2k) + εV b(0, 2k) , (3.40)

once again, making no a priori assumptions about the form of f(0, 2k) and b(0, 2k), and

solving for these coefficients to determine the value of CV in (3.27)–(3.28).

Repeating the same steps as in the previous sub-section we can write down the recursion

relations at the order-ε0V (cf. (3.21)= (3.22)):[
(2k κ)2 − 1

]
d(0, 2k) =

[
3φ2 + 2φ3 + 2κ2 (1 + 2φ)WA2

]∣∣
z0Wk , (3.41)[

(1 + 2k)2 − 1
]
a(0, 2k) = 4

[
(φ+ φ2) A

]∣∣
z0Wk , (3.42)

and at the order-ε1V the Higgs-field equation is,

2k − 1

2k

[
((2kκ)2 − 1)f(0, 2k) + 8(kκ)2d(0, 2k)

]
=

=
[
6Fφ(1 + φ) + 4κ2FWA2 + 4κ2 (1 + 2φ)WAB

]∣∣
z0Wk , (3.43)

and the gauge-field equation is,

2k − 1

2k

[
4k(k + 1) b(0, 2k) + 2(k + 1)2 a(0, 2k)

]
= 4

[
(F + 2φF ) A + (φ+ φ2)B

]∣∣
z0Wk

(3.44)

The functions F (W ) and B(W ) are defined here via:

F (W ) =

∞∑
k=2

2k − 1

2k
f(0, 2k)W k , B(W ) =

∞∑
k=2

2k − 1

2k
b(0, 2k)W k . (3.45)
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We have solved numerically the order-ε0V equations (3.41)–(3.42) by iterations with

Mathematica to determine the coefficients d(0, 2k) and a(0, 2k). Using these we solved

the order-ε1V equations (3.43)–(3.44) for the coefficients f(0, 2k) and b(0, 2k) for different

numerical values of the κ parameter.

In the large-multiplicity limit 2k → ∞ our numerical results for the ratios of the

coefficients,
f(0, 2k)

d(0, 2k)
→ −CV (κ) 2k ,

b(0, 2k)

a(0, 2k)
→ −CV (κ) 2k , (3.46)

confirm that both ratios: for the scalar-field coefficients, and for the gauge-field coefficients

approach the same numerical constant CV , which itself depends on the value of the mass-

parameter κ. For the physical value κ = MW /Mh = 80.384/125.66 ' 0.64, we get

CV ' 1.7 , for κ = 0.64 . (3.47)

More generally, defining

− 1

2

(
f(0, 2k)

d(0, 2k)
− f(0, 2k − 2)

d(0, 2k − 2)

)
→ C scal.

V (κ) , − 1

2

(
b(0, 2k)

a(0, 2k)
− b(0, 2k − 2)

a(0, 2k − 2)

)
→ C vect.

V (κ) ,

we get with 2k = 54,

C scal.
V ' 3.342 , C vect.

V ' 3.336 , for κ = 0.55

C scal.
V ' 1.702 , C vect.

V ' 1.696 , for κ = 0.64

C scal.
V ' 0.996 , C vect.

V ' 0.996 , for κ = 1.

C scal.
V ' 0.829 , C vect.

V ' 0.829 , for κ = 2.

C scal.
V ' 0.805 , C vect.

V ' 0.805 , for κ = 3.

C scal.
V ' 0.794 , C vect.

V ' 0.794 , for κ = 5.

C scal.
V ' 0.789 , C vect.

V ' 0.789 , for κ = 10.

C scal.
V ' 0.787 , C vect.

V ' 0.787 , for κ = 100. (3.48)

The convergence of the series is improved at higher values of κ. A very likely conclusion

is that at an unphysical value of κ = 1 which corresponds to Mh = MV the value of the

vector constant is CV = 1.

Our final result for the tree-level multi-vector-boson multi-Higgs production amplitudes in

the high-multiplicity double-scaling limit for κ = MW /Mh = 80.384/125.66 ' 0.64 is:

Ah∗→n×h+m×ZL
= (2v)1−n−m n!m! d(n,m) exp

[
− 7

6
n εh − 1.7mεV

]
, (3.49)

AZ∗L→n×h+(m+1)×ZL
=

1

(2v)n+m
n! (m+ 1)! a(n,m) exp

[
− 7

6
n εh − 1.7mεV

]
(3.50)

The expressions (3.49)–(3.50) constitute our main results, as far as the scattering

amplitudes at high multiplicities are concerned. They incorporate the dependence on the

momenta of final particles (computed in the n εh + mεV = fixed regime) and hence can

be integrated over the phase-space. The lesson we draw from the amplitude expressions
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above is that even away from the multi particle thresholds they mainain the factorial

dependence on the multiplicities and the further enhancement by the growing coefficients

d(n,m) and a(n,m), found in the threshold amplitudes. The dependence on the kinematic

variables of the final space provides only a mild suppression of the result on the threshold

— at least in the regime where the derivation of (3.49)–(3.50) is valid. For example, for

n = 30 and εh = 0.1 so that nεh = 3 is an order-one constant, we have e−
7
6
n εh ' 0.03

and similarly for m = 30 and εV = 0.1 we have e−1.7mεV ' 0.006 as overall multiplicative

factors in the amplitudes.

In the next section we will integrate these amplitudes over the phase space in order to

estimate the rates for these processes.

4 Integrating over the phase space

The scattering cross sections for multi-particle production rates arise from integrating the

squared amplitudes (3.49)–(3.50) over the Lorentz-invariant phase space,

σn,m =

∫
dΦn,m

1

n!m!
|Ah∗→n×h+m×ZL

|2 , (4.1)

where 1/n! and 1/m! are the Bose statistics factors accounting for the n identical Higgses

and m identical longitudinal vector boson states, and we have dropped the overall flux

factor on the r.h.s. of (4.1). The next step is to integrate over phase space. The n-particle

Lorentz-invariant phase space volume element has the familiar form,∫
dΦn = (2π)4δ(4)(Pin −

n∑
j=1

pj)

n∏
j=1

∫
d3pj

(2π)3 2p0j
, (4.2)

but in order to use in (4.1) our results for the amplitudes (3.49) within their region of

validity — i.e. the high-multiplicity non-relativistic limit — the phase space integrations

have to be performed in the same non-relativistic approximation.

We note that it should not come as a surprise that the large-n small-ε limit will amount

to a very small phase-space volume. Indeed, a very rough estimate for the phase-space vol-

ume in this approximation will be Φn ∝M3n× ε3n/2. In dimensionless units, it arises from

the product of n three-dimensional spherical volumes obtained by integrating over each of

the final particle momenta |p|i .M
√

2ε. It is then not surprising that the resulting volume

of the non-relativistic n-particle phase-space reduces the cross section by the factor ∝ ε3n/2

which is� 1 in the limit ε→ 0 and n� 1. We will confirm this estimate with a more pre-

cise computation below, but it is important to stress from the outset that the suppression of

the resulting cross sections at moderate energies is entirely caused by the non-relativistic ap-

proximation used in computing the phase-space volume, and is not driven by the form of the

amplitudes squared. In order to compute the rate in the more realistic settings, one should

integrate over a larger portion of the phase-space. In the present paper we will not pursue

this route as this would require knowing the amplitudes beyond the non-relativistic limit.

The phase-space integration in the large-n non-relativistic limit with nεh fixed is

easily carried out by integrating over the d3np volume of the 3n-dimensional of radius
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Figure 2. Amplitude coefficients of figure 1 in the form 2 log(κmd(n,m)) and 2 log(κma(n,m))

appearing in eqs. (4.6)–(5.6). The label n = 0, 1, . . . , 32 is shown along the horizontal axis and the

sequence of curves corresponds to m = 0, 2, . . . , 32 with m increasing from bottom to top (on the

right of each plot).

|p| = Mh
√

2nεh. The resulting non-relativistic phase space volume in the large-n limit is

(see e.g. [17]),

Φn '
1√
n

(
M2
h

2

)n
exp

[
3n

2

(
log

εh
3π

+ 1
)

+
nεh
4

+ O(nε2h)

]
. (4.3)

Combining this with the n-Higgs amplitude squared (with m = 0 vector bosons), we get,

1

n!
Φn |An|2 ' Φn (2v)−2n n! d(n, 0)2 exp

[
− 7

3
n εh

]
' 1√

n
exp

[
2 log d(n, 0) + n

(
log

λn

4
− 1

)
+

3n

2

(
log

εh
3π

+ 1
)
− 25

12
n εh

]
(4.4)

Repeating the same steps for vector boson emissions we now can write down the

rate for the high multiplicity n-Higgs + m-vector boson production corresponding to the

amplitude (3.49),

σn,m ∼ exp

[
2 log d(n,m) + n

(
log

λn

4
− 1

)
+ m

(
log

(
g2m

32

)
− 1

)
(4.5)

+
3n

2

(
log

εh
3π

+ 1
)

+
3m

2

(
log

εV
3π

+ 1
)
− 25

12
nεh − 3.15mεV + O(nε2h +mε2V )

]
The cross section arising from the amplitude (3.50) takes the same form as (4.5) but with

the 2 log a(n,m) factor on the right hand side. The numerical coefficients d(n,m) and

a(n,m) were derived in [6, 7] by solving recursion relations for the amplitudes on the

multi-particle mass threshold; they are plotted in figure 1.

At m = 0 all d-coefficients are equal to one, hence the first term on the right hand

side vanishes in this case, 2 log d(n,m = 0) = 0. At higher values of m, however the

coefficients d(n,m) and a(n,m) start growing. To somewhat tame the numerical growth

of the Taylor coefficients we can rescale them with a factor of κm and this can be nicely

combined with the observation that m log(g
2m
32 ) = m log(κ2) +m log(λm4 ) which facilitates
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a re-write of (4.5) in the form:

σn,m ∼ exp

[
2 log(κmd(n,m)) + n log

λn

4
+ m log

λm

4
(4.6)

+
n

2

(
3 log

εh
3π

+ 1
)

+
m

2

(
3 log

εV
3π

+ 1
)
− 25

12
n εh − 3.15mεV + O(nε2h +mε2V )

]
The amplitudesTaylor coefficients in the form 2 log(κmd(n,m)) and 2 log(κma(n,m)) ap-

pearing on the right hand side are shown in figure 2.

5 Conclusions

The expressions in eq. (4.5) or equivalently in eq. (4.6) characterise the cross section σn,m
for the multi-particle n-Higgs m-vector boson production obtained in the high-multiplicity

non-relativistic limit. They were derived in the Gauge-Higgs theory and based on

computing all tree-level scattering amplitudes with n-Higgs m-longitudinal-vector boson

final states, derived on- and off- the multi-particle mass threshold in eqs. (3.49)–(3.50).

These are our main results.

As we have already noted, the imposition of the non-relativistic limit

dramatically reduces the otherwise available phase-space to a tiny volume ∝
exp

[
−3n

2 log 3π/e
εh
− 3m

2 log 3π/e
εV

]
. At moderately high energies this suppression factor will

dominate the cross section, as we will illustrate below. However, one should keep in mind

that this effect is is simply an artifact of the approximation used for computing the phase-

space.

Before we conclude, it will be useful to sketch some simple estimates for the energy

scales involved. First, we would like to estimate the value of log(σn,m) for a “minimal

interesting value” of final particle multiplicities, n = m = 30 which is roughly 1/αW (they

of course also correspond to the highest multiplicities where we have calculated the values of

the Taylor coefficients d(n,m) and d(n,m)). Following our expression in eq. (4.6) we have,

n = m = 30 =⇒ 2 log(κmd(n,m)) ' 30 , (5.1)
√
ŝ ' 6.8 TeV n log

λn

4
= m log

λm

4
' −0.02 ' 0 , (5.2)

εh = εV = 0.1 =⇒ n

2

(
3 log

εh
3π

+ 1
)

=
m

2

(
3 log

εV
3π

+ 1
)
' − 190 , (5.3)

− 25

12
nεh − 3.15mεV ' − 15 , (5.4)

where we have been careful in (5.3) to select an appropriately small value 0.1 of the kinetic

energy per particle to be consistent with the non-relativistic limit. This amounts to

n = m ' 30 =⇒ log(σ) ' 30 − 190 − 190 − 15 = −365 , (5.5)

which amounts to a negligibly small rate σ30,30 ' 0.3 × 10−160. Clearly, to have a higher

rate, we need to increase the number of particles in the final state.
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Still, at even higher multiplicities perturbation theory will break down and perturbative

unitarity will be violated by exponentially growing rates even within the current non-

relativistic phase-space limit. To see this, let us re-arrange the expression in eq. (4.6) as

follows:

σn,m ∼ exp

[
2 log(κmd(n,m)) + m log

(
λmεV

12π

√
εV
3π

)
+ m (0.5− 3.15 εV )

+ n log

(
λnεh
12π

√
εh
3π

)
+ n

(
1

2
− 25

12
εh

)
+ O(nε2h +mε2V )

]
. (5.6)

This result holds in the double scaling limit, n → ∞, m → ∞, εh → 0, εV → 0 with nεh
and mεV held fixed.

We now consider a somewhat extreme case with the number of produced vector bosons

is very large, m ' 7500 and we keep the number of Higgs bosons small, for simplicity. Then

only the terms on the first line of eq. (5.6) matter. If we also assume εV = 0.5 we would get,

m = 7500 , εV = 0.5 =⇒ m log

(
λmεV

12π

√
εV
3π

)
+ m (0.5− 3.15 εV ) ' 0 , (5.7)

√
ŝ ' 845 TeV σn,m ∼ exp [2 log(κmd(n,m))] , (5.8)

and if we increase the number of vector bosons by 100 more at a cost of extra 10 TeV at

these energies, we would get

m = 7600 , εV = 0.5 =⇒ m log

(
λmεV

12π

√
εV
3π

)
+ m (0.5− 3.15 εV ) ' 102 , (5.9)

√
ŝ ' 855 TeV σn,m ∼ exp [2 log(κmd(n,m))]× e102 ≫ 1 , (5.10)

This behaviour is obviously in violation of perturbative unitarity even if we do not worry

about the additional factor of 2 log(κmd(n,m)) which is likely to continue growing beyond

the value of 30 in (5.2) at these multiplicities. This regimes is also beyond the validity

region of eq. (5.6) since the unknown corrections of the order mε2V are large.

Similarly, in the case of mostly Higgs production, i.e. at low m and n ' 4000 we find,

n = 4000 , εh = 0.65 =⇒ n log

(
λnεh
12π

√
εh
3π

)
+ n (1/2− 25/12 εh) ' 23 , (5.11)

√
ŝ ' 830 TeV σn,m ∼ exp [2 log(κmd(n,m))]× e23 ≫ 1 , (5.12)

The main conclusion we want to draw from the computations presented in this paper is

that perturbation theory does break down in the weak sector of the Standard Model. This

breakdown occurs already at leading order (i.e. tree-level) in the perturbative expansion.7

To accurately determine the lower bound on the energy scale where this breakdown does

7The higher-loop corrections are expected to make this worse by introducing corrections of the order

λn2/(4π) and αWm2/(4π) which are � 1 at the sufficiently high multiplicities.
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occur would require going beyond the double-scaling high-multiplicity non-relativistic limit

we have assumed and used throughout (and would also require including higher-order

corrections as well as computing even higher multiplicity amplitudes). Our rough estimate

is that the perturbative meltdown energy range is not far from a few hundred TeV even

after including the effect of the highly suppressed non-relativistic phase-space volume.

To establish whether these very high multiplicity processes become observable and

even dominant at future circular hadron colliders, to determine what is the precise energy

scale where this happens and what is the average number of bosons produced, ultimately

requires developing of a non-perturbative (possibly semi-classical) technique in the electro-

weak sector of the Standard Model. In particular, it was argued in the 90-s (see [8, 9, 15–

17, 25–27] and references therein) that multi-particle production cross-sections in a scalar

φ4-type field theory take the form:

σn ∼ exp

[
− 1

λ
F (λn, ε)

]
, (5.13)

in the double-scaling λ → 0, n → ∞ limit with λn and ε held fixed. This exponential

behaviour of the n-particle cross-section was obtained from extrapolating results derived

in perturbation theory. The original perturbative computations are valid in the small-

λn limit where F (λn, ε) > 0 and the cross-section is exponentially suppressed. This is

extrapolated to the regime of interest where λn is no longer small and is treated as a finite

fixed quantity. In this regime the function F is unknown, but the exponential behaviour of

the cross-section has a suggestive semi-classical form. The function F (z, ε) appearing in the

exponent is sometimes referred to as the “holy grail” function; in the simplest case scenario

of a one scale scalar theory8 it depends on two arguments, z = λn and the scaled kinetic

energy ε. In order to determine whether or not F (z, ε) can approach zero at some finite

value of z for the high-multiplicity cross-section to become observable and even dominant,

one would require a non-perturbative technique accessible and applicable at finite values

of z. This non-perturbative technique is still lacking.

The calculation presented in this paper is purely perturbative, in fact tree-level, and

it does not attempt to uncover the relevant higher-order and non-perturbative dependence

on λn. We instead discuss the dependence of the cross-section on the scaled kinetic en-

ergy ε (still at the leading tree-level order in perturbation theory) and the leading-order

dependence on λn. These considerations give an indication of interesting and non-trivial

behaviour of cross-sections at large multiplicities and they also confirm the breakdown of

ordinary perturbation theory — now in the case of the Standard Model - type Gauge-Higgs

theory, i.e. beyond the pure scalar field theory example studied before. By extrapolating

the leading-order perturbative treatment, it is clear from the results presented in this paper

that the energy scale does exist where cross sections not only become large, but also grow

and break perturbative unitarity. The discussion of scale where perturbative cross-sections

become large is is addressed in more detail in a companion publication [28]. At the same

time, the fully non-perturbative behaviour of the theory remains unknown. This is an open

problem and we plan to return it in future work.

8With a single coupling λ and a single mass scale m.
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A Unbroken φ4 theory

For completeness and to provide another illustration for using the formalism outlined in

section 2, we will re-derive here the results of ref. [16] for multi-particle amplitudes in the

φ4 theory with no spontaneous symmetry breaking,

L =
1

2
(∂φ)2 − 1

2
M2φ2 − 1

4
λφ4 . (A.1)

The corresponding classical equation for the theory (A.1) is

− (∂µ∂µ +M2)φ = λφ3 , (A.2)

and we are after the n-point amplitude in the non-relativistic limit ε� 1 in the form (2.16),

An(p1 . . . pn) = n! (dn + fn ε) . (A.3)

At the order ε0 the classical equation (A.2) gives the recursion relation for dn (cf. eq. (2.8)):

(n2 − 1) dn =
λ

M2

n∑
n1,n2,n3

δnn1+n2+n3
dn1 dn2 dn3 , d1 = 1 , (A.4)

with the solution, dn = (λ/(8M2))(n−1)/2 for n = 3, 5, 7, . . .. At the order-ε1 we can write

down the recursion relation for the fn coefficients following the same routine as we did in

writing (2.17),

n− 1

n

((
n2 − 1

)
fn + 2n2 dn

)
= 3

λ

M2

n∑
n1,n2,n3

δnn1+n2+n3

n1 − 1

n1
fn1 dn2 dn3 . (A.5)

The factor of 3 on the right hand side of (A.5) accounts for the combinatorial factor

which occurs in the order-ε expansion of (dn1 + εfn1)(dn2 + εfn2)(dn3 + εfn3) to obtain

3 ε fn1 dn2 dn3 . The factors of n−1
n and n1−1

n1
on both sides of (A.5) arise as before from the

form of kinetic energy in (2.15).

The recursion relation (A.5) is solved by introducing the function F (z), exactly as

in (2.27), and solving the ordinary differential equation

n− 1

n

((
n2 − 1

)
fn + 2n2 dn

)
= 3

λ

M2
F (z)φ(z)2|zn . (A.6)

It is straightforward to solve this equation with Mathematica and we have checked that the

solution is the same as found in [16], which reads fn = −
(
5
6 n −

1
6

n
n−1

)
dn. The resulting

amplitude in the double-scaling limit n→∞, ε→ 0, nε fixed, is then given by

AnoSSB
n = n!

(
λ

8M2

)n−1
2

exp

[
−5

6
n ε

]
, (A.7)

in agreement with ref. [16].
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