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ABSTRACT: We present several results on the mixing time of the Glauber dynamics for sampling
from the Gibbs distribution in the ferromagnetic Potts model. At a fixed temperature and interaction
strength, we study the interplay between the maximum degree (�) of the underlying graph and the
number of colours or spins (q) in determining whether the dynamics mixes rapidly or not. We find a
lower bound L on the number of colours such that Glauber dynamics is rapidly mixing if at least L
colours are used. We give a closely-matching upper bound U on the number of colours such that with
probability that tends to 1, the Glauber dynamics mixes slowly on random �-regular graphs when at
most U colours are used. We show that our bounds can be improved if we restrict attention to certain
types of graphs of maximum degree �, e.g. toroidal grids for � = 4. © 2015 Wiley Periodicals, Inc.
Random Struct. Alg., 00, 000–000, 2015
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1. INTRODUCTION

The Potts model was introduced in 1952 [28] as a generalisation of the Ising model of
magnetism. The Potts model has been extensively studied not only in statistical physics, but
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also in computer science, mathematics and further afield. In physics the main interest is in
studying phase transitions and modelling the evolution of non-equilibrium particle systems;
see [34] for a survey. In computer science, the Potts model is a test-bed for approximation
algorithms and techniques. It has also been heavily studied in the areas of discrete mathe-
matics and graph theory, through an equivalence to the Tutte polynomial of a graph [33],
and thereby links to the chromatic polynomial and many other graph invariants. The Potts
model and its extensions have also appeared many times in the social sciences, for example
in modelling financial markets [32] and voter interaction in social networks [6], and in
biology [17].

Potts Model. In graph-theoretic language, the Potts model assigns a weight to each pos-
sible colouring of a graph (not necessarily proper), and we are interested in sampling
from the distribution induced by the weights. The main obstacle to sampling is that the
appropriate normalisation factor, the sum of the weights of all colourings, is hard to
compute. To be precise: for a graph G = (V , E), a (spin) configuration σ is a func-
tion which assigns to each vertex i a colour σi ∈ {1, . . . , q} (also called states or spins).
The probability of finding the system in a given configuration σ is given by the Gibbs
distribution:

π(σ) = Z−1eβ
∑

(i,j)∈E Jδ(σi ,σj),

where δ(σi, σj) is the Kronecker-δ (taking value 1 σi = σj, and taking value 0 otherwise); β =
(kT)−1 > 0 is the inverse temperature (here k is Boltzman’s constant and T is temperature);
and Z = Z(G, β, J , q), is the partition function i.e. the appropriate normalisation factor to
make this a probability distribution. The strength of the interaction between neighbouring
vertices is given by the coupling constant J . If J > 0 then the bias is towards having many
edges with like colours at the endpoints; this is the ferromagnetic region. If J < 0 then the
bias is towards few edges with like colours at the endpoints: this is the anti-ferromagnetic
region.

Our results concern only the ferromagnetic region, where J > 0, although we discuss
some background on the antiferromagnetic region below. We regard eβJ as a single parameter
λ ≥ 0, which we will call the activity; thus λ > 1 gives the ferromagnetic region and λ < 1
gives the antiferromagnetic region. Setting μ(σ) to be the number of monochromatic edges
in a configuration σ (that is, μ(σ) = ∑

(i,j)∈E δ(σi, σj)), we obtain the formula

Z(G, λ, q) =
∑

σ∈[q]V
λμ(σ).

Computing the partition function. When q = 1 the evaluation of the partition function is
trivial. It is also trivial when q = 2, λ = 0, which is the antiferromagnetic Ising model at
zero temperature: here the partition function counts the number of proper 2-colourings of G.
In all other cases it is #P-hard to compute the partition function exactly, and thus there can
be no efficient algorithm (running in time polynomial in the size of the underlying graph)
assuming P �=NP. (Note that the related Tutte polynomial has three additional points on the
real plane at which it can be efficiently evaluated [20], but these do not correspond to the
ferromagnetic Potts model at physically meaningful points, i.e. where q ≥ 1 and λ ≥ 0.)
As a result of the hardness of exact evaluation, attention has been focused on approximation
algorithms. The specific question is: for what classes of graphs and what ranges of q and λ

is there a fully polynomial randomised approximation scheme (FPRAS) for computing the
partition function?

Random Structures and Algorithms DOI 10.1002/rsa
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In the anti-ferromagnetic case, λ < 1, there can be no FPRAS for the partition function
unless NP=RP, except when q = 1 (for all λ) and when q = 2 and λ = 0 [15]. For
the ferromagnetic region, λ > 1, there is only known to be an FPRAS when q = 2
(the Ising model) for general graphs at any temperature [23]. There is also an FPRAS for
the entire ferromagnetic region (no restriction on q) if we restrict the underlying graphs
to the class of dense graphs (those having minimum degree �(n) [1], or having edge
connectivity at least �(log n) [25]). In terms of approximation complexity, approximating
the partition function of the ferromagnetic Potts model is equivalent to #BIS, which is the
problem of approximating the number of independent sets in a bipartite graph [16]. This
puts it in an interesting class of approximation problems, namely, those which are #BIS-
equivalent: no such problem is known to be hard, but none have been shown to exhibit an
FPRAS [8].

Glauber dynamics. A standard approach to approximating the partition function is to
simulate Glauber dynamics. In Glauber dynamics the following process is iterated (starting
from any given configuration): a random vertex updates its colour by selecting a colour
according to the local Gibbs distribution induced by the current colourings of its neighbours.
(This will be formalised in the next subsection.) The distribution on configurations obtained
after t steps of Glauber dynamics converges to an equilibrium given by the global Gibbs
distribution on the whole graph, as t goes to infinity. The approximation is achieved by
simulating the Glauber dynamics for long enough to generate a sample that is distributed
with very nearly the equilibrium distribution. This process is Markov chain Monte Carlo
sampling (MCMC) [24]. The close link between sampling and approximate counting means
that if Glauber dynamics gets sufficiently close to equilibrium in polynomial time (in the
size of the graph) then there is an FPRAS for the partition function. In this case the dynamics
is said to mix rapidly.

In the ferromagnetic case, physicists’ understanding of phase transitions indicate that
at sufficiently high temperature (all other things being equal) Glauber dynamics will mix
rapidly, whereas at sufficiently low temperature Glauber dynamics will mix slowly [26].
The intuitive explanation is as follows: at high temperature in the ferromagnetic region,
β is small and so λ is close to 1; thus all configurations are weighted roughly equally
and the Glauber dynamics walks freely over the state space without getting ‘stuck’. At low
temperatures in the ferromagnetic region, β is large and so λ is also large; thus configurations
consisting of predominantly one colour are far more heavily weighted than configurations
with a balance of colours, so the Glauber dynamics will become trapped in configurations
of the former type. However, determining the exact range of temperature in which Glauber
dynamics mixes rapidly is, in general, open.

In the anti-ferromagnetic case, where it is known that there can be no FPRAS in general,
the MCMC technique has still yielded many results approximating the partition function
for restricted classes of graph, notably bounded-degree graphs. In the zero temperature
limit of the anti-ferromagnetic Potts model only proper vertex colourings have non-zero
weight. Thus approximating the partition function is equivalent to approximately counting
proper q-colourings of the underlying graph. Jerrum [21] first showed that provided the
number of colours is more than twice the maximum degree of the graph then the Glauber
dynamics will mix rapidly, also proved independently in the physics community by Salas
and Sokal [30]. This result has been followed by numerous refinements gradually reducing
the ratio of colours to degree required for rapid mixing: see [13] for a recent survey. In this
paper we shall investigate the interplay of the maximum degree � of the graph G and the
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number of colours q in determining whether the convergence of Glauber dynamics for the
ferromagnetic Potts model is fast (rapid mixing) or slow.

1.1. Definitions

Throughout we shall be concerned with discrete-time, reversible, ergodic Markov chains
with finite state space �. Let M be such a Markov chain with transition matrix P and
(unique) stationary distribution π . For ε > 0 and x ∈ �, we define

τx(M, ε) = min{t : ‖Pt(x, ·) − π(·)‖TV ≤ ε},
where ‖ · ‖TV denotes total variation distance between two distributions: that is,

‖φ − φ′‖TV := 1

2

∑
x∈�

|φ(x) − φ′(x)|.

for any two probability distributions φ, φ′ on �. We define τ(M, ε) = maxx τx(M, ε).
Let G = (V , E) be a graph with n := |V |, and let [q] = {1, . . . , q} be a set of colours

(or spins). We write � = [q]V for the set of configurations of G (i.e. not-necessarily proper
q-colourings). Fix a constant λ > 1, which is called the activity. The Gibbs distribution
π = π(G, λ, q) on � is given by

π(σ) ∝ λμ(σ)

for all σ ∈ �, where μ(σ) denotes the number of monochromatic edges of G in the
configuration σ . More precisely, π(σ) = λμ(σ)/Z , where Z is the partition function

Z = Z(G, λ, q) =
∑
σ∈�

λμ(σ).

The Glauber dynamics is a very simple Markov chain on �, with stationary distribution
given by the Gibbs distribution. Given a configuration X ∈ �, a vertex v ∈ V , and a colour
c ∈ [q], let n(X , v, c) denote the number of neighbours of v with colour c in X. Define the
probability distribution φv

X on [q] by

φv
X(c) ∝ λn(X,v,c).

The transition procedure of the Glauber dynamics from current state Xt ∈ � is as follows:

• choose a vertex v of G uniformly at random;
• given that v = v (here v is random and v is fixed), choose a colour c ∈ [q] according

to the distribution φ = φv
Xt

;

• for each u ∈ V let Xt+1(u) =
{

Xt(u) if u �= v,

c if u = v.

Then Xt+1 is the new state. We write MGD = MGD(G, λ, q) for the Glauber dynamics as
described above.

We say that MGD mixes rapidly if τ(M, ε) is polynomial in log |�|, that is, polynomial
in n. If τ(M, ε) is exponential in n, then we say that MGD mixes slowly.

Random Structures and Algorithms DOI 10.1002/rsa
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1.2. Results

Our main results are stated below. In order to keep the presentation simple at this stage,
we sometimes postpone giving the explicit relationships amongst constants and mixing
times until later, but in each case, we direct the reader to where a more detailed statement
can be found.

In Theorem 1.1 we present our first, and simplest, bound on the number of colours,
as a function of λ and �, that guarantees rapid mixing of Glauber dynamics. Although
Theorem 1.1 follows from a standard coupling argument, for completeness we prove it
here, as we will need this result later to establish our improved bounds.

Theorem 1.1. Let �, q ≥ 2 be integers and take λ > 1 such that q ≥ �λ� + 1. Then
the Glauber dynamics of the q-state Potts model at activity λ mixes rapidly for the class of
graphs of maximum degree �.

Theorem 1.1 will be proved in Section 2.2; see Proposition 2.2 for a more detailed
statement.

In Theorem 1.2 we improve the exponent of λ in the bound, but at the expense of a larger
constant. We also show that the exponent achieved is close to the best possible, by proving
a corresponding slow-mixing bound for almost all regular graphs of degree �.

Theorem 1.2. Fix an integer � ≥ 2. For any η ∈ (0, 1) there are constants c1 and c2

(depending on η and �), such that for any integer q ≥ 2 and any λ > 1

(i) if q > c1λ
�−1+η then the Glauber dynamics of the q-state Potts model at activity λ

mixes rapidly for the class of connected graphs of maximum degree �;

(ii) if q < c2λ
�−1− 1

�−1 −η then the Glauber dynamics of the q-state Potts model at activity
λ mixes slowly for almost all regular graphs of degree � ≥ 3.

Theorem 1.2 is proved at the end of the paper: a more detailed statement of Theorem 1.2(i)
can be found in Theorem 2.14, while a more detailed statement of Theorem 1.2(ii) can be
found in Theorem 4.4.

Theorem 1.2(ii) is proved using a conductance argument. It turns out that conductance
for the Glauber dynamics is related to the expansion properties of the underlying graph,
and so we prove that almost all �-regular graphs have the relevant property. This argument
alone gives a worse bound than that in Theorem 1.2(ii), but combined with the solution of an
interesting extremal problem (proved in Section 3), which we believe may be of independent
interest, we are able to obtain the required improvement.

Theorem 1.2(i) is proved by first using a coupling argument to prove a rapid-mixing result
for block dynamics (a more general form of dynamics than Glauber dynamics) and then
using a Markov chain comparison argument to obtain rapid mixing for Glauber dynamics.
In proving Theorem 1.2(i), we derive a general combinatorial condition on graphs that
guarantees rapid mixing of Glauber dynamics (Theorem 2.4 combined with Corollary 2.13).
This condition can be used to improve the bounds of Theorem 1.2(i) for graph classes of
maximum degree � with “low expansion”. We illustrate this in Theorem 1.3 below with
the example of the toroidal grid.

Theorem 1.3. For any η ∈ (0, 1) there are constants c3, c4 and c5 (depending on η), such
that for any positive integer q and any λ > 1

Random Structures and Algorithms DOI 10.1002/rsa
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(i) if q > c3λ
3+η then the Glauber dynamics of the q-state Potts model at activity λ mixes

rapidly for the class of connected graphs of maximum degree 4;
(ii) if q > c4λ

2+η then the Glauber dynamics of the q-state Potts model at activity λ mixes
rapidly for the toroidal grid;

(iii) if q < c5λ
8
3 −η then the Glauber dynamics of the q-state Potts model at activity λ

mixes slowly for almost all regular graphs of degree 4.

In particular, for sufficiently large λ there is a positive integer q such that the Glauber
dynamics of the q-state Potts model at activity λ mixes rapidly for the toroidal grid, but
slowly for almost all regular graphs of degree 4.

The purpose of Theorem 1.3 is illustrative and it is proved at the end of the paper.
Theorem 1.3(i) and (iii) are immediate consequence of Theorem 1.2 (by substituting � = 4),
while Theorem 1.3(ii) is a useful illustration of our general technique applied to the grid.
A more detailed statement of Theorem 1.3(ii) is given as part of Theorem 2.15.

Section 2 contains our results on rapid mixing of Glauber dynamics. Section 3 is devoted
to an extremal problem whose solution allows us to obtain improved bounds for our slow-
mixing results in Section 4.

1.3. Comparison with Related Results and Phase Transitions

We write o(1) for an expression that tends to 0 as q → ∞. (The most interesting setting for
our results is when q is large.) We now restate our results in terms of the inverse temperature
β, under the assumption that J = 1, so that λ = eβ .

The results of Theorems 1.1, 1.2(i), 1.2(ii), 1.3(ii) say respectively:

(a) if β ≤ 1+o(1))

�
log q then the Glauber dynamics of the q-state Potts model mixes rapidly

on graphs of maximum degree �;
(b) if β ≤ 1+o(1)

�−1 log q then the Glauber dynamics of the q-state Potts mixes rapidly on
graphs of maximum degree �;

(c) if β > 1+o(1)

�−1− 1
�−1

log q then the Glauber dynamics of the q-state Potts model mixes

slowly for almost all regular graphs of degree � ≥ 3;
(d) if β < 1+o(1)

2 log q then the Glauber dynamics of the q-state Potts model mixes rapidly
for toroidal grids.

There is some overlap between Theorem 1.1 and a result of Hayes [19, Proposition 14]
for q = 2, which was generalised to arbitrary q by Ullrich [31, Corollary 2.14]. Ullrich
showed that when the inverse temperature β satisfies β ≤ 2c/� for some 0 < c < 1, then
the Glauber dynamics is rapidly mixing on graphs of maximum degree �. Hence our result
(a) holds for a wider range of β when q is large. (For small values of q, Theorem 1.1 does
not apply but [31, Corollary 2.14] is valid).

As we have mentioned, there is often a link between certain phase transitions and the
critical inverse temperature of associated dynamics (i.e. an inverse temperature below which
the dynamics mix rapidly and above which they mix slowly). We will not define what we
mean by phase transitions here but mention only that, for Glauber dynamics of the q-state
Potts model on a random �-regular graph, the relevant phase transition is the transition
from unique to non-unique Gibbs measure on the infinite �-regular tree. Häggström [18]

Random Structures and Algorithms DOI 10.1002/rsa



GLAUBER DYNAMICS FOR THE FERROMAGNETIC POTTS MODEL 7

showed that this phase transition occurs at an inverse temperature β0 = log B, where B is
the unique value for which the polynomial

(q − 1)x� + (2 − B − q)x�−1 + Bx − 1

has a double root in (0, 1). While there is no general closed form formula for β0, we show
in the appendix that β0 = log q

�−1 + O(1). Thus β0 approximately matches the rapid mixing
bound of (b).

We note that, in a recent related work, Galanis et al. [14] give a very detailed picture of
the phase transitions of the ferromagnetic Potts model on the infinite �-regular tree. Using
this analysis they also show that show that the Swendsen-Wang process (a MCMC process
different to Glauber dynamics) mixes slowly at a specific phase transition point on almost
all random regular graphs of degree �.

As mentioned earlier, result (d) is only illustrative since sharper bounds for the grid are
known. It is known that for the infinite 2-dimensional grid, the phase transition occurs at
q = (λ−1)2 [34] (i.e. β = log(1+q

1
2 )) and that rapid mixing occurs for finite grids when β

is below this threshold; see [26] and Theorem 2.10 of [31]. It is conjectured that the Glauber
dynamics mixes slowly when β is above this threshold; see Remark 2.11 of [31]). Borgs,
Chayes and Tetali [4] proved that for q sufficiently large and for β >

log(q)

2 + O(q−1/2),
the heat bath Glauber dynamics is slowly mixing on sufficiently large toroidal grids (with
a mixing time exponential in β and in L, the side length of the grid). This improved on the
earlier result [3].

2. MIXING TIME UPPER BOUNDS

Our goal in this section is to give good lower bounds on the number of colours needed for
the Glauber dynamics to mix rapidly. We begin by describing the notions of coupling and
path coupling, which are very useful tools in proving upper bounds on mixing times for
Markov chains. In Section 2.2, we apply path coupling directly to the Glauber dynamics of
bounded-degree graphs to obtain our first lower bound on the number of colours needed for
rapid mixing. In Section 2.3, we consider block dynamics, a more general type of dynamics
that can be used to sample from the Gibbs distribution. We give a general lower bound on the
number of colours needed for rapid mixing of block dynamics (Theorem 2.3). We illustrate
how to apply Theorem 2.3 to bounded-degree graphs in Section 2.4. In Section 2.5, we
relate the mixing times of Glauber dynamics to that of the block dynamics and show how
this gives various improvements to the bounds obtained in Section 2.2. This enables us, in
Theorems 2.14 and 2.15, to prove what is needed for Theorem 1.2 part (i), and Theorem 1.3
parts (i) and (ii). Note that the final proofs of Theorems 1.2 and 1.3 are left until we have
all the pieces, at the end of Section 4.

2.1. Coupling

The notion of coupling (more specifically path coupling [5]) lies at the heart of our proofs
of upper bounds for mixing times. We give the basic setup in this section.

Let M = (Xt) be a Markov chain with transition matrix P. A coupling for M is a
stochastic process (At , Bt) on � × � such that each of (At) and (Bt), considered indepen-
dently, is a faithful copy of (Xt). Since all our processes are time-homogeneous, a coupling

Random Structures and Algorithms DOI 10.1002/rsa
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is determined by its transition matrix: given elements (a, b) and (a′, b′) of � × �, let
P′((a, b), (a′, b′)) be the probability that (At+1, Bt+1) = (a′, b′) given that (At , Bt) = (a, b).
Since (At , Bt) is a coupling, for each fixed (a, b) ∈ � × �, we have∑

b′∈�

P′((a, b), (a′, b′)) = P(a, a′) for all a′ ∈ �;

∑
a′∈�

P′((a, b), (a′, b′)) = P(b, b′) for all b′ ∈ �.

Under path coupling, the coupling is only defined on a subset  of � × �. This restricted
coupling is then extended to a coupling on the whole of � × � along paths in the state
space �. In our setting, we have � = [q]V , where V is the vertex set of some fixed graph.
For σ , σ ′ ∈ �, we write d(σ , σ ′) for the number of vertices on which σ and σ ′ differ in
colour (that is, the Hamming distance). Define  ⊆ � × � by

 = {(σ , σ ′) : d(σ , σ ′) = 1}.
The key property of  required for the path coupling method is that for any σ , σ ′ ∈ �, by
recolouring the d(σ , σ ′) disagreeing vertices one by one in an arbitrary order, we obtain a
path of length d(σ , σ ′) from σ to σ ′, with consecutive elements of the path corresponding
to an element of .

Lemma 2.1 (See [10] for example). Let � = [q]V and  be as above, with n := |V |, and
let M be some Markov chain on �. Suppose that we can define a coupling (A, B) �→ (A′, B′)
for M on  such that for some constant β < 1 and all (A, B) ∈  we have

E(d(A′, B′) | (A, B)) ≤ β.

Then by path coupling we may conclude that

τ(M, ε) ≤ log(n ε−1)

1 − β
.

2.2. Glauber Dynamics

Our goal in this subsection is to prove Theorem 1.1. In the subsections that follow, we shall
see how we can improve Proposition 2.2 in some special cases, but in Section 4, we shall
see that the bound given below is close to best possible, at least in terms of the exponent
of λ.

We actually prove the following proposition, which immediately implies Theorem 1.1
but also provides a bound on the mixing time. The proof is a standard coupling calculation.

Proposition 2.2. Let G be a graph with maximum degree �, and fix an activity λ > 1.
Suppose that q is an integer which satisfies q ≥ �λ�+1. Recall that MGD = MGD(G, λ, q)

denotes the Glauber dynamics for the q-state Potts model on G at activity λ. Then

τ(MGD, ε) ≤ (� + 1) n log(n ε−1).

Proof. Fix (A, B) ∈  and let u be the (unique) vertex which is coloured differently by
A and B. We define a coupling (A, B) �→ (A′, B′) as follows: let v be a uniformly random

Random Structures and Algorithms DOI 10.1002/rsa
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vertex of G, and given that v = v, obtain A′ (respectively, B′) by updating the colour of
the vertex v in A (respectively, B) according to the distributions φA := φv

A (respectively,
φB := φv

B). The joint distribution on (φA, φB) is chosen so as to maximise the probability
that A′(v) = B′(v). Call this maximised probability p = p(v, A, B). It is not hard to see that

1 − p = 1

2

∑
c∈[q]

|φA(c) − φB(c)| = ‖φA − φB‖TV .

Observe that p(v, A, B) = 1 if v = u or if v is not a neighbour of u (because in both cases,
A and B assign the same colours to the neighbours of v and so φA and φB are the same
distribution).

Now assume that v is a neighbour of u, so that φA and φB are different distributions.
Without loss of generality, we may assume that A(u) = 1 and B(u) = 2. Let ai := n(A, v, i),
that is, ai is the number of neighbours of v coloured i by A. Similarly, let bi := n(B, v, i).
Note that b1 = a1 − 1, b2 = a2 + 1 and bi = ai for i = 3, . . . , q. Define

ZA =
q∑

i=1

λai and ZB =
q∑

i=1

λbi = ZA + (1 − λ−1)(λa2+1 − λa1),

and assume without loss of generality that ZB ≤ ZA. It is easy to see that φA(i) ≤ φB(i) for
i = 2, . . . , q and hence φA(1) ≥ φB(1). Thus

‖φA − φB‖TV = max
R⊆[q]

|φA(R) − φB(R)| = |φA(1) − φB(1)| = λa1

ZA
− λb1

ZB
.

Given a = (a1, . . . , aq) ∈ [�]q, define f (a, λ, q) = λa1
ZA

− λb1
ZB

, and let g(λ, q) be the maximum
of f over all a ∈ [�]q subject to a1 + · · · + aq = �.

Observe that

E
(
d(A′, B′) − 1

∣∣(A, B)
) = (−1)P(v = u) +

∑
v∈N(u)

P(v = v)(1 − p(v, A, B))

≤ −1

n
+ �

n
g(λ, q).

We give an easy upper bound for g(λ, q) as follows. First, for all a ∈ [�]q we have

f (a, λ, q) ≤ λa1

ZA
.

The right hand side of the above is increasing in all directions of the form e1 − ei, where
e1, . . . , eq is the standard basis for R

q. Therefore the right hand side is maximised when
a = (�, 0, . . . , 0) giving

g(λ, q) ≤ λ�

λ� + q − 1
≤ 1

� + 1
,

using the lower bound on q to obtain the final inequality. Therefore.

E
(
d(A′, B′)

∣∣(A, B)
) ≤ 1 + 1

n

(
−1 + �

� + 1

)
= 1 − 1

(� + 1)n
.

Applying Lemma 2.1 completes the proof.

Random Structures and Algorithms DOI 10.1002/rsa
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2.3. Block Dynamics

In this section we begin the analysis of block dynamics in which, at each step, the colours
of several vertices (or a block of vertices) are updated. We first present the framework and
show general results on block dynamics. In the next subsection we discuss suitable choices
of blocks and, in Theorem 2.7, show rapid mixing of block dynamics for certain block
systems.

As before, let G = (V , E) be a graph, fix λ > 1 and let � = [q]V , where [q] = {1, . . . , q}.
Let S = {S1, . . . , SR} be a collection of subsets of V such that ∪S∈SS = V . Each element
of S is called a block, and we call S a block system for G. Fix a probability distribution ψ

on S. We define a Markov chain MBD = MS,ψ
BD (G, λ, q) with state space �, which we call

the (S, ψ)-block dynamics. We ensure that the new chain also has the Gibbs distribution as
its stationary distribution. First we need some more notation.

Given S ∈ S, for c ∈ [q]S and X ∈ � we let X (S,c) ∈ � be the configuration defined by

X (S,c)(u) =
{

X(u) if u �∈ S,

c(u) if u ∈ S.

Let μX,S(c) denote the number of monochromatic edges in X (S,c) which are incident with at
least one vertex of S. Finally, define the distribution φX,S on [q]S by

φX ,S(c) ∝ λμX,S (c), that is, φX,S(c) = λμX,S (c)

ZX,S

where

ZX ,S =
∑

c∈[q]S
λμX,S (c).

The transition procedure of the (S, ψ)-block dynamics can now be described. From current
state Xt ∈ �, obtain the new state Xt+1 ∈ � as follows:

• choose a random S ∈ S according to the distribution ψ ;
• given that S = S, choose a configuration c ∈ [q]S for S from the distribution φXt ,S;
• let Xt+1 = Xt

(S,c).

The stationary distribution of this chain is the Gibbs distribution on �.
Theorem 2.3 below gives a sufficient condition on the number of colours for the (S, ψ)-

block dynamics to be rapidly mixing. The result is stated in terms of three parameters which
we now define.

For S ⊆ V , write ∂S for the set of vertices in V \ S that have a neighbour in S. Write
s := maxS∈S |S| for the size of the largest block in S. Let S ∈ S be a random block chosen
according to the distribution ψ . Given v ∈ V , define

ψ(v) = P(v ∈ S), ψ∂(v) = P(v ∈ ∂S).

Our first parameter ∂+ is

∂+ = ∂+(S) = max
S∈S

|∂S|min{|S|, |∂S|}. (1)

Random Structures and Algorithms DOI 10.1002/rsa
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Let ψmin := minv∈V ψ(v) and define our second parameter � by

� = �(S, ψ) = max
v∈V

ψ∂(v)

ψ(v)
. (2)

These first two parameters are in some sense less important than the third parameter since
they are essentially used as crude estimates for quantities that we do not aim to control too
precisely.

For the third parameter we require some terminology. Given A ⊆ V and X ∈ �, write
X|A for the configuration X restricted to A. Consider a configuration c ∈ [q]S. A colour used
by c is called free with respect to X , S if it does not appear in X|∂S. Write f (X, S, c) for the
number of free colours in c with respect to X, S. For our third parameter, we first define for
each positive integer f

μ+
X ,S,f = max

{
μX ,S(c)

|S| − f
: c ∈ [q]S, f (X, S, c) = f

}
,

where the maximum over an empty set is defined to be zero. We set

μ+ = μ+(S) = max
S∈S

max
X∈�

max
f =0,...,|S|−1

μ+
X,S,f . (3)

Although the definition of μ+ gives an a priori dependency on q, in all our applications on
bounded-degree graphs we can bound μ+ independently of q (see Proposition 2.4). Hence
we suppress this dependence in our notation.

Let us sketch a very informal argument to show that block dynamics mixes rapidly
roughly when q ≥ λμ+

; this will be formalised in the statement and proof of Theorem 2.3.
Fix X ∈ � and S ∈ S, where |S| is typically thought of as a small number and q a large
number. We are interested in estimating the quantity q|S|/ZX,S, which, in the distribution φX,S,
is approximately the probability of choosing a free configuration for S. A free configuration
is one in which each vertex in S receives a distinct free colour, so that S is coloured with |S|
free colours in total. If this probability is close to 1 for all choices of X, S then, intuitively
at least, one expects the block dynamics to mix rapidly.

To show q|S|/ZX ,S is close to 1, we must show that the contribution of non-free con-
figurations to ZX ,S is relatively small (compared to q|S|). Consider the contribution from
configurations with a fixed number f ≤ |S| − 1 of free colours. There are approximately

qf such configurations c, each contributing λμX,S (c) ≤ λ
(|S|−f )μ+

X,S,f to ZX,S, giving a total

contribution of at most qf λ
(|S|−f )μ+

X,S,f . Comparing to q|S| gives

q|S|/qf λ
(|S|−f )μ+

X,S,f = [qλ
−μ+

X ,S,f ]|S|−f ≥ qλ
−μ+

X,S .

This last expression is at least 1 provided q > λ
μ+

X ,S,f , and this inequality holds for all
choices of X , S, f if q > λμ+

. From these crude calculations we expect rapid mixing of
block dynamics roughly when q > λμ+

.
The following theorem formalises the argument above, giving a sufficient condition on

the number of colours for (S, ψ)-block dynamics to be rapidly mixing.

Theorem 2.3. Let G = (V , E) be a connected graph and let S be a block system for G
such that V �∈ S. Let ψ be a distribution on S and fix λ > 1. If

q ≥ (2s)s+1 ∂+ � λμ+
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(where parameters s, ∂+, � and μ+ are as defined above) then the (S, ψ)-block dynamics
MBD = MS,ψ

BD (G, λ, q) satisfies

τ(MBD, ε) ≤ 2ψ−1
min log(nε−1).

We remark that for the bound q ≥ (2s)s+1 ∂+ � λμ+
in Theorem 2.3, we expect the

constant multiplicative factor (2s)s+1∂+� can be improved; however we have not attempted
to do this in order to keep our treatment simple.

Proof. We define a coupling (A, B) �→ (A′, B′) forMBD on as follows. Given (A, B) ∈ ,
let u = u(A, B) be the (unique) vertex which is coloured differently by A and B. We choose a
random S ∈ S using the distribution ψ , and given that S = S, we obtain A′ (respectively, B′)
by updating the colouring of S in A (respectively, B) according to the distribution φA := φA,S

(respectively, φB := φB,S); this will give a coupling since A and B are updated using the
transition procedure of MBD. We choose the joint distribution on (φA, φB) so as to maximise
the probability that A′|S = B′|S. Call this maximised probability p(S, A, B). Observe that
p(S, A, B) = 1 if u �∈ ∂S (because A and B assign the same colours to ∂S, so φA and φB are
the same distribution). For the case that u ∈ ∂S, we uniformly bound p(S, A, B) by setting

p := min
(A,B)∈

min
S∈S:u∈∂S

p(S, A, B).

(Let p = 1 if, for all S ∈ S, u �∈ ∂S.) Now for all S ∈ S with u ∈ ∂S we have

p(S, A, B) =
∑

c∈[q]S
min(φA(c), φB(c)) ≥

∑
c∈[q]S

1

max(ZA,S, ZB,S)

= q|S|

max(ZA,S, ZB,S)
. (4)

We claim that

q|S|

ZX ,S
≥ 1 − 1

2s�
(5)

for all X ∈ � and S ∈ S. If (5) holds then substituting into (4) gives

p ≥ 1 − 1

2s�
,

which in turn implies that

E
(
d(A′, B′) − 1

∣∣(A, B)
) = −P(u ∈ S) +

∑
S∈S: u∈∂S

P(S = S)|S|(1 − p(S, A, B))

≤ −ψ(u) + s ψ∂(u) (1 − p)

= −ψ(u)

(
1 − sψ∂(u)

ψ(u)
(1 − p)

)
≤ −ψmin (1 − s� (1 − p))

≤ −ψmin

2
.

The theorem follows from this, by Lemma 2.1. So it remains to establish (5).
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Fix X ∈ � and S ∈ S. For any configuration c, write Q(c) for the set of colours used
by c. Given a configuration c ∈ [q]S, the colour classes of c define a partition P of S into
(unordered) nonempty parts. (Here, we think of a partition P of S as a set of nonempty
parts {P1, . . . , Pt} where Pi ⊆ S are disjoint and ∪A∈PA = S.) Let F ⊆ P be the set of
colour classes corresponding to colours which are free with respect to X, S (in the given
configuration c).

Conversely, we can start from a partition P of S and a subset F of P. Given a set of |P|
colours, we can form a configuration of S by assigning a distinct colour to each part of P
such that the colour assigned to A ∈ P belongs to [q] \ Q(X|∂S) if and only if A ∈ F. Any
configuration which can be formed in this way is called a (P, F)-configuration of S. (Such
a configuration is uniquely determined by (P, F) and the map P → [q] which performs the
assignment of colours.)

Let n(S, P, F) be the number of (P, F)-configurations of S. By definition of μ+ we have

ZX ,S =
∑

c∈[q]S
λμX,S (c) ≤ q|S| +

∑
(P,F):|F|�=|S|

n(S, P, F) λ(|S|−|F|)μ+
.

The first term corresponds to P = F with |P| = |S|, arising from a configuration c ∈
[q]S in which every vertex in S receives a distinct free colour. (These were called “free
configurations” in the sketch proof.) We use q|S| as an upper bound for the number of such
configurations. For all other values of (S, P, F) we have the following crude bound:

n(S, P, F) ≤ qmin{q1,|P|−|F|}
1 (q − q1)

|F| ≤ |∂S|min{|S|,|∂S|} q|F| ≤ ∂+ q|F|,

where q1 = |Q(X|∂S)| and we recall that all parts must be coloured differently. Substituting
gives

ZX ,S ≤ q|S| +
∑

(P,F): |F|�=|S|
∂+ q|F| λ(|S|−|F|)μ+

.

Now applying the bound on q from the theorem statement gives

ZX ,S

q|S| ≤ 1 +
∑

(P,F):|F|�=|S|
∂+ q|F|−|S|λ(|S|−|F|)μ+

≤ 1 +
∑

(P,F):|F|�=|S|
∂+ ((2s)s+1 ∂+ � λμ+

)|F|−|S| λ(|S|−|F|)μ+

≤ 1 +
∑

(P,F): |F|�=|S|
((2s)s+1 �)|F|−|S|. (6)

The number of terms in the above sum is at most (2|S|)|S|, since there are at most |S||S|

choices of the partition P and at most 2|P| ≤ 2|S| choices of F.
Next, note that

� = max
v∈V

ψ∂(v)

ψ(v)
≥ Eρ

(
ψ∂(v)

ψ(v)

)
=

∑
v∈V

ρ(v)
ψ∂(v)

ψ(v)

for any probability distribution ρ on V . In particular, we can take ρ(v) = ψ(v)/N , where

N =
∑
v∈V

ψ(v) =
∑
S∈S

ψ(S) |S| ≤ s.
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14 BORDEWICH, GREENHILL, AND PATEL

With this choice of ρ, we obtain the bound

� ≥ N−1
∑
v∈V

ψ∂(v) = N−1
∑
S∈S

ψ(S) |∂S| ≥ s−1

since ∂S is nonempty for all S ∈ S, as G is connected and V �∈ S. It follows that (2s)s+1 � >

1, and combining this with (6) gives

ZX ,S

q|S| ≤ 1 + 1

2s�
.

Inverting this and using the identity (1 + y)−1 ≥ 1 − y establishes (5), completing the
proof.

2.4. Block Dynamics for Specific Examples

In this subsection we illustrate how one can use Theorem 2.3 to obtain rapid mixing results
for block dynamics on graphs of bounded degree. In the next subsection, we shall see how
these results for block dynamics can be translated into rapid mixing results for Glauber
dynamics.

In order to build some intuition, we begin by investigating the range of possible values
of the parameter μ+. We will need the following notation: given T ⊆ T ′ ⊂ V , we write
vol(T , T ′) for the set of edges of G that are contained in T ′ and have at least one endvertex
in T .

Proposition 2.4. Let G = (V , E) be a graph of maximum degree � and let S be any block
system for G. Then

μ+ = μ+(S) ≤ �.

If in addition G is regular then

�

2
≤ μ+(S) ≤ �.

Proof. First fix X ∈ � and S ∈ S. Given a configuration c ∈ [q]S, let P be the partition of
S defined by the nonempty colour classes of c. Define F ⊆ P to be the set of colour classes
of c which correspond to a colour which does not appear on X|∂S. Let

AF =
⋃
A∈F

A

and

A′
F =

⋃
A∈F : |A|≥2

A.

Since G has maximum degree �, a trivial upper bound on μX,S(c) is �|S|. But note that if a
monochromatic edge e is incident to a vertex in AF , then e must have both endpoints in the
same part A of F. Thus edges incident to vertices in AF \ A′

F do not contribute to μX,S(c)
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and monochromatic edges incident to vertices in A′
F are double counted in the trivial bound.

Hence

μX ,S(c) ≤ �(|S| − |AF |) + �

2
|A′

F |

= �|S| − �

(
|AF | − |A′

F |
2

)
≤ �(|S| − |F|).

Hence the upper bound holds, by definition of μ+.
Next, suppose that G is �-regular with X ∈ � and S ∈ S. Consider any configuration

c ∈ [q]S which assigns a single colour to all of S, and where this is the only colour used in
X|∂S. Then

μ+ ≥ μX ,S(c)

|S| − |F| = |vol(S, S ∪ ∂S)|
|S| ≥ �

2
,

where the last inequality follows because G is regular of degree �.

Next we show how to improve the upper bound on μ+ given in Proposition 2.4 by
choosing our block system more carefully.

Let k ≥ 2 be an integer and let G = (V , E) be a graph with n vertices and with maximum
degree �. Let

S = {Sv : v ∈ V}

where for all v ∈ V the set Sv ⊆ V satisfies v ∈ Sv, |Sv| = k and G[Sv] is connected.
Then S is called a k-block system for G. Let ψ be the uniform distribution over S. To apply
Theorem 2.3 to the (S, ψ)-block dynamics we will calculate upper bounds on the parameters
∂+, � and μ+.

Clearly |∂S| ≤ �k and min{k, |∂S|} ≤ k for all S ∈ S. Hence

∂+ ≤ (�k)k . (7)

To compute �, observe first that ψ(v) ≥ 1/n for all v ∈ V as there are n blocks and each
vertex belongs to at least one block. Next, observe that ψ∂(v) ≤ �k

n : indeed if v ∈ ∂Su

for some u ∈ V then u is at distance at most k from v and since and there are at most �k

vertices (excluding v) at distance at most k from v in G, there are at most �k out of n blocks
containing u in their boundary. Therefore

� = max
v∈V

ψ∂(v)

ψ(v)
≤ �k . (8)

In order to calculate an upper bound on μ+ we first prove a preliminary result. For T ⊆ T ′ ⊂
V , recall the notation vol(T , T ′) introduced above Proposition 2.4, and note that vol(T , T)

is just the set of edges inside T .
For any two sets A, B, we write δA,B for the indicator function that A = B, that is δA,B = 1

if A = B and δA,B = 0 otherwise.
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16 BORDEWICH, GREENHILL, AND PATEL

Proposition 2.5. Let H = (V , E) be a connected graph and let U ⊆ V. Then

|vol(U, V)| ≥ |U| − δU,V .

Proof. It is sufficient to prove the statement for H a tree. The statement is clear if U = V .
Now suppose that U �= V and consider the components C1, . . . , Cr of H[U]. Then vol(Ci, V)

has at least |Ci| edges and is disjoint from vol(Cj, V) for all j �= i. Thus

|vol(U, V)| =
r∑

i=1

|vol(Ci, V)| ≥
r∑

i=1

|Ci| = |U|.

Next we give an upper bound on the parameter μ+ for k-block systems. For k ≥ 2 this
bound is a slight improvement on the upper bound given in Proposition 2.4.

Lemma 2.6. Let G = (V , E) be a connected graph with n vertices and maximum degree �.
Fix an integer k ∈ {2, . . . , n − 1} and let S be any k-block system for G. Then

μ+ = μ+(S) ≤ � − 1 + 1
k .

Proof. Fix X ∈ � = [q]V and v ∈ V . Given a configuration c ∈ [q]Sv , let P be the partition
of Sv defined by the nonempty colour classes of c. Define F ⊆ P to be the set of colour
classes of c which correspond to a colour which does not appear on X|∂Sv .

Let

AF =
⋃
A∈F

A, AF =
⋃
A�∈F

A

and define aF = |AF | and aF = |AF |. Writing μX,v = μX,Sv for ease of notation, we have

μX ,v(c) ≤
(∑

A∈F

|vol(A, A)|
)

+
(∑

A�∈F

|vol(A, A ∪ ∂Sv)|
)

≤
(∑

A∈F

|vol(A, A)|
)

+ |vol(AF , AF ∪ ∂Sv)|. (9)

Observe that

|vol(AF , AF ∪ ∂Sv)| ≤ �aF − |vol(AF , Sv)| ≤ (� − 1)aF + δF,∅, (10)

where the last inequality follows by Proposition 2.5 and noting that δAF ,Sv = δF,∅.
Next we claim that for A ∈ P we have

|vol(A, A)| ≤ (|A| − 1)(� − 1). (11)

To ease notation, write a = |A|. If a = 1, 2 then (11) clearly holds (noting that � ≥ 2 since
G is connected). Next, (11) holds for � = 2 since we have |vol(A, A)| ≤ a − 1, where the
“−1” appears because there is at least one edge leaving A (since G is connected). If a = 3
and � ≥ 3 then |vol(A, A)| ≤ 3 and (a − 1)(� − 1) ≥ 4, so (11) holds. For a ≥ 4 and
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� ≥ 3, we note that |vol(A, A)| ≤ �a/2 and check that �a/2 ≤ (a − 1)(� − 1) holds in
this case. This proves the claim, establishing (11).

Therefore ∑
A∈F

|vol(A, A)| ≤
∑
A∈F

(|A| − 1)(� − 1) = (aF − |F|)(� − 1). (12)

Combining (9), (10) , and (12), we have

μX ,v(c) ≤ (aF − |F|)(� − 1) + (� − 1)aF + δF,∅
= (� − 1)(k − |F|) + δF,∅.

Assuming that |F| �= k, dividing by k − |F| gives the ratio � − 1 if F �= ∅ and gives
� − 1 + k−1 if F = ∅. This completes the proof.

Substituting (7), (8) and the result of Lemma 2.6 into Theorem 2.3 gives the following,
noting that ψmin ≥ 1

n .

Theorem 2.7. Let G = (V , E) be a connected graph with n vertices and maximum
degree �. Fix an integer k ∈ {2, . . . , n − 1} and let S be a k-block system for G. Let ψ be
the uniform distribution on S. Fix λ > 1. If

q ≥ 2k+1 �2k k2k+1 λ�−1+k−1

then τ(MBD, ε) ≤ 2n log(nε−1).

To further illustrate the use of Theorem 2.3 we apply it to the grid. Although our results
are not as sharp as those discussed in [31], using the structure of the grid we are able to
prove an upper bound on μ+ which is close to the lower bound given in Proposition 2.4.
(See Lemma 2.9 below.)

For convenience, rather than considering the L × L grid, we consider the toroidal L-grid
G = (V , E), where V = (Z/LZ)2, and (a, b)(c, d) ∈ E if and only if, in Z/LZ,

either (a − c = ±1 and b − d = 0) or (b − d = ±1 and a − c = 0).

Note that the toroidal L-grid has n := L2 vertices. The arguments below can be adapted to
higher dimensions and to graphs with different grid topologies provided that the graph is
locally a grid.

Let S be the set of all r × r subgrids of G, where r ≤ L − 2. Then S is a r2-block system.
Let ψ be the uniform distribution on S. To apply Theorem 2.3 we must calculate upper
bounds on the parameters.

Firstly, note that

∂+ = (4r)4r (13)

since |∂S| = 4r for all S ∈ S. Next, for v ∈ V we have ψ(v) = r2/L2 and ψ∂(v) = 4r/L2,
and so

� = 4

r
. (14)
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In order to obtain a tighter bound on μ+ we need more information about expansion prop-
erties of the grid. If U, W are disjoint sets of vertices, we write E(U, W) for the set of edges
with one endvertex in U and one endvertex in W .

Lemma 2.8. Let G = (V , E) be an L × L grid and let S ⊆ V be the vertices of an r × r
subgrid. If T ⊆ S and |T | = t′ then |vol(T , T)| ≤ 2t′−2

√
t′ and |vol(T , S∪∂S)| ≥ 2t′+2

√
t′.

Proof. For T ⊆ S, we define T = (S ∪ ∂S) \ T . First, we claim that

if |E(T , T)| ≤ 4t then |T | ≤ t2. (15)

To prove the claim, let us choose T such that |T | is maximised subject to |E(T , T)| ≤ 4t.
We may assume that G[T ] is connected or else we can translate components to connect
G[T ] without increasing |E(T , T)|. Furthermore, we may assume that T is convex (that is,
T is a rectangular subgrid) because if T has any “missing corners” (that is, a vertex outside
T with at least two neighbours in T ) then we can add the missing vertex without increasing
|E(T , T)|. It is also easy to verify that amongst the rectangles with |E(T , T)| = 4t, the
square (with t2 vertices) has the largest area. This completes the proof of the claim.

Now suppose that |T | = t′. Using the contrapositive of (15), we have

2 |vol(T , T)| = 4|T | − |E(T , T)| ≤ 4t′ − 4
√

t′,

and dividing by two establishes the first statement. The second statement follows since

|vol(T , S ∪ ∂S)| = 4|T | − |vol(T , T)|.
For the toroidal grid, we may now give an upper bound for the parameter μ+ which is

close to the lower bound proved in Proposition 2.4.

Lemma 2.9. Let G be the toroidal L ×L-grid, and let S be the r2-block system consisting
of all r × r subgrids of G. Then

μ+ ≤ 2 + 2
r .

Proof. For v ∈ V , let Sv ∈ S denote the r × r subgrid in which v is at the “top left” corner.
Suppose that X ∈ � and v ∈ V . For a given c ∈ [q]Sv , let P be the corresponding partition
of Sv given by the colour classes of c. As usual, let F ⊆ P be the set of colour classes
corresponding to colours which do not appear on X|∂Sv .

Recall the notation AF , AF , aF and aF introduced in Lemma 2.6. As in (9) we write μX,v

for μX,Sv , and find that

μX ,v(c) ≤
(∑

A∈F

|vol(A, A)|
)

+ |vol(AF , AF ∪ ∂Sv)|.

Using Lemma 15, we have∑
A∈F

|vol(A, A)| ≤
∑
A∈F

2(|A| − √|A|) = 2aF −
∑
A∈F

2
√|A| ≤ 2aF − 2|F|.
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In order to bound |vol(AF , AF ∪∂Sv)|, observe first that vol(Sv, Sv ∪∂Sv) is the disjoint union
of vol(AF , AF ∪ ∂Sv) and vol(AF , Sv ∪ ∂Sv). Thus

|vol(AF , AF ∪ ∂Sv)| = |vol(Sv, Sv ∪ ∂Sv)| − |vol(AF , Sv ∪ ∂Sv)|
= 2r2 + 2r − |vol(AF , Sv ∪ ∂Sv)|
≤ 2r2 + 2r − 2aF − 2

√
aF by Lemma 2.8

≤ 2r2 + 2r − 2aF − 2
√|F|.

Combining the three inequalities above, we have

μX ,v(c) ≤ 2(r2 − |F|) + 2(r − √|F|) = (r2 − |F|)
(

2 + 2

r + √|F|
)

≤ (r2 − |F|) (
2 + 2

r

)
.

For all F with |F| �= r2, dividing by r2 −|F| gives the value 2+ 2
r , completing the proof.

Substituting (13), (14) and the result of Lemma 2.9 into Theorem 2.3 gives the following,
noting that ψmin = r2/L2.

Theorem 2.10. Let G be the toroidal L × L-grid (with n = L2 vertices) and let S be the
r2-block system consisting of the set of r × r subgrids of G, for some r ≤ L − 2. Given
λ > 1, if

q ≥ 2r2+8r+3 r2r2+4r+1 λ2+ 2
r

then for MBD = MS
BD(G, λ, q), we have τ(MBD, ε) ≤ 2n log(nε−1)/r2.

2.5. Glauber Dynamics via Markov Chain Comparison

The mixing time of two Markov chains on the same state space can be compared using
comparison techniques, building on the work of Diaconis and Saloff-Coste [7]. We now
describe the machinery needed to compare the mixing times of the Glauber dynamics and
the block dynamics.

Suppose that M is a reversible, ergodic Markov chain on state space � with transition
matrix P and stationary distribution π . Let M′ be another reversible, ergodic Markov chain
on � with transition matrix P′ and the same stationary distribution.

We say a transition (x, y) of M (respectively, M′) is positive if P(x, y) > 0 (respectively,
P′(x, y) > 0); here we allow the possibility that x = y. For every positive transition (x, y)
of M′, let Px,y be the set of paths γ = (x = x0, . . . , xk = y) such that all the xi are distinct
and each (xi, xi+1) is a positive transition of M. Let P = ∪Px,y, where the union is taken
over all positive transitions (x, y) of M′ with x �= y.

We write |γ | to denote the length of the path γ so that, for example, |γ | = k for
γ = (x0, . . . , xk).

An (M, M′)-flow is a function f from P to the interval [0, 1] such that for every positive
transition (x, y) of M′ with x �= y, we have∑

γ∈Px,y

f (γ ) = π(x)P′(x, y).
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For a positive transition (z, w) of M, the congestion of (z, w) is defined to be

Az,w(f ) = 1

π(z)P(z, w)

∑
γ∈P : (z,w)∈γ

|γ |f (γ ).

The congestion of the flow is defined to be A(f ) = max Az,w(f ), where the maximum is
taken over all positive transitions (z, w) of M with z �= w.

The essence of the comparison technique of Diaconis and Saloff-Coste [7] is that the the
eigenvalues of M and M′ can be related using the parameter A(f ). Randall and Tetali [29,
Theorem 1] used this result to compare the mixing times of two reversible ergodic Markov
chains with the same stationary distribution, under the assumption that the second-largest
eigenvalue (of the corresponding transition matrices) is larger in absolute value than the
smallest eigenvalue. (See the discussion above Theorem 1 of [29].) For convenience, we
will use the following theorem, which is obtained from [9, Theorem 10] by specialising to
Markov chains with no negative eigenvalues.

Theorem 2.11 ([9, Theorem 10]). Suppose that M is a reversible ergodic Markov chain
with transition matrix P and stationary distribution π and that M′ is another reversible
ergodic Markov chain with the same stationary distribution. Suppose that f is an (M, M′)-
flow. If M has no negative eigenvalues then for any 0 < δ < 1

2 , we have

τx(M, ε) ≤ A(f )

(
τ(M′, δ)
log(1/2δ)

+ 1

)
log

1

επ(x)
.

Now we apply the above theorem to compare the mixing time of the Glauber dynamics
and the block dynamics. Write τ(M′) = τ(M′, 1

2e ).

Lemma 2.12. Let G = (V , E) be an n-vertex graph of maximum degree �. Given λ > 1,
a positive integer q, a block system S for G with maximum block size s, and ψ a probability
distribution on S, write M = MGD(G, λ, q) and M′ = MS,ψ

BD (G, λ, q). Then for all ε > 0
we have

τ(M, ε) ≤ 2s qs+1 λ�(s+1) τ (M′) n
(
n log (qλ�/2) + log(ε−1)

)
.

Proof. As before, let P and P′ be the transition matrices of M and M′ respectively. We
note at the outset that both M and M′ have the Gibbs distribution π as their stationary
distribution. It is proved in [11, Section 2.1] that the Glauber dynamics M has no negative
eigenvalues, so we may apply Theorem 2.11.

We construct an (M, M′)-flow and analyse its congestion. Recall that a transition in
M′ is obtained by starting at some X ∈ � = [q]V , selecting S ∈ S at random using the
distribution ψ and then updating the configuration of S to some configuration c ∈ [q]S

chosen randomly using the distribution φ = φX,S. The resulting configuration is denoted
by X (S,c). Let h(X , S, c) := ψ(S)φX ,S(c) be the probability that this pair (S, c) is chosen. In
particular, if (X , Y) is a transition of M′ then

P′(X , Y) =
∑

(S,c): Y=c∪X(S,c)

h(X, S, c),

Fix an ordering of the vertices of G. For each X ∈ �, S ∈ S, and a configuration c ∈ [q]S

of S, we define the path γ (X , S, c) from X to X (S,c) as follows: starting from X, consider
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each vertex v ∈ {u ∈ S : X(u) �= c(u)}, one at a time and in increasing vertex order, and
change the colour of v from X(v) to c(v). Thus γ (X, S, c) is a path in � from X to X (S,c)

using positive transitions of M.
We define an (M, M′)-flow f by setting f (γ (X, S, c)) = π(X)h(X, S, c) for all (X, S, c)

and f (γ ) = 0 for all other paths γ . To verify that this is indeed an (M, M′)-flow, given a
positive transition (X , Y) of M′ with X �= Y , we have∑

γ∈PX,Y

f (γ ) =
∑

γ=γ (X ,S,c): Y=X(S,c)

f (γ ) =
∑

(S,c): Y=X(S,c)

π(X) h(X, S, c) = π(X) P′(X, Y).

Next we bound the congestion of this flow. Let (Z , W) be a positive transition of M
with Z �= W . Then the configurations Z and W differ on only one vertex, say v. The path
γ (X, S, c) uses the transition (Z , W) only if v ∈ S and the configurations X and Z differ on
a subset of S. Thus we have

AZ ,W (f ) = 1

π(Z)P(Z , W)

∑
γ∈P : (Z ,W)∈γ

|γ | f (γ )

≤ 1

π(Z)P(Z , W)

∑
S: v∈S

∑
X: X|S=Z|S

∑
c∈[q]S

|S| · f (γ (X, S, c))

≤ s

π(Z)P(Z , W)

∑
S: v∈S

∑
X: X|S=Z|S

∑
c∈[q]S

π(X) h(X, S, c)

≤ s

P(Z , W)

∑
S: v∈S

∑
X:X|S=Z|S

π(X)

π(Z)
ψ(S).

If X and Z differ on at most s vertices, and hence on at most �s edges, then

π(X)

π(Z)
≤ λ�s.

Also, for any positive transition (Z , W) of M we have

P(Z , W)−1 ≤ qλ� n.

Substituting these upper bounds gives

AZ ,W (f ) ≤ sqλ�n
∑
S: v∈S

ψ(S)
∑

X: X|S=Z|S
λ�s ≤ sqλ�qsλ�sψ(v)n ≤ sqs+1λ�(s+1)n,

since ψ(v) ≤ 1. We conclude that A(f ) ≤ sqs+1λ�(s+1)n.
Now apply Theorem 2.11 with δ = 1/(2e). For all Z ∈ �, we have the crude bound

π(Z) ≥ (qn λm)−1 ≥ (qn λ�n/2)−1,

which leads to

τ(M, ε) ≤ sqs+1λ�(s+1)n
(
τ(M′) + 1

)
log (qnλ�n/2ε−1)

≤ 2s qs+1λ�(s+1) n τ(M′)
(
n log(qλ�/2) + log(ε−1)

)
,

as claimed.
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We would expect that the mixing time for Glauber dynamics should decrease as q
increases, but the bound given in Lemma 2.12 becomes worse for larger values of q.
However, by combining Lemma 2.12 with Proposition 2.2, we can avoid this problem.

Corollary 2.13. Let G = (V , E) be an n-vertex graph of maximum degree �. Given
λ > 1, a positive integer q, a block system S for G with maximum block size s, and ψ a
probability distribution on S, write M = MGD(G, λ, q) and M′ = MS,ψ

BD (G, λ, q). Then
for ε > 0 we have

τ(M, ε) ≤
{

2s(�λ2�)s+1 τ(M′) n
(
n log(�λ3�/2) + log(ε−1)

)
if q < �λ� + 1,

(� + 1)n log(nε−1) if q ≥ �λ� + 1.

Proof. If q < �λ� + 1 then the corollary holds by Lemma 2.12, while if q ≥ �λ� + 1
then the corollary holds by Proposition 2.2.

We complete this section by applying the previous corollary to the block dynamics results
obtained in the previous subsection to obtain rapid mixing results for Glauber dynamics.

Theorem 2.14. Let G = (V , E) be an n-vertex connected graph with maximum degree
�, and fix λ > 1. For every positive integer k ≤ n, if q ≥ 2k+1�2kk2k+1λ�−1+k−1

then for
MGD = MGD(G, λ, q), we have

τ(MGD, ε) ≤ 4k (� λ2�)k+1 n2 log(2en)
(
n log (�λ3�/2) + log(ε−1)

)
.

Proof. Take an arbitrary k-block system S for G, and let ψ be the uniform distribution on
S. Theorem 2.7 provides a bound on the mixing time of the block dynamics with respect to
S. Then apply Corollary 2.13 to this bound.

Here any k-block system S may be used (recall the definition after the proof of Propo-
sition 2.4). For any connected graph G = (V , E), one can easily obtain a k-block system
S = {Sv : v ∈ V} by taking Sv to be the first k vertices in any breadth-first search starting at
v.

Theorem 2.15. Let G = (V , E) be the toroidal L × L-grid (with n = L2 vertices), and
fix λ > 1. For every positive integer r ≤ L − 2, if q ≥ 2r2+8r+3 r2r2+4r+1 λ2+ 2

r then for
MGD = MGD(G, λ, q), we have

τ(MGD, ε) ≤ 4 (4λ8)r2+1 n2 log(2en)
(
n log(4λ6) + log(ε−1)

)
.

Proof. We apply Corollary 2.13 to the mixing time of the block dynamics in Theorem 2.10.
(Recall that the block system used is the set of r × r subgrids.)

3. AN EXTREMAL PROBLEM

In this section, we investigate how large the partition function of a bounded-degree graph
can be. We require this result in the next section, where we give bounds on the number
of colours below which Glauber dynamics mixes slowly, although the result may be of
independent interest.
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In this section, we allow graphs to have multiple edges, but not loops. For fixed numbers
n the number of vertices, m the number of edges, � the maximum degree, λ ≥ 1 the activity,
and q the number of colours, we define

Z((n, m, �), λ, q) = max
G

Z(G, λ, q),

where the maximum is over all graphs G with n vertices, m edges, and maximum degree �.
We now describe the class of graphs that will turn out to be extremal for the above

parameter. Fix positive integers n, m, and � such that � divides m and m ≤ �n/2. Let
H(n, m, �) = (V , E), where V is a set of n vertices and E is obtained by taking any set of
m/� independent edges on V and replacing each edge with � multi-edges. Thus H(n, m, �)

has m edges and maximum degree �.
The main result of this section is the following.

Theorem 3.1. If G is an n-vertex graph with m edges and maximum degree �, and q ∈ N

and λ ≥ 1 are given, then

Z(G, λ, q) ≤ (
1 + q−1(λ� − 1)

)�m/��
qn.

In particular, if � divides m, we have equality above for G = H(n, m, �).

This will immediately give us the following corollary.

Corollary 3.2. Let n, m, � ∈ N be fixed. Given a number of colours q, and activity λ ≥ 1,
we have

Z((n, m, �), λ, q) ≤ (
1 + q−1(λ� − 1)

)�m/��
qn.

We begin by giving a brief outline of the proof. Given an n-vertex multigraph G = (V , E),
and a uniformly random configuration σ of V (i.e. σ is a uniformly random element of [q]V ),
let X be the number of monochromatic edges of G in σ . Observe that Z(G, λ, q) = E(λX)qn.
We proceed by decomposing the edges of G into � forests with �m/�� or �m/�� edges
each. Then we establish that the number of monochromatic edges in a forest with m′ edges
is distributed as X ∼ Bin(m′, q−1). This allows us to obtain a bound on E(λX) and hence
prove Theorem 3.1.

Lemma 3.3. Let G = (V , E) be a multigraph with n vertices, m edges, and maximum
degree �. We can find � spanning forests F1, . . . , F� on the vertex set V such that each Fi

has �m/�� or �m/�� edges and the edges of F1, . . . , F� form a partition of E.

Proof. Recall that the size of a graph is the number of edges in the graph. We begin by
disregarding the condition that the forests should have almost equal size, and decompose
(the edge set of) G into (the edge sets) of � spanning forests, as follows. (This follows from
[27], but for completeness we give a brief proof.) Let G1 := G. Iteratively define Fi to be
a spanning forest of Gi of maximum size, and let Gi+1 be obtained from Gi by deleting the
edges of Fi. By removing the edges of Fi from Gi, we reduce the degree of every non-isolated
vertex in Gi by at least one, and so, in particular, we reduce the maximum degree of Gi by
at least one. Thus Gr is the empty graph for some r ≤ �, giving a decomposition of (the
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edge set of) G into (the edge sets of) � spanning forests, F1, . . . , F� (some of which may
have no edges).

We denote the size of Fi by |Fi|. Observe that if |Fi| > |Fj| + 1 then Fi has fewer
components than Fj (since all the forests are spanning), so Fi has at least one edge that
connects two components of Fj. Removing this edge from Fi and adding it to Fj keeps
both Fi and Fj acyclic, but reduces the imbalance in their sizes. Iteratively applying this
operation to any pair of forests whose sizes differ by at least two eventually results in all
forests having size �m/�� or �m/��.

Lemma 3.4. Let F = (V , E) be a forest and let σ be a uniformly random configuration
of V (i.e. σ is a uniformly random element of [q]V ). Let X be the number of monochromatic
edges of F. Then X ∼ Bin(m, q−1), where m is the number of edges in F.

Proof. It is sufficient to consider the case when F is a tree. For if not, then we can consider
the components of F independently, and use the fact that the sum of t independent binomial
random variables of the form Bin(mj, p) is a binomial random variable Bin(m1+· · ·+mt , p).

Now assume that F is a tree, and root F at a vertex v0. Let v0, . . . , vn−1 be any ordering
of the vertices in V such that for every i, the parent of vi is a member of {v1, . . . , vi−1}. We
generate a uniformly random configuration of V by colouring each vertex with a uniformly
random colour from [q], independently, in the specified order. Each vertex has probability
1/q of being given the same colour as its parent, independently of all previous choices, and
hence each edge has probability 1/q of being monochromatic, independently of all previous
choices. Therefore the total number of monochromatic edges satisfies X ∼ Bin(m, q−1).

We will also need the following result, which follows from a generalization of Hölder’s
inequality.

Lemma 3.5. Let (X1, . . . , Xd) be a random, R
d-valued vector, and suppose there exists a

random variable X such that Xi ∼ X for all i = 1, . . . , d. Then for all λ > 0 we have

E(λX1+···+Xd ) ≤ E(λdX).

Proof. Let Zj = λXj and pj = d for j = 1, . . . , d. Then the result follows from the
generalised Hölder’s inequality, which states that

E

(
d∏

j=1

|Zj|
)

≤
d∏

j=1

(
E|Zj|pj

)1/pj

for any random variables Z1, . . . , Zd and any pj ≥ 1 such that
∑d

j=1 1/pj = 1. (See for
example [12].)

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. By Lemma 3.3, we can decompose the edges of G into � spanning
forests F1, . . . , F�, such that mi, the number of edges in Fi, is either �m/�� or �m/��.

Let σ be a uniformly random configuration of V (i.e. σ is a uniformly random element
of [q]V , and let Xi be the number of monochromatic edges of Fi in the configuration σ .
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We know by Lemma 3.4 that Xi ∼ Bin(mi, q−1). Then μ(σ), the number of monochromatic
edges of G in σ , is given by μ(σ) = X1 + · · · + X� and

Z(G, λ, q) = qn
E(λμ(σ)) = qn

E(λX1+···+X�).

For each i = 1, . . . , �, choose Yi ∼ Bin(�m/��, q−1) such that P(Yi ≥ Xi) = 1. Then
using the above and Lemma 3.5, we have

Z(G, λ, q) ≤ qn
E(λX1+···+X�) ≤ qn

E(λY1+···+Y�) ≤ qn
E(λ�Y1)

= qn (1 + q−1(λ� − 1))�m/��.

The last equality holds because Y1 ∼ Bin(�m/��, q−1), so

E(λ�Y1) =
�m/��∑

i=0

(�m/��
i

)
q−i(1 − q−1)�m/��−i λ�i = (1 + q−1(λ� − 1))�m/��.

Finally, it is easy to check that Z(H(n, m, �), λ, q) = qn (1 + q−1(λ� − 1))m/� when �

divides m.

4. SLOW MIXING

We have seen in Section 2.2 that for general graphs with maximum degree �, the Glauber
dynamics mixes rapidly if q ≥ �λ� + 1. Some improvements on this were given in
Section 2.5. In this section, we shall see that these general bounds cannot be improved
by much (in terms of the exponent of λ). We give a bound on the number of colours below
which Glauber dynamics almost surely mixes slowly for a uniformly random �-regular
graph.

The technical tool used for most slow-mixing proofs is conductance [22]. We now intro-
duce the necessary definitions: for convenience, we follow the treatment given in [9]. Again,
M is a Markov chain with state space �, transition matrix P and stationary distribution π .
For A, B ⊆ �, define

QM(A, B) =
∑

x∈A, y∈B

π(x)P(x, y).

We define

�M(A) = QM(A, A)

π(A)π(A)
,

where A := � \ A. Finally, we define the conductance of M as

�M := min
A⊆�

�M(A).

We drop the subscript when the Markov chain is clear from the context. Recall that τ(M) =
τ(M, 1

2e ). Conductance gives a lower bound for the mixing time of a Markov chain via the
following result.
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Theorem 4.1 ([9, Theorem 17]). Let M be an ergodic Markov chain with transition
matrix P, stationary distribution π and conductance �. Then

τ(M) ≥ e − 1

2e �M
.

Suppose now that G = (V , E) is an n-vertex graph, λ ≥ 1 is given, and q is a number
of colours. By Theorem 4.1, in order to show that M = MGD(G, λ, q) mixes slowly, it is
sufficient to show that its conductance �M is exponentially small in n.

We will need some more definitions. For i ∈ [q] and σ ∈ �, define

σi = |{v ∈ V : σ(v) = i}|.
Next, define the r-shell and r-ball around a colour i as follows:

Sr(i) = {σ : σi = n − r}, Br(i) = {σ : σi ≥ n − r}.
We see that Br(i) is the set of configurations at distance at most r from the all-i configuration,
and Sr(i) is the set of configurations at distance exactly r from the all-i configuration. To
simplify notation, we write Br = Br(1) and Sr = Sr(1) for the r-ball and r-shell around
colour 1.

For an n-vertex graph G = (V , E) and r is a positive integer satisfying r ≤ n/2, we
define

αr(G) = 1

r
max
S⊆V|S|=r

eG(S),

where eG(S) is the number of edges of G inside S. This quantity is low when the edge-
expansion of r-vertex subgraphs of G is high. We now establish a uniform bound on the
conductance of MGD(G, λ, q) which holds when αr(G) and q are sufficiently small.

Lemma 4.2. Let λ ≥ 1 and let � ≥ 2 be an integer. Fix κ ∈ (
1, �

2

]
and let β ∈ (0, 1).

Suppose that n ≥ β−1(2 + � log2 λ) is an integer and let r = �βn�. Let G be a �-regular,
n-vertex graph such that αr(G) ≤ κ . Finally, suppose that q ≥ 2 is an integer which satisfies

q − 1 ≤ β2

256 e2
λ�−κ− κ2

�−κ . (16)

Then the conductance of the Markov chain M = MGD(G, λ, q) is bounded by

�M ≤ 2√
2πr

2−r . (17)

Proof. We bound �M by estimating �M(Br). Let P be the transition matrix for M and
let π be the stationary distribution of M (that is, the Gibbs distribution). We have

�M ≤ �M(Br) =
∑

x∈Br , y∈Br
π(x)P(x, y)

π(Br)π(Br)
=

∑
x∈Sr , y∈Br

π(x)P(x, y)

π(Br)π(Br)

≤ π(Sr)

π(Br)π(Br)
≤ 2 π(Sr)

π(Br)
,

where the last inequality follows because π(Br) ≥ 1
2 (assuming that q ≥ 2).
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Let Z = Z(G, λ, q) be the partition function and write m = �n/2 for the number of
edges in G. Now π(Br) ≥ Z−1λm since the all-1 configuration belongs to Br . Next we obtain
a lower bound on π(Sr).

Suppose that A ⊆ V with |A| = r. Writing E(A) for the set of edges of G inside A, we
know that |E(A)| ≤ αr(G)r ≤ κr. Observe that |E(A, A)| = �r − 2|E(A)| because �r
counts each edge in E(A) twice. Hence

|E(A)| = m − |E(A, A)| − |E(A)| = m − (�r − 2|E(A)|) − |E(A)|
= m − �r + |E(A)|
≤ m − (� − κ)r.

Therefore

π(Sr) = Z−1
∑
σ∈Sr

λμ(σ) = Z−1
∑

A⊆V :|A|=r

λ|E(A)| · Z(G[A], λ, q − 1)

≤ Z−1
∑

A⊆V :|A|=r

λm−(�−κ)r · Z(G[A], λ, q − 1)

≤ Z−1

(
n

r

)
λm−(�−κ)r · Z((r, �κr�, �), λ, q − 1).

The final inequality uses the fact that when λ ≥ 1, the partition function is nondecreasing
under the addition of edges. Combining these bounds shows that

�M ≤ 2

(
n

r

)
λ−(�−κ)r · Z((r, �κr�, �), λ, q − 1). (18)

Using Corollary 3.2, we have

Z((r, �κr�, �), λ, q − 1) ≤ (1 + (q − 1)−1λ�)�κr/��(q − 1)r

≤ (2(q − 1)−1λ�)�κr/��(q − 1)r

≤ 2λ�(2(q − 1)−1λ�)κr/�(q − 1)r

≤
(

4λκ(q − 1)
�−κ

�

)r

.

Here the second inequality uses the fact that q − 1 ≤ λ� (which follows from (16)), and
the final inequality follows since κ/� ≤ 1

2 as well as the fact that 2r ≥ 2λ� (by our choice
of sufficiently large n). Substituting this into (18) and applying the well-known inequality(

n

r

)
≤ nr

r! ≤ 1√
2πr

(en

r

)r

gives

�M ≤ 2√
2πr

(
4en

r
λ−�−2κ (q − 1)(�−κ)/�

)r

.

Now raising both sides of (16) to the power (� − κ)/� and rearranging shows that

4en

r
λ−(�−2κ)(q − 1)

�−κ
� ≤ βn

4r
≤ 1

2
.

Therefore �M ≤ 2√
2πr

2−r , as claimed.
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Let Gn,� denote the uniform probability space of all �-regular graphs on the vertex set
[n] = {1, 2, . . . , n}, restricting to n even if � is odd. That is, “G ∈ Gn,�” means that G is a
uniformly chosen �-regular graph on the vertex set [n]. In a sequence of probability spaces
indexed by n, an event holds asymptotically almost surely (a.a.s.) if the probability that the
event holds tends to 1 as n → ∞.

Next, given κ we show how to choose r in order to ensure that with high probability, a
random �-regular graph G satisfies αr(G) ≤ κ .

Lemma 4.3. Fix � ≥ 3 and let κ ∈ (
1, �

2

]
. Let

β = 1
2 e−

(
1+ 2

κ−1

) (
�

2κ

)−
(

1+ 1
κ−1

)
, (19)

and for each positive integer n ≥ β−1, define r = r(n) = �βn�, which is a positive integer.
Let G ∈ Gn,�. Then a.a.s. αr(G) ≤ κ .

Proof. We use the configuration model of Bollobás [2] to construct random regular graphs.
In this model, to construct a random �-regular graph on n vertices, we take n sets (called
buckets) each containing � labelled objects called points. Then we take a random partition
P of the �n points into �n/2 pairs, where each pair is a set of two distinct points. We call P
a pairing. By replacing each bucket by a vertex and replacing each pair by an edge between
the two corresponding vertices, we obtain a multigraph G(P), which may have loops and
multiple edges. If G(P) is simple then it is �-regular. It has been shown [2] that a random
pairing is simple with probability tending to exp (−�2−1

4 ) as n → ∞.
Let m(2a) denote the number of pairings of 2a points. It is well known that

m(2a) = (2a)!
a! 2a

.

Write [x]a = x(x −1) · · · (x −a +1) to denote the falling factorial. Now let Pn,� denote the
uniform probability space on the set of pairings with n buckets, each containing � points.
Let B be a fixed set of r buckets. Given a positive integer s, let mB(r, s) be the number of
pairings in Pn,� in which at least s pairs are contained in B. We can obtain an overcount of
mB(r, s) in the following way. We first select s pairs within B, in

[�r]2s

s!2s

ways. Then we pair up the remaining �n − 2s points in m(�n − 2s) ways. Hence

mB(r, s) ≤ [�r]2s

s!2s

(�n − 2s)!
(�n/2 − s)!2�n/2−s

= (�r)!(�n − 2s)!
2�n/2s!(�r − 2s)!(�n/2 − s)! .

Therefore the probability p(r, s) that a random pairing in Pn,� has at least s pairs within B
is

p(r, s) = mB(r, s)

m(�n)
≤

(
�n/2

s

) [�r]2s

[�n]2s
≤

(
�n/2

s

)(
r

n

)2s

.
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Let X(r, s) be the random variable which counts the number of sets of r buckets which
contain at least s pairs of P, for P ∈ Pn,�. Using the inequality

(a
b

) ≤ (ea/b)b, we have

E(X(r, s)) =
(

n

r

)
p(r, s) ≤

(
n

r

)(
�n/2

s

)(
r

n

)2s

≤
(en

r

)r
(

�er2

2sn

)s

.

Now fix s = �κr� where, recall, r = �βn�. By definition of β we have �er < 2κn, and
hence

E(X(r, �κr�)) ≤
(

ne

r

(
�er

2κn

)κ)r

≤ ((2κ)−κ eκ+1 �κ βκ−1)r .

When (19) holds, we see that

(2κ)−κ eκ+1 �κ βκ−1 ≤ 2−(κ−1)

and this upper bound is a constant in (0, 1) which is independent of n. Since r ≥ βn − 1 it
follows that E(X(r, �κr�)) = o(1), and we conclude that

E(X(r, �κr�) | G(P) is simple) ≤ E(X(r, �κr�))
P(G(P) is simple)

= o(1).

This shows that when (19) holds, a.a.s. G ∈ Gn,� has the property that all subsets of vertices
of size r have fewer than κr edges.

Now we can easily show that when q is sufficiently small and n is sufficiently large, the
mixing time of the Glauber dynamics is slow for almost all �-regular graphs.

Theorem 4.4. Fix � ≥ 3 and let κ ∈ (
1, �

2

]
. Suppose that β is defined by (19) and let

q ≥ 2 be an integer which satisfies (16). Let G ∈ Gn,�. Then a.a.s. the Glauber dynamics
M = MGD(G, λ, q) satisfies

τ(M) ≥ 2βn−4.

Proof. For each positive integer n ≥ β−1(2 + � log2 λ), let r = r(n) = �βn�, which is a
positive integer. By Lemma 4.3 we know that a.a.s. G ∈ Gn,� satisfies αr(G) ≤ κ . Hence
a.a.s. the conductance of the corresponding Glauber dynamics MGD(G, λ, q) is bounded
above by

2√
2πr

2−r

by Lemma 4.2. Applying Theorem 4.1 completes the proof.

We conclude this section by proving Theorem 1.2 and Theorem 1.3.

Proof of Theorem 1.2. (i) Given η ∈ (0, 1), let k = �η−1� and define c1 = k2k+1(�k)2k .
If q > c1λ

�−1+η then q > c1λ
�−1+1/k , by choice of k. Then the conclusion follows from

Theorem 2.14.
For (ii), given η ∈ (0, 1) define κ = 1 + η/5. Since � ≥ 3 we have κ ∈ (

1, 6
5

) ⊆ (1, �

2 ].
Define

c2 = 1
1024 e−4(1+ 1

κ−1 )

(
�

2κ

)−2(1+ 1
κ−1 )

.

Random Structures and Algorithms DOI 10.1002/rsa



30 BORDEWICH, GREENHILL, AND PATEL

By our choice of κ and since � ≥ 3, we have

κ + κ2

� − κ
≤ 1 + 1

� − 1
+ η.

Therefore, if

q − 1 ≤ c2λ
�−1− 1

�−1 −η

then (16) holds, and the result follows by applying Theorem 4.4.

Proof of Theorem 1.3. The first and third statement follow from substituting � = 4 into
Theorem 1.2 (i) and (ii), respectively. (So c3 is obtained by substituting � = 4 in c1, and c5

is obtained from c2 similarly.)
For (ii), let k = �2η−1� and define c4 = (8k − 1) 2k2+8k k2k2+4k . If q > c4λ

2+η then
q > c4λ

2+2/k , by definition of k. Then Theorem 2.15 applies, completing the proof.

APPENDIX

Suppose that q, � ≥ 3 are integers and that B is a real number. We prove that the polynomial

f (x) := (q − 1)x� + (2 − q − B)x�−1 + Bx − 1

has a double root in (0, 1) only if 0 < B = �(q
1

�−1 ) i.e. log B = log q
�−1 + O(1). Here all

asymptotic notation is with respect to q → ∞.
First we note some properties of f . Observe that f ′′(x) = c1x�−2 + c2x�−3 for some

constants c1, c2. Thus f ′′(x) has at most one root in (0, 1). This implies that f ′(x) has at most
one turning point in (0, 1) and hence at most two roots in (0, 1). Thus f (x) has at most two
turning points in (0, 1). This together with the fact that f (0) = −1 and f (1) = 0 implies
that if f has a double root in (0, 1), it must be the case that f (x) ≤ 0 for all x ∈ [0, 1]. (To
see this, consider the graph of f with the constraints deduced above.)

We show that (i) if 0 < B = ω(q
1

�−1 ) and q is sufficiently large, then f (x) > 0 for some

x ∈ (0, 1); and (ii) if B ≤ 0 then f (x) < 0 for all x ∈ (0, 1); and (iii) if 0 < B = o(q
1

�−1 )

and q is sufficiently large, then f (x) < 0 for all x ∈ (0, 1). Thus in all three cases there is

no double root of f in (0, 1); the only possibility remaining is that 0 < B = �(q
1

�−1 ).
Splitting the terms in f , we have:

f (x) = (q − 1)x� − (q − 2)x�−1 − Bx�−1 + Bx − 1.

First suppose that 0 < B = ω(q
1

�−1 ). Then f (q− 1
�−1 ) is dominated by the fourth term

above, which is positive. Hence f (q− 1
�−1 ) > 0 for q sufficiently large, proving (i).

For (ii) and (iii), first observe that for all x ∈ (0, 1), we have

f (x) = (x − 1)

(
(q − 1)x�−1 + 1 +

�−2∑
i=1

(1 − B)xi

)
.

If B ≤ 0 then for all x ∈ (0, 1), the second factor on the right hand side is positive and the
first factor is negative, establishing (ii).
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For the remainder of the proof, suppose that 0 ≤ B = o(q
1

�−1 ). Using the above identity
and the fact that B is positive, for all x ∈ (0, 1) we obtain

f (x) ≤ (x − 1)

(
(q − 1)x�−1 + 1 +

�−2∑
i=1

(−B)xi

)

≤ (x − 1)
(
(q − 1)x�−1 + 1 − �Bx

)
.

If x ∈ (0, q− 1
�−1 ] then �Bx = o(1), so f (x) < 0 (for all sufficiently large q). If x ∈

[q− 1
�−1 , 1) then it is easy to check that �Bx = o((q − 1)x�−1), so f (x) < 0 (for all

sufficiently large q). Combining these two statements shows that (iii) holds, completing the
proof.
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