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We study the instability to necking of an initially cylindrical filament of soft glassy material subject to
extensional stretching. By numerical simulation of the soft glassy rheology model and a simplified fluidity
model, and by analytical predictions within a highly generic toy description, we show that the mode of
instability is set by the age of the sample relative to the inverse of the applied extensional strain rate. Young
samples neck gradually via a liquidlike mode, the onset of which is determined by both the elastic loading
and plastic relaxation terms in the stress constitutive equation. Older samples fail at smaller draw ratios via
a more rapid mode, the onset of which is determined only by the solidlike elastic loading terms (though
plastic effects arise later, once appreciable necking develops). We show this solidlike mode to be the
counterpart, for elastoplastic materials, of the Considère mode of necking in strain-rate-independent solids.
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Many soft materials, including foams, emulsions, micro-
gels, and colloids comprise disordering packings of meso-
scopic substructures: foam bubbles, emulsion droplets, etc.
At high volume fractions, the local rearrangement dynam-
ics of these are impeded by large energy barriers and show
a glassy slowing down. This underpins many universal
features in the rheological (deformation and flow) proper-
ties of these “soft glassy materials” (SGMs). Particularly
striking is the phenomenon of rheological ageing, in which
an initially liquidlike sample slowly evolves towards an
ever more solidlike state as a function of the time since it
was prepared. In the last decade, significant progress has
been made in understanding the role of ageing in the shear
flow of SGMs [1]. Similar phenomena have been explored
in polymeric [2] and metallic [3] glasses, with many
unifying features across all these amorphous, elastoplastic
materials.
Much less is understood about the response of these

materials to extensional deformations, which are important
to industrial processes in fiber spinning, ink-jetting, porous
media, and the peeling and tack of surfaces bonded by
adhesives. In the standard experimental test, an initially
near uniform cylindrical (or rectangular) sample is steadily
drawn out in length, with the aim of measuring the tensile
stress as a function of strain and strain rate. Ubiquitously
observed, however, is an instability to neck formation: the
sample thins more quickly in the middle than at its end
points (Fig. 1) and eventually fails. This has been observed
in emulsions [4–8], laponite suspensions, [8–10], foams
[11–13], polymer glasses [14,15], simulations of shear
transformation zone models [16,17], and in shear thicken-
ing colloids [18–21] (though our focus here is on shear
thinning SGMs).
A hallmark of all these elastoplastic materials is that

their deformation properties depend strongly on the rate
at which strain is applied, particularly when ageing is

present. For rate-independent materials, the onset of neck-
ing was predicted by Considère in 1885 [22] to coincide
with a regime of declining tensile force as a function of
strain. But despite the accumulating body of observations
described above, counterpart criteria for necking in elasto-
plastic materials remain lacking (though for an insightful
early study of rate dependence, see [23]). The contribution
of this Letter is to provide such criteria, in the form of
general analytical results supported by numerical simula-
tion of two widely used models of soft glasses. In this way,
we argue these new criteria to apply universally across all
ageing elastoplastic materials and so to have the same,
highly general status as the Considère criterion for rate-
independent solids.
Importantly, we find the mode of instability to necking

to be determined by the age tw of the sample, relative to
the inverse of the applied extensional (Hencky) strain rate
_̄ϵ: young samples ( _̄ϵtw ≪ 1) fail by a gradual, liquidlike
mode, whereas old samples ( _̄ϵtw ≫ 1) show a fast, solidlike
failure mode. We further show this solidlike mode to be the
counterpart for elastoplastic materials of the Considère
mode in rate-independent solids. In this way, crucially, the

FIG. 1 (color online). Necked profiles. Extension rate shown
by arrow in Fig. 2. Top: young sample, tw ¼ 102. Bottom: old,
tw ¼ 104.
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physics of a material’s failure is predicted to be governed
by a switch between two qualitatively distinct modes of
instability, governed simply by the sample age [24].
We consider incompressible, inertialess deformations for

which the velocity and stress fields in the material, vðr; tÞ
and Tðr; tÞ, obey standard conditions of mass balance,
∇:v ¼ 0, and force balance, ∇:T ¼ 0. The total stress
T ¼ Σþ 2ηD − pI comprises an elastoplastic contribution
Σ from the mesoscopic substructures, a Newtonian solvent
contribution of viscosity η, and an isotropic pressure. Here
Kαβ ¼ ∂βvα and D ¼ 1

2
ðKþKTÞ.

For the dynamics of the elastoplastic stress Σ we adopt
the soft glassy rheology (SGR) model [25]. This considers
an ensemble of elements, each corresponding to a local
mesoscopic region of material. Under an imposed defor-
mation, each element experiences a buildup of local elastic
stress, intermittently released by plastic relaxation events.
The treatment of tensorial stresses [26] within SGR
was inspired by the Doi-Ohta model of dense emulsions
[27], and considers a local density function fðnÞ for the
area (per unit volume) of droplet interfaces normal to n,
with a spherical normalization Q ¼ R

dnfðnÞ and stress
Σ ¼ G

R
dnðnn − 1

3
IÞfðnÞ. The constant modulus G ¼ 1

sets our stress scale. The buildup of elastic stress in any
element during deformation obeys [27]

ð∂t þ v ·∇ÞΣ¼ Σ ·KþKT ·Σþ 2

3
QD−Σ∶K

�
2

3
Iþ Σ

Q

�
;

ð∂t þ v ·∇ÞQ¼K∶Σ: ð1Þ

Relaxation of stress by local plastic yielding events is
modeled as hopping of the elements over strain-modulated
energy barriers, governed by a noise temperature x. Upon
yielding, any element resets its local stress to zero and selects
its new energy barrier at random from an exponential
distribution. This distribution confers a broad spectrum
of yielding times PðτÞ, resulting in a glass phase with
a yield stress for x < 1. Full details of the model in its
original, spatially uniform form are in Refs. [25,26], and
in its adaptation to spatially nonuniform shear flows in
Ref. [28]. The counterpart adaptation for nonuniform
extension is summarized in Ref. [29].
Because the SGR model is numerically rather cumber-

some, we shall also present results for a simplified fluidity
model in which SGR’s full spectrum of yield times PðτÞ
is replaced by a single characteristic relaxation time
scale τ. The right-hand side of Eqs. (1) then acquire
relaxation terms: −ð1=τÞQΣ and −ð1=τÞμQ2 for the Σ
and Q dynamics, respectively. Here μ is a phenomeno-
logical parameter with 0 ≤ μ ≤ 1 [27]. A standard “fluid-
ity” model for the dynamics of τ,

ð∂t þ v · ∇Þτ ¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffi
2D∶D

p
ðτ − τ0Þ; ð2Þ

then captures the two essential ingredients of the SGR
model: (i) ageing without flow, in which the relaxation
time increases with the time since sample preparation,
τ ∼ t; and (ii) rejuvenation by flow, which restores a steady
state with τ ¼ τ0 þ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2TrD∶D

p
. We choose units in

which the microscopic time τ0 ¼ 1.
We consider an initially cylindrical sample of length L0

and radius R0, freshly prepared at time t ¼ 0 in a fluidized
state with τ ¼ τ0 and Σ ¼ 0. It is then left to age undis-
turbed during a time tw ≫ τ0, before being steadily drawn
out such that for times t > tw the length increases as
_L ¼ _̄ϵðtÞL, with the cross sectional area correspondingly
thinning. We present results below for two common
protocols: (a) constant rate of Hencky strain _̄ϵ, correspond-
ing to L ¼ L0 exp ½ _̄ϵðt − twÞ�, and (b) constant rate _L of
length increase, corresponding to a progressively declining
strain rate _̄ϵ ¼ ð1= _̄ϵ0 þ t − twÞ−1.
For convenience, we solve the models within an

one-dimensional (1D) approximation [29–31], in which
the wavelengths of any variations that develop along the
filament are assumed long compared to the radius. This
standard assumption [32–34] has been shown to perform
surprisingly well even some way into the regime where the
wavelengths become comparable to the radius. It allows the
neglect of any radial dependencies, such that the deforma-
tion of a filament extended in the z direction is charac-
terized simply by its cross-sectional area Aðz; tÞ and an area
averaged z component of velocity vðz; tÞ.
A choice must then be made for how to model the no-slip

condition where the sample ends meet the experimental
endplates. A good approximation [35–37] for initial aspect
ratios Λ ¼ L0=R0 ≥ 1 is to invoke a divergent viscosity
over a small region of the filament near each plate, acting to
pin the fluid to the plates. (Equivalently, this region can be
thought of as part of the plates.) We adopt this assumption
[29], and have checked that the physics reported is robust to
it by also performing simulations (not shown) with periodic
boundary conditions (corresponding to a stretched torus,
without end plates).
We neglect surface tension, restricting to the develop-

ment of a neck in a highly elastoplastic filament in which
bulk stresses dominate. Clearly, surface tension must
ultimately become important in the very final stages of
breakup, once the radius becomes small [38]. However our
focus is not on the details of that final pinch-off, but on the
time at which necking first becomes appreciable, which we
define as the center-point radius having fallen to 15% of the
initial radius.
The basic phenomenon that we seek to explain is shown

in Fig. 1. This displays the necked profiles of two filaments:
one that has been drawn relatively slowly compared to the
inverse age and another that has been drawn more quickly.
As can be seen, the slowly drawn filament survives to a
relatively longer draw ratio before approaching failure, and
displays a gradual necking profile. In contrast, the rapidly
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drawn filament fails sooner and with a more pronounced,
cusplike profile.
That basic observation is quantified for the fluidity

model in Fig. 2, for protocol (a) in which the Hencky
strain rate _̄ϵ is held constant and the sample ends separate
exponentially. The symbols show the draw ratio LðtÞ=L0 at
which appreciable necking becomes apparent, versus that
applied strain rate. As can be seen, old samples ( _̄ϵtw ≫ 1)
fail at a modest draw ratio L=L0, while young samples
( _̄ϵtw ≪ 1) survive to a larger L=L0. Also shown (dotted
line) is the Considère criterion at which the tensile force
first starts declining with strain. This would signal necking
onset in a rate-independent solid but evidently performs
badly here for young samples _̄ϵtw < Oð1Þ. We return below
to discuss this in the context of an alternative criterion
shown by the dashed lines. Figure 3 confirms the same
behaviour in the SGR model. The same behaviour is
also seen [29] in protocol (b), which has a constant drawing
rate _L ¼ _̄ϵ0L0 and progressively decreasing strain rate
_̄ϵ ¼ ð1= _̄ϵ0 þ t − twÞ−1.
To allow analytical insight, let us consider now a highly

simplified, toy description of an elastoplastic filament in

extensional deformation. The relevant dynamical quantities
are the area profile Aðz; tÞ, the z component of velocity
vðz; tÞ, the strain rate field _ϵðz; tÞ ¼ ∂zvðz; tÞ, with the
overall applied strain rate _̄ϵðtÞ ¼ R

L
0 dz_ϵðz; tÞ=L, the elasto-

plastic stress GZðz; tÞ, which we write as a constant
modulus G times a strainlike variable Z, the total tensile
stress σEðz; tÞ ¼ GZ þ 3η_ϵ, and force FðtÞ ¼ σEA.
These obey the conditions of mass and force balance:

∂tAþ v∂zA ¼ −_ϵA

0 ¼ ∂zðAσEÞ: ð3Þ

We then choose for Z the simplest possible dynamics that
combines elastic loading (f) and plastic relaxation (g):

∂tZ þ v∂zZ ¼ _ϵfðZÞ − 1

τ
gðZÞ: ð4Þ

We intentionally leave the forms of f and g unspecified, in
order to derive below general instability criteria that do not
depend on particular choices. For simplicity we do not
include in this toy description explicit dynamics for τ, but
below comment on predictions when _̄ϵτ ≫ 1 and _̄ϵτ ≪ 1,
thereby inserting ageing τ ∼ tw “by hand.”
Within this toy model, we consider an initially near

uniform cylindrical filament and express its state as the
sum of a time-dependent uniform base state, correspond-
ing to a perfect cylinder being stretched, plus small
amplitude heterogeneous perturbations. Accordingly,
we write aðu; tÞ ¼ āþ δaqðtÞ expðiquÞ, ZðtÞ ¼ Z̄ðtÞþ
δZqðtÞ expðiquÞ, _ϵðu; tÞ ¼ _̄ϵðtÞ þ δ_ϵqðtÞ expðiquÞ, choos-
ing for convenience to work in the coextending, cothin-
ning frame by defining transformed length and area
variables u ¼ z expð−ϵ̄Þ and a ¼ A expðϵ̄Þ. We then

x x x x x x x x x x x

x x x x x x x
x x x x

x x x x x
x x x x x x

x

FIG. 2 (color online). Fluidity model in protocol (a). Solid
lines: draw ratio at which the radius of the filament at its thinnest
point has fallen to 35%, 30%, …, 15% of the initial filament
radius (curves upwards). Data are shown for three different initial
sample ages (panels downwards). Initial aspect ratio Λ ¼ 2.
Dotted lines: Considère criterion [22]. Dashed lines: counterpart
of the Considère criterion for elastoplastic materials. Parameters:
μ ¼ 0.1 and η ¼ 0.01. Arrow shows _̄ϵ for Fig. 1.
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FIG. 3. SGR model in protocol (a). Solid contour lines upward
show where initial area perturbations have increased in amplitude
by successive powers of 1.4. The initial area profile was seeded
such that A ¼ 1þ ξ cosð2πuÞ, where ξ ¼ 3 × 10−4. Dotted line:
Considère criterion. Dashed line: counterpart criterion for elasto-
plastic material. Parameters: x ¼ 0.3, λ ¼ 1.5, tw ¼ 102.
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perform a linear stability analysis to determine the time at
which these heterogeneous perturbations start to grow,
corresponding to the onset of necking. Substituting into
Eqs. (3) and expanding in powers of the perturbation
amplitude gives at first order

∂t

�
δa
δZ

�

q
¼ MqðtÞ ·

�
δa
δZ

�

q
; ð5Þ

in which the stability matrix M has inherited the time
dependence of the uniform base state.
At least one eigenvalue ofM being positive at any time t

then gives a strong indication that the heterogeneous
perturbations will be growing at that time, corresponding
to the development of necking. (Direct integration of the
linearised equations confirms this, and also agrees with the
early-time growth of a neck in a full nonlinear solution.) In
fact, it is straightforward to show that Mq has two distinct
modes of instability. One of these, which we call mode 1,
has an eigenvalue of order _̄ϵ that is positive when the tensile
stress of the underlying base state obeys _̄ϵf0 − ð1=τÞg0 ¼
σ̈E= _σE < 0. It is liquidlike in the sense that its onset is
determined by an interplay between elastic loading (speci-
fied by f) and plastic relaxation (via g). The other (mode 2)
has a much larger eigenvalue of order G=η that is positive
when the base state σE − Gf > 0; its onset condition is
set only by the solidlike elastic loading term f, independent
of g [39].
These analytics explain our numerical results in the SGR

and fluidity models as follows. We indeed see a mode
directly analogous to mode 1, the onset of which involves
both the elastic loading and plastic relaxation dynamics,
and which involves significant plastic relaxation along the
entire filament. Its quantitative onset criterion is however
modified compared with the toy model, due to the higher
dynamical dimensionality of the full models: it is actually
unstable for all strain rates and at all times during stretch-
ing. Any small perturbations to an initially cylindrical
profile therefore start slowly growing as soon as stretching
starts, for all strain rates. It is this mode that eventually
leads to failure at relatively large L=L0 for young samples
_̄ϵtw ≪ 1 in Figs. 2 and 3.
For old samples, the solidlike mode 2 intervenes to cause

failure at smaller strains. Its onset criterion σE − Gf > 0
transcribes [once cast into the forms of Eqs. (7), (8) below]
unmodified to the fluidity and SGRmodels (and indeed any
model, however, complex). It is shown by the dashed line in
Figs. 2 and 3, and is only satisfied if _̄ϵτ ≫ 1, i.e., in old
samples for which _̄ϵtw ≫ 1. It is furthermore only met a
finite time after the start of stretching. Once unstable,
however, its much larger eigenvalue OðG=ηÞ gives much
more rapid necking and the sample fails very shortly after
instability onset, at only modest draw ratios. (This mode
would, in principle, restabilize at higher strains, as seen in

Fig. 2 by the doubling back of the dashed line, but that is
irrelevant because the filament will have failed by then.)
How do we understand this instability criterion,

σE −Gf > 0 of mode 2? Noting that the tensile force
F ¼ AσE, we have (for the underlying base state)

∂F
∂ϵ ¼ A

�
−σE þ ∂σE

∂ϵ
�

¼ A

�
−σE þ Gf −G

g
_ϵτ

�
: ð6Þ

This follows from Eqs. (3) and (4), neglecting terms
Oðη=GÞ. Were the Considère criterion to apply directly,
that would give instability for σE − Gf þGg=_ϵτ > 0.
However, the dotted lines in Figs. 2 and 3 show this
criterion to perform poorly for young samples _̄ϵtw < Oð1Þ.
We can, though, define a modified derivative,

∂F
∂ϵ

�
�
�
�
elastic

¼ Að−σE þGfÞ; ð7Þ

in which the plastic relaxation term is artificially switched
off over the strain increment in question. We thereby
recognize the onset of mode 2 instability as

∂F
∂ϵ

�
�
�
�
elastic

< 0: ð8Þ

It is this criterion that is marked as a dashed line in Figs. 2
and 3. It performs much better for these ageing materials,
over the full range of _̄ϵtw, than the original Considère
criterion. It coincides with Considère only for _̄ϵtw ≫ 1: in
this regime, the material behaves essentially as a nonlinear
elastic solid (with _ϵf ≫ ðg=τÞ), at least until necking first
arises. (Once appreciable necking occurs it causes plastic
flow in the thinning, central region of the filament.)
Accordingly, we propose Eq. (8) as the counterpart for
rate-dependent elastoplastic materials of the Considère
criterion for rate-independent solids.
Finally, we have checked that our results are robust to

reasonable variations in the values of the initial aspect ratio
Λ and the Newtonian viscosity η, and that they apply
robustly over large regions of the space of the phenom-
enological parameters μ (fluidity) and λ, x (SGR, within its
glass phase x < 1). See the Supplemental Material for
details [29].
To summarize, we have shown the instability to necking

of a filament of soft glassy material to proceed by one of
two possible modes. Young samples neck gradually via a
mode informed by both elastic loading and plastic relax-
ation. Old samples fail more suddenly via a mode in which
onset is informed only by elastic loading, and which is the
counterpart for elastoplastic materials of the Considère
mode of rate-independent solids. A particularly appealing
feature of the physical picture presented here is this cross-
over between two distinct modes of instability, determined
simply by the age of the sample relative to the inverse
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stretching rate. Having shown this numerically in two
widely used models of soft glasses, as well as analytically,
we argue these predictions to apply generically to all ageing
elastoplastic materials. Indeed they may apply even more
generally still, to pasty materials with long relaxation time
scales τ butmuchweaker ageing effects, now set by thevalue
of the inverse strain rate relative to τ. It remains an open
challenge to understand how, within SGR, these ductile
failure modes cross over to brittle cracking at even higher
strain rates, for samples with notchlike initial imperfec-
tions [40,41].
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