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Abstract 9 

This study considers records of fluvial suspended sediment concentration and its organic 10 

matter content from across the United Kingdom from 1974 to 2010. Suspended sediment, 11 

mineral concentration and river flow data were used to estimate the particulate organic matter 12 

(POM) concentration and flux. Median annual POM flux from the UK was 1596 ktonnes/yr. 13 

The POM concentration significantly declined after the European Commission’s Urban 14 

Wastewater Directive was adopted in 1991 although the POM flux after 1992 was 15 

significantly higher. Estimates of POM flux were compared to a range of catchment 16 

properties to estimate the flux of particulate organic carbon (POC) and particulate organic 17 

nitrogen (PON) as they entered rivers and thus estimate the net catchment losses. The total 18 

fluvial flux of N from the soil source to rivers was 2209 ktonnes N/yr with  814 ktonnes N 19 

lost at the tidal limit, and so leaving 1395 ktonnes N/yr loss to atmosphere from across UK 20 

catchments  - equivalent to an N2O flux from UK rivers of between 33 and 154 ktonnes 21 

(N2O)/yr. The total fluvial flux of carbon from the soil source to rivers for the UK was 5020 22 

ktonnes C/yr; the flux at the tidal limit was 1508 ktonnes C/yr, equivalent to 6.5 tonnes 23 
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C/km
2
/yr. Assuming that all the net catchment loss goes into the atmosphere, then the impact 24 

of rivers on the atmosphere is 3512 ktonnes C/yr, equivalent to 15.2 tonnes C/km
2
/yr. The 25 

loss of POM from the UK suggests that soil erosion in the UK prevents soil being a net sink 26 

of CO2 and is instead a small net source to the atmosphere.  27 

 28 

Keywords: particulate organic carbon, POC, particulate organic nitrogen, PON, soil erosion, 29 

N2O. 30 

 31 

1. Introduction 32 

Meybeck (1993) estimated the flux of carbon (dissolved organic carbon, particulate organic 33 

carbon, and dissolved inorganic carbon) from the world’s rivers to the oceans was around 542 34 

Mtonnes C/yr in proportions respectively 37:18:45, i.e. global river flux of POC is about 98 35 

Mtonnes C/yr. Ludwig et al. (1996) used a spatially-explicit model of global fluvial carbon 36 

fluxes to suggest fluxes of 800 Mtonnes C/yr with a split of approximately 50:25:25 for 37 

DOC:POC:DIC, i.e. a global POC of 200 Mtonnes C/yr. These figures provide useful 38 

estimates of fluvial POC losses from the land to the oceans at the tidal limit, but they do not 39 

account for in-stream losses along the length of the river, between the carbon sources (e.g. 40 

soils) and the ocean. Thus, to understand total carbon losses from catchments, it is also 41 

necessary to estimate in-stream losses.   42 

Kempe (1982, 1984) recognised that many surface freshwater bodies were saturated 43 

with respect to CO2. Cole et al. (1994) showed, in a survey of 1835 lakes across the globe, 44 

that lakes, on average, were supersaturated with respect to the atmosphere by a factor of 3 45 

and that, assuming this value, degassing of CO2 from global lakes would represent an 46 

additional 140 Mtonnes C to the atmosphere each year. This excess dissolved CO2 comes not 47 

only from the excess CO2 present in water entering a terrestrial water body from the 48 
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relatively closed system of soil and bedrock porosity, but also from the mineralisation of 49 

DOC and POC. Thus, rivers and lakes become sources of CO2 because water entering them 50 

carries excess dissolved CO2. For the global scale, Cole et al. (2007) estimated that 1900 51 

MtonnesC/yr enters rivers of which 800 Mtonnes C/yr (42% of the input) is returned to the 52 

atmosphere. Battin et al. (2009) considered the loss of DOC from rivers at a global scale and 53 

suggested 21% removal of DOC in-stream implyng that, in comparison to the values 54 

suggested by Cole et al. (2007), there must be considerable contributions from the loss of 55 

POC and DIC. The 2007 Intergovernmental Panel on Climate Change (IPCC) report included 56 

an estimate of global DOC flux from rivers (Solomon et al., 2007) but did not consider the 57 

effect of in-stream DOC losses, let alone the flux and loss of POC. In other words, the carbon 58 

fluxes to the atmosphere from in-stream losses have not yet been included in estimates of 59 

terrestrial greenhouse gas (GHG) emissions. 60 

Analysis of the global river network’s contribution of fluvial carbon to GHG 61 

emissions has relied on relatively sparse data from very few rivers. Worrall et al. (2007) used 62 

nationally-collected monitoring data for biochemical oxygen demand (BOD) as a measure of 63 

fluvial carbon turnover (where turnover is considered as the biochemical reaction of fluvial 64 

carbon to form greenhouse gases) and estimated a loss equivalent to 31% of the DOC flux 65 

across the UK fluvial network – equivalent to an additional release to the atmosphere of 1 66 

tonne C/km
2
/yr across the entire UK land surface. However, their BOD approach assumes a 67 

fixed fluvial residence time of 5 days – a long residence time for the short, relatively-68 

unimpounded rivers of the UK. In addition, BOD is usually measured downstream in the 69 

fluvial network, away from upstream sources of more readily degraded DOC. Alternatively, 70 

Worrall et al. (2012a) modelled the DOC export from over 194 catchments across the UK, 71 

over 7 years and assessed net watershed losses through comparisons to the soil, land-use and 72 

hydro-climatic characteristics of each catchment. They found a net watershed DOC loss of up 73 
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to 78%, equivalent to between 9.0 and 12.7 tonnes C/km
2
 of UK land area/yr. These figures 74 

are large when compared to other studies on single catchments. Individual studies are often 75 

based on experimental studies of DOC turnover in the dark and not daylight (Wickland et al., 76 

2007; del Georgio and Pace, 2008) or based on samples from systems with residence times 77 

far longer than most UK rivers, e.g. lakes - Jonsson et al. (2007). Dawson et al. (2001) 78 

studied a short river reach (2 km) in a peat-covered headwater catchment and estimated DOC 79 

removal of 12-18%. Wallin et al. (2013) considered a 67 km
2
 boreal catchment and found 80 

that fluvial CO2 evasion (loss of gas from the river surface to the atmosphere) was equivalent 81 

to 53% of the fluvial carbon flux; some of this CO2 evasion would be due to rapid loss of 82 

DOC to the atmosphere from low-order streams. The estimated net DOC watershed loss from 83 

the UK river network (Worrall et al., 2012a) represents 3% of the UK’s greenhouse gas 84 

inventory (Cannell et al., 1999). 85 

Further, the turnover of organic matter not only represents a release of carbon to the 86 

atmosphere but also a potential loss of nitrogen. Kroeze et al. (2003) found that fluvial N 87 

retention in surface waters is typically between 11 and 50% of N input and, by retention, this 88 

is the proportion of nitrogen not transferred out of the catchment via the river and includes 89 

losses to the atmosphere. Worrall et al. (2012b) compared fluxes of dissolved nitrogen 90 

species from different sized catchments and, by allowing for differences in catchment soil 91 

cover, land use and hydro-climatic properties, the net catchment loss of dissolved nitrogen 92 

was estimated as 63% of the flux entering the rivers at the soil source.  93 

If loss of dissolved CO2, DOC and DON have been considered, what about the 94 

turnover of POC or PON? The decline in suspended sediment export (often referred to as 95 

yield) through a catchment has often been expressed as a sediment delivery ratio (e.g. 96 

Walling, 1983). This decline in sediment yield has been associated with in-channel storage of 97 

suspended sediment (e.g. Collins and Walling, 2007) and on floodplains (e.g. Walling and 98 
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Owens, 2003). Studies have considered the concept of spiralling of organic matter (Newbold 99 

et al., 1982) where organic matter is cycled through the stream biota, but they have not 100 

considered loss by turnover (e.g. Young and Huryn, 1997, Griffiths et al., 2012). 101 

Furthermore, studies that have examined the fate of eroded soil have reported erosion as a net 102 

sink of carbon (e.g. Van Oost et al., 2007) but have not explicitly considered the possibility of 103 

CO2 being released from the eroded soil organic matter as it is transported within the river 104 

network. Therefore, given the large potential impact that organic matter turnover in rivers has 105 

on atmospheric greenhouse gases, the aim of this study is to estimate the flux of particulate 106 

organic matter from soil source to UK rivers and from UK rivers to the tidal limit  and so 107 

assess the loss of particulate carbon and nutrients in stream.   108 

 109 

2. Methodology 110 

The approach used to calculate fluvial fluxes for individual catchments was similar to that of 111 

Worrall et al. (2013a), and the approach used to assess net catchment losses followed that of 112 

Worrall et al. (2012a and b).  113 

The study used data from the Harmonised Monitoring Scheme (HMS - Bellamy and 114 

Wilkinson, 2001). There are 56 HMS sites in Scotland and 214 sites in England and Wales 115 

(Figure 1, Table 1). Note that one Scottish river (River Tweed) actually is included in the NE 116 

England dataset because, although most of its catchment is in Scotland, its tidal limit is in 117 

England. HMS monitoring sites were selected for the inclusion into the original monitoring 118 

programme if they were the tidal limit of rivers with an average annual discharge greater than 119 

2 m
3
/s; in addition, any tributaries with a mean annual discharge above 2 m

3
/s were also 120 

included in the original monitoring programme. These criteria provided good spatial coverage 121 

of the coast of England and Wales, but in Scotland many of the west coast rivers are too 122 

small to warrant inclusion in the HMS. No HMS data were available from Northern Ireland. 123 
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Within the database maintained as part of the HMS programme, three determinands were of 124 

particular interest to this study: suspended sediment concentration (mg/l); instantaneous river 125 

flow (m
3
/s); and ash content of the suspended sediment (mg/l). From these data the 126 

suspended sediment flux was estimated and, as the ash content represents the mineral 127 

proportion of the suspended sediment (particulate mineral matter – PMM), it was possible to 128 

calculate the particulate organic matter (POM) concentration of each sample by difference. 129 

From the calculated POM concentrations and river flow data, it was then possible to calculate 130 

the POM flux.  131 

 132 

2.1. POM concentrations 133 

Analysis of variance (ANOVA) was used to consider all data from all sites for which the 134 

frequency of sampling was more than 12 per year. In the ANOVA three factors in relation to 135 

the concentration and percentage of mineral matter (PMM) were considered: (1) the 136 

difference between years with 37 factor levels, one for each year between 1974 and 2010 – 137 

henceforth referred to as the year factor; (2) the month of sampling with 12 factor levels, one 138 

for each calendar month – henceforth referred to as the month factor; and, (3) the differences 139 

between sampling sites – henceforth referred to as the site factor. The analysis was 140 

considered with and without covariates of suspended sediment concentration and 141 

instantaneous river discharge at the time of sampling. Both covariates were log-transformed 142 

to ensure the greatest proportion of the original variance in the dataset was explained. On the 143 

basis of the ANOVA, multiple regression was used to model PMM concentration, percentage 144 

PMM content and subsequently the POM concentration. 145 

 146 

2.2. Flux calculation 147 
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Among the monitoring agencies, water quality sampling frequencies (f) vary, ranging from 148 

sub-weekly to monthly or even less frequently. Annual data were rejected at any site where 149 

there were fewer than 12 samples in that year with the samples in separate months (f<12); in 150 

this way a range of flow conditions would be sampled. In general, 12 monthly spot samples 151 

was the sampling scheme being followed within the HMS. An interpolation method was then 152 

applied to calculate the flux for any site-year combination that met this criterion: 153 

 154 
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where: F = the annual flux at the site; Ci = the measured concentration at the site at time i; 158 

Qi= the river discharge at time i; K = a conversion factor which takes into account the units 159 

used; ny = the number of samples at the site in that year; and Ay = the number of days in that 160 

year, i.e. this can vary with a leap year. This approach assumes that each sample taken at a 161 

site is equally likely to be representative of an equal proportion of the year as any other 162 

sample. Note that this method corresponds to “method 2” of Littlewood and Marsh (2005) 163 

modified for  irregular sampling. 164 

When considering suspended sediment, or indeed any particulates, Webb et al. (1997) 165 

considered 5 interpolation and 2 extrapolation methods and found that, for suspended 166 

sediment flux estimation, extrapolation methods gave the least biased results and that bias 167 

increased with decreased sample frequency. Several studies have recommended or considered 168 

adaptive strategies. Kronvang and Bruhn (1996) suggested taking samples “hydrologically” 169 

rather than on a regular basis and a number of studies (e.g. Cooper and Watts, 2002; 170 
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Skarbøvik et al., 2012) have suggested including flood samples alongside regular sampling. 171 

However, the use of extrapolation and adaptive strategies is impractical when considering a 172 

dataset from a monitoring scheme such as the HMS monitoring network in the UK where 173 

sampling is regular rather than adaptive and often infrequent (typically monthly).  174 

The quality of methods and sampling frequencies used to calculate flux need to be 175 

considered in two ways. Firstly, the accuracy can be considered as the difference between the 176 

true load and estimated load and represents the systematic bias. Secondly, the precision of the 177 

method represents the spread of the load estimates about a central value, in other words the 178 

consistency of the load estimates. In many studies that discuss uncertainty in flux estimation 179 

due to changing method or sampling frequency, it is the precision that is described and not 180 

the bias or accuracy. An example of this is Littlewood et al., (1998) who could only trace 181 

precision with changing sampling frequency with “indicative” curves but could not discuss 182 

accuracy of methods because there was no “true” value available. Johnes (2007) considered 183 

17 catchments where there was daily measurement of phosphorus but had no sub-daily data 184 

and chose to assume that “method 5” (Littlewood, 1995) was the true value and only 185 

considered precision but not bias. The lack of a “true” value with which to compare bedevils 186 

the assessment of bot accuracy and precision of changing method of sampling frequencies. 187 

Cassidy and Jordan (2011), with sub-daily measurement of phosphorus, considered both bias 188 

and precision in their approach and thus showed increasing bias with decreasing sampling 189 

frequency, with bias of up to 60% on monthly sampling, and large uncertainty for all 190 

sampling frequencies except for near continuous monitoring. Worrall et al. (2013b) showed 191 

that “method 5”, often quoted as the preferred interpolation method, contained a curious bias 192 

because it corrected “method 2” by assuming that river discharge is normally distributed, 193 

which it is not, and this led to overestimation of fluxes at high sampling frequencies (f > 1 194 

sample per 7 days) because the method overestimated the expected value of the river 195 
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discharge, i.e. it used an arithmetic mean when other estimates of the expected value of river 196 

discharge (e.g. geometric mean) would be more appropriate. Furthermore, Worrall et al. 197 

(2013b) showed that extrapolation methods were, because of large changes in the sample set 198 

used to derive rating curve, highly erratic for low-frequency sampling  leading to poor 199 

accuracy and precision. 200 

It is clear that for the type of low-frequency data available to this study, there could be 201 

considerable sampling bias, most likely leading to underestimation. However, Worrall et al. 202 

(2103a) tackled this issue for the low-frequency data typical of the HMS by application of 203 

analysis of covariance (ANCOVA) to establish and correct for sample frequency bias: the 204 

sampling frequency for all site-year combinations was compared to a flow-weighted flux 205 

estimate (i.e. 
𝐹𝑦

∑ 𝑄
 ), which is equivalent to the annual average flow-weighted concentration. In 206 

the ANCOVA, sampling frequency was considered as a factor with four levels (sampling 207 

frequency  1 per week,   2 weeks,  3 weeks, and  1 per month – note that sites with a 208 

sampling frequency of worse than 1 per month had already been removed). The annual water 209 

yield for each site-year combination (∑ 𝑄) was used as the covariate. The normality of the 210 

data was tested using the Anderson-Darling test (Anderson and Darling, 1952); if the test 211 

failed at a 5% probability of the data not being normally distributed, then the data were 212 

transformed and the distribution re-tested. The Tukey test was used to assess post hoc 213 

differences between factor levels. If there is a significant effect due to sampling frequency at 214 

the 95% probability, then ANCOVA demonstrates that a sampling bias exists with changing 215 

sampling frequency. Where significant differences were found, a correction factor for that 216 

sampling frequency was derived relative to the other factor levels, i.e. relative to other 217 

sampling frequencies. These correction factors were then applied to the flow-weighted flux 218 

for each site-year combination to adjust the interpolation method results.  This was applied in 219 

such a way as to correct all flow-weighted fluxes to the average sampling bias for the highest 220 
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sampling frequency; thus, all results were adjusted as though each site had been sampled sub-221 

weekly. Worrall et al. (2013a) tested this method for correcting for sampling bias by applying 222 

the extrapolation method of Ferguson (1986) to calculating suspended sediment flux for the 223 

two sites in the HMS dataset with the largest contrast in baseflow index within the HMS 224 

catchments (BFI – Gustard et al., 1992). The extrapolation method was applied based upon 225 

all the available suspended sediment concentration and flow data for that catchment and 226 

given that the data were made stationary over the time series of their sampling period. For the 227 

River Test (the high BFI catchment) the 10-year average suspended sediment flux the results 228 

were: 4820 tonnes/yr for extrapolation method; 3179 tonnes/yr for interpolation method; and 229 

4705 tonnes/yr for the corrected interpolation method, i.e. the correction method used here 230 

gave a result that was 98% of that from an extrapolation method. For the River Thurso (the 231 

low BFI catchment) the 10-year average suspended sediment flux the results were: 1302 232 

tonnes/yr for extrapolation method; 2427 tonnes/yr for interpolation method; and 5270 233 

tonnes/yr for the corrected interpolation method. The reason for the low estimate from the 234 

extrapolation method in this latter case is that rating curve for this catchment shows two 235 

distinct trends even once it had been made stationary, i.e. extrapolation methods can be 236 

unreliable because a single relationship is assumed but not always appropriate.  237 

The bias-corrected flux for each HMS site in each year was then used to calculate the 238 

export rate as the flux per unit catchment area per year. The flux from the UK was then 239 

calculated using an area-weighted average of export rates. For each region of the UK for 240 

which POM fluxes could be estimated, an average export was calculated for each year from 241 

1974 to 2010 (Figure 1, Table 1). The regions are based upon UK Environment Agency’s 242 

administrative areas that are bounded by watersheds. The flux from all the regions was 243 

summed to give the national flux. This regional approach better represents regional 244 

differences without biasing the national value due to uneven spatial distribution of available 245 
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records, while also using all site information to calculate national-scale flux. Errors due to 246 

upscaling from catchment export estimates to the regional and national scales was estimated 247 

as half the percentage difference between the values estimated from the 5
th

 and 95
th

 percentile 248 

exports for each region: this gives an estimated upscaling error of ±15%.  It should be noted 249 

that no HMS data were available for Northern Ireland. However, the land area of Northern 250 

Ireland is 13843 km
2
  and so the results for Great Britain (the countries of England, Wales 251 

and Scotland, i.e. the UK without Northern Ireland) could be scaled up to give an estimate of 252 

the flux from the whole of the UK. 253 

Where a catchment PMM or POM flux could be calculated for the period 2001 to 254 

2010, the average catchment flux over those years was compared to a range of catchment 255 

characteristics. The period 2001-2010 was chosen for three reasons: (1) it is the most recent 256 

decade; (2) a decadal average is less likely to be distorted by particularly wet or dry years; 257 

and, (3) the available land use data were collected for the middle year of this period. The land 258 

use for each 1 km
2
 of Great Britain (i.e. the UK minus Northern Ireland) was classified into: 259 

arable, grass and urban from the June Agricultural Census for 2004 (Defra, 2005). In 260 

addition, the number of cattle and sheep in each 1 km
2
 were recorded within this census. To 261 

provide a single measure for livestock, the equivalent sheep per hectare were calculated based 262 

on published nitrogen export values of the respective livestock (Johnes et al., 1996) which 263 

gives a ratio of 3.1 sheep per cow. The dominant soil-type of each 1 km
2
 grid square in Great 264 

Britain was classified by this study into mineral, organo-mineral and organic soils based upon 265 

the classification system of Hodgson (1997), and used nationally-available data (Smith et al., 266 

2007, Lilly et al., 2009).  Note that, by this definition, peat soils are a subset of organic soils. 267 

The catchment area to each monitoring point was calculated from the CEH Wallingford 268 

digital terrain model which has a 50 m grid interval and a 0.1 m altitude interval (Morris and 269 

Flavin, 1994). The soil and land-use characteristics for each 1 km
2
 were summed across each 270 
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catchment to the monitoring points with available flux information and, on each catchment, 271 

the relative proportion of different soil and land-use properties was determined in addition to 272 

a range of hydrological characteristics. For each of the catchments, for which the study could 273 

calculate a suspended sediment flux, the following hydrological characteristics were used: the 274 

base flow index, the average actual evaporation and the average annual rainfall. The 275 

hydrological characteristics for each catchment were available from the National River Flow 276 

Archive (www.ceh.ac.uk/data/nrfa/). The study did not include the average annual total river 277 

flow for each catchment within the hydrological characteristics considered. The average 278 

annual total river flow would simply be the difference between average annual rainfall and 279 

the average actual evaporation for each catchment: if total river flow were important it will be 280 

apparent from the importance of these two variables.  Multiple linear regression was used to 281 

compare the average annual flux for the period 2001 to 2010 to catchment characteristics.  282 

The multiple linear regression was performed with both explanatory variables and the 283 

response variable untransformed and log-transformed. Normality of transformed and 284 

untransformed variables was tested using the Anderson-Darling test and variables were only 285 

included in the model if they were statistically significant (probability of difference from zero 286 

at p < 0.05). Models were chosen both on the basis of model fit, as assessed by the correlation 287 

coefficient (R
2
), and the physical interpretation of the model. Of particular interest were 288 

models which only included those soil and land-use characteristics that could be mapped 289 

across Great Britain, and models that identified a relationship between POM flux and 290 

catchment area. The latter were used because significant net watershed losses should be 291 

discernible from the relationship between total POM flux and catchment area. The best-fit 292 

significant model was obtained to judge this relationship. If the best-fit model included 293 

catchment area, the model was then recalculated excluding catchment area and the residuals 294 

of that model were compared to the catchment area. In using regression to filter the data for 295 

http://www.ceh.ac.uk/
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effects other than that of catchment area, care was taken to consider information that was a 296 

proxy or co-linear with catchment area, e.g. area of arable land. An analysis of residuals was 297 

performed for statistically significant models, where a standardised residual (residual divided 298 

by its standard deviation) greater than 2 was considered an outlier and worthy of further 299 

investigation. As further analysis of fit of preferred models, the residuals after model fitting 300 

were tested for normality using the Anderson-Darling test.  301 

 302 

3. Results 303 

3.1. Mineral and organic matter concentrations 304 

For site-year combinations that met the criterion of f >1 sample per month, there were 35490 305 

mineral concentrations from 1974 to 2010. The median PMM concentration was 7.5 mg/l 306 

with a 5
th

 percentile of 1 mg/l and a 95
th

 percentile of 75 mg/l. When the percentage mineral 307 

content was considered, the median percentage was 66.7% with a 5
th

 percentile of 25% and a 308 

95
th

 percentile of 94%. Given the percentage mineral content, the median POM concentration 309 

was 4.6 mg/l; with a 5
th

 percentile of 0.5 mg/l and a 95
th

 percentile of 23 mg/l. Assuming the 310 

carbon content of particulate organic matter was between 45 and 50% by mass (Moody et al., 311 

2013), our results suggest that  organic carbon content as a percentage was between 2.7% (5
th

 312 

percentile) and 38% (95% percentile) with a median value of 15.8%, which in turn yields a 313 

median POC concentration of 2.2 mg C/l varying between 0.2 mg C/l (5
th

 percentile) and 314 

11.5 mg C/l (95
th 

percentile). For British rivers, Hope et al. (1997) gave a “preferred” value of 315 

14% organic C content, while Hillier (2001) measured the carbon content of suspended 316 

sediment along the River Don in Scotland (catchment area = 1,320 km
2
) and showed values 317 

varied between 6.9 and 14.1%. Neal (2003) studied sediment from rivers with catchment 318 

areas from 373 to 8231 km
2
 and found organic carbon contents varied from 5 to 17%. 319 
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The ANOVA of PMM concentration data showed that all three factors and one 320 

interaction were significant at p < 0.05 (Table 2). The most important factor was the site 321 

factor (difference between catchments) and the least important was the month factor (the 322 

difference between months, i.e. the seasonal cycle). However, once covariates were included, 323 

differences in the suspended sediment concentrations explained most of the differences 324 

between factor levels. The post hoc comparisons for the year and month factors showed the 325 

PMM time series was dominated by an increase in PMM concentration from the early 1990s 326 

(Figure 2). When covariates were included, then the apparent trend in the time series is 327 

largely suppressed although post hoc testing shows that the years 1992 through 1995 were 328 

still significantly higher than years before or after. Towards the end of the study period and 329 

certainly after 1992 there is some suggestion that sampling targeted places and times of high 330 

PMM concentration, so the analysis including covariates provides a more realistic picture of 331 

underlying trends as the ANCOVA takes account of flow conditions. The average seasonal 332 

cycle in the PMM concentrations, once covariates have been accounted for and so 333 

independent of flow change, shows a clear annual minimum in January (3.8 mg/l) with a 334 

maximum in July (4.4 mg/l). 335 

When percentage PMM content was considered by ANOVA, all factors and one 336 

interaction were found to be significant at p < 0.05 (Table 2). Including covariates, the 337 

percentage variation explained by the covariates was smaller than that observed for the PMM 338 

concentration. With the inclusion of covariates the variation due to the month factor and the 339 

interaction between year and month factors were no longer significant, i.e. the covariates 340 

explained the importance of this factor and interaction. The annual trend in percentage PMM 341 

content shows that the proportion of PMM dramatically rose after 1991, although once 342 

covariates were included, then the dramatic rise is almost reversed by 2009. The changes 343 

observed in both the PMM concentration and the percentage PMM content in the first half of 344 
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the 1990s occur with the introduction of the Urban Waste Water Directive in 1991 (European 345 

Commission, 1991).  346 

The Directive required a minimum of secondary treatment for all sewage treatment 347 

works with a population equivalent greater than 2000 people and tertiary treatment for works 348 

with a population equivalent greater than 10000 people. Therefore, the Directive aimed to 349 

remove suspended solids from sewage work outflows. If the PMM concentration and 350 

percentage PMM are considered after accounting for covariates, the change in POM 351 

concentration can be considered (Figure 3) which shows there was a significant change in 352 

average POM concentration around 1992: prior to 1992 mean annual POM concentration was 353 

4.7 mg/l, while after 1992 it was 2.8 mg/l. However, this apparent success of the Urban 354 

Wastewater Directive may not be reflected in the fluxes of organic matter, as flows from 355 

sewage outfalls are more likely to be dominant at lower flows. 356 

The ANOVA suggests a simple multiple regression for the PMM concentration could 357 

be derived: 358 

 359 

𝑙𝑛[𝑃𝑀𝑀] =  0.03𝑙𝑛𝑓𝑙𝑜𝑤 + 1.073𝑙𝑛[𝑠𝑒𝑑𝑡] + 0.0083𝑌𝑒𝑎𝑟 + 0.023sin (
mπ

6
) + 0.044cos (

mπ

6
) − 17.4  360 

(0.01) (0.002)  (0.0002) (0.003)   (0.003)  (0.5) 361 

R
2
 = 0.91 n= 35489 (iii) 362 

 363 

where: [X] = concentration of X (mg/l, with PMM = PMM concentration, and [sedt] = 364 

concentration of suspended sediment);  flow = instantaneous river discharge (m
3
/s); Year = 365 

calendar year; m = month of the year with 1 = January and 12 = December. Only those 366 

variables significantly different from zero at p < 0.05 are shown. Standard errors for each 367 

coefficient are given in brackets. Equation (iii) suggests a significant increase in the PMM 368 

concentration over the period of record with PMM concentration increasing on higher flows 369 
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and, not surprisingly, the PMM concentration increases as suspended sediment concentration 370 

increases.  371 

 Similarly for the percentage PMM content the best-fit equation was: 372 

 373 

𝑙𝑛[%𝑃𝑀𝑀] = 0.014𝑙𝑛𝑓𝑙𝑜𝑤 + 0.035𝑙𝑛[𝑠𝑒𝑑𝑡] + 0.004𝑌𝑒𝑎𝑟 + 0.01sin (
mπ

6
) + 0.025cos (

mπ

6
) − 8.2 

(0.0007) (0.0009) (0.004) (0.001)  (0.001)  (0.3) 374 

R
2
 = 0.14 n= 35489 (iv) 375 

 376 

The format of equation (iv) is as for equation (iii) with only variables significant at 95% 377 

probability included and standard errors given in the brackets. Equation (iv) explains only 378 

14% of the original variance in the dataset but it still highlights that the proportion of PMM 379 

in suspended sediment concentrations increased over the study period and mineral matter was 380 

more important as both suspended sediment concentration and flow increased. The relatively 381 

poor fit of Equation (iv) is most likely because the equation makes no allowance for the 382 

differences between catchments.   383 

For the POM concentration:  384 

 385 

𝑙𝑛[𝑃𝑂𝑀] = 17.9 − 0.018𝑙𝑛𝑓𝑙𝑜𝑤 − 0.794𝑙𝑛[𝑠𝑒𝑑𝑡] − 0.009𝑌𝑒𝑎𝑟 − 0.025sin (
mπ

6
) − 0.076cos (

mπ

6
) 

(0.7) (0.002) (0.001) (0.0003) (0.004)  (0.004) 386 

R
2
 = 0.74 n= 35489 (v) 387 

 388 

Only those variables significantly different from zero at p < 0.05 are shown. Standard errors 389 

for each coefficient are given in brackets. Equation (v) confirms a decline in particulate 390 

organic matter concentration since 1974 (p<0.05) and that organic matter concentration 391 

decreases both with increasing suspended sediment concentration and with increasing river 392 
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flow. It might be considered that equation (v) should be similar to equation (iii) as [POM] 393 

was calculated from [PMM[; however, the differences in fit between equations (iii) and (v) 394 

illustrate that the suspended sediment concentration and its composition can vary 395 

independently of each other. 396 

 Examining the individual sites means that it was possible to assess significant 397 

relationships with covariates at individual sites.. For 156 sites it was possible to assess 398 

significant relationships with covariates; there was a significant relationship in POM 399 

concentration in 90 of them of which in only 3 was the POM concentration significantly 400 

increasing with time.  For 92 study catchments there was a significant relationship with river 401 

flow and for all but 14 of these the POM concentration decreased with increasing flow.  402 

The spatial distribution of the average POM concentrations is shown in Figure 4.  403 

 404 

3.2. Mineral and organic matter flux 405 

The annual suspended sediment flux could be calculated for all 270 sites in the HMS scheme 406 

but out of a possible 9472 site-year combinations over the monitoring period a flux 407 

calculation was possible for 6026 site –year combinations (66%) – the suspended sediment 408 

concentrations and fluxes are analysed in Worrall et al. (2013a). For the mineral matter, flux 409 

could be calculated for 111 sites and 2808 site-year combinations. Dividing the 2808 site-410 

year combinations there were 62 with f > 1 per week, 1164 with f = 1 sample per1-2 weeks, 411 

639 with f = 1 sample per 2-3 weeks and 943 with f = 1 sample per 3 weeks - 1 month.  412 

 On the basis of the Anderson-Darling test, the flow-weighted annual PMM fluxes 413 

were log-transformed before ANCOVA. Both the sampling frequency and the water yield 414 

(defined above as the  total discharge from a study catchment in a year – Q) were found to 415 

be significant although they collectively only explained 11.5% of the original variance as no 416 

allowance was made for differences between catchments or changes over time. The post hoc 417 
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tests showed that within the sampling frequency factor there were significant differences 418 

between all the levels of sample frequency. Given the post hoc differences, the average for 419 

each class of sample frequency was compared to that for sampling frequency of less than 1 420 

week to derive a correction factor such that samples from each class of sampling frequency 421 

could be bias-adjusted to the equivalent flux expected from a sample frequency of less than 1 422 

week. The derived correction factors were: f > 1 sample per week = 1.00, 1 week > f  2 423 

weeks = 1.15, 2 > f  3 weeks = 1.26, and 3 weeks > f  1 per month = 1.31. The result 424 

suggests that for sampling frequencies of 12 per year (f > 1 month) the uncorrected result 425 

would be 69% of the true value. For phosphate, Cassidy and Jordan (2011) suggested for one 426 

site that monthly sampling (f = 12 per year) was 40% of the true value and Worrall et al. 427 

(2013b) found that for DOC monthly sampling gave a flux estimate was 48% of the true 428 

value. All the site-year combinations were then corrected according to the sampling 429 

frequency in each year.  430 

The median POM export was 6.9 tonnes/km
2
/yr, with a 5

th
 percentile of 1.9 431 

tonnes/km
2
/yr and a 95% percentile as 44.4 tonnes/km

2
/yr while the PMM exports have a 432 

median of 16.7 tonnes /km
2
/yr with a 5

th
 percentile of 3.2 tonnes/km

2
/yr and a 95

th
 percentile 433 

of 150.6 tonnes/km
2
/yr. In comparison, the suspended sediment exports have a median of 434 

22.2 tonnes /km
2
/yr with a 5

th
 percentile of 5.4 tonnes/km

2
/yr and a 95

th
 percentile of 107.7 435 

tonnes/km
2
/yr. The distribution of the POM flux as a proportion of suspended sediment flux 436 

for each of the study catchments is given in Figure 5. Given the values of the carbon content 437 

and C/N ratios outlined above, it is possible to estimate the range of POC flux of 3.2 tonnes 438 

C/km
2
/yr (with the range between the 5

th
 and 95

th
 percentile of 0.9 to 22.2 tonnes C/km

2
/yr) 439 

and for PON of 0.4 tonnes C/km
2
/yr (with the range between the 5

th
 and 95

th
 percentile of 0.1 440 

to 2.6 tonnes N/km
2
/yr). For the UK, POC fluxes are commonly reported for peat-covered 441 

catchments where the extent of degradation and vegetation cover control the loss of POC and 442 
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fluxes can be as high as 195 tonnes C/km
2
/yr (Evans et al., 2006) but as low as 3.4 tonnes 443 

C/km
2
/yr (Worrall et al., 2011). Elsewhere in the world, Hilton et al. (2012) have proposed 444 

that the steep mountain forested catchments of Taiwan are a hot-spot for POC production and 445 

export to the continental shelf with average POC export of 21 tonnes C/km
2
/yr for catchments 446 

up to 2900 km
2
. For PON, the high fluxes of particulate organic matter from organic soils is 447 

reflected in PON fluxes of between 0.2 to 0.7 tonnes N/km
2
/yr (Worrall et al., 2012c). Russell 448 

et al. (1998) estimated PON export of between 0.06 and 0.28 tonnes N/km
2
/yr for 4 UK 449 

catchments up to 6,500 km
2
.  450 

Upscaling the POM fluxes to the national level shows the median annual UK POM 451 

flux was 1596 ktonnes/yr, peaking in 1996 at 4585 ktonnes/yr with a minimum in 2003 of 452 

656 ktonnes/yr; this is equivalent to an export of between 2.7 and 18.8 tonnes/km
2
/yr. The 453 

median flux of PMM from the UK was 8121 ktonnes/yr with a minimum of 1,543 ktonnes/yr 454 

in 1978. The flux of total suspended sediment from the UK also peaked at 27,550 ktonnes/yr 455 

in 1978 and had a minimum of 2,199 ktonnes/yr in 2003 (Figure 6); this is equivalent to an 456 

export range of between 9.6 and 119.8 tonnes/km
2
/yr. There was no significant trend with 457 

time, either for the suspended sediment flux or for the POM flux and so, although 458 

concentration of POM was declining (Equation (v), this has no impact on POM flux. This 459 

suggests the concentration decline was predominantly at low flow where the flux is minimal, 460 

indicating a decline in point, rather than diffuse sources. A one-way ANOVA was performed 461 

on the national-scale POM flux where the one factor was set as before or after 1992, i.e. the 462 

implementation of the Urban Wastewater Directive, with the national-scale suspended 463 

sediment flux and water yield as covariates. All variables were considered both 464 

untransformed and log-transformed and the result showed that there was a significant 465 

difference across the 1992 boundary; the average decrease was 553 ktonnes C/yr, i.e. over the 466 

18 years since the implementation of the Urban Wastewater Directive had saved; diverted as 467 
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sludge to land; or emissions to the atmosphere of 9972 ktonnes C. Note that this change is not 468 

due to a change in total river flow as that was a covariate though it might be due to change in 469 

the timing or distribution of the river flows within the year. 470 

The proportion of the suspended sediment flux that was POM varied from 5% in 1990 471 

to 48% in 2004 with a median value of 18%. There was a significant increase of the 472 

suspended sediment flux that is POM over time since 1974 (r
2
 = 0.21, n = 36, p = 0.00) with 473 

the average annual increase in the proportion being 0.3%/yr. 474 

Between the years 2001 and 2010 it was possible to calculate an average flux for 80 475 

catchments for which complete land use, hydroclimatic and soil characteristics could be 476 

obtained (Figure 1), but note that during this time there was no POM concentration data 477 

measured in Scotland (excluding the 4300 km
2
 of the River Tweed which is monitored as part 478 

of the NE England region). The best-fit multiple regression equation was: 479 

 480 

𝑃𝑂𝑀𝑓𝑙𝑢𝑥 = 3827 + 6.7𝑂𝑟𝑔𝑚𝑖𝑛 + 8.1𝑂𝑟𝑔 + 7.5𝐺𝑟𝑎𝑠𝑠 − 2.4𝐴𝑟𝑒𝑎 

 (842) (2.6) (2.2) (3.3)  (1.4) 481 

R
2
 = 0.5, n=80  (vi) 482 

 483 

where: Orgmin = the area of organo-mineral in the catchment (km
2
); Org = the area of 484 

organic soils in the catchment (km
2
); Grass = the area of grazed land within the catchment 485 

(km
2
); and Area = the area of the catchment (km

2
). Equation (vi) can be interpreted as an 486 

export coefficient model where each regression coefficient is interpreted as an export 487 

coefficient, e.g. Equation (vi) predicts that 1 km
2
 of organo-mineral soil would export 6.7 ± 488 

2.6 tonnes/km
2
/yr of POM where the range denotes the coefficient’s standard error.  This 489 

interpretation suggests the biggest source of POM was organic soils but also suggests there is 490 

no significant flux of POM from a catchment with only arable or urban land use on mineral 491 
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soils. Equation (vi) includes a significant loss term with catchment area which implies that 492 

for every additional 1 km
2
 of catchment area 2.4 tonnes/yr of POM are lost. It is this loss term 493 

with catchment area that has been used in previous studies to estimate dissolved C and N 494 

losses (Worrall et al., 2012a & b). In equation (vi) there is a non-zero y-intercept value, i.e. 495 

even at zero km
2
 this equation would predict a POM flux of 3827 tonnes /yr. It is not certain 496 

what such a default flux might represent but all rivers would be expected to produce an 497 

organic particles with or without inputs from the terrestrial biosphere of the catchment.  498 

 When the export (total flux per unit area of the catchment) was considered, a 499 

significant relationship was found once two outliers were removed (the River Nant y Frendod 500 

at Llansamlet = 1540 tonnes POM/km
2
; and the River Dearne at Pasture’s Bridge = 626.9 501 

tonnes POM/km
2
): 502 

 503 

𝑙𝑜𝑔10(𝑃𝑂𝑀𝑒𝑥𝑝𝑜𝑟𝑡) = 2.5 − 0.54𝑙𝑜𝑔10(𝐴𝑟𝑒𝑎) − 0.19𝑙𝑜𝑔10(%𝑀𝑖𝑛) + 0.14𝑙𝑜𝑔10(%𝑂𝑟𝑔) 

   (842) (2.6) (2.2) (3.3) (1.4) 504 

R
2
 = 0.5, n=80  (vii) 505 

 506 

where: %Min = the percentage of the catchment that is covered by mineral soils; and %Org = 507 

the percentage of the catchment area that is covered by organic soils. With respect to the 508 

proportion (not percentage) of POM in the total flux the best-fit equation was: 509 

 510 

𝑙𝑜𝑔10(𝑃𝑃𝑂𝑀) = 0.4 − 0.3𝑙𝑜𝑔10(𝐴𝑟𝑒𝑎) 

  (0.2) (0.06) 511 

R
2
 = 0.24, n=80 (viii) 512 

 513 
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By setting PPOM = 0, Equation (viii) predicts that the suspended sediment flux would be 100% 514 

mineral matter for catchments smaller than 21 km
2
 which is a consequence of the lack of 515 

small catchments in the dataset but it also predicts the greatest decline in the proportion of 516 

POM will be for catchments < 100 km
2
.  517 

 518 

4. Discussion 519 

Flux of POC and PON from the UK 520 

Given that the organic carbon content of organic matter is between 45 and 50% and that the 521 

average C/N ratio of suspended sediment in the UK has been found to be 8.1 ± 5.2 (n=13 – 522 

Hillier (2001)) which is within the range reported by Ittekkot and Zhang (1989) for rivers 523 

from across the globe of 6.2, then it is possible to estimate a time series for POC and PON 524 

(Figure 7). The POC flux would now be estimated as having varied between 2431 ktonnes 525 

C/yr in 1996 and 313 ktonnes C/yr in 2003. Note that when estimating budgets the study 526 

provides a best estimate to 4 significant figures. The PON flux would now be estimated as 527 

having varied between 24 ktonnes N/yr in 2003 and 796 konnes N/yr in 1996. Based on 528 

Equation (vi) the following equations was derived:  529 

 530 

𝑃𝑂𝐶𝑓𝑙𝑢𝑥 = 1722 + 3.0𝑂𝑟𝑔𝑚𝑖𝑛 + 3.6𝑂𝑟𝑔 + 3.4𝐺𝑟𝑎𝑠𝑠 − 1.1𝐴𝑟𝑒𝑎 

 (379) (1.2) (1.0) (1.5)  (0.6) 531 

R
2
 = 0.5, n=80  (ix) 532 

 533 

𝑃𝑂𝑁𝑓𝑙𝑢𝑥 = 213 + 0.4𝑂𝑟𝑔𝑚𝑖𝑛 + 0.5𝑂𝑟𝑔 + 0.4𝐺𝑟𝑎𝑠𝑠 − 0.13𝐴𝑟𝑒𝑎 

 (47) (0.14) (0.12) (0.18)  (0.07) 534 

R
2
 = 0.5, n=80  (x) 535 

 536 
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Equations (ix and x) were used to map the export of POC and PON across Great Britain 537 

(Figures 8 and 9). The POC map of Great Britain (Figure 8) reflects the distribution of 538 

organic soils in Great Britain but the highest POC exports are predicted for the uplands of 539 

England and Wales as opposed to the Highlands of Scotland, even though the latter tends to 540 

have higher elevations, and therefore higher average slopes and higher annual rainfalls. The 541 

difference between the regions is the higher grazing intensity in the English and Welsh 542 

uplands compared to upland areas in Scotland. Using the equations calculated by Worrall et 543 

al. (2012a), it is possible to predict a map of total fluvial carbon export for the UK (Figure 8). 544 

Again this highlights the importance of the grazing on organic soils in the uplands and has 545 

exports up to 25 tonnes C/km
2
/yr. Although this upper value is smaller than that reported by, 546 

for example, Evans et al., (2006), the larger reported values were for small areas of highly 547 

degraded peatlands, rather than areas typical of the English uplands. Similarly, the map of 548 

PON export was to that of fluvial export of dissolved N (Worrall et al., 2012b). PON export 549 

is much less than total fluvial N export (Figure 9): the majority of total fluvial N flux occurs 550 

from areas of organo-mineral soils under heavy grazing but does not mean that for individual 551 

N-species (e.g. nitrate) other land-uses and managements dominate. The results generated 552 

here could be used to update estimates of fluvial flux of carbon and nitrogen for the UK 553 

(Worrall et al., 2007, 2009, 2012a, b).  554 

 555 

Fluvial flux of carbon from the UK 556 

For POC, results suggests the mean POC flux since 1974 was 863 ktonnes C/yr a 41% 557 

increase compared to the previous estimate of 613 Ktonnes C/yr. Furthermore, Equations (ix) 558 

and (x) show that there is a loss term with increasing catchment area for both POC and PON 559 

and, thus, it is not only possible to estimate the flux of both from the UK but also to calculate 560 

the loss at source, i.e. at zero catchment area. The loss of the POC in transit through the 561 
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catchment can now also be estimated as 264 ktonnes C/yr, which gives an average POC flux 562 

at source of 1127 ktonnes C/yr.  563 

 Quinton et al. (2006) suggested organic carbon losses from soil erosion in England 564 

and Wales were between 200 and 760 ktonnes C/yr of which 120 and 460 ktonnes C/yr was 565 

delivered to streams. Rescaling the POC flux from the soil source predicted in this study to 566 

the area of England and Wales suggests that on average 720 ktonnes C/yr are delivered to 567 

first-order streams, i.e. greater than that predicted by Quinton et al. (2006) but within the 568 

range of their erosion predictions. In addition to other estimates of the other fluvial carbon 569 

components (DOC and excess diss. CO2 – Table 3) shows that the total flux of carbon at 570 

source for the UK would be 5020 ktonnes C/yr, equivalent to 21.8 tonnes C/km
2
/yr, the flux 571 

at the tidal limit would be 1508 ktonnes C/ yr, equivalent to 6.5 tonnes C/km
2
/yr (note that 572 

due to re-assessment of rounding errors and using the most up-to-date data these values differ 573 

slightly from those reported in Worrall et al, 2013a – Table 4). The difference between the 574 

flux at the tidal limit and that at source is not necessarily a loss of carbon to the atmosphere 575 

from UK rivers as the loss may represent changes to in-stream biological production or loss 576 

to long-term storage in fluvial sediments (e.g. floodplain sedimentation).  577 

If all the POC loss across the study catchments is assumed to be loss to carbon 578 

turnover and subsequent release to the atmosphere without loss to any stores, then the net  579 

loss of C to the atmosphere from the entire catchment area would be 3512 ktonnes C/yr, 580 

equivalent to 15.2 tonnes C/km
2
/yr. If all the loss to the atmosphere were as CO2, then the 581 

greenhouse gas flux would be 12882 ktonnes CO2eq/yr or 56 tonnes CO2eq/km
2
/yr. The 582 

present UK greenhouse gas inventory suggests that UK GHG flux is 553 Mtonnes CO2eq/yr in 583 

2011 (Salisbury et al., 2013), i.e. the estimated greenhouse gas flux from UK rivers would 584 

represent an additional 2.3%.  585 
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The turnover of POM, or POC, within the streams of a catchment is not the whole 586 

impact that POC may have on the atmosphere. As POC leaves the fluvial network at the tidal 587 

limit, it will continue to be processed in estuaries and coastal waters, further contributing to 588 

releases to the atmosphere, before sedimenting out and being stored in marine sediments. 589 

Galy et al. (2007) report very high burial efficiencies (approx. 100%) of fluvially-derived 590 

carbon in the Ganges-Brahmaputra fan, which they ascribe to rapid burial, but these 591 

sediments also have remarkably small POC contents (0.6 x 10
12

 mol C/yr from 1 x 10
9
 tonnes 592 

of suspended sediment, equivalent to less than 1% C content – Frances-Lenard and Derry, 593 

1997) and therefore the Ganges-Brahmaputra has an export equivalent to 4.4 tonnes C/km
2
/yr 594 

compared to the 3.5 tonnes C/km
2
/yr that the UK exports at its tidal limit. Equally, the 595 

estimate of 100% burial, and therefore a large carbon sink due to the Ganges-Brahmaputra 596 

fan, has neglected to account for the in-stream losses of carbon from particulates before 597 

reaching the sea. For other rivers Buridge (2005) suggest a removal rate from source to ocean 598 

sediment of 70% based upon a measured burial efficiency in ocean sediment of 30%. Tappin 599 

et al. (2003) have reported a POC budget for the Humber estuary (17% of UK’s runoff drains 600 

through this estuary – residence time of 2-3 months) and found that for 3 years between 1994 601 

and 1996 the flux of POC from the estuary was between 16 and 43% of the fluvial POC flux 602 

into the estuary and that burial rate was 4% of inputs with the remainder (between 36 and 603 

54%) of the fluvial POC flux input to the estuary being mineralised. Extrapolating for the 604 

remaining UK runoff, then there is between 58 and 72% in-stream removal of POC discharge 605 

from UK estuaries to the shelf seas. If there is no further mineralisation in shelf seas, this 606 

suggests that a 30% burial efficiency is a conservative estimate for POC from the UK, i.e. 607 

338 ktonnes C/yr.  608 

 609 

Implications for soil erosion as a carbon sink 610 
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At the soil source, POC flux studies such as Stallard (1998) have argued that the erosion of 611 

POC from soils constitutes a carbon sink since the eroded soil organic carbon lost to POC is 612 

replaced and the eroded POC itself is stored by burial. Although later studies (e.g. Van Oost 613 

et al., 2007) showed that between 53 and 95% of POC was retained and buried within a 614 

catchment, and only 26% of this replaced, this still suggests a net carbon sink from global soil 615 

erosion of 120 Mtonnes C/yr. However, as noted by Van Oost et al. (2007), no allowance was 616 

made for in-stream loss once out of the immediate catchment area, or for the burial efficiency 617 

in marine waters. Van Oost et al. (2007) report between 470 and 610 Mtonnes C/yr were lost 618 

due to soil erosion of which between 240 and 570 Mtonnes C/yr was retained in the 619 

immediate catchment, which means between 30 and 220 Mtonnes C/yr were exported to 620 

streams. On the basis of results presented here, we would argue that 70% would be removed 621 

before burial, i.e. between 20 and 150 Mtonnes C/yr would be lost to the atmosphere. Given 622 

that Van Oost et al. (2007) suggest that only 26% of the eroded C is replaced (60 to 270 623 

Mtonnes C/yr), then the median soil erosion-driven sink of C is more like 80 Mtonnes C/yr 624 

(0.08 PgC/yr), but the range of values would be from a source of 90 Mtonnes C/yr to a sink 625 

of 250 Mtonnes C/yr and thus the possible range includes the possibility that soil erosion is a 626 

net source of C and not a net sink.  627 

The same approach can be applied to the UK (Figure 10). Quinton et al. (2006) 628 

suggested that 60% of eroded soil organic carbon (SOC) was transferred into POC in 629 

catchments; based on the values of POC lost at the soil source to streams from this study 630 

(1127 ktonnes C/yr), this would mean 1878 ktonnes C/yr of SOC lost in soil erosion. Van 631 

Oost et al. (2007) found 26% of eroded soil organic carbon was replaced, which would mean 632 

that 488 ktonnes C/yr is replaced each year and stored in the soil. This would leave 751 633 

ktonnes C/yr stored as part of internal redistribution that never gets to the stream network. 634 

This study would suggest that 264 ktonnes C/yr is lost in the fluvial network prior to export 635 
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to estuaries. In calculating values in Table 3 this study assumed that all in-stream loss of POC 636 

was loss to the atmosphere and not losses to increased stream biota or losses to long-term 637 

sedimentary storage: this would mean that 264 ktonnes C/yr is lost to the atmosphere. Given 638 

the percentage losses estimated by Tappin et al. (2003) for the Humber estuary, then from an 639 

average input of 863 ktonnes C/yr as POC leaving UK rivers at the tidal limit and entering 640 

UK estuaries, the estuaries would store 34 ktonnes C/yr as permanent burial, 389 ktonnes 641 

C/yr would be mineralised, and 440 ktonnes C/yr would be exported to the shelf seas of the 642 

UK. Given Buridge’s (2005) value of 30% burial efficiency of sediment from source to burial 643 

in shelf seas, this would mean that 338 ktonnes C/yr are permanently buried and would leave 644 

a further 102 ktonnes C/yr to be mineralised. Using the convention that a negative value in a 645 

carbon budget represents a net sink to the soil, we conclude that the carbon balance due to 646 

soil erosion in the UK is between +3 and +267 ktonnes C/yr, i.e. most likely to be a source 647 

rather than a sink, even if all of the net in-stream loss of POC estimated in this study were 648 

losses to burial in fluvial sedimentation or changes in biological production. 649 

The trade-off between replacement within catchment, transfer to the stream network  650 

and then loss in stream can be simply expressed as: 651 

 652 

𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑟𝑎𝑡𝑒 ≥ 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝑟𝑎𝑡𝑒 × (1 − 𝑏𝑢𝑟𝑖𝑎𝑙 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦)  (xi) 653 

 654 

where: replacement rate = the proportion of the soil erosion of soil organic carbon that is 655 

replaced (e.g. 0.26 – Van Oost et al., 2007); delivery rate = the proportion of eroded soil 656 

organic carbon delivered to the stream network (e.g. 0.6  - Quinton et al., 2006); and burial 657 

efficiency = the proportion of POC flux that is buried in marine sediment (0.58 – 0.72 – this 658 

study).  659 

 660 
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The fluvial flux of Nitrogen from the UK 661 

Similarly, the results here can be used to improve previous estimates of nitrogen flux and add 662 

an estimate of in-stream PON loss (Table 4). The new estimate, based on fluxes and turnover 663 

rates predicted here and those produced from Worrall et al. (2012b), is that the UK is losing 664 

814 ktonnes N/yr from the river network to estuaries (equivalent to 3.5 tonnes N/km
2
/yr), 665 

while at the soil source the flux was 2209 ktonnes N/yr (equivalent to 9.6 tonnes N/km
2
/yr). 666 

Previous estimates of the net loss of dissolved nitrogen (DON, nitrate, nitrite and ammonium) 667 

could not discount the fact that loss of dissolved N was due to immobilisation of N into 668 

particulates. Since net PON flux is now included, and since it was assumed that there was no 669 

net change in immobilisation, the net catchment loss of N would be to the atmosphere. 670 

Average net loss to the atmosphere across UK catchments is estimated to be 1395 ktonnes 671 

N/yr (equivalent to 5.7 tonnes N/km
2
/yr). The overwhelming majority of this loss will be as 672 

N2 but Baulch et al. (2011) found a consistent N2O yield of 0.75% across 72 watersheds in 673 

the US which would mean for the UK an N2O flux from the river network of 10.5 ktonnes 674 

N/yr, equivalent to 33 ktonnes N2O/yr. The present estimate of N2O flux from UK rivers is 24 675 

ktonnes N2O/yr, based on IPCC guidelines that the N2O yield would be 2.5% of leached N, 676 

where leached N is calculated as 30% of applied fertiliser and manure N when runoff is 677 

greater than 50% of pan evaporation (IPCC, 2007) It was not possible to use the same runoff 678 

criterion for this study as pan evaporations are not known, but total dissolved N at source was 679 

1996 ktonnes N/yr (the present value used is 616 ktonnes N/yr) of which 2.5% would be 49.5 680 

ktonnes N/yr, equivalent to 154 ktonnes (N2O)/yr. The greenhouse gas warming potential of 681 

this would be 45892 ktonnes CO2eq/yr over a 100-year window – an 8% addition to the 682 

current UK greenhouse gas inventory.  683 

 684 

Alternative POM loss mechansims 685 
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This study assumes that the difference in POM flux with catchment size is due to loss of 686 

organic matter and in Figure 10 a question mark has been left against the amount of POM 687 

that is retained within the fluvial network, i.e. as permanent burial within fluvial sediments. 688 

Other than due to turnover to the atmosphere, the change in POM flux across a catchment 689 

could be due to fractionation during the in-catchment sedimentation processes which could 690 

preferentially remove the highly organic sediment compared to more mineral-rich sediment. 691 

Alternatively, the sediment sources could change through a catchment with mineral-rich 692 

sources being more prevalent with increasing catchment size. Slopes lessen with increasing 693 

catchment size and land use changes, but the approach here has explicitly accounted for 694 

changes in suspended sediment sources with both soil and land use.  695 

In the UK, mineral soils and arable land are more common near the tidal limits, and 696 

UK uplands are more typically dominated by organic and organo-mineral soils on grazed 697 

land but, by including all of these in the analysis, such variations have been accounted for. 698 

Also, the maximum altitude of each catchment was considered, so changes in source are 699 

accounted for, although it is possible sources may vary with changing slope and the absence 700 

of a slope factor may explain the relatively low R
2
 of equation (iv). Alternatively, the POM 701 

could enter permanent burial within the fluvial network. Walling et al. (2002) noted that in-702 

channel storage was between 2 and 5% of the catchment outlet flux and, further, Walling et 703 

al. (1999) estimated the rate of contemporary overbank sedimentation was between 39 and 704 

40% of catchment outlet flux. However, overbank sedimentation does not necessarily 705 

represent a permanent burial of carbon and POM stored in floodplain sediment might still be 706 

lost to the atmosphere. Erkens (2009) gives long-term, Holocene accumulation rates of total 707 

sediment in the Rhine floodplain as 27% of the upstream input, but this was not a measure of 708 

the organic carbon storage. Hoffman et al. (2009) suggest that the long-term storage of 709 

carbon on the Rhine floodplain is equivalent to the downstream flux of POC at the catchment 710 
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outlet. In contrast, Gomez et al. (2003) have found only 4% POC storage in a New Zealand 711 

floodplain. Given the nature of the monitoring used in this study, the likelihood that times of 712 

overbank sedimentation have been captured is very small and as such the loss POM from the 713 

fluvial network estimated here is unlikely to include overbank sedimentation and more likely 714 

to represent the in-channel sedimentation and turnover to the atmosphere. Therefore, this 715 

study has left the value of in-stream mineralisation versus long-term fluvial basin storage as 716 

unknown and has taken the precautionary and conservative approach of leaving the value of 717 

POC loss to mineralisation as that estimated in this study, i.e. 264 ktonnes C/yr. 718 

The decline in suspended sediment export (often referred to as sediment yield in the 719 

literature) through a catchment has often been expressed as a sediment delivery ratio (e.g. 720 

Walling, 1983). Most contemporary sediment budgets do not include a component of carbon 721 

turnover; for example, of the 11 sediment budgets given in Walling and Collins (2008), not 722 

one includes a component of loss to the atmosphere. Given the average sediment delivery 723 

ratio for the UK is 10%, and suspended sediment flux at the tidal limit as calculated by 724 

Worrall et al. (2013a), then the amount of suspended sediment that would have to be stored 725 

would be of the order of 90%, or 84 Mtonnes/yr.  This decline in sediment yield has also been 726 

associated with storage of suspended sediment in channel and on to floodplains - Collins and 727 

Walling (2007) measured this for a UK stream as between 18 and 57% of the suspended flux 728 

at the catchment outlet for two lowland streams in the UK but noted that most of this storage 729 

was transient. Of course, each alternative mechanism for the reduction in POM flux with 730 

catchment requires that POM is preferentially removed, but low-density POM may be 731 

preferentially lost in low-slope catchments and it is known that organic particles may be 732 

preferentially eroded from soils (Quinton et al., 2006). Furthermore, if fractionation of POM 733 

into long-term fluvial sediments is invoked to provide an alternative to explain loss of POM 734 

across catchments as turnover to the atmosphere, then it must also be assumed that, once 735 
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stored in channel or overbank sediments, it is not turned over to the atmosphere there or 736 

conversely stimulates additional carbon storage from additional biomass in those stores. A 737 

number of laboratory studies have considered the turnover of POC in streams and Moody et 738 

al. (2013) found between 38 and 87% removal of peat-derived POC over a 10-day period, i.e. 739 

a measured removal rate larger than estimated from this study. 740 

 741 

5. Conclusions 742 

This study has estimated that : 743 

i) The median POC content of suspended sediment at the tidal limit between 1974 744 

and 2010 was 15.8%, giving a median concentration of 2.2 mg C/l ; 745 

ii) The median POC flux at the tidal limit (between 1974 to 2010) was 3.3 tonnes 746 

C/km
2
/yr. The estimated average POC flux from the UK at the tidal limit was 747 

between 312 and 2178 ktonnes C/yr, with the proportion of POC to suspended 748 

sediment flux ranging from 2.4 to 22.8%; 749 

iii)  Between1974 and 2010 there was no significant trend in the POC flux but the 750 

proportion of the suspended sediment flux that is POC has significantly increased 751 

by 0.15% per year; 752 

iv) Despite a lack of significant long-term trend in concentration or flux of POM, 753 

there was a significant decline in concentration and flux of POM after 754 

implementation of the Urban Wastewater Directive in 1992; 755 

v) The study has shown net watershed losses equivalent to loss of 1.1 tonnes 756 

C/km
2
/yr for POC and equivalent to 0.22 tonnes N/km

2
/yr for PON; 757 

vi) This study estimates that for total nitrogen species UK rivers are gaining 2209 758 

ktonnes N/yr (9.6 tonnes N/km
2
/yr) from the terrestrial biosphere but are losing 759 

63% of this nitrogen by the tidal limit. 760 
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vii) The total flux of carbon to UK rivers from the terrestrial biosphere is estimated to 761 

be 5020 Ktonnes C/yr (21.8 tonnes C/km
2
/yr) and the net catchment loss is 70%. 762 

viii) The inclusion of the net catchment loss of POM means that it is unlikely that soil 763 

erosion leads to a net carbon accumulation; soil is likely to be a net source rather 764 

than a net sink of carbon therefore. 765 
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Figure 1. Location of monitoring points for which: a) suspended sediment export could be 969 

calculated for the period 1974-2010; and b) Location of monitoring points for which a PMM 970 

and POM export could be calculated for the period 2001-2010. Both maps are separated by 971 

the regions used for area-weighted averaging of fluxes. 972 

 973 

Figure 2. The annual least mean square PMM and POM concentrations from 1974 to 2010 974 

with and without consideration of the covariates. 975 

 976 

Figure 3. The annual least mean square PMM proportions from 1974 to 2010 with and 977 

without consideration of the covariates. 978 

 979 

Figure 4. The distribution of the average POM concentration for the country over the period 980 

1974 - 2010. 981 

 982 

Figure 5. The distribution of the proportion of POM flux within the suspended sediment flux 983 

across the country for the years 2001 to 2010. 984 

 985 

Figure 6. The time series of the national flux of POM in comparison to the national flux of 986 

suspended sediment. 987 

 988 

Figure 7. The time series of the national flux of POC and PON in comparison to the national 989 

flux of POM. 990 

 991 

Figure 8. The projected map of: a) POC export at source; and b) total fluvial export of C at 992 

source. 993 
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 994 

Figure 9. The projected map of: a) PON export at source; and b) total fluvial export of N at 995 

source. 996 

 997 

Figure 10. Schematic carbon budget for POM from the UK. 998 

 999 
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Table 1. The distribution and spatial coverage of catchments where POM flux could 1001 

calculated. Regions refers to those illustrated in Figure 1. 1002 

Region No. of study 

catchments  

Area of region 

(km
2
) 

Area of study 

catchments (km
2
) 

Percentage of total 

area sampled 

NW England 23 14165 9139 64.5 

NE England
2
 11 13322 11975 89.9 

Trent Basin 15 21600 18328 84.9 

Ouse Basin 13 14362 4314 30.0 

East Anglia 21 26816 10613 39.6 

Thames Basin 1 12900 150 1.2 

SE England 6 10979 1825 16.6 

Hampshire Basin 6 6422 3268 50.9 

SW England 6 14298 1496 10.5 

Wales 9 20779 2238 10.8 

Scotland
3
 0 74087 0 0.0 

N Ireland 0 13843 0 0.0 

Total 111 243564 63346 26.0 

  1003 

                                                           
2
 The NE England includes 4300 km

2 
of the River Tweed which is in Scotland but which has a tidal limit in 

England. 

3
 The values for Scotland exclude 4300 km

2
 of the River Tweed which is within the country of Scotland but 

discharges to the sea in England. 
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Table 2. The proportion of the variance explained by factors, interactions and covariates for 1004 

the ANOVA of PMM content and % PMM content. 1005 

Factor 

(covariate) 

PMM content %PMM content 

 Without 

covariates 

With 

covariates 

Without 

covariates 

With 

covariates 

ln(flow)  0.2  1.3 

ln(sedt)  95.3  3.5 

Year 11.5 0.8 19.7 5.8 

Month 1.7 0.0 1.4 0 

Site 63.5 2.5 54.4 19.5 

Year*Month 13.8 0.1 8.1 0 

Error 9.5 1.0 16.4 69.9 

 1006 

  1007 
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Table 3. The summary of the fluvial carbon fluxes for the UK. 1008 

Carbon pathway Flux (ktonnes C/yr) Export (tonnes 

C/km
2
/yr) Worrall et 

al. (2007) 

Worrall et 

al. (2012) 

This study 

POC 614 614 863 3.5 

POC loss 0 0 264 1.1 

DOC 856 909 909 3.7 

DOC loss 403 2650 2650 10.9 

Excess CO2 598 598 598 2.5 

Total loss at source 2472 4770 5020 21.8 

Total loss to atmosphere 1002 3248 3512 15.2 

 1009 

  1010 
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Table 4. The summary of the fluvial nitrogen fluxes for the UK. 1011 

Carbon pathway Flux (ktonnes C/yr) Export (tonnes 

N/km2/yr) Worrall et 

al. (2009) 

Worrall et 

al. (2012) 

This 

study 

PON 72 72 181 0.7 

PON loss 0 0 55 0.2 

DON 160 105 105 0.4 

DON loss  99 99 0.4 

Nitrate 517 402 402 1.6 

Nitrate loss  1175 1175 4.8 

Ammonia 27 120 120 0.5 

Ammonia loss  65 65 0.3 

Nitrite 7 7 7 0.04 

Nitrite loss 0 0 0  

Total loss at source  2165 2209 9.1 

Total loss to atmosphere  1421 1395 5.7 

 1012 

 1013 


