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a b s t r a c t

Effective transmission expansion planning is necessary to ensure a power system can satisfy all demand
both reliably and economically. However, at the time reinforcement decisions are made many elements
of the future system background are uncertain, such as demand level, type and location of installed
generators, and plant availability statistics. Making decisions which account for such uncertainties is
presently usually done by considering a small set of plausible scenarios, and the resulting limited coverage
of parameter space limits confidence that the resulting decision will be a good one with respect to the
real world. This paper presents a methodology which uses statistical emulators to quantify uncertainty
in mathematical model outputs for all points at which it has not been evaluated, and hence to control
properly uncertainties in the decision process arising from the finite size set of scenarios. The result is
a generally applicable approach to network planning under uncertainty, including decision makers’ risk
preferences, which scales well with problem size. The approach is demonstrated on a Great Britain test
problem, which replicates key features of the model the Transmission Owners use for practical strategic
planning studies.

© 2016 Published by Elsevier Ltd.
1. Introduction

Transmission systemplanning is key to ensuring that a system’s
future demand can be met both economically and with an appro-
priately low adequacy risk. Historically, systems were planned to
maintain continuity of supply with any α components on outage,
α commonly being 1; this is known as an N-α planning criterion
[1–4]. More recently, a number of authors (e.g. [1,5,6]) have sug-
gested that the likelihood of events occurring must also be con-
sidered, because it would typically be deemed undesirable to
make a large investment to protect against a very unlikely event,
or one whose consequences are very small. Further, in an eco-
nomic setting, as will be presented in this paper, it would be
similarly undesirable to make a decision that alleviates costs in
a handful of negligible scenarios, whilst resulting in a significant
over-investment in any scenario that could plausibly occur. There-
fore, it would be more relevant to consider problems which not
only satisfy the N-α criterion, but also make decisions to optimise
some secondary economic/welfare function.
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Such secondary criteria may include: minimising the sum
of construction costs, operation costs and stand-by costs [7];
minimising the present worth of investment costs and expected
outage and production costs [8]; or minimising the sum of
investment costs and operation costs [9]. [10] demonstrates a
holistic view which bases decisions on a weighted average of
multiple criteria across multiple stakeholders. A cost–benefit
analysis (CBA) approach can also be taken [11] (to optimise
incremental costs plus energy replacement costs) and [12] (to
optimise the ratio of benefits a reinforcement brings against
the cost of the reinforcement). [2] considers basing decisions
on investment sensitivities, i.e. ratio of improving the objective
function (e.g. satisfying of the supply–demand curves or power
exchange deviations) against investment cost. An approach using
co-operative game theory is used by [13], involving creating
coalitions between multiple agents to both increase the benefits
for each agent and reduce the number of lines needed to expand
the network. [14] considers the marginal profits of reinforcements
made against the marginal cost to reinforce whilst accounting for
the intermittent generation associated with renewable resources.
[15] considers reinforcement planning to minimise adjusted
delivered cost (delivered cost of a resource to a load zone which
considers bus-bar and transmission (investment, operation and
line losses) costs and also adjusts for key market value factors
(integration costs, avoided resource adequacy costs and avoided
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time-of-delivery costs)). Further, it considers how cost estimates
and resulting decisions change as input factors are varied (such
factors are the proportion of renewable generation on the system
and the associated costs with renewable generation, such as tax
incentives).

When making planning decisions it is important to account
for the uncertainty that exists in background against which the
system is planned. For example, if demand is higher than expected
there may be insufficient transmission capability to satisfy it, or if
it is lower some assets may with hindsight be deemed stranded.
This is commonly handled by making the decision considering a
limited number of scenarios, e.g. [16] which formulates a mixed
integer programmingmodel tominimise the total expected cost of
generator operation and investment and transmission investment
across several scenarios. The expected value of perfect information,
and the expected cost of ignoring uncertainty, are calculated to
quantify the potential benefits of better information and costs of
not considering uncertainty in systembackground. [17]maximises
generation company and transmission company expected profits,
subject to a reliability check from the independent systemoperator
which accounts for the uncertainty that exists in future load
growth and outages. [18] seeks to minimise expansion investment
whilst maximising system reliability and security for each of
several scenarios which vary system load and additional capacity
installations. Initially, each scenario is optimised separately, then
the expansion with the lowest adaptation cost (i.e. the cost for
additional reinforcement if the initial scenario is incorrect) is
selected. [19] seeks to make a decision which accounts for the
uncertainty that exists due to the varying availability of hydro
power. This decision minimises the cost of investment, plus a
weighted average of expected costs due to load shedding across
multiple scenarios.

However, a common feature to all these methodologies is that
uncertainty is handled by considering a finite (and usually small)
set of possible scenarios. Particularly where the uncertainty in
planning is high dimensional, such a finite set of scenarios may
give sparse coverage of the space of model inputs, and hence an
optimal decision within the model which is strongly dependent
on the particular choice of scenarios rather than the underlying
uncertainty in model inputs.

The key contribution of this paper is to demonstrate how the
use of a statistical emulator,which quantifies the uncertainty in the
decision support model outputs for inputs where it has not been
evaluated, and hence makes possible a systematic broad search
of the decision space with relatively few model evaluations. The
exemplar used to demonstrate this emulation approach is closely
based on the probability model used by National Grid in practical
Great Britain planning studies, and is described in Section 2. It
performs a cost–benefit analysis (CBA) between network capital
costs, and expected constraint costs arising from redispatch of
generation due to finite network capacity.

Using the first emulator covering the whole decision space,
the range of the decision space which cannot yet be rejected as
sub-optimal is still quite large (due to large uncertainty in the
model output at points far from model evaluations). However by
performing further model runs in the area of decision space which
remains of interest, it is possible to fit an improved emulator there,
and hence narrow down the search space further. This process
of narrowing down the area of search space considered, through
multiplewaves of emulation,makes the approach scalable tomuch
larger problems than the exemplar considered here.

The emulation method is described in detail in Section 3—
construction of the emulator is demonstrated on the Great Britain
planning example in Section 4, and its application in network rein-
forcement decisions is demonstrated in Section 5. The sensitivity
of decisions to precise quantification of prior knowledge, and to
attitude to risk, are explored in Sections 6 and 7 respectively.
Fig. 1. Plot to show the boundary structure of the model used.

2. Problem specification

This paper considers the problem of transmission expansion
planning from an economic perspective, in which decisions are
taken based on a cost–benefit analysis between the capital costs
of network expansion and future constraint costs (the costs of
finite network capacity constraining the generation schedule). The
additional network capacity is a decision variable, and the capital
costs of a given upgrade are usually known to a high degree of
accuracy. In contrast, the assessment of future constraint costs
must be carried out under considerable uncertainty regarding
system background (plan availability statistics, demand level,
generation prices etc.).

2.1. Constraint cost model and Great Britain data

The forward energy market in GB is not locational, i.e. it is run
as if there were infinite network capacity. After ‘gate closure’ one
hour ahead of real time the System Operator (National Grid) must
then adjust the generation schedule in order to balance aggregate
supply and demand, and to ensure a feasible network flow. In GB
the big picture of network flow patterns is from north to south, so
for strategic planning it is appropriate to model the transmission
network using a tree-like network model consisting of regions
separated by boundaries of finite capacity, as illustrated in Fig. 1.
This paper will use as an example reinforcement of the B6 and B7a
boundaries, which lie around Northern England; this has been one
of the most important reinforcement issues in recent years [20].

Given fixed input data1 the out-turn constraint costs in a future
year may be calculated as

C =


t

g(zt , st), (1)

1 Which consist of peak demand level, shape of load duration curve, availability
probabilities for conventional generating units of each class, prices at which each
generating technology trades energy in the forward market and at which it is
redispatched after gate closure, installed capacity of each technology in each region,
joint distribution of available wind capacity in each region, boundary transfer
capabilities.
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where t indexes the periods into which the year is subdivided; zt
is a vector of random variables representing available capacities
of each generating technology in each region in period t and the
vector st is the input demands in each region in period t . The
function g evaluates the constraint costs in a period given demands
and generation availabilities, by formulating the redispatch as a
linear program.

Following National Grid’s practice, we evaluate the expected
constraint costs E[C] in the future year; due to the standard
result for the expected value of a sum of random variables, to
evaluate E[C] it is not necessary to consider serial associations
between generation availabilities in different periods. This model
output is evaluated by Monte Carlo simulation, using importance
sampling [21] to improve convergence by sampling more densely
demand levels which contribute most strongly to the result.

Data are taken from the Electricity Scenarios Illustrator (ELSI)
published by National Grid on their consultation and engagement
website [22].

2.2. Structure of uncertainty problem

The constraint cost model may be thought of as a function

yc = fc(x) (2)

where yc represents the expected constraint costs, and x the inputs
to the calculation. As f is evaluated by simulation, in principle y
is not known with certainty even for fixed x; however in practice
for the example used here it is possible to use a sufficiently large
Monte Carlo sample that y may be assumed to be known exactly.

In general, the model inputs x are not all known precisely. fc(x)
may thus be thought of as fc(v, a, d), where v represents the inputs
inwhich uncertainty ismodelled explicitly; a represents the inputs
which are either known with certainty or in which uncertainties
are not of interest, so their values are treated as fixed as if they are
known precisely; and d represents the decision variables.

When evaluating expected constraint costs, it is important to
consider uncertainty in input parameters such as demand level and
plant availability statistics. This paper will consider how cost esti-
mation and reinforcement decisions are affected by the uncertain-
ties expressed in prior beliefs about nuclear and CCGT availability
probabilities as well as peak demand level, parameters to which
expected constraint costs have been found to be particularly sen-
sitive. These would thus make up v. a would comprise of installed
generation capacities, transfer capabilities on boundaries not con-
sidered in the reinforcement decision problem, and other inputs
such as energy prices and other generation availabilities. d would
be the magnitude of B6 and B7a reinforcement.

In this paper we wish to minimise the total costs of a
reinforcement decision, so the costs of concern are

f (v, a, d) = fc(v, a, d) + fr(d) (3)

i.e. the constraint costs that arise given a particular reinforcement
decision plus the cost of the reinforcement itself (fr(d)).

3. Emulation strategies for system optimisation

3.1. The emulation process

In the problem presented, there is uncertainty in the input
values of the inputs x. However, the function, f , is far too expensive
to evaluate at every set of input parameters desired. Therefore, it
is necessary to evaluate f a small number of times for particular
values of x, and approximate f everywhere else as carefully
as possible by some alternative function, f̃ . f̃ should be much
less computationally demanding to evaluate in order to allow
for efficient estimation for input values not simulated. The full
emulation model fitted also details the uncertainty that exists in
the response when approximating f by f̃ .

Suppose there are k variables with uncertainty of interest,
labelled v1, . . . , vk and m decision variables, d1, . . . , dm The goal
is to fit a model to the value of y based on these k + m variables.
As this process assumes all other variables are considered known,
f̃ can be treated as if it is a function of v1, . . . , vk and d1, . . . , dm
only.

A small set of training runs of the simulator are used to
construct the function f̃ which approximates f . These training runs
vary the values of v1, . . . , vk and d1, . . . , dm over a given range.

The emulator used in this paper will use polynomial regression
as the basis for modelling y. This can be thought of as follows

y(v1, . . . , vk, d1, . . . , dm) =

p
q=0

p
t=0

m
s=0

k
r=0

βr,s,t,qv
t
rd

q
s

+ ε(v1, . . . , vk, d1, . . . , dm) (4)

i.e. the dot product of a coefficient vectorwith the polynomial form
of thepredictor variableswith error term ε(v1, . . . , vk, d1, . . . , dm).
The estimates of the model parameters, β̃ , have an associated co-
variance matrix, c(β̃, β̃). The model parameters are thus multi-
variate normally distributed with mean β̃ and covariance matrix
c(β̃, β̃). Whilst this methodology applies very generally, the terms
included in the regressionmodel should be carefully selected based
on the specifics of the example considered. This is considered in
Section 3.5.

The fit of themodel can be improved further by using aGaussian
process model to smooth the residuals, ε(v1, . . . , vk, d1, . . . , dm).
This is important as the polynomial model will aim to give a good
fit over the entire range of the variables, whereas the Gaussian
process can model local behaviour much more accurately, as
described below.

The idea of a Gaussian process is to smooth the residuals in
order for the model to agree with the training data and provide
an accurate estimate of response (and variance of the response)
for values where training data is unavailable. In this sense, the
Gaussian processmodel can be thought of as a smooth interpolator
of the residuals [23]. In simple terms, the idea of the Gaussian
process is if a prediction at point xp is to be taken, training data
closer to xp carries more relevant information and should be given
more weight when making a prediction.

Gaussian Process models fitted to a set of training data, in
the example ε(x) ∼ GP(m(x), k(x, x)), give a mean–variance
relationship (i.e. expected response and uncertainty in that
estimate) for the response as a function of each possible input
value [23,24].

[23] gives an accessible introduction to Gaussian processes
models. The exemplar model is a simple function of a single
variable (specifically x+ 3 sin( x

2 )), acting in place of a complicated
simulator for demonstration purposes. The function is evaluated
exactly a small number of times (training runs) and it is
demonstrated how a smooth interpolation (the Gaussian process)
of these training runs acts as a good approximation to the
true function, as well as illustrating the approximation error at
inputs where the model has not been evaluated. This tutorial
reference also demonstrates how the Gaussian process emulator
can improved by using additional training runs, and how the
parameters of the Gaussian process itself affect the quality of the
resulting approximation.

[25] is a more technical reference on fitting Gaussian process
models and their use inmaking predictions. In order to understand
how to fit and make predictions from a Gaussian process, the
correlation function, κ , must first be defined. For two vectors of
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predictor variables, x1 = (x1,v1 , . . . , x1,vk , x1,d1 , . . . , x1,dm) and
x2 = (x2,v1 , . . . , x2,vk , x2,d1 , . . . , x2,dm), the form of the correlation
function for given correlation parameters γ = (γ1, . . . , γk+m)
considered in this paper is

κ(x1, x2) = e
−

k+m
i=1

γi(x1,i−x2,i)2

. (5)

In practice the correlation between 2 matrices is required.
Suppose X1 and X2 are twomatriceswhere each row of eachmatrix
is a set of predictor variables. Further, suppose X1 has I rows, x1,i is
the ith row of X1, X2 has J rows and x2,j is the jth row of X2. The
correlation matrix between these two matrices would be KX1,X2 ,
where the jth entry of the ith row of KX1,X2 is κ(x1,i, x2,j).

To fit a Gaussian process, the design matrix, Xd, of the training
runs is required, as well as a vector of calculated responses, ε. The
ith row of Xd describes the input values used for the ith training
run, and the ith entry of ε is the corresponding residual of that
training run after the polynomial regressionmodel has been fitted.
Suppose prediction is desired at a new set of data-points. A matrix
X∗ is created, where each row details the input values for which a
prediction is required. Note, X∗ can be a single set of input values
and will be treated as if it were a matrix with a single row. The
vector for estimated response of the Gaussian process for the input
values of X∗ is [25,26]

ε∗ = KX∗,Xd(KXd,Xd)
−1ε (6)

with the covariance matrix of these predictions

cov(ε∗) = KX∗,X∗
− KX∗,Xd(KXd,Xd)

−1KXd,X∗
. (7)

The parameters γ1, . . . , γn in Eq. (5) control how much weight
is given to each training run when making predictions. The larger
the values of these parameters, the faster the relative weight given
to a training runs decreases with distance from the point where
a prediction is required. In simple terms, larger values of these
parameters will give a function more sensitive to the local be-
haviour of training runs than smaller values. A method utilising
cross-validation should be used when selecting the Gaussian pro-
cess model parameters [25], such as the leave one out estimate
which will be described in Section 4.2. This is because such meth-
ods estimate howwell a givenmodelwill performwhen predicting
a response for a new set of input values. This is particularly impor-
tant for Gaussian Process models, as any choice of model parame-
terswill interpolate the training data used to fit them, so traditional
model selection criteria, such as minimising residual square error,
would be meaningless.

For values where training data was available, the mean of the
response will be the residual of the polynomial model with 0
variance. Thismeans that the training data is interpolated perfectly
with zero variance at the training data input. cov(ε∗) is greater than
zero away fromvalueswhere training data inputwas available, and
generally larger the further a set of input is from a point which had
training data available.

In this paper the polynomial portion of the emulator will be
noted by f̃1 and the Gaussian process model fitted to its residuals
will be noted by f̃2. Thus, the emulatormodel for given inputs is the
sum of these two, denoted g̃ , such that

g̃(v1, . . . , vk, d1, . . . , dm) = f̃1(v1, . . . , vk, d1, . . . , dm)

+ f̃2(v1, . . . , vk, d1, . . . , dm). (8)

That is to say g̃ is our emulator which approximates the simulator,
and the emulator estimate is acquired by evaluating the sum of the
fitted polynomial regression model and corresponding Gaussian
process model for given input values.
3.2. Cost estimation from emulation

The expectation of a function of a continuous random variable
is calculated as the integral of the product of the function and
the probability density function (PDF) of the random variable.
Applying this to emulation, if the PDF of the uncertain variables
(i.e. v1, . . . , vk) was known to be p(v1, . . . , vk), the estimate of
expected costs for a given decision, d∗

= d∗

1, . . . , d
∗
m, is

G(d∗

1, . . . , d
∗

m) =


v1,...,vk

g̃(v1, . . . , vk, d∗

1, . . . , d
∗

m)

× p(v1, . . . , vk)dv1 . . . dvk. (9)

In real problems, such as the constraint cost problempresented,
the PDF of the uncertain variables is often not known exactly.
In particular, in cases such as this, assessment of uncertainty
in the planning background relies to a large extent on expert
judgement [27,28], and in a Bayesian formulation the prior
judgement of uncertainty should be expressed as a PDF of the
variables v1, . . . , vk. The expected costs under uncertainty can
then be estimated as in Eq. (9). Examples of prior beliefs for the
constraint cost problem are given in Section 4.1.

When making a decision it is desirable to identify the value of
the decision variable whichminimises/maximises (as appropriate)
Eq. (9). This means that the integral in Eq. (9) must be evaluated
multiple times. When d1, . . . , dm are discrete and a small number
of possible decisions exist this is straightforward, as one can simply
evaluate explicitly all possible decisions and select the best one.
When d1, . . . , dm are continuous or can take a large number of
discrete values, numericalmethodsmay be required to identify the
optimal decision, as we will demonstrate in the example.

As mentioned in Section 3.1, there also exists uncertainty in the
fitted emulation model itself. Recall the polynomial portion of the
model, f̃1, hasmodel parameters β . There is uncertainty in the esti-
mates of the values of these parameters and ourmodel of their true
value is said to be a multivariate normal distribution with mean
β̃ with covariance matrix c(β̃, β̃). A new set of model parameters
can then be randomly drawn from this multivariate normal dis-
tribution, call the corresponding polynomial model using such a
random drawing of model parameters f̃1,r . Corresponding residu-
als, εr , can then be calculated for using f̃1,r instead of f̃1 when pre-
dicting. A new Gaussian process model, f̃2,r , can then be fitted as in
Section 3.1, using the error residuals of this randomly drawn poly-
nomialmodel, εr , in place of the error residuals of the original poly-
nomial model. A random variation of the emulator model could
thus be the sum of the polynomial model with a random draw of
parameters and the corresponding Gaussian process fitted to the
resulting residuals such that:

g̃r(v1, . . . , vk, d1, . . . , dm) = f̃1,r(v1, . . . , vk, d1, . . . , dm)

+ f̃2,r(v1, . . . , vk, d1, . . . , dm). (10)

However, such variations in the model parameters can have a
large effect on the fitted model. Further, using g̃r instead of g̃ in Eq.
(9) could also have a large effect on the estimated costs. By carefully
considering how the cost estimates vary as the model parameters
are varied, credible bands can be formed which give a range in
which we would expect the actual costs to lie for a given level of
confidence.

To do this, consider creating a randomly drawn model, gr , as
described above. For a given decision, d∗

1, . . . , d
∗
m, an expected

response using the randomly drawn model can be calculated by
integrating over uncertainties, as in Eq. (9) such that:

Gr(d∗

1, . . . , d
∗

m) =


v1,...,vk

g̃r(v1, . . . , vk, d∗

1, . . . , d
∗

m)

× p(v1, . . . , vk)dv1 . . . dvk. (11)
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By considering how Gr(d∗

1, . . . , d
∗
m) varies with the randomly

drawn models credible intervals can be formed for G(d∗

1, . . . , d
∗
m).

To do this suppose a large number of models, n, have been
randomly drawn and an α% credible interval is desired. Such
an interval could be formed by taking the lower bound as the
value which 1−α

2 % of the Gr(d∗

1, . . . , d
∗
m) are smaller than, and the

upper bound as the value which 1−α
2 % of the Gr(d∗

1, . . . , d
∗
m) are

greater than. It is convenient to label the lower and upper bounds
GL(d∗

1, . . . , d
∗
m) and GU(d∗

1, . . . , d
∗
m) respectively.

3.3. Latin hypercubes

Training runs to be used in the emulation processwere acquired
using Latin hypercube (LHC) sampling [29]. When taking a Latin
hypercube sample, first the size of the sample, n, must be specified.
Then each axis of the hypercube formed by the variables of interest
(i.e. v1, . . . , vk, d1, . . . , dm) is divided into n intervals. A sample
of size n is then taken which varies the values of the k + m
variables such that for each variable exactly one of the samples has
a corresponding value in each of the n intervals of that variable’s
axis. [29] includes illustrations to demonstrate this process.

The Latin hypercube sample gives the input values to be used
when simulating training runs, which in turn are used to fit the
emulator. An appropriate number of training runsmust be selected
and is considered in Section 4.2 via cross validation.

Latin hypercubes are very advantageous in comparison to grids
(i.e. evenly distributed points over a given range). Firstly, a more
dense coverage of the region sampled is given, which should allow
models to give a better fit. Secondly, significantly fewer points can
be used when making decisions.

In the example presented in Section 4 it will be shown only a
300 point LHC sample is necessary, whereas a 5 by 5 by 5 by 5 by 5
by 5 grid would use over 15,000 points and the resulting emulator
would not give a particularly good fit. This saves a considerable
amount of work in the simulation of training runs. This benefit
would be even greater in higher dimensions, where grid size
increases exponentially with dimension, whereas LHC samples do
not.

3.4. Reinforcement decision making

The objective is to make a reinforcement decision which
minimises the total costs in the system (the sum of constraint costs
plus the costs of reinforcement). This is achievedby takingwaves of
observations, where in each wave the aim is to eliminate potential
decisions if there is sufficient evidence to suggests they are not
optimal in the following manner:

1. Set an initial range of values to be considered for the decision
variables.

2. Simulate training runs based off a Latin hypercube sample using
the current limits on the decision variables.

3. Fit an emulation model to the latest simulated sample and use
it to eliminate decisions (details below).

4. Repeat until uncertainty about optimal decision reaches an
acceptable level. The optimal decision is the decision which
minimises Eq. (9).

To do this, a LHC sample will be taken over a specified initial
range of reinforcements to consider (in this example this is
between 0 and 4000 MW for both B6 and B7a). This LHC sample
gives the values of input variables to be used for the training data.
Simulations are then taken using these input values to give the
training data. Then the emulation process of Section 3.1 uses this
training data to create an emulator model of how input affects
output of the simulator.
The methodology of Section 3.2 is then used to estimate
constraint costs and corresponding credible intervals as the values
of the decision variables are varied. The decisions giving the
minimum point on the upper bound are identified as do1, . . . , d

o
2,

with the corresponding upper bound being GU(do1, . . . , d
o
m).

For any alternative set of decisions, da1, . . . , d
a
2, such that

GL(da1, . . . , d
a
m) > GU(do1, . . . , d

o
m) it can be said there is evidence

against that decision being optimal, as the lower bound of the
estimate is not better than the best upper bound. That decision can
thus be eliminated from the decision space.

A new set of training runs is taken where the values of the
decision variables are only those not eliminated. A new emulator
model is fitted to this new set of training runs, and credible
intervals are estimated for decisions which were not previously
ruled out. This allows for further bad decisions to be identified and
eliminated. The process continues iteratively until the uncertainty
about the optimal decision reaches an acceptable level.

The use of a wave process is actually very efficient. Initially,
global behaviour is modelled, so an area where the optimal
decision is likely to lie can be identified. Subsequent waves can
then model local behaviour much more accurately meaning an
accurate decision can be made. Further, a much better model (and
therefore better decision) can be obtained from several waves of
relatively small number of observations than a single wave of a
relatively large number of observations.

Reinforcement decisions are typically considered over multiple
years. For simplicity, in this paper details have not been given
for the emulation process over multiple years. However, the
simulation process presented naturally extends to multiple years,
by detailing the same values of x for each year to be simulated and
calculating y as the sum of all expected constraint costs over all
periods of all years plus the cost of any reinforcements built.

3.5. The particular example considered

The emulation example presented in this paper considers
uncertainty in 3 input values: nuclear availability probability,
CCGT availability probability and peak demand value. These are
considered to be variables v1, v2 and v3 respectively. This means
other input values will be kept constant. Two decision variables
are considered: B6 and B7a reinforcement magnitudes. These are
considered to be variables d1 and d2 respectively. These variables
were chosen as a result of preliminary experimentation into which
variables the cost estimates appear to depend most sensitively
upon. Further the B6 and B7a boundaries are adjacent boundaries
to the North of England/South of Scotland, which are important
in the time frame of the example as a lot of wind generation is
scheduled to be built in Scotland.

An emulator will be fitted to model how the total costs in
the system (constraint costs plus the costs of any reinforcement
made) are affected by the values taken by these 5 parameters. The
polynomial portion of the model includes first and second order
terms of all 5 variables. Interaction terms (pairwise and three-
way) are included between v1, d1 and d2 as well as interaction
terms (pairwise and three-way) of v2

1, d
2
1 and d22. The residuals of

this polynomial are used to fit a Gaussian process depending on
variables v1, v2, v3, d1 and d2 as described in Section 3.1. The sum
of these two models forms our emulator, as in Eq. (8).

Table 1 summarises the parameters included in the linear
model, along with corresponding value of model coefficient (the
particular β from Eq. (4)). The model coefficients of the Gaussian
process model, γ1, . . . , γ5 in Eq. (5), are 20, 270, 1.5×1−7, 1.9×

10−5 and 2.6×10−6 respectively. These are all given to 2 significant
figures.

Cross-validation, detail given for sample size selection in
Section 4.2, was used to select the terms to be included in
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Table 1
Table detailing the particularmodel fitted in the firstwave, assuming a cost of £1000
per MW per km to reinforce.

Model term Coefficient value Model term Coefficient value

Intercept 8.8 × 109 d22 −1.2 × 101

v1 3.5 × 109 v1 : d1 9.6 × 105

v2 1.0 × 109 v1 : d2 −1.0 × 106

v3 −1.6 × 1010 d1 : d2 2.9 × 102

d1 −1.4 × 106 v2
1 : d21 −6.4 × 101

d2 5.8 × 105 v2
1 : d22 1.7 × 102

v2
1 −2.3 × 108 d21 : d22 −3.0 × 106

v2
2 −8.8 × 108 v1 : d1 : d2 −6.5 × 102

v2
3 7.3 × 109 v2

1 : d21 : d22 1.6 × 10−5

d21 1.9 × 102

the polynomial regression model. As B6 and B7a are adjacent
boundaries it was natural to expect an interaction between the
two. Further, a high merit capacity such as nuclear will incur large
constraint costs if it is unable to be used, with these costs being
reduced heavily as transmission capacity is increased, explaining
its inclusion in the interactions. The R2 statistic of the fitted model
can also be useful for model selection, in particular for being a
good quick reference for how high degree a polynomial model
seems necessary. Analysis of variance (anova) is also a useful tool
to ensure model parameters do indeed add explanatory power to
the model.

The use of prior beliefs and the methodology of Section 3.2
can then be used to estimate costs under uncertainty as the
decision is varied, with the goal being to identify the decision
which minimises the expected costs in the system. While this
example has fairly low dimensional input space, the methodology
used for managing uncertainty scales well to a much higher
dimensional input and decision space, for instance [30] where up
to 17 uncertain parameters are considered.

4. Examples of prior beliefs, uncertainty and training run
selection

4.1. Uncertain variables and prior beliefs

The prior beliefs used for illustration in this paper are based on
the expert judgement of Paul Plumptre (PP), formerly of National
Grid [31]. For the three uncertain variables, a range is given for
values the variables could feasibly take. For Nuclear availability
probability, the given range is 0.55 and 0.85 and for CCGT the given
range is 0.8–0.95. PP also states an appropriate level of uncertainty
in peak demand level is 1% for each future year used. Therefore, the
peak demand level will be considered to be multiplied by a value
between 0.95 and 1.05. A uniform distribution is used to represent
prior beliefs across each of these ranges.

Year 6 data from [22] is used as the basis of the other aspects of
the power system for the exemplar. This means input parameters
for the power system which are treated as fixed (such as the
load duration curves, other availability probabilities, installed
generation capacities etc.) will be taken as the values given by [22].
This is intended to represent a 2016 power system scenario. The
exception is the boundary capabilities of B6 and B7a will be set
to year 1 levels. This is as if a reinforcement decision for 2016
power system is being made based on the estimates of the 2016
system from information available in 2010. Other boundaries will
be treated as if they have infinite capacity so only costs arising at B6
and B7a are considered. Reinforcements between 0 and 4000 MW
on each boundary are considered.

4.2. Training run selection

Cross-validation is used to assess how many training runs are
necessary to fit an emulator. This is a criterion based on the ‘‘leave
Table 2
Table of how the model selection criteria vary with grid size when fitting the
polynomial regression models.

Latin hypercube size Value of cross-validation of model R2 of model

100 1.080227 × 1016 0.9786714
200 9.546414 × 1015 0.9768273
300 9.144721 × 1015 0.9713642
400 8.256962 × 1015 0.9712343
500 8.342305 × 1015 0.9736546
600 7.474142 × 1015 0.9733034
700 8.265636 × 1015 0.9700664
800 7.477986 × 1015 0.9721933
900 7.682975 × 1015 0.9725545

1000 7.982666 × 1015 0.9719622

one out’’ estimate. For point i the model g̃−i is fitted using all but
the ith training run. Then,µi is calculated as the expected response
at point iusingmodel g̃−i. The cross-validation is then calculated as
the average square error when using the ‘‘leave one out’’ estimate,
i.e.

1
n

n
i=1

(yi − µi)
2 (12)

where n is the number of points in the sample.
Table 2 displays how the cross-validation values vary with the

number of points used in the sample. It is desirable tominimise the
value of the cross-validation, as this indicates a better prediction
for input values not simulated.

It can be seen that the value of cross-validation gradually
decreases with sample size. There is a noticeable improvement in
increasing from a 100 to a 200 point Latin hypercube sample. There
is a smaller, but noticeable improvement increasing from a 200 to a
300 point Latin hypercube sample and further improvement from
300 point to 400 point sample. However, there does not appear to
any gain in using a sample size larger than this.

The R2 value of the polynomial proportion of the model is also
given. All values are above 0.97 which indicates an excellent fit is
given, even without the inclusion of a Gaussian process model.

4.3. Graphical illustration of uncertainty

Fig. 2 displays how the shape of the surface of constraint costs
varies with level of peak demand when varying nuclear and CCGT
availability probabilities. These are exact values from simulation,
not emulation models, and assume no reinforcement has been
made. There is not a great deal of difference between the plots,
indicating that the demand level has very little effect on results.
It is also seen that the nuclear availability probability appears to
have the largest effect on estimates, which suggest cost estimates
will be most sensitive to prior beliefs about it.

Cross-validation was again used to assess which model terms
are necessary to include. Although the graphs were relatively
flat, it appeared necessary to include quadratic terms. Further,
interaction terms were necessary between the two decision
variables and nuclear availability probability, though interactions
involving other variables did not seem necessary.

5. Application of the emulator

5.1. First wave and further waves

Fig. 3 displays how costs vary with reinforcement decisions for
the given prior beliefs. It can be seen that low magnitudes of B6
reinforcement results in extremely high estimates of costs. Further,
there appears to be very little variation in estimated costs when
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Fig. 2. Graphs showing how constraint costs vary with nuclear and CCGT
availability. (a) Assumes 95% demand, (b) assumes 105% demand.

Fig. 3. Plot showing how estimated costs vary with reinforcement scenario.

both boundaries reinforcement are above 2500MW. This indicates
all decisions near the optimal solution give very similar results.

Section 3.2 indicates that all estimates come with upper and
lower bounds. Further, Section 3.4 indicates how these bounds can
be used to eliminate bad decisions, allowing amore accuratemodel
to be fitted over a smaller range of decisions. This allows for a
better, more confident decision to made. The improvement in the
model is explored further in Section 5.2.

Fig. 4(a) shows which decisions seemed to merit further
consideration in the second wave (i.e. based on the methodology
Fig. 4. (a) Plot of points which merited further consideration during the second
wave, (b) plot of points which merited further consideration during the third wave.

of Section 3.4 there was no conclusive evidence of them being
worse than the apparent optimal). Values of the B6 reinforcement
magnitude range from 2300 to 4000 MW and values of the B7a
reinforcement range from 1900 to 4000 MW. This is still a quite
large region, though it has eliminated 82.7% of the decisions
considered in the first wave.

Note, when sampling training runs to use in the next wave
the shape of Fig. 4 is preserved. First, the decision which gives
the minimum upper bound in the current wave is identified as
Gu(do1, d

o
2), as in Section 3.4. Then, a set of values for the decision

variables are randomly drawn from a uniformdistribution. A lower
bound for the estimate using these decision is evaluated using
methodology from Section 3.2. If this lower bound is less than
Gu(do1, d

o
2) the values of the decision variables are used for training

runs for the next wave. If not, the decision is rejected and new
values are selected for the decision variables. This is repeated
iteratively until the specified number of training runs have been
acquired. Values for the variables whose values are uncertain are
sampled via a Latin hypercube as described in Section 3.3.

A new emulator model is then fitted to the new set of
training runs. This allows more decisions to be eliminated by
considering the bounds of the estimates, as in Section 3.4.
Fig. 4(b) displays the reinforcement combinations thatwouldmerit
further consideration in a third wave of reinforcements. Values of
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reinforcementmagnitude of theB6boundarynowrange from2800
to 3400 MW and values of B7a reinforcement magnitude ranges
from 2300 to 3100 MW. If sufficient resources are available, the
wave process can be continued, eliminating even more decisions.

Alternatively, after sufficient decisions have been eliminated
a final decision could be taken to minimise costs for the current
wave. The reason to make such a decision is the uncertainty
in a model will not always allow for all but a single decision
to be eliminated but such precise decisions are useful for real
life implementation of reinforcement. Note, this would not be a
definitive optimum, as uncertainty is always present in the model
and consequently any decision not eliminated in this wave could
also potentially be optimal.

If such a decision was taken in the first wave this would result
in 3370 MW B6 reinforcement and 2830 MW B7a reinforcement.
However, such a decision in the third wave would result in
3060 MW B6 reinforcement and a 2890 MW B7a reinforcement,
somewhat different to the decision that would be made in the first
wave indicating the improvement in the model. The rest of this
paper will consider taking a final decision to minimise costs in the
third wave.

5.2. Final wave results

Fig. 5(b) shows how costs vary with reinforcement scenario in
the third wave. For comparison, results from the first wave over
the same range are shown in Fig. 5(a). It can be seen that the two
models are very different, with costs varyingmuchmore smoothly
in the third wave. This is an improvement due to the fact that the
third wave model is fitted over a much smaller range of decisions,
allowing it to be much more accurate over that range.

Fig. 6(a) illustrates the construction of credible intervals for the
first wave as the B6 reinforcement is varied. In this graph B7a
reinforcement is fixed to the apparent optimum of 2890 MW. 200
grey curves are shown, each of which gives the resulting estimate
of costs from random variations of the fitted model, using the
methodology of Section 3.2. Credible intervals for the model are
shown with dashed black lines. It can be seen that these estimates
capture the majority of the variation of the estimates. Further, the
expected model, shown in solid black, is contained within these
limits.

Fig. 6(b) illustrates the improvement in the credible interval
of the estimate between the third and first wave. The first thing
to note is the model from the third wave is much smoother than
that of the first, indicating the improved fit from fitting over a
smaller range of decisions. Additionally, the credible intervals are
much narrower for the third wave than the first. This indicates the
increased certainty within the estimate. This increased certainty
allows for more decisions to be eliminated, or if a decision is to be
taken it allows for a narrower range to be given that could possibly
contain the optimal.

The power of the presentedmethodology of emulation through
severalwaves is demonstrated by the fact that amuchbettermodel
is achieved by taking 3 separate waves of 300 observations, with
the final one being over a much narrower range, than attempting
to fit one model to a single set of 900 training runs. In this final
wave the fitted emulator model is a very accurate approximation
of the simulator, whilst being much less expensive to evaluate.

6. Sensitivity of final results

6.1. Sensitivity to reinforcement cost

So far, it has been assumed that it costs £1000 per km per MW
to reinforce, with 100 km boundary thickness assumed for both
boundaries. However, estimates of this cost vary, even within the
Fig. 5. (a) Plot of how costs vary in the first wave near the optimal, (b) plot of how
costs vary in the third wave near the optimal.

Table 3
Table of how optimal reinforcement strategy varies with reinforcement cost.

Reinforcement cost per
km per MW

Optimal B6
reinforcement

Optimal B7a
reinforcement

Total cost of
reinforcement

500 3690 3420 355,500,000
750 3300 3110 480,750,000

1000 3060 2890 595,000,000
1250 2850 2420 658,750,000
1500 2690 2200 733,500,000

same organisation, with [32] stating the value to be £750 per km
per MW, and [31] gives the assumed £1000 per km per MW.

Table 3 displays how the decisions giving the lowest total costs
varies with the input cost for reinforcement. If the cost to reinforce
is increased 50% to £1500 per km per MW, the total reinforcement
is reduced by 1060MW. Conversely, if the cost was reduced by 50%
to £500 per km per MW, the total reinforcement is increased by
1160 MW.

There also appears to be a smooth general trend of 100 MW
reinforcement less being made on each boundary for each extra
£100 per MWper km it costs to reinforce. This is to be expected, as
there ismore economical benefit to building a reinforcementwhen
the reinforcement itself costs less to build.

6.2. Varying the prior beliefs

A single set of prior beliefs have been assumed so far in this
article. These beliefs were based on the expert judgement of Paul
Plumptre, formerly of National Grid. However, the limits given
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Fig. 6. (a) Plot of to illustrate the construction of credible bounds in the first wave,
(b) plot to compare credible bounds in the first and third wave.

could be expanded or contracted. Varying these two factors has an
effect on both the cost estimates and the resulting decisions. This
section presents results when varying the intervals given for the
prior beliefs. The prior beliefs given in Section 4.1 will be referred
to as the PP prior.

Fig. 7 displays how the estimated yearly constraint costs vary
when the range of the variables is varied from the values given in
the PP prior. This graph assumed no reinforcement was made. One
constraint put in place is the availability probabilities were capped
at 1, as the probability of an event cannot exceed 1. For example,
the original prior gave a window for CCGT availability probability
as 0.8–0.95. Expanding the window by a factor of 2 would give the
width 0.725–1, not 0.725–1.025.

As can be seen, the prior beliefs can have an effect on estimated
costs. In particular, costs appear to rise as the width of the
uncertainties increaseswith an increase from£2.35×108 to £2.6×

108 when uncertainty is increased in all variables. This indicates
that if the prior belief intervals are too narrow, there is a risk of
underestimating costs and making a suboptimal decision.

Table 4 shows how the optimal decision varies with the prior
beliefs used. Using a narrower set of beliefs has a small effect, with
the B6 boundary being decreased by 40MW and the B7a boundary
being decreased by 210MW. However, using the wider set of prior
beliefs has no effect on the decision made. This indicates that in
Fig. 7. Plot to show how constraint costs vary with prior beliefs.

Table 4
Table of how the optimal decision changes with prior beliefs, assuming it costs
£1000 per MW per km to reinforce.

Prior beliefs B6 reinforcement magnitude B7a reinforcement
magnitude

Narrow prior 3020 2680
Original prior 3060 2890
Wide prior 3060 2890

this particular example there is little risk of making a bad decision
if the prior belief intervals are too narrow/wide. However, this is
a conclusion that we are unable to reach once such an analysis
has been performed. Further, we earlier observed sensitivity when
considering cost to reinforce in Section 6.1 and sensitivity to
attitude to risk will be demonstrated in Section 7, indicating the
importance to carry out such analysis.

7. Attitude to risk

Results andmethodologies presented so far have assumed a risk
neutral attitude. However, it is often desirable to take an attitude
to risk into account when making planning decisions, as investors
commonly weight negative outcomes more heavily than positive
benefits, and in particular may have a particular aversion to very
extreme adverse scenarios.

7.1. Attitude to risk: methodology

The methodology in this paper can be adapted to allow
decisions to bemadewhich take into account an attitude to risk. In
order to do this, first the optimal values of the decision variables,
do1, . . . , d

o
m, are identified under a risk neutral attitude, along with

the associated expected cost, G(do1, . . . , d
o
m).

A model g̃b is then fitted such that:

g̃b(v1, . . . , vk, d1, . . . , dm)

= G(do1, . . . , d
o
m) − g̃(v1, . . . , vk, d1, . . . , dm) (13)

g̃b is the expected benefit relative to the risk neutral optimal when
uncertain variables take values v1, . . . , vk and decision d1, . . . , dm
is made.

When considering an attitude to risk it is wise to work with gb
and not directly with the costs. This is because in the presented
example extremely large costs (hundreds of millions) occur no
matter which decision is made. The variation in costs as the values
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Fig. 8. Plot to illustrate the utility function as attitude to risk is varied.

of the uncertain variables are varied is quite small in comparison
(tens of millions). This means a utility function would not make
a significant change to the decision unless an extreme attitude to
risk was taken, despite the variation in costs being very significant
in real terms. Working with gb allows for the relative benefits
and losses as the uncertain variables are varied when making a
particular decision to be adequately assessed. As a result, the utility
function canmuchmore accurately reflect the preferences of a real
life decision maker.

For a utility function, u, which describes an attitude to risk, the
expected utility of a decision can then be calculated as:

Gu(d∗

1, . . . , d
∗

m) =


v1,...,vk

u

g̃b(v1, . . . , vk, d∗

1, . . . , d
∗

m)


× p(v1, . . . , vk)dv1 . . . dvk. (14)

The objective is to maximise Eq. (14). It is necessary to carry out a
separate wave process for each attitude to risk. This is because risk
averse attitudeswould consider decisions of largermagnitude than
a risk neutral attitude, so it is better to work with several models
fitted more accurately over a smaller range than one model fitted
less accurately over a large range.

The utility function applied in Eq. (14) is, for benefit g̃b(v1, . . . ,
vk, d∗

1, . . . , d
∗
m) and risk attitude parameter p:

u(b, p) =


−|g̃b(v1, . . . , vk, d∗

1, . . . , d
∗

m)|p

if g̃b(v1, . . . , vk, d∗

1, . . . , d
∗

m) < 0
g̃b(v1, . . . , vk, d∗

1, . . . , d
∗

m)
1
p

if g̃b(v1, . . . , vk, d∗

1, . . . , d
∗

m) ≥ 0

p > 1 represents a risk averse attitude, 0 < p < 1 represents a
risk prone attitude and p = 1 represents a risk neutral attitude.
In practice, real world decision makers are rarely risk prone. Fig. 8
illustrates this utility function.

Under risk averse conditions, this utility function will harshly
penalise a scenario for doing worse than the risk neutral optimal,
thus placing in the decision process great emphasis on avoiding
scenarios where extremely large losses occur. The utility function
also rewards improvement on the risk neutral optimal, however
this reward is relatively smaller than the penalty for doing worse
than the risk-neutral optimum.

7.2. Decisions under an attitude to risk

Tables 5 and 6 shows how the decision made varies as the
attitude to risk is varied when assuming a cost of £1000 and
Table 5
Table of how the optimal decision changes with attitude to risk, assuming it costs
£1000 per MW per km to reinforce.

Attitude to risk
power

B6 reinforcement
magnitude

B7a reinforcement magnitude

1 3060 2890
1.5 3120 3030
2 3140 3190
2.5 3220 3230
3 3160 3420

Table 6
Table of how the optimal decision changes with attitude to risk, assuming it costs
£1500 per MW per km to reinforce.

Attitude to risk
power

B6 reinforcement
magnitude

B7a reinforcement magnitude

1 2580 2240
1.5 2660 2570
2 2740 2660
2.5 2770 2730
3 2840 2830

£1500 per MW per km respectively. It can be seen that results are
generally much more sensitive to attitude to risk when assuming
a cost of £1500 per MW per km to reinforce. This is particularly
true when assuming a less severe risk averse position or only
considering the B6 boundary. For example, taking the least risk
averse position (p = 1.5) results in total of 200 MW additional
reinforcement when assuming £1000 per MWper km to reinforce,
but an additional 410 MW when assuming £1500 per MW per km
to reinforce. Under themost severe risk averse position considered
(p = 3) the changes were 530 MW and 850 MW respectively.

This example has illustrated that attitude to risk can be an
important factor to consider when making a decision. Even in the
less sensitive £1000 perMWper kmcase itwas still necessary to do
this analysis, as this is the only way to know that the result would
not be very sensitive to attitude to risk.

8. Conclusion

This paper has presented a statistical methodology for taking
power systemupgrade decisions under uncertainty over the future
planning background. Investment decisions are based on a cost
benefit analysis between the capital cost of the upgrade and the
constraint costs arising from finite network capacity restricting the
generation schedule, and a computer model is used to estimate
expected constraint costs for a given background and investment
decision. Uncertainty in inputs is represented as a probability
distribution in a Bayesian framework.

Because of the substantial computational expense of evalua-
tions, it is only possible to evaluate the decision support model a
limited number of times, and as a consequence the value of the
model output is uncertain almost everywhere in the decision/input
space. Key to the approach presented is therefore to use a statisti-
cal emulator to quantify this uncertainty at pointswhere themodel
has not been evaluated. This provides a systematic means of con-
sidering the entire decision space even with relatively few model
evaluations, and the decision space may efficiently be narrowed
downby successively rejecting decisionswhich are very unlikely to
be optimal based on evidence from the current emulator, and con-
structing an improved emulator through additional model evalua-
tions in the region of decision space which remains of interest.

The approach is demonstrated on a Great Britain test prob-
lemwhich replicates National Grid’s constraint cost estimation ap-
proach. The effect on investment decisions of reinforcement cost,
degree of uncertainty about system background, and attitude to
risk is explored — larger reinforcements are optimal given greater
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uncertainty in model inputs, and given a greater aversion to risk. It
is also notable that at higher reinforcement costs results are more
sensitive to attitude to risk.

The key advance over previous approaches to related problems
is the way in which the emulation approach allows systematic
exploration of the whole decision space and space of uncertain
inputs,without concern that the optimal solutionwithin themodel
might depend on the precise choice of discrete scenarios used
to represent uncertainty. For some combinations of inputs and
attitude to risk, this uncertainty analysis gives an investment plan
which is very different from that which would be obtained with a
single scenario. Where the difference arising from the uncertainty
analysis is smaller (e.g. at lower reinforcement cost), it is only
possible to know this by doing the uncertainty analysis to link the
model to the real system, and the detailed uncertainty analysis
gives greater confidence that even small savings seen in the model
will be realised in the real system.
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