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Abstract 

Since the 1990s, electricity distribution networks in many countries have been 

subject to incentive regulation. The sector regulators aim to identify the best 

performing utilities as “reference or frontier firms” in order to determine the 

relative efficiency of other firms. This paper develops a nested latent class (NLC) 

model approach where unobserved differences in performance are modelled using 

two ‘zero inefficiency stochastic frontier’ (ZISF) models nested in a ‘latent class 

stochastic frontier’ (LCSF) model. This is in order to capture the unobserved 

differences due to technology or environmental conditions. A Monte Carlo 

simulation exercise suggests that the proposed model does not suffer from 

identification problems. We illustrate the proposed model with an application to 

Norwegian distribution network utilities for the period 2004-2011. We find that 

the efficiency scores in both LCSF and ZISF models are biased, and some firms in 

the ZISF model are wrongly labelled as inefficient. Conversely, inefficient firms 

may be wrongly labelled as being fully efficient by the ZISF model. 
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1. Introduction 

Since the worldwide reform of electricity sector in the 1990s, many network 

utilities are incentive regulated. The reform trend coincided with some significant 

contributions to regulatory economics (Shleifer, 1985; Laffont and Tirole, 1993). The 

aim is to provide natural monopoly firms with incentives to improve their operating and 

investment efficiency and to ensure that consumers benefit from the gains. The main 

methods used to achieve these objectives are incentive mechanisms, which provide the 

firms with financial rewards and penalties linked to their performance (Joskow, 2008).  

In many instances, the regulators aim to measure the firms’ relative efficiency 

against best practice and performance using parametric and non-parametric techniques 

(see Haney and Pollitt, 2013). However, the sector regulators normally identify more 

than one efficient benchmark firm as they have a large and diverse number of utilities to 

choose from in the sector. Statistical benchmarking methods have been used to 

determine the relative efficiency of individual firms’ operating costs and service quality 

compared to their peers.
1
 The efficiency estimates are based on measuring the gap 

between the actual cost of the firm (production) and an optimal point on the cost 

(production) frontier, which is estimated from the available dataset.  

 The methodology developed in the paper is motivated by theoretical as well as 

empirical regulatory issues. First, since the adoption of efficiency benchmarking for 

incentive regulation in the 1990s, the expectation was that these methods would reduce 

the efficiency gap in the sector and that over time the regulation would transit towards a 

yardstick regulatory model using average sector performance as a benchmark. However, 

although average efficiency among firms has improved, a noteworthy efficiency gaps 

still persist among firms. Part of this observed inefficiency is most likely to have been 

caused by an inadequate control of the firms’ technological heterogeneity. 

Second, accounting for or conversely, failing to account for heterogeneity, has, 

from the start, been a contentious issue between regulators and the firms. As regulators 

reward or penalise firms in line with their respective (in)efficiency levels, the reliability 

of these scores is crucial for the fairness and effectiveness of the regulatory framework. 

Errors in identifying the correct benchmark firms or in the measurement of firm´s 

efficiency have also resulted in significant financial implications for the less efficient 

firms against which they are compared. Obtaining reliable measures of firms’ 

inefficiency requires controlling for the contextual factors under the influence of which 

each utility operates.
2
 

In many countries, utilities have argued against the unfair effects of failing to 

account for the heterogeneity existing among firms. In the UK, the heterogeneity 

present in distribution networks has been addressed through some post-measurement 

adjustments to utility costs. In Germany, network utilities with fewer than 100,000 

customers are exempted from benchmarking by the national regulator. In Brazil, the 

regulator separates the distribution networks into two size groups (small and large), 

                                                           
1
Jamasb and Pollitt (2001) review the most commonly used approaches and provide a survey of 

benchmarking studies applied mainly in OECD countries. For a recent review of the applied literature on 

regulation of electricity distribution networks see, for instance, Kuosmanen (2012). 
2
The inclusion of environmental variables (also referred to as contextual variables or z-variables) in the 

model is contentious in the literature on efficiency analysis and has generated the development of several 

models (for a review of this topic in Stochastic Frontier Analysis (SFA) and Data Envelopment Analysis 

(DEA) see, e.g., Johnson and Kuosmanen, 2012, and Llorca et al., 2014). 
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dependent upon the units of energy distributed and using 1TWh as the dividing line. In 

Norway, the regulator uses some geographic and weather variables in the benchmarking 

models and also separates the regional mid-voltage networks from low-voltage 

distribution utilities in benchmarking models. In Chile, the regulator has used six 

different reference norm firms to account for the heterogeneity among the real firms. In 

Sweden, the larger networks strongly argued that the norm models used by the regulator 

proved disadvantageous to large networks. Given this context, methodologies designed 

to improve the accuracy of benchmarking methods, which are at the same time sensitive 

to technological and environmental heterogeneity can also help in deciding as to the true 

efficiency gap of a sector and the correct timing for moving to the yardstick regulation 

stage.  

Recently, latent class stochastic frontier (hereafter LCSF) models that combine 

the stochastic frontier approach with a latent class structure have appeared in efficiency 

analysis literature to account for technological heterogeneity among firms. Latent class 

models, also called finite mixture models, have been used in several fields of research 

(see Orea and Kumbhakar, 2004; Greene, 2005, for some applications). A conventional 

LCSF model assumes there is a finite number of technologies (classes) underlying the 

data and allocates probabilistically each firm in the sample to a particular technology. 

Once the benchmark technology of each firm is identified, its inefficiency in relation to 

that benchmark technology is measured from a specific (e.g. half-normal) distribution in 

which the parameters might differ. As pointed out by a referee, the LCSF model is 

similar to the stochastic frontier model with random coefficients introduced by Tsionas 

(2002), in the sense that a latent class model can be viewed as a discrete approximation 

to a (continuous) random coefficient model (see Greene, 2005, p.287). 

Kumbhakar et al. (2013) have taken advantage of the latent class structure to 

introduce the so-called ‘zero inefficiency stochastic frontier’ (ZISF) model. This model 

overlooks the above-mentioned issue of unobserved differences in technology or 

contextual factors, allowing the researcher to distinguish between fully efficient firms 

and firms that tend to be inefficient to some extent. In this sense, we hereafter state that 

the ZISF is able to deal with unobserved behavioural heterogeneity, i.e. hidden 

differences in firms’ performance. The ZISF model is appealing in a benchmarking 

context, as it helps regulators to identify the utilities that can be used as “reference 

networks” for other (comparable) utilities.
3
 The present paper uses the ZISF approach to 

determine this reference network, extending the latter to also take into account the 

technological heterogeneity as well as geographical and weather conditions among 

networks.  

Kumbhakar et al. (2013) assume there are only two types of firms (efficient and 

inefficient). While the inefficiency distribution for fully efficient firms is a point mass at 

0, the degree of inefficiency for inefficient firms is captured by any of the array of 

standard one-sided distributions, such as half-normal, exponential, or truncated normal. 

However, they use the latent class structure to identify unobserved differences in 

performance, assuming the estimated technology to be identical for all firms. 

                                                           
3
 Several South American countries (e.g., Argentina, Chile, and Peru) use a rather similar concept, called 

“Model Company”, to determine the allowed revenues, or allowed prices, of distribution companies (see 

Cossent, 2013). This approach relies on “building” engineering bottom-up models of a network company 

as benchmarking reference for a set of real firms, which is characterized in terms of network assets and 

associated costs, overhead structure and commercial costs, and the degree of population density (urban 

vs. rural) of the sectors or areas operated by each firm. 
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Consequently, they abstract from technological heterogeneity among the firms and 

focus exclusively on the distribution of inefficiency.  

Finite mixture models have traditionally been used to identify groups of firms 

that operate with different operating conditions or use different technologies. The issue 

is that the presence of one technology or another is not directly observed by the 

researcher. At most, only partial technological or environmental indicators are available. 

If the underlying data generation process only involves two technologies and there are 

only two types of firms (efficient and inefficient), we could then estimate a latent class 

model with four classes in which both technological and efficiency parameters differ. 

As both sources of unobserved heterogeneity (behavioural and technological) are 

treated symmetrically in such models, it becomes difficult to ascertain whether the 

differences in performance are caused by differences in behaviour or technology, and 

vice versa. In addition, it proves impossible to distinguish between the probabilities of 

sharing the same technology (i.e. being comparable firms) and the probabilities of 

sharing similar performances (i.e. being fully efficient or inefficient).
4
 

The difference in the nature of behavioural and technological differences is not a 

semantic point. We utilize the difference in both of these sources of unobserved 

heterogeneity to develop a nested latent class model (hereafter NLC model), where the 

behavioural differences are modelled using two ZISF models. These are in turn nested 

into a latent class structure in order to capture the unobserved differences in 

technological or environmental conditions. To our knowledge, the present study is the 

first to propose a ‘nested latent class’ model. Hence, we extend the ZISF methodology 

in Kumbhakar et al. (2013) and provide a framework to distinguish between fully 

efficient and inefficient firms in a sample when the underlying technology is 

heterogeneous.  

The paper is organized as follows. Section 2 introduces the LCSF and ZISF 

models and the econometric specification of our NLC model. In Section 3 we perform a 

Monte Carlo simulation to examine the relative performance of our NLC model in a 

controlled experiment. The data used in the empirical analysis is presented in Section 4. 

Section 5 presents and analyses the results obtained. Several policy implications are 

outlined and discussed in Section 6. Finally, Section 7 offers a summary and 

conclusions. 

 

2. Methodology and modelling approach  

This section develops a nested latent class model where unobserved differences 

in performance are modelled using two ZISF models nested in a LCSF model that, in 

turn, aims to capture unobserved differences attributable to technological or 

environmental conditions. See Figure 1 for a graphical description of the proposed 

model.  

[Insert Figure 1 here] 

                                                           
4
Kumbhakar et al. (2013, p. 67) state that “it is not clear from the finite mixture approach whether 

identifying a group of efficient firms is actually predicated on overfitting from allowing technological 

heterogeneity across the regimes”.  
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Let us first assume that there are J different technologies, and that each firm 

belongs to one and only one of these technologies. Next, we adapt in a panel data 

setting the ZISF model introduced by Kumbhakar et al. (2013) to identify behavioural 

differences among electricity distribution firms. The model assumes that some firms are 

fully efficient, while others tend to be inefficient to some extent.  

Conditional on technology j (=1,…,J), the general specification of the ZISF 

model can be written as follows: 

ln 𝐶𝑖𝑡 = 𝑓(𝑥𝑖𝑡) + 𝑣𝑖𝑡|𝑗 + 𝑢𝑖𝑡|𝑗     (1) 

wherei stands for firms, t for time, yit is a measure of firms’ cost or other performance, 

xit is a vector of cost drivers, 𝑣𝑖𝑡|𝑗 is a noise term that follows a normal distribution, and 

𝑢𝑖𝑡|𝑗 is a one-sided error term capturing firms’ inefficiency. While in the “inefficient” 

class we assume that 𝑢𝑖𝑡|𝑗~𝑁+(0, 𝜎𝑢
2),

5
 the "fully efficient" class is defined by 

imposing that the variance of the pre-truncated normal distribution is zero, i.e. 𝜎𝑢
2 = 0.

6
 

In other words, while the relevant model for the inefficient firms is the traditional 

stochastic frontier model with two random terms (SF model), the relevant model for the 

fully efficient firms is the neoclassical cost model that does not include any inefficiency 

terms (ZI model).  

Given that the researcher lacks knowledge as to whether a particular firm is 

100% efficient or not, the probability of being fully efficient or inefficient should be 

estimated simultaneously alongside other parameters of the model. Let us denote the 

probability of being inefficient as i|j. As we are interested in identifying firms that 

have persistently been fully efficient during the sample period, we do not allow i|j to 

vary over time.
7
 Following Greene (2005) we parameterize the probability of being 

inefficient as a multinomial logit function: 

Π𝑖|𝑗(𝛾𝑗) =
exp(𝛾𝑗

′𝑧𝑖)

1+exp(𝛾𝑗
′𝑧𝑖)

    (2) 

where zi is a vector of firm-specific variables which influence whether a firm is 

inefficient or not. The contribution of firm i to the conditional (on technology-class j) 

likelihood is: 

𝐿𝐹𝑖|𝑗(𝜃𝑗) = 𝐿𝐹𝑖|𝑗
𝑆𝐹 ·Π𝑖|𝑗(𝛾𝑗) + 𝐿𝐹𝑖|𝑗

𝑍𝐼[1 −Π𝑖|𝑗(𝛾𝑗)]   (3) 

where j encompasses all parameters associated with technology class j. 𝐿𝐹𝑖|𝑗
𝑆𝐹 is the 

likelihood function of a SF model with two random terms, which is the applicable 

                                                           
5
For notational ease we here assume homoscedastic distributions for the inefficiency term. As this 

assumption could bias our parameter estimates, we use heteroscedastic specifications of u in our 

empirical application.  
6
We thank William Greene for reminding us that the "efficient" class cannot be defined by simply 

imposing 𝑢𝑖𝑡|𝑗 = 0, since a continuous random variable with a positive variance does not take a value of 

zero. 
7
 Grassetti (2014) also extended the ZISF model to the panel setting. In line with the advice of a referee, 

we develop a pooled specification of our NLC model in Appendix A that does not impose time-invariant 

class probabilities. This specification could be interesting in empirical analyses where firms could change 

technology over time. For instance, dairy farms could change from an extensive milk production system 

to an intensive system, and vice versa. 
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likelihood function when firms are inefficient, and 𝐿𝐹𝑖|𝑗
𝑍𝐼 is the likelihood function of a 

normal random variable, which is the proper function when firms are fully efficient. 

Following Greene (2005, eq. 35), we model these two likelihood functions as follows: 

𝐿𝐹𝑖|𝑗
𝑆𝐹 = ∏ 𝐿𝐹𝑖𝑡|𝑗

𝑆𝐹𝑇
𝑡=1      (4) 

𝐿𝐹𝑖|𝑗
𝑍𝐼 = ∏ 𝐿𝐹𝑖𝑡|𝑗

𝑍𝐼𝑇
𝑡=1      (5) 

We next use the latent class structure to identify differences in technology 

among electricity distribution firms. The unconditional likelihood for firm i is obtained 

as the weighted sum of their technology-specific likelihood functions, where now the 

weights are probabilities of technology-class membership, 𝑃𝑖𝑗. That is: 

𝐿𝐹𝑖(𝜃, 𝛿) = ∑ 𝐿𝐹𝑖|𝑗(𝜃𝑗)𝑃𝑖𝑗(𝛿𝑗)𝐽
𝑗=1     (6) 

where θ=(θ1,…,θJ), δ=(δ1,…,δJ), and the technology-class probabilities are again 

parameterized as a multinomial logit model: 

𝑃𝑖𝑗(𝛿𝑗) =
exp(𝛿𝑗

′𝑞𝑖)

1+∑ exp(𝛿𝑗
′𝑞𝑖)

𝐽−1
𝑗=1

 ,          𝑗 = 1, … , 𝐽 − 1            (7) 

where qi is a vector of firm-specific variables. The last probability is obtained residually 

taking into account that the sum of all probabilities should be equal to one. Therefore, 

the overall likelihood function resulting from (2) and (7) is a continuous function of the 

vectors of parameters θ and δ, and can be written as: 

𝑙𝑛 𝐿𝐹 (𝜃, 𝛿) = ∑ 𝑙𝑛 𝐿𝐹𝑖  (𝜃, 𝛿)𝑁
𝑖=1 =  ∑ 𝑙𝑛{∑ 𝐿𝐹𝑖|𝑗(𝜃𝑗)𝑃𝑖𝑗(𝛿𝑗)

𝐽
𝑗=1 }𝑁

𝑖=1  (8) 

Maximizing the above maximum likelihood function gives asymptotically 

efficient estimates of all parameters. The estimated parameters can then be used to 

compute (unconditional) posterior class membership probabilities for each technology, 

and (conditional) posterior class membership probabilities for both efficient and 

inefficient firms. The unconditional posterior probabilities can first be used to allocate 

each firm to a particular technology-class, and each firm can then be allocated to a 

fully-efficient or inefficient class conditional to the technology-class allocation. 

If J=2, our NLC model can be viewed as a particular case of a standard LCSF 

model with 4 classes and 4 class-membership probabilities. However, unlike a standard 

LCSF model, the likelihood function in (8) involves two different LFs. In order to 

capture an idea of the differences between the two specifications, we next assume that 

all variables are scalars. In this case, if we ignore any time and firm subscript, we can 

rewrite our behavioural probabilities (P) and the technological probabilities () as 

follows: 

𝑃1 =
𝑒𝛿𝑞

1+𝑒𝛿𝑞  𝑃2 =
1

1+𝑒𝛿𝑞    (9) 

Π𝑆𝐹 =
𝑒𝛾𝑧

1+𝑒𝛾𝑧  Π𝑍𝐼 =
1

1+𝑒𝛾𝑧    (10) 
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By cross-multiplying the above probabilities we obtain the 4 final probabilities 

of our NLC model: 

𝑃1
𝑆𝐹 =

𝑒𝛿𝑞+𝛾𝑧

1+𝑒𝛿𝑞+𝑒𝛾𝑧+𝑒𝛿𝑞+𝛾𝑧
    (11a) 

𝑃2
𝑆𝐹 =

𝑒𝛾𝑧

1+𝑒𝛿𝑞+𝑒𝛾𝑧+𝑒𝛿𝑞+𝛾𝑧    (11b) 

𝑃1
𝑍𝐼 =

𝑒𝛿𝑞

1+𝑒𝛿𝑞+𝑒𝛾𝑧+𝑒𝛿𝑞+𝛾𝑧      (11c) 

𝑃2
𝑍𝐼  =

1

1+𝑒𝛿𝑞+𝑒𝛾𝑧+𝑒𝛿𝑞+𝛾𝑧
    (11d) 

The above mathematical expressions clearly show that our NLC model imposes 

a special structure upon the class-probabilities in a standard 4-class latent model. In 

particular, the nested nature of our model constrains the ratio of the two final 

probabilities to only rely on a subset of the estimated class-parameters and variables. 

For instance, 𝑃1
𝑆𝐹/𝑃1

𝑍𝐼 = 𝑒𝛾𝑧 , and 𝑃1
𝑆𝐹/𝑃2

𝑆𝐹 = 𝑒𝛿𝑞. 

As pointed out by a referee, equations (11a-11d) could lead us to deduce that 

some identification issues might appear if q and z have common elements. This issue is 

better discussed if next we assume that q=z. In this case, the above equations collapse to 

the following equations 

𝑃1
𝑆𝐹 =

𝑒𝜏𝑧

1+𝑒𝛿𝑧+𝑒𝛾𝑧+𝑒𝜏𝑧     (12a) 

𝑃2
𝑆𝐹 =

𝑒𝛾𝑧

1+𝑒𝛿𝑧+𝑒𝛾𝑧+𝑒𝜏𝑧     (12b) 

𝑃1
𝑍𝐼 =

𝑒𝛿𝑧

1+𝑒𝛿𝑧+𝑒𝛾𝑧+𝑒𝜏𝑧       (12c) 

𝑃2
𝑍𝐼  =

1

1+𝑒𝛿𝑧+𝑒𝛾𝑧+𝑒𝜏𝑧
     (12d) 

where 𝜏 = 𝛿 + 𝛾. As in a traditional latent class model, our final class probabilities 

depend on a single set of variables with different coefficients. The unique difference is 

that the last coefficient is the sum of the previous ones. This restriction is automatically 

imposed once we nest the ZISF models into a (another) latent class structure. This 

makes our model slightly different as compared to more traditional latent class models 

where the coefficients of the prior class probabilities vary freely across classes.  

One might be led to conclude from the foregoing discussion, that our NLC 

model can be estimated by simply imposing the above-mentioned restrictions on the 

prior-probabilities, followed by an estimate of a traditional LCSF model. However, this 

would not be the case for two reasons. First, we must also impose that the frontier 

parameters of the two pairs of classes are the same.
8
 Second, the key difference between 

our NLC model and a four-class LCSF model is that the likelihood (density) function 

appended to each class varies in our NLC model. In order to better elucidate this 

feature, let us write the overall likelihood function resulting from (11a-11d) as: 

                                                           
8
An option that is available in Limdep. 
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𝐿𝐹 = (𝐿𝐹𝑆𝐹 · 𝑒𝛾𝑧 + 𝐿𝐹𝑍𝐼 · 𝑒𝛿𝑞 + 𝐿𝐹𝑆𝐹 · 𝑒𝛿𝑞+𝛾𝑧 + 𝐿𝐹𝑍𝐼) (1 + 𝑒𝛾𝑧 + 𝑒𝛿𝑞 + 𝑒𝛿𝑞+𝛾𝑧)⁄      

(13) 

Equation (13) shows that in our NLC model the likelihood function of a given 

class depends on whether we assume that all firms in that class are fully efficient or tend 

to be inefficient. In contrast, the likelihood function in a standard latent class model is 

the same for all classes, i.e. 𝐿𝐹𝑆𝐹 or𝐿𝐹𝑍𝐼 are used in all cases. Thus, our model cannot 

be viewed as a nested model in a statistical context. As Figure 1 shows, our model is 

only nested in a four-class LCSF model from a structural point of view.  

The above-mentioned feature of our model helps to attenuate some identification 

issues. Indeed, the coefficients of both q and z variables are easier to identify because 

they are multiplying two different likelihood functions (𝐿𝐹𝑍𝐼 and 𝐿𝐹𝑆𝐹, respectively) 

when they appear alone in a probability class. Moreover, we use the same q and z 

variables (i.e. q=z=1) in the simulation exercise in Section 3, and we do not find any 

problems in distinguishing the probabilities of being inefficient from the technological 

probabilities.  

However, an additional identification problem must be discussed. Traditional 

latent class models suffer from the label- switching problems (see, e.g., Stephens, 

2000). In our case, we have just pointed out that both 𝛿 and 𝛾 can be estimated 

separately. However, we still need to decide whether they belong to the probability of 

being inefficient or the technological probabilities. This issue appears specifically when 

the (conditional) likelihood functions belong to the same parametric family. This is not 

the case in our model as both coefficients are attached to two different likelihood 

functions when they appear alone in a probability class. This characteristic guarantees 

the absence of pure label- switching.  

 

3. Simulation exercise 

In this section we perform a Monte Carlo simulation to examine the relative 

performance of four competing models (i.e. basic SFA, ZISF, LCSF and NLC) in a 

controlled experiment. Our simulation exercise may be viewed as an extension to those 

carried out by Kumbhakar et al (2013) and Rho and Schmidt (2015). In both papers, the 

frontier does not vary across the two classes of firms; only the existence or non-

existence of inefficiency differs. Our simulation examines some of their issues, but 

under the existence of unobserved differences in technology. Our simulation should 

naturally be focused on whether the proposed NLC model distinguishes in practice 

between behavioural and technological classes, an issue that has obviously not been 

addressed in the above-mentioned papers. 

In order to ease the understanding and reading of this section we avoid most of 

the technical details and results. The main features of our simulation exercises can 

however be found in Appendix B. 

We consider two scenarios in our simulation. In S-type scenarios, we allow for 

small differences in technology in the sense that only differences in the slope parameter 

are allowed. In L-type scenarios, we allow for large differences in technology in the 

sense that both the intercept and the slope parameters differ. While the differences in the 

slope parameter are aimed at measuring differences in firm’ scale economies (one of the 



 9 

main technological characteristics in electricity distribution), the differences in the 

intercept are focused on the measurement of the average effect of unobserved 

differences in weather or geographic conditions, demand features, etc. 

Two key tuning parameters of our simulations are the ratio of inefficiency and 

noise standard errors, λ=σu/σv, and the proportion of inefficient firms (hereafter P). We 

first assume that P=0.8. This value matches with the general view of many regulators of 

electricity distribution industries who consider that about 20% of regulated firms are 

efficient. This assumption is in line with efficiency improvement and evidence from 

Norway indicated a rather high average efficiency across the networks (see, e.g., 

Miguéis et al., 2012). For our model, we consider two possible λ values. When λ=1, the 

inefficiency level of the inefficient firms is not very large since both the noise and the 

inefficiency term are of a similar magnitude. When λ=2, the differences in behaviour 

between inefficiency and fully efficient firms are larger. Therefore, the identification of 

fully efficient firms is easier in this case. Another source of identification problems is 

the proportion of inefficient firms (see Kumbhakar et al., 2013; and Rho and Schmidt, 

2015 for an exhaustive analysis of this issue). In order to examine this issue in our 

framework with unobserved differences in technology, we simply reduce P in the latter 

model and set it equal to 0.6.  

In summary, our simulation exercise involves three alternative scenarios with 

small differences in technology and a similar number with large technological 

differences. In each scenario, we have estimated four competing models: basic SFA, 

ZISF, LCSF and NLC. The basic SFA model ignores both the simulated differences 

associated with the existence and non-existence of inefficient firms, and the differences 

attributable to firms’ technologies. These shortcomings are partially addressed in the 

next two models. While the ZISF model tries to deal with the underlying behavioural 

differences, the LCSF model is mainly designed to capture unobserved differences in 

technology. Our more comprehensive NLC model aims to deal with both issues 

simultaneously. All models have been estimated using maximum likelihood.  

In Table 1 we present the average correlation between the simulated and 

estimated efficiency scores. In Table 2 we provide the average correlation between the 

real (simulated) class memberships and the estimated sample allocations. All 

observations have been allocated to each technology-class and behavioural-class in 

accordance with the estimated posterior class probabilities. 

[Insert Table 1 here] 

Table 1 shows that, as expected, the basic SFA model performs poorly, 

particularly in L-type scenarios when the ignored differences in technology are larger. 

The small correlation in the SFA model indicates that this model tends to over-estimate 

firms inefficiency (scores not shown), because we have assumed that all firms are 

inefficient to some extent, whereas in fact many of them are not. For this reason, the 

correlation between efficiency scores decreases a little when the proportion of 

inefficiency firms decreases to 60%. Also, as expected, the correlation between 

efficiency scores is smaller when λ=1 and the underlying firms’ inefficiency is rendered 

more important.  

The performance of the ZISF model also worsens when the ignored differences 

in technology are larger. Interestingly enough, its performance in L-type scenarios is 

much poorer than the performance of a basic SFA model. That is, in contrast to 

Kumbhakar et al. (2013) that assumed a common technology in their simulation 
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exercises, we do not find a better prediction of firms' efficiency when we control for 

fully efficient and inefficient firms. This seems to indicate that the ZISF model is highly 

sensitive to the existence of unobserved differences in technology, and as we anticipated 

in the introductory section of this paper, it may label incorrectly the unobserved 

differences in technology as being unobserved differences in efficiency.  

The estimated coefficients in Appendix B indicate that the LCSF model is able 

to capture quite well the differences in both the intercept and the slope parameter.  

Consequently, the average correlations between the simulated and estimated efficiency 

scores in Table 1 using the LCSF model are much larger. This result thus seems to 

indicate that controlling for technological differences is much more important than 

controlling for unobserved differences in performance. The next set of results relating to 

the model’s allocation power seems to confirm this conclusion. Our NLC model merits 

similar comments. Worthy of note is the fact that all figures are better when we move 

from the LCSF model to our NLC model. This in turn indicates that the LCSF model is 

still slightly biased, because it ignores the co-existence of fully efficient and inefficient 

firms in the sample.  

In Table 2 we examine the allocation powers of each model using the computed 

correlations between real (simulated) class memberships and estimated class 

allocations. Scenario S3 for the ZISF model in this table indicates that the ZISF model 

tends to allocate firms "quite" well between the inefficient and fully efficient classes 

when the proportion of fully efficient firms is not too large and 𝜎𝑢 is also relatively 

large compared to 𝜎𝑣. Both Kumbhakar et al (2013) and Rho and Schmidt (2015) 

obtained a similar result, but here we achieve it in a framework with unobserved 

differences in technology. In this sense, it should be highlighted that the correlation 

between the simulated and estimated class allocation in the ZISF model tends to 

deteriorate substantially when the differences in technology become much larger (i.e. 

when we move from S-type Scenarios to L-type Scenarios).  

[Insert Table 2 here] 

The figures for the LCSF model indicate that the allocation power of the LCSF 

model is very high, and improves when more differences in technology are allowed. It 

is also worth noting that its allocation power barely changes with (changes in) the 

inefficiency level of the inefficiency firms and with the proportion of fully efficiency 

firms in the sample. On the other hand, the numbers for the NLC model in Table 2 

suggest that the technological-class allocation power of our NLC model is even larger 

than in the LCSF model. The better technology-class allocation of our model in turn 

suggests that the technological probabilities are not (or at least are less) contaminated by 

the behavioural probabilities. To the contrary, the larger biases in technology-class 

allocation in the LCSF model seem to indicate that its technological probabilities are 

biased to some extent by the ignored behavioural differences in performance. A 

noteworthy result is the large improvement in behavioural-allocation power when we 

move from the ZISF model to our NLC model. Again as expected, the better 

performance is more significant when the differences in technology (ignored by the 

ZISF model) are larger. In general, our results show the poor performance of the ZISF 

in this framework.  

To summarise, Table 2 helps us to discuss the identification issues of our NLC 

model, i.e. whether it is able to distinguish in practice between behavioural and 

technological classes. The large correlations that we find for the NLC model in both 

behavioural and technological-class allocations suggest overall that the proposed model 
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does not suffer from serious identification problems, and that both types of classes are 

fairly well identified in our NLC model. 

 

4. Data 

The data set used in this study is an unbalanced panel for Norwegian distribution 

utilities for the years 2004 to 2011.
9
 Norway presents a particularly suitable context and 

an interesting case for which to implement the proposed methodology. First, Norway 

was among the first countries to introduce incentive-based regulation and efficiency 

benchmarking in 1997 (based on the DEA technique) in the electricity sector. 

Therefore, much of the managerial inefficiency of the networks has, over time been 

removed. Second, Norway is the only country that explicitly incorporates quality of 

service in the form of the cost of non-delivered energy using estimated customer 

willingness-to-pay as an integrated part of the efficiency benchmarking exercise in 

incentive regulation of distribution networks. Third, unlike most countries, the 

Norwegian electricity sector consists of a large, though slowly declining (due to 

mergers and acquisitions), number of network utilities which allows the use of more 

sophisticated analytical methods.
10

 Finally, the energy regulator has systematically 

examined the effects of environmental factors such as geographic and weather 

conditions on cost and service quality performance of the utilities and has reflected 

these in the efficiency benchmarking models (see, e.g., Growitsch et al., 2012; Orea et 

al., 2015). In particular, the regulator has analysed (selected) a large (small) number of 

geographic and weather variables that might affect the firms’ cost function.  

We specify a simple cost model that, pursuant to the Norwegian benchmarking 

approach, uses social costs that internalize the cost of energy not delivered to the users 

and are thus, aligned with total private production costs of the firms as the dependent 

variable. In addition to operating expenses (OPEX), capital depreciation and its 

opportunity cost, the social costs variable also includes external costs of quality of 

service - i.e. cost of energy not supplied (CENS) due to service interruptions. CENS is 

calculated by multiplying the energy not supplied (KWh) during a specific interruption 

with a unit cost (NOK/KWh) that depends on customer type, duration, and whether the 

interruption was planned or not.
11

 Finally, OPEX includes the cost of network energy 

losses obtained by multiplying the units of energy losses with the average system price 

in NordPool wholesale market in a given year. The monetary variables finally used in 

our application are measured in 1000 NOK and have been deflated using the consumer 

price index to express them in 2004 real terms. 

Regarding the cost drivers, our cost frontier includes three outputs (CUS = number 

of customers; NL = network length, Km; DE = delivered energy
12

, GWh), and three 

                                                           
9
The data used in this study was obtained from the sector regulator, the Norwegian Water Resources and 

Power Directorate (NVE). The data for the period 2000-2003 is not used due to missing values in key 

variables, such as network size or cost of energy not supplied. Also, several firms were dropped due to 

lack of information on contextual variables or because they had unreasonable data, e.g. OPEX or CENS 

equal to zero, or negative values for new investments. Although our panel data is not balanced, most of 

the firms are observed during the whole sample period. The number of firms (119 on average) varies 

slightly over time due to a reduced number of mergers.  
10

Following a merger, NVE only collects and reports data for the merged entity. 
11

We are grateful to a referee for pointing out the full definition of CENS in Norway. 
12

Please note that since 2013, the Norwegian regulator no longer uses DE as an output and instead uses 

number of customers, length of network, and number of network stations as outputs (see Amundsveen 

and Kvile, 2015). 
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input prices (PK = capital price, regulated return of capital; PE = energy price, system 

price NordPool Spot; PL = labour price, a wage dominated index). In addition, we 

include selected major environmental variables in our analysis. In line with the 

Norwegian regulator, we include two weather variables: WIND = average arithmetic 

reference wind from measuring stations m/s and WINDEX = expected extreme wind 

exposure based on 25-30 years observation, m/s. We also use a geographic variable 

(DIS = average arithmetic distance of some reference points to coast, Km) in order to 

capture the effect of coastal climate on the networks. In Norway, this effect is related to 

problems with corrosion on network components normally caused by the combination 

of wind and salt water.
13

 We use the percentage of overhead lines (OH) of total network 

length in Km as an additional cost driver. This variable is employed to represent the 

main technical feature in this industry as firms’ decisions on for example, investment 

and maintenance for overhead and underground lines, are different. It should be noted 

that the OH variable is also used in other parts of the model in order to capture not only 

differences in technology, but also in firms’ performance. We expect the effect of 

environmental conditions on firms’ costs to depend on the technological characteristics 

of their networks. In particular, overhead lines are significantly less costly than 

underground cables but they also tend to have less reliability due to their exposure to 

weather factors. Therefore, we also interact the percentage of overhead lines with 

WIND, WINDEX and DIS.  

The technological-class probabilities are also functions of OH in order to test 

whether other and unobserved technological differences are related to the percentage of 

overhead lines. We associate a low share of overhead lines in total network length with 

more urban service areas. These service areas tend to have higher customer density 

which makes it cost efficient to use underground cables which in turn have higher 

reliability lower CENS. In principal, it is possible to specify more elaborate models to 

capture technological heterogeneity but these will vary from country to country. We 

estimated some more elaborated models but these produced similar results.  

Regarding firms’ inefficiency, we use the percentage of overhead lines and network 

length variables (i.e. OH and NL) and the number of stations (ST) either as inefficiency 

determinants or determinants of being inefficient. Finally, a time trend is included as a 

determinant of firms’ inefficiency to check whether the Norwegian regulation has been 

successful in improving the efficiency of the firms.  

Table 3 provides a descriptive summary of the variables used in this study. 

 

[Insert Table 3 here] 

 

5. Results 

 

5.1. Parameter estimates 

 

 We estimate four alternative model specifications for our empirical analysis. 

Table 4 shows the estimated coefficients of the cost models. The RSCFG model 

                                                           
13

The Norwegian regulator uses the ratio of squared wind speed over distance to coast in order to reflect 

the combined effect of these variables. 
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assumes that the inefficiency term follows a heteroscedastic half-normal distribution.
14

 

This empirical strategy not only allows us to obtain consistent estimates of both frontier 

coefficients and firm-specific inefficiency scores, but also to incorporate determinants 

of firms’ inefficiency. The ZISF model is a panel-data and heteroscedastic version of 

the (homoscedastic) model introduced by Kumbhakar et al. (2013). Unlike these 

authors, the inefficiency term here is again specified to be firm-specific. The ZISF 

model only captures unobserved differences in firm performance as it disregards the 

presence of unobserved differences in technology. In contrast, the LCSF model allows 

us to control for unobserved technological differences among firms. As it does not 

distinguish between fully efficient and inefficient utilities, we state hereafter that the 

LCSF model does not control for unobserved behavioural differences among firms. 

Like the ZISF model, the heteroscedastic specification of the LCSF model allows for 

behavioural differences. However, while these differences in the LCSF model are only 

related to the magnitude (shape) of the inefficiency term, the behavioural differences 

captured in the ZISF model pose a stronger dilemma: the existence or absence of 

inefficiency. Finally, the NLC model takes into account both behavioural and 

technological differences among firms using the specification outlined in Section 2. 

[Insert Table 4 here] 

Our four models are estimated using a (restricted) translog cost function that can 

be interpreted as a second-order approximation of the companies’ underlying cost 

function. We therefore add the input prices to our cost function because they do not 

vary across utilities, but vary over time. This precludes using quadratic terms and 

interactions with these variables. A time trend is not included in the cost frontier also 

because it is highly correlated (99%) with the labour price. As usual, homogeneity of 

degree one in prices is imposed by normalizing cost, labour price and capital price with 

the energy price. Each explanatory variable is measured in deviations with respect to its 

mean, such that the first-order coefficients in Table 4 can be interpreted as the cost 

elasticities/derivatives evaluated at the sample mean. 

In both LCSF and NLC models we assume the existence of only two classes to 

focus our discussion on the particular characteristics of the proposed model. We found 

in Llorca et al. (2015) and others papers estimating latent class models, that a 

reasonable and practical trade-off between a good description of the data and sheer 

complexity, is quite often provided by a model with two classes. The number of classes 

in a latent class framework could be examined using several information criteria tests 

(see, e.g., Orea and Kumbhakar, 2004). Even if two classes had not been the case in our 

application, we would still have expected our efficiency scores to be only slightly 

underestimated because the largest change in efficiencies is likely to occur when we 

move from one class to two classes (see Llorca et al., 2014). 

As our results might depend on the empirical strategy chosen, in order to allow 

for unobserved differences in both technology and firms’ performance, it is worth 

examining the goodness-of-fit of the four alternative specifications of our cost model. 

Given the estimated values of the likelihood function in Table 4, we can conclude that 

the well-known AIC and BIC tests would allow us to reject the RSCFG model in favour 

of the ZISF model. This implies that controlling for unobserved differences in firms 

                                                           
14

The efficiency covariates in this model are treated as determinants of the variance of inefficiency term. 

As pointed out by Alvarez et al. (2006), this specification satisfies the so-called scaling property, which 

has several appealing features, and tends to yield less convergence problems than other heteroscedastic 

specifications of the SFA model.  
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inefficiency is important in our application. Therefore, ignoring the existence of the two 

types of firms (fully efficient vs. inefficient) in our sample, might bias both efficiency 

scores and technological coefficients. The RSCFG model would also be rejected in 

favour of the LCSF model, indicating that controlling for unobserved differences in firm 

technology (and in the determinants of firm inefficiency) is also important in our 

application. The previous three specifications would, in turn, be rejected in favour of the 

NLC model that allows us to include both types of unobserved heterogeneity. Based on 

these comparisons, we conclude that the NLC model is preferred, and that results for 

firm technology and efficiency using the more restrictive RSCFG, LCSF and ZISF 

models should be interpreted with caution. 

In general, all models perform quite well as all of the first-order coefficients have 

the expected sign and their magnitudes are also reasonable from a theoretical point of 

view. The first-order coefficients of all three outputs are positive and statistically 

different from zero. A similar observation can be made with respect to the coefficients 

of input prices, which are also positive and statistically significant. The sum of the first-

order coefficients of customer numbers and energy delivered, allows us to measure 

density economies (i.e. output expansion in the existing service areas). The estimated 

coefficients for these two outputs indicate that electricity distribution networks have 

natural monopoly characteristics when an additional network is not required to meet 

additional demand.
15

 Obviously, the returns to scale are less if meeting the extra 

demand requires enlarging the current network. The scale economies can be computed 

adding the coefficients of the three output variables. The estimated coefficient for 

network length suggests that the scale economies are about 10 percentage points less 

than the density economies.  

The frontier coefficient of OH is negative and statistically significant in all models, 

indicating that the larger the percentage of overhead lines, the smaller is the total cost. 

This result indicates that, although underground cables are probably negatively 

correlated with CENS and reduce OPEX, they are more costly and increase total costs. 

The LCSF and NLC models in turn indicate that the technology in this industry exhibits 

some heterogeneity. Although the output elasticities evaluated at the sample mean are 

similar in the two classes in both models, the role of technological heterogeneity is 

particularly appreciated when we compare the second-order coefficients of the three 

outputs. 

The estimated coefficients for the weather variables (WIND and WINDEX) and the 

distance to coast geographic variable (DIS), suggest that there are notable differences 

among the utilities in those costs attributable to different environmental conditions. It is 

worth mentioning that most coefficients of OH interacting with these three contextual 

variables are statistically significant, indicating that the effect of any of the weather 

variables is larger when the importance of overhead lines increases. While the 

coefficients of WIND are negative (but rarely significant), the effect of WINDEX on 

firms’ costs is mostly significant and positive indicating that a higher exposure to wind 

implies larger costs to the distribution networks. On the other hand, the coefficient of 

the distance to the coast is always negative. The combination of both wind and distance 

to coast effects indicates that inland weather conditions are, as expected by the 

regulator, likely to be less severe than coastal weather conditions. 

                                                           
15

Also Salvanes and Tjøtta (1998) find evidence of natural monopoly characteristics in the Norwegian 

electricity distribution networks. 
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We have performed several Wald tests to examine whether the environmental 

variables are jointly significant. We rejected that they are simultaneously equal to zero 

in all models. Interestingly, using the LCSF and NLC models, we could not reject that 

their coefficients are the same in both technological classes. This seems to indicate that 

the unobserved heterogeneity is mainly to do with the effect of economic-based cost 

drivers (i.e. customers, delivered energy, network length, etc.). On the other hand, and 

as suggested by a referee, we have also included the percentage of sea cables to control 

given the fact that sea cables are by far the most expensive type of cables.
16

 The 

coefficient of this variable was not significant in our NLC model either as a cost driver 

or as a determinant of the technological probabilities, and the sample partition proved 

the same as before. Results using the LCSF model deserve similar comments and 

overall these outcomes seem to indicate that the latent structure of each of the LCSF and 

NLC models is already capturing the sea cables issue, conditional on the set of 

explanatory variables. Furthermore, the percentage of sea cables is correlated with the 

DIST and WIND/WINDEX variables. 

In addition to the frontier parameters, Table 4 displays the coefficients of the 

variables that are related to the inefficiency term, as determinants of either the 

inefficiency term or the probability of being inefficient. Although the significance of 

inefficiency determinants varies between models and classes, several results common to 

the four alternative specifications of our cost model are worth mentioning.  

First, the negative sign for the time trend also suggests, albeit not always 

significant, that the regulation system in Norway has incentivised firms to improve their 

performance during the sample period. Second, we obtain a negative coefficient for NL 

in both RSCFG and LCSF models indicating that larger utilities tend to be more 

efficient than smaller utilities. In contrast, the positive coefficients of ST and OH 

indicate that it is more difficult to manage firms with more stations per kilometre of 

network and with more overhead lines. Third, none of the aforementioned technological 

characteristics have significant effects on the distribution of inefficiency in the so-called 

urban class of the LCSF model (the labels are justified in the next sub-section). They 

are also not statistically significant when we move to the NLC model that distinguishes 

between inefficient and fully efficient firms. Hence, we do not find evidence that these 

technology features make the operation of these distribution networks more costly. 

Regarding the rural class, here none of the technological features considered have a 

significant effect on the distribution of inefficiency for the inefficient farms, but two of 

them (network length and number of stations) do have significant effects on the 

probability of being fully efficient.
17

 Therefore, as pointed out by a referee, the 

inclusion of behavioural and technological class features in the model is relevant to the 

significance of inefficiency determinants, as well as to the conclusions that can be 

derived from this analysis.  

While the technological variables included as efficiency determinants are still 

significant in the ZISF model, the probability of being inefficient does not depend on 

any covariate. This indicates that each firm has the same probability of being fully 

efficient, and they cannot use their size or other characteristics of their network as a 

reason for not being 100% efficient. A similar comment can be made regarding one of 

the classes of the NLC model since the probability of being inefficient in the urban 

                                                           
16

 We thank an anonymous referee for pointing out this issue. 
17

 Rho and Schmidt (2015) find a similar result using farm data. 
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class does not depend on any covariate. In contrast, the probability of being inefficient 

in the rural class decreases with network size and increases with number of stations.  

Regarding the determinants of the technological probabilities, the coefficient of 

OH is negative, indicating that firms with a greater percentage of overhead lines tend to 

belong to the rural class. This is an expected outcome as firms with more overhead 

lines are more likely to be serving rural areas. Following advice from a referee, we have 

estimated more elaborated models including environmental variables (WIND, 

WINDEX and DIS) as determinants of the technological probabilities. They were not 

statistically significant and the sample partition was completely invariant to their 

inclusion. Similar comments can be made regarding the inclusion of a density measure, 

which was not significant because higher customer density in urban areas tends to be 

associated with underground cables (and hence negatively correlated with OH).  

 

5.2.Sample partitions 

Table 5 provides the average value of some of variables included in the 

empirical analysis for each technological and behavioural class.
18

 Though Norway is 

not a very populated country, the figures in Table 5 allow us to label the two 

technological classes respectively as (more) urban and rural. Indeed, the firms in the 

first class have more customers on average and deliver more electricity than the utilities 

included in the second class. As expected, the density in the urban class is much larger 

than in the rural class. In addition, the percentage of overhead lines in the urban class is 

relatively small (63%) compared to the percentage of overhead lines in the rural class 

(71%). The rural areas are often broader than the urban areas. This in turn explains the 

larger number of stations per kilometre of network in the rural class. Regarding the 

behavioural classes, and in accordance with the estimated coefficients in Table 4, we 

conclude from Table 5 that the inefficient firms are larger (in terms of number of 

customers and electricity delivered) than the fully efficient firms, and tend to be 

operating in more populated areas (i.e. with larger density) where the percentage of 

overhead lines is less than in a rural area. 

 [Insert Table 5 here] 

In Table 6 we compare the sample partition of the NLC model that controls for 

unobserved differences in technology and firm behaviour with those obtained using 

LCSF and ZISF that only capture differences in one of the above-mentioned 

dimensions. Most observations belong to the rural class regardless of the model. 

However, while our preferred model allocates 60% of the observations to the rural 

class, the LCSF model balances out this allocation slightly as the larger (smaller) class 

only includes 56% (44%) of the sample. 

 [Insert Table 6 here] 

The last three columns in Table 6 are focused on the identification of fully 

efficient and inefficient firms using the ZISF and NLC models. These columns firstly 

indicate that 335 observations (i.e.42 firms) are identified as fully efficient firms in the 

ZISF model, which represents 35% of all observations in our sample. In contrast, 40% 

of the observations (i.e. 48 firms) are labelled as fully efficient firms in the NLC model. 

                                                           
18

To this end we have used our more comprehensive NLC model. Similar results are obtained using the 

LCSF model. We have dropped those variables where the mean differences were not statistically 

significant. 
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In other words, some firms are wrongly labelled as inefficient in the simple ZISF model 

because their inefficiency scores have been computed using common cost frontiers and 

common efficiency coefficients (two assumptions that are rejected in our application). 

In addition, 32 firms in the ZISF model are wrongly labelled as fully efficient as they 

are not identified as fully efficient using our preferred NLC model. Note as well that all 

firms in the LCSF model are inefficient to some extent, while only 43% of observations 

allocated to the rural class in the NLC model are labelled inefficient. This problem is 

less severe in the urban class as this percentage increases up to 85%. Overall this 

explains why for the rural class we find a relatively small correlation (78%) between 

the efficiency scores of the LCSF and NLC models. 

For robustness analysis, we also estimate our models allowing the membership 

probabilities to vary across the two regulatory periods covered by our data set.
19

 Indeed, 

while our first three years (from 2004 to 2006) belong to the 2002-2006 price control 

review, the remaining years of our data set (from 2007 to 2011) cover the duration of 

the posterior price control review.
20

 When we relax the assumption of time-invariant 

class probabilities, the percentage of fully efficient firms in the ZISF model increases to 

39%. The results from the ZISF model with two sub-periods also indicate that fully-

efficient behaviour is more frequent in the second sub-period (46%) than in the first one 

(26%). In the NLC model with two sub-periods, the percentage of fully efficient firms is 

fairly similar (40%) to the percentage obtained in the case of complete time invariant 

class probabilities (39%). As in the simple ZISF model, fully-efficient behaviour is 

more frequent in the second sub-period than in the first one.  

Also for robustness purposes, we estimate more restrictive homoscedastic 

versions of our cost models, but the performed model selection tests rejected these 

specifications in favour of their heteroscedastic counterparts.
21

 Although these models 

provided very similar coefficients for the cost function, the number of fully efficient 

firms tends to increase when the inefficiency determinants and the determinants of 

inefficiency probability are not included in the models. By way of comparison, we 

estimate the model using a two-stage procedure, even though a single-step approach is 

preferred. Once the LCSF model is estimated, we estimate a separate ZISF model for 

each class. The correlation coefficient between the efficiency scores is quite high 

(91.5%) and the sample partitions are also relatively robust. However, some firms are 

wrongly labelled as inefficient and vice versa.  

 

5.3. Efficiency scores 

Figure 2 depicts the annual average efficiency score of all firms in the case of 

the RSCFG and LCSF models. For the ZISF and NLC models, only the average 

efficiency score of those firms that are not fully efficient is presented. Our efficiency 

estimates are high, ranging from 87 to 97%. The high level of efficiency of this industry 

is most probably attributable to the maturity of the Norway as a regulator that has 

consistently been supervising and incentivizing the Norwegian utilities to perform 

efficiently. Similar figures are obtained in Miguéis et al. (2012) using a DEA method 

for the period 2004 to 2007, and in Growitsh et al. (2012) using a SFA approach for the 
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The parameter estimates of these models are available from the authors upon request. 
20

A new regulation regime started in 2007 but the firms did not have enough time to grasp the 

mechanisms and incentives of the new scheme in the first year. We are thankful to an anonymous referee 

for bringing this to our attention. 
21

The homoscedastic estimates are available from the authors upon request. 
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2001-2004 period. The latter authors also found that efficiency estimates are strongly 

dependent on the empirical strategy used to control for observed and unobserved 

heterogeneity.  

[Insert Figure 2 here] 

The average efficiency level of the inefficient firms in the ZISF model is 87%. 

The estimated efficiency level of these firms in the RSCFG model is much higher, 97%. 

This result thus tends to confirm Kumbhakar et al. (2013) findings, but with the variant 

now that we use heteroskedastic specifications of both SFA and ZISF models: the 

efficiency scores in a standard SFA model are overestimated if we are not able to 

identify the set of fully efficient firms. The same comment can be made regarding the 

inefficient firms of the rural class of the NLC model as their average efficiency level 

(91%) is far from that estimated (96%) using the RSCFG model. However, the average 

efficiency level of the inefficient firms in the urban class of the NLC model is not 

seriously over or under-estimated as the efficiency score using the RSCFG model is of 

similar magnitude on average. 

It is interesting that the patterns of LCSF and NLC in the rural class are similar 

to the ZISF pattern, while the patterns of LCSF and NLC in the urban class are similar 

to the RSCFG pattern. Both ZISF and RSCFG ignore unobserved differences in 

technology, but provide a different treatment to the existence of fully efficient firms in 

the data. This result is reasonable because the percentage of fully efficient firms in the 

urban class is only 15%. Hence, the pattern in the urban class tends to mimic the 

pattern of the model that ignores the existence of fully efficient firms. In contrast, the 

percentage of fully efficient firms in the rural class is quite high, about 57%. Thus, the 

pattern in this case tends to mimic the pattern of the ZISF model that allows for fully 

efficient firms.  

On the other hand, the computed coefficients of correlation between the NLC 

and the ZISF and LCSF efficiency scores indicate that ignoring unobserved differences 

either in technology or in firms’ behaviour might seriously over or under-estimate the 

ranking of firms in accordance with their estimated efficiency levels. For instance, the 

computed coefficient of correlation between the ZISF and NLC efficiency scores is only 

about 42%. This correlation drops to 25% if we only use the observations belonging to 

the urban class of this model. In the rural class, the correlation between LCSF and NLC 

models is relatively large, but far from 100%.  

 

6. Policy implications 

 

In this section we summarize and discuss some of the policy implications that 

could be inferred from our paper. First of all, both our simulation exercise and our 

empirical application suggest that controlling for differences in technology is more 

important than controlling for differences in performance (in our case using a model 

that allows identifying fully efficient firms or modelling firms’ inefficiency). In this 

sense, for instance, regulators benchmarking utilities should try to use some of the 

models proposed in the literature to control for unobserved environmental factors that 

might have an effect on regulated utilities’ costs. In our case, we propose using a latent 

class model approach. Other options are obviously available. For instance, depending 
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on their human resources, regulators may prefer using other parametric or non-

parametric frontier techniques to achieve this aim (see, for instance, Fried et al, 2008). 

A complementary strategy is to collect the relevant environmental data (i.e. the so-

called contextual variables). Obviously, this strategy will again depend on available 

human or financial resources.   

Our paper therefore advocates prioritizing actions aiming to better fit firms’ 

technology over those actions aimed at the control of (un)observed differences in 

performance. Obviously, this is more relevant in countries (e.g. Germany, Sweden, 

Finland, Peru and Brazil) where electricity distribution networks are operating in 

regions with diverse weather and geographic conditions, population structure and 

settlement configurations, electricity demand patterns, density degrees (urban vs. rural), 

etc. Even though regulators in these countries are making a great effort to collect data to 

properly control for some of the aforementioned differences in environmental 

conditions, they still need to control for those unobserved (sometimes huge) differences 

which might jeopardize most of the benchmarking exercises carried out by the 

regulators.  

The regulators may also be interested in identifying fully efficient network 

utilities that can be used as “reference networks” for other (comparable) utilities. The 

zero inefficiency stochastic frontier model introduced recently by Kumbhakar et al. 

(2013) can be used to achieve this aim. However, this model does not control for 

unobserved differences in technology or environmental conditions. In this sense, our 

results are useful for regulators (e.g. in Chile and Argentina) that use the so-called 

“model company” approach to identify reference networks to benchmark other utilities 

(Jamasb and Söderberg, 2010; Silva, 2011). In these countries, engineering bottom-up 

models are built to provide an estimation of the efficient costs that would be incurred by 

a distribution company operating in a certain geographical area. The fully efficient firms 

identified in our NLC model can be viewed as “real-world” counterparts of some 

optimally designed grids that are built through engineering models. Our results are thus 

useful to examine the robustness of the engineering reference networks that ignore all 

the inner complexities of real networks, the potential trade-offs they face, the existence 

of both random shocks and unobserved differences in environmental conditions beyond 

the control of the distribution firms. 

Finally, the fact that we have found 40% of fully efficient firms in the 

Norwegian electricity distribution industry, should be viewed as additional empirical 

evidence that backs the effort made by the NVE regulator to encourage Norwegian 

networks to perform better. That is, the great efficiency of this industry is as stated 

previously a direct consequence of the maturity of the Norwegian regulator that has 

been supervising and incentivizing the Norwegian utilities to perform efficiently. On the 

other hand, we should take into account that the above percentage of fully efficient 

firms may be slightly overestimated in our application due to the efficiency level of 

these firms which is traditionally very large (see, e.g., Miguéis et al., 2012, and Cheng 

et al., 2014). In this sense, Rho and Schmidt (2015) pointed out that the ZISF model (or 

extensions of this model such as that proposed in our present paper) might work well in 

other (less mature) electricity distribution industries all over the world.  
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7. Conclusions 

In many countries, electricity regulators aim to measure the network utilities’ 

efficiency against best practice performance. However, errors in identifying the correct 

benchmark firms or measuring their efficiency have important financial implications for 

all the less efficient firms against which they are compared. Therefore, obtaining 

reliable measures of firms’ inefficiency often requires controlling for unobserved 

differences in the firms’ technology or in the geographical and weather conditions under 

which each utility operates. Several well-known latent class stochastic frontier models 

now allow researchers (and regulators) to account for the above-mentioned technology 

heterogeneity.  

The present paper extends the ZISF approach to take into account the heterogeneity 

in firms’ technology as well as in their environmental conditions. We take advantage of 

the differences in the nature of both sources of unobserved heterogeneity to develop a 

nested latent class (NLC) model. The behavioural differences are modelled using two 

ZISF models that are in turn nested into a latent class structure that aims to capture 

unobserved differences in technology or environmental conditions. To our knowledge, 

the present study is the first to propose a nested latent class model to distinguish 

between fully efficient and inefficient firms when the underlying technology is 

heterogeneous. The present paper is also the first to introduce the zero-inefficiency 

approach in a regulatory context. 

We illustrate the proposed models with an application to the Norwegian distribution 

network utilities for the period 2004-2011. Following the Norwegian benchmarking 

approach, four alternative specifications of a cost model are estimated. Overall our 

results suggest the presence of notable differences in costs among utilities attributable to 

different weather conditions and locations. We have also obtained evidence as to the 

relationship between firms’ inefficiency and some characteristics of their networks. In 

particular, most of our specifications suggest that larger networks tend to be more 

efficient than smaller ones, and that it is more difficult to manage firms with more 

numerous stations and overhead lines. 

Based on the values of the estimated likelihood functions, we conclude that the 

NLC model is the preferred model, and that the results for the firms’ technology and 

efficiency using the RSCFG, LCSF and ZISF models should be interpreted with 

caution. For instance, we have shown that our preferred model splits the sample into 

groups in rather different ways compared to more restrictive LCSF and ZISF models. 

Therefore, the efficiency scores in both LCSF and ZISF models are expected to be 

somewhat biased. In this sense, we have found that the efficiency scores of inefficient 

firms tend to be biased upwards if we do not distinguish between inefficient and fully 

efficient networks. The unobserved differences in technology could cause large biases 

in the estimated efficiency scores if they are ignored. On the other hand, our NLC 

model identifies a larger number of fully efficient firms than the ZISF model, indicating 

that some firms in the ZISF model are wrongly labelled as inefficient. In addition, other 

firms are wrongly labelled as fully efficient by the ZISF model. 

From a policy point of view, both the large efficiency scores and the 40% of fully 

efficient firms found in our application suggest that Norwegian regulators have been 

able to encourage their networks to improve their performance during the sample 

period. For any regulator, our paper (including the simulation exercise) advocates 

prioritizing actions aiming to better fit firms’ technology over actions aiming to control 

for (un)observed differences in performance. This obviously does not preclude that 
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identifying differences in relative firms’ efficiency would be still important to tune 

firms’ incentives or to identify practical strategies to improve firms’ efficiency. 
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Table 1. Correlation between simulated and estimated efficiency scores 

Scenario λ P Basic SFA ZISF LCSF NLC 

S1 1 0.8 0.425  0.375  0.409  0.470  

S2 2 0.8 0.624  0.640  0.744  0.782  

S3 2 0.6 0.620  0.681  0.739  0.817  

              

Scenario λ P Basic SFA ZISF LCSF NLC 

L1 1 0.8 0.357  0.230  0.397  0.456  

L2 2 0.8 0.519  0.375  0.748  0.785  

L3 2 0.6 0.509  0.446  0.743  0.819  

 

 

Table 2. Correlation between simulated and estimated firms' allocations 

        Behavioural allocation   Technological Allocation 

Scenario λ P   ZISF NLC   LCSF NLC 

S1 1 0.8   0.304  0.403    0.857  0.860  

S2 2 0.8   0.586  0.768    0.863  0.877  

S3 2 0.6   0.665  0.822    0.867  0.892  

                  

Scenario λ P   ZISF NLC   LCSF NLC 

L1 1 0.8   0.152  0.383    0.944  0.946  

L2 2 0.8   0.241  0.762    0.939  0.950  

L3 2 0.6   0.334  0.820    0.937  0.954  
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Table 3. Descriptive statistics of the data. 

  Mean St.Dev. Min Max 

COST 77700.02 132024.01 2343.05 793884.71 

PK 0.06 0.01 0.05 0.08 

PL 163.67 16.99 139 189.5 

PE 331.02 73.94 234.6 436.3 

CUS 16753.17 33229.86 348 182746 

ST 809.9 1381.62 29 9428 

DE 432406.39 875129.47 6915 5200000 

NL 661.83 1036.34 30 6542 

WIND 25.5 2.44 22 31 

WINDEX 5.28 1.04 2.71 8.13 

DISTANCE 53824.79 55649.33 190.96 196377 

OH 0.68 0.19 0.14 0.97 
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Table 4. Parameter estimates.  

  RSCFG ZISF LCM NESTED LCM 

Parameters Coef. s.e. Coef. s.e. Coef. s.e. Coef. s.e. Coef. s.e. Coef. s.e. 

Cost frontier function      Urban Class Rural Class Urban Class Rural Class 

Intercerpt 10.554 0.012 10.493 0.005 10.454 0.015 10.623 0.009 10.444 0.019 10.611 0.008 

lnCUS 0.335 0.034 0.377 0.020 0.329 0.032 0.370 0.023 0.373 0.055 0.384 0.034 

lnNL 0.465 0.017 0.504 0.012 0.499 0.027 0.509 0.015 0.511 0.033 0.479 0.013 

lnDE 0.116 0.029 0.063 0.019 0.132 0.032 0.087 0.021 0.093 0.042 0.088 0.031 

0.5·lnCUS
2
 0.176 0.165 0.268 0.108 -1.043 0.313 0.035 0.152 -0.961 0.495 0.007 0.136 

0.5·lnNL
2
 -0.004 0.041 -0.108 0.025 -0.246 0.041 0.169 0.039 -0.254 0.093 0.249 0.042 

0.5·lnDE
2
 0.071 0.080 0.088 0.049 -0.256 0.229 0.018 0.117 -0.149 0.344 0.007 0.115 

lnCUS·lnNL -0.041 0.074 0.008 0.043 0.689 0.094 -0.018 0.067 0.764 0.119 -0.070 0.055 

lnCUS·lnDE -0.115 0.114 -0.201 0.076 0.580 0.260 0.045 0.128 0.473 0.411 0.084 0.119 

lnNL·lnDE 0.047 0.061 0.081 0.035 -0.489 0.075 -0.134 0.055 -0.550 0.090 -0.144 0.048 

lnPK 0.187 0.026 0.268 0.034 0.235 0.046 0.199 0.033 0.226 0.057 0.200 0.029 

lnPL 0.764 0.044 0.670 0.071 0.678 0.076 0.769 0.065 0.687 0.089 0.771 0.063 

OH -0.289 0.047 -0.352 0.035 -0.442 0.062 -0.443 0.075 -0.470 0.067 -0.202 0.049 

WIND -0.005 0.003 -0.003 0.002 0.002 0.002 0.005 0.003 0.000 0.003 0.002 0.003 

WINDEX 0.019 0.007 0.021 0.004 -0.035 0.007 -0.007 0.007 -0.034 0.010 0.000 0.013 

lnDIS -0.015 0.004 -0.009 0.002 -0.017 0.003 -0.018 0.003 -0.025 0.006 -0.017 0.004 

OH·WIND -0.094 0.018 -0.108 0.011 -0.116 0.012 -0.170 0.025 -0.140 0.023 -0.128 0.020 

OH·WINDEX 0.225 0.036 0.248 0.022 0.292 0.034 0.413 0.080 0.344 0.047 0.340 0.080 

OH·lnDIS -0.101 0.021 -0.105 0.015 -0.032 0.025 -0.047 0.027 -0.014 0.042 -0.022 0.036 

Random noise                      

Intercept -2.080 0.025 -2.484 0.032 -2.618 0.040 -2.542 0.038 -2.693 0.055 -2.628 -62.49 
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Table 4. Parameter estimates (cont.) 

  RSCFG ZISF LCSF NLC 

Parameters Coef. s.e. Coef. s.e. Coef. s.e. Coef. s.e. Coef. s.e. Coef. s.e. 

Inefficiency term                      

Intercept -1.743 0.288 -1.696 0.102 -1.355 0.533 -3.567 0.362 -1.242 0.681 -1.978 0.270 

t -0.538 0.218 -0.020 0.021 -0.607 0.339 -0.040 0.044 -0.511 0.325 -0.057 0.038 

lnNL -1.866 0.959 -0.805 0.164 -0.512 0.783 -3.795 0.977 0.036 1.158 0.125 0.892 

lnST 1.950 0.980 0.678 0.173 0.682 0.763 2.538 0.773 0.218 1.139 -0.376 0.768 

OH 0.661 1.215 0.483 0.251 -0.282 0.978 4.933 1.269 0.487 1.176 1.526 0.860 

Zero inefficiency-class probabilities                      

Intercept     0.664 0.309         2.537 3.624 -0.080 0.670 

lnNL     0.072 1.463         -3.305 11.515 -8.110 3.754 

lnST     -0.419 1.370         2.532 10.418 7.342 3.583 

OH     -0.955 1.830         -5.594 11.953 -8.797 5.505 

Technology-class probabilities                      

Intercept         -0.259 -1.326     -0.442 -2.230     

OH         -2.748 -1.706     -2.360 -1.354     

Obs. 957   957   957       957       

LF 612.761   730.02   931.018       971.594       

Mean LF 
0.640   0.763   0.973       1.015    

Parameters 25  29  52    60    

AIC -1175.52  -1402.06  -1758.04    -1823.19    

BIC -1053.93 
 

-1261.01 
 

-1505.12 
   

-1531.36 
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Table 5. Average values for each NLC class. 

Variable 
Technological classes  Behavioural classes  

Urban Rural Efficient Inefficient 

CUS 23938 11959 13753 18737 

DE 631074 299846 344410 490612 

ST 1004 680 836 793 

NL 816 559 742 609 

DENSITY 24.5 19.3 15.6 25.2 

OH (%) 63% 71% 78% 61% 

Observations 383 574 381 576 

      Note: DENSITY is measured as CUS/NL. 

 

 

Table 6. Sample partitions 

  Technological classes Behavioural classes 

Model Urban Rural All Inefficient Efficient All 

ZISF  - -   - 623 334 957 

LCSF 422 535 957  -  - -  

NLC 383 574 957 576 381 957 
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Figure 1. Structure of the proposed nested latent class model  

 

 

 

 

Figure 2. Annual efficiency scores 
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APPENDIX A 

Pooled specification of the NLC model 

This appendix develops a pooled specification of our NLC model that does not 

impose time-invariant class probabilities. There are not too many differences between 

the pooled and panel specification of the NLC model. Indeed, the cost frontier in the 

pooled specification is the same as in equation (1) and the probabilities of being 

inefficient and the technological-class probabilities are again modelled as two 

multinomial logit functions, as in equations (2) and (4). However, we now assume that 

they are firm and time specific:  

Π𝑖𝑡|𝑗(𝛾𝑗) =
exp( 𝛾𝑗

′𝑧𝑖𝑡)

1 + exp(𝛾𝑗
′𝑧𝑖𝑡)

 

𝑃𝑖𝑡𝑗(𝛿𝑗) =
exp(𝛿𝑗

′𝑞𝑖𝑡)

1+∑ exp(𝛿𝑗
′𝑞𝑖𝑡)

𝐽−1
𝑗=1

 ,          𝑗 = 1, … , 𝐽 − 1             

The pooled specification of the unconditional likelihood is also firm and time 

specific. It now can be written as: 

𝐿𝐹𝑖𝑡(𝜃, 𝛿) = ∑ {𝐿𝐹𝑖𝑡|𝑗
𝑆𝐹Π𝑖𝑡|𝑗(𝛾𝑗) + 𝐿𝐹𝑖𝑡|𝑗

𝑍𝐼 [1 −Π𝑖𝑡|𝑗(𝛾𝑗)]}𝑃𝑖𝑡𝑗(𝛿𝑗)𝐽
𝑗=1   (1A) 

The overall likelihood function can be obtained once we add equation (1A) 

across firms and over time: 

𝑙𝑛 𝐿𝐹 (𝜃, 𝛿) = ∑ ∑ 𝑙𝑛 𝐿𝐹𝑖𝑡 (𝜃, 𝛿)𝑇
𝑡=1

𝑁
𝑖=1    (2A) 

 

 

 



 32 

APPENDIX B 

Simulation exercise details 

We consider a very simple data generating process: 𝑦𝑖𝑡 = 𝛼𝑗 + 𝛽𝑗𝑥𝑖𝑡 + 𝑣𝑖𝑡 + 𝑢𝑖𝑡, 

where 𝛼𝑗 and 𝛽𝑗 are the technological parameters of technology j (=1,2); 𝜀𝑖𝑡 = 𝑣𝑖𝑡 + 𝑢𝑖𝑡  

where 𝑣𝑖𝑡~𝑁(0, 𝜎𝑣
2) and 𝑢𝑖𝑡~𝑁+(0, 𝜎𝑢

2) with probability P and 𝑢𝑖𝑡 = 0 with probability 

1-P. We generate 𝑥𝑖𝑡 from a 𝑁(0,1). As the non-negative inefficiency term is added to 

the noise term, 𝑦𝑖𝑡 can be interpreted as a cost variable. All our experiments are set so 

that 𝜎𝜀
2=0.1 in order to get a relatively large goodness-of-fit since most SFA 

applications use data from electricity distribution networks.  

We carry out our simulations assuming that there are two different technologies 

in our data. They could differ only in the slope parameter (S-type scenarios), or in both 

the intercept and the slope parameter (L-type scenarios). In S-type scenarios, we assume 

that α1=α2=10, β1=1 and β2=0.5. In L-type scenarios, we assume that α2=α1+0.5. We 

consider two possible values for the proportion of inefficient firms, P=0.6 and P=0.8. In 

the first case, we assume that λ=2. In the second case, in addition to λ=2, we also 

assume a lesser value for λ (i.e. λ=1) in order to examine the role of larger inefficiencies 

in our data. In summary, our simulation exercise involves the following six scenarios: 

 

1 2 3 

S-type L-type S-type L-type S-type L-type 

β1=1 

β2=0.5 

α1=10 

α2=10 

α1=10 

α2=10.5 

α1=10 

α2=10 

α1=10 

α2=10.5 

α1=10 

α2=10 

α1=10 

α2=10.5 

λ=1 λ=2 

P=0.8 P=0.6 

 

For all the replications we consider that N=100 and T=5 in each technology-

class. Therefore, the total number of observations in replication is 1,000. In order to 

identify the observations that are fully efficient in each technology, we generate 1,000 

values from a uniform distribution and set 𝑢𝑖𝑡 = 0 in those observations where the 

generated value is larger than P. All of our simulations involve estimating four 

competing models (Basic SFA, ZISF, LCSF, and NLC). All of them are based on 500 

replications. This implies that our simulation exercise requires estimating about 12,000 

models. We maximize the likelihood by a direct optimization with respect to all of the 

parameters using GAUSS. 

The mean, bias, and MSE of the technological parameter estimates are shown below: 
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Scenario S1 

 

Scenario L1 

    

(λ=1, P=0.8, α1=α2, β1≠β2) 

 

(λ=1, P=0.8, α1≠α2, β1≠β2) 

Model 

 

Coef. 

 

value mean bias mse 

 

value mean bias mse 

ALS 

 

α1 

 

10 9.964 -0.036 0.009 

 

10 10.173 0.173 0.053 

  

β1 

 

1 0.750 -0.250 0.063 

 

1 0.765 -0.235 0.056 

  

α2 

 

10 9.964 -0.036 0.009 

 

10.5 10.173 -0.327 0.129 

  

β2 

 

0.5 0.750 0.250 0.063 

 

0.5 0.765 0.265 0.071 

ZISF 

 

α1 

 

10 10.027 0.027 0.007 

 

10 10.175 0.175 0.031 

  

β1 

 

1 0.750 -0.250 0.063 

 

1 0.813 -0.187 0.035 

  

α2 

 

10 10.027 0.027 0.007 

 

10.5 10.175 -0.325 0.106 

  

β2 

 

0.5 0.750 0.250 0.063 

 

0.5 0.813 0.313 0.098 

LCSF 

 

α1 

 

10 9.967 -0.033 0.009 

 

10 9.974 -0.026 0.009 

  

β1 

 

1 1.001 0.001 0.000 

 

1 0.998 -0.002 0.000 

  

α2 

 

10 9.974 -0.026 0.008 

 

10.5 10.485 -0.015 0.009 

  

β2 

 

0.5 0.499 -0.001 0.000 

 

0.5 0.501 0.001 0.000 

NLC 

 

α1 

 

10 10.008 0.008 0.004 

 

10 10.001 0.001 0.004 

  

β1 

 

1 1.001 0.001 0.000 

 

1 1.000 0.000 0.000 

  

α2 

 

10 10.005 0.005 0.004 

 

10.5 10.521 0.021 0.006 

  

β2 

 

0.5 0.500 -0.000 0.000 

 

0.5 0.499 -0.001 0.000 

 

    

Scenario S2 

 

Scenario L2 

    

(λ=2, P=0.8, α1=α2, β1≠β2) 

 

(λ=2, P=0.8, α1≠α2, β1≠β2) 

Model 

 

Coef. 

 

value mean bias mse 

 

value mean bias mse 

ALS 

 

α1 

 

10 9.919 -0.081 0.008 

 

10 10.071 0.071 0.018 

  

β1 

 

1 0.750 -0.250 0.063 

 

1 0.797 -0.203 0.042 

  

α2 

 

10 9.919 -0.081 0.008 

 

10.5 10.071 -0.429 0.196 

  

β2 

 

0.5 0.750 0.250 0.063 

 

0.5 0.797 0.297 0.090 

ZISF 

 

α1 

 

10 10.005 0.005 0.002 

 

10 10.233 0.233 0.055 

  

β1 

 

1 0.750 -0.250 0.063 

 

1 0.817 -0.183 0.034 

  

α2 

 

10 10.005 0.005 0.002 

 

10.5 10.233 -0.267 0.072 

  

β2 

 

0.5 0.750 0.250 0.063 

 

0.5 0.817 0.317 0.101 

LCSF 

 

α1 

 

10 9.911 -0.089 0.009 

 

10 9.910 -0.090 0.009 

  

β1 

 

1 0.999 -0.001 0.000 

 

1 0.996 -0.004 0.000 

  

α2 

 

10 9.915 -0.085 0.008 

 

10.5 10.421 -0.079 0.007 

  

β2 

 

0.5 0.501 0.001 0.000 

 

0.5 0.503 0.003 0.000 

NLC 

 

α1 

 

10 10.000 0.000 0.001 

 

10 9.999 -0.001 0.001 

  

β1 

 

1 0.999 -0.001 0.000 

 

1 1.000 0.000 0.000 

  

α2 

 

10 10.002 0.002 0.001 

 

10.5 10.499 -0.001 0.001 

  

β2 

 

0.5 0.500 -0.000 0.000 

 

0.5 0.501 0.001 0.000 
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    Scenario S3  Scenario L3 

    
(λ=2, P=0.6, α1=α2, β1≠β2)  

(λ=2, P=0.6, α1≠α2, β1≠β2) 

Model 

 

Coef. 

 

value mean bias mse 

 

value mean bias mse 

ALS 

 

α1 

 

10 9.835 -0.165 0.029 

 

10 9.959 -0.041 0.009 

  

β1 

 

1 0.750 -0.250 0.063 

 

1 0.812 -0.188 0.036 

  

α2 

 

10 9.835 -0.165 0.029 

 

10.5 9.959 -0.541 0.301 

  

β2 

 

0.5 0.750 0.250 0.062 

 

0.5 0.812 0.312 0.098 

ZISF 

 

α1 

 

10 10.000 0.000 0.001 

 

10 10.125 0.125 0.017 

  

β1 

 

1 0.750 -0.250 0.063 

 

1 0.831 -0.169 0.029 

  

α2 

 

10 10.000 0.000 0.001 

 

10.5 10.125 -0.375 0.142 

  

β2 

 

0.5 0.750 0.250 0.063 

 

0.5 0.831 0.331 0.110 

LCSF 

 

α1 

 

10 9.841 -0.159 0.026 

 

10 9.841 -0.159 0.026 

  

β1 

 

1 1.001 0.001 0.000 

 

1 0.998 -0.002 0.000 

  

α2 

 

10 9.839 -0.161 0.026 

 

10.5 10.344 -0.156 0.025 

  

β2 

 

0.5 0.500 0.000 0.000 

 

0.5 0.505 0.005 0.000 

NLC 

 

α1 

 

10 10.002 0.002 0.000 

 

10 10.000 0.000 0.000 

  

β1 

 

1 1.000 0.000 0.000 

 

1 1.001 0.001 0.000 

  

α2 

 

10 10.000 -0.000 0.000 

 

10.5 10.502 0.002 0.000 

  

β2 

 

0.5 0.500 0.000 0.000 

 

0.5 0.500 0.000 0.000 

 

 

 
 


