
ARTICLE

International Journal of Advanced Robotic Systems

3D Mesh Compression and Transmission
for Mobile Robotic Applications
Regular Paper

Bailin Yang1, Xun Wang1*, Frederick W.B. Li2, Binbo Xie1, Xiaohui Liang3 and Zhaoyi Jiang1

1 School of Computer Science and Information Engineering, Zhejiang Gongshang University, Hangzhou, China
2 School of Engineering and Computing Sciences, University of Durham, UK
3 State Key Lab of Virtual Reality Technology and Systems, Beihang University of China, China
*Corresponding author(s) E-mail: wx@mail.zjgsu.edu.cn

Received 17 September 2015; Accepted 24 November 2015

DOI: 10.5772/62035

© 2016 Author(s). Licensee InTech. This is an open access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Abstract

Mobile robots are useful for environment exploration and
rescue operations. In such applications, it is crucial to
accurately analyse and represent an environment, provid‐
ing appropriate inputs for motion planning in order to
support robot navigation and operations. 2D mapping
methods are simple but cannot handle multilevel or
multistory environments. To address this problem, 3D
mapping methods generate structural 3D representations
of the robot operating environment and its objects by 3D
mesh reconstruction. However, they face the challenge of
efficiently transmitting those 3D representations to system
modules for 3D mapping, motion planning, and robot
operation visualization. This paper proposes a quality-
driven mesh compression and transmission method to
address this. Our method is efficient, as it compresses a mesh
by quantizing its transformed vertices without the need to
spend time constructing an a-priori structure over the mesh.
A visual distortion function is developed to govern the level
of quantization, allowing mesh transmission to be control‐
led under different network conditions or time con‐
straints. Our experiments demonstrate how the visual
quality of a mesh can be manipulated by the visual distor‐
tion function.

Keywords Model Compression and Transmission, Visual
Distortion, Mobile Robotic Applications

1. Introduction

Recently, mapping has been a very active research area in
Simultaneous Localization and Mapping (SLAM) [1] for
robotic applications. 3D mapping and reconstruction [2, 3]
produce structural 3D geometric representations for robot
operating environments and their objects, providing
comprehensive inputs for motion planning to enhance
results and guide robot navigation and operations more
appropriately. The accuracy of such processes depends on
appropriate camera pose estimation [4]. One popular
representation of such 3D mapping is meshes, which may
entail large data size, causing performance issues in
passing environment and object representations to system
modules for 3D mapping, motion planning, and robot
operation visualization. Such representations may require
continuous updating when a robot is exploring an un‐
known or dynamic environment.

Although there exist many mesh compression and trans‐
mission methods [5, 6, 7] that seek to address the above
challenges, most of these require structures to be built on
top of 3D meshes before they can be transmitted. This is not
favourable to robotic applications, where the environment
and object representations may be dynamically generated
and updated during run-time. In such applications, the
requirement of constructing a-priori structures will

1Int J Adv Robot Syst, 2016, 13:9 | doi: 10.5772/62035

repeatedly cause delays in obtaining timely environment
and object representations, limiting capacity to produce
motion plans or support multi-robot collaboration.

This paper proposes a quality-driven mesh compression
and transmission method. Our main idea is to compress a
mesh by quantizing its transformed vertices without
constructing an a-priori structure on top of it. A visual
distortion function is developed to govern the level of
quantization, allowing a robot application to adjust the
data rate of mesh transmission according to network
conditions or time constraints. Our experiments demon‐
strate how the visual quality of a mesh can be manipulated
by the visual distortion function. The paper’s main contri‐
bution is to formulate the relationship of the mesh quanti‐
zation level and the number of anchors with the visual
distortion error and the low-frequency error. This contri‐
bution includes:

• Development of a fitting function to formulate how low-
frequency error (LFE) responds to a change in the
distribution density of anchors,

• Explanation of the behaviour of visual distortion error
(VDE) under different mesh quantization settings and
when different numbers of anchors are introduced to
reconstruct a mesh, and

• Introduction of a concise method to represent the
distribution density of anchors and a breadth-first search
method to incrementally keep records of anchors with
different distribution densities, such that different
numbers of anchors can be efficiently added to support
fast quality control for a reconstructed mesh during run-
time.

Our method allows a user to request a mesh to be com‐
pressed and transmitted according to some run-time
constraints, such as computation or network resource
limitations.

The rest of the paper is organized as follows. Section 2
outlines related work. Section 3 depicts the technical
aspects of our method. Section 4 presents the formulation
of the visual distortion function based on visual distortion
error (VDE) and low-frequency error (LFE). Section 5
discusses our experimental results. Section 6 concludes the
paper and describes future work.

2. Related Work

Mesh compression and transmission have a wide range of
applications in computer graphics or network systems.
Here, we discuss the major developments and relevant
challenges in the context of robotic applications.

2.1 Mesh Transmission

Early work supporting efficient mesh transmission was
carried out on progressive meshes [8], transforming a 3D
mesh through edge-collapse and vertex-split operations

into a streaming format comprising a base mesh (a very
simplified version of the input 3D mesh) and a list of
refinement records (an ordered list of geometric details of
the 3D mesh built on top of the base mesh). An application
can reproduce a 3D mesh with a certain level of quality by
receiving the base mesh and a chosen number of refinement
records. Many works have extended progressive meshes to
improve data-encoding efficiency and introduce flexibility
and independence to the choice of refinement records for
mesh transmission and rendering.

Later, some 3D-mesh-specific data-transmission protocols
were developed to support adaptive mesh rendering
(displaying part of a 3D mesh based on user interests or a
3D mesh with a selective quality to fit network or rendering
requirements). For instance, the On-Demand Graphical
Transport Protocol (OGP) [9] organized a mesh into a tree
structure and packed tree nodes into data packets for
transmission according to sub-tree ordering and tree-node
dependency. It also retransmitted tree nodes when data
loss occurred. To improve the scalability of 3D mesh
transmission among clients and servers, [10] developed a
coding scheme to encode the tree structure of view-
dependent progressive meshes. Such codes make it
possible for a receiver to identify and initiate requests to
obtain further required refinement records from a server.
[6] supported error resilience for transmitting progressive
meshes over unreliable networks. The author constructed
a non-redundant directed acyclic graph and its sub-graphs
to organize vertex-split records into minimal-dependency
groups for mesh transmission. Alternatively, Geometry
Images [11] encoded 3D meshes as a regular image through
parameterization and mesh cutting. Generic image-based
methods could then be adopted to transmit and compress
meshes, although a wavelet-based method was chosen in
that paper. [7] proposed a content prioritization method by
extending object scope and viewer scope to determine the
required quality for geometric transmission. This method
assumed that all geometric primitives are pre-organized
into progressive-mesh-like structures. Clearly, the main
limitation of the above methods is the requirement of
constructing a-priori structures over meshes. In many
cases, this process is time-consuming, and it is particularly
inappropriate for robotic applications with unknown or
dynamic environments, due to the requirement for contin‐
uous reconstruction or updating of 3D meshes.

2.2 Mesh Compression

Mesh compression is a technique to reduce the data size of
a mesh, which complements mesh transmission, making it
more efficient. A lot of work has been done in this area [5].
The main approaches to compress a mesh are to reduce the
data size of mesh geometry or connectivity. Compressing
mesh connectivity is typically done by traversing and
defining new numbering of the configuration of mesh
elements (i.e., mesh topology). Existing methods [12]
include indexed face set, triangle strip, spanning tree,

2 Int J Adv Robot Syst, 2016, 13:9 | doi: 10.5772/62035

layered decomposition, and a valence-driven approach.
Compression results are usually tied up with a particular
state of mesh configuration and become invalid when there
is any change to this configuration.

Recently, major efforts have been made in geometric
compression [5], because in most cases mesh geometry
involves bigger data sizes than mesh connectivity. Per‐
forming compression in the geometric domain will obtain
a better gain in compression ratio. Vertex quantization is a
simple approach that encodes mesh vertices with a low
number of bits or certain concise geometric means, such as
angles. This approach does not rely on construction of an
a-priori structure over a mesh. However, it introduces
high-frequency error, which is highly noticeable. An
alternative way to reduce vertex data size is by prediction,
which stores a vertex according to its difference to some
reference vertices, reducing the entropy by exploiting the
correlation between neighbouring vertices. Re-computa‐
tion may be required if there is any change in the reference
vertices.

In section 2.1, we have discussed mesh transmission
methods. In practice, progressive meshes [8] or their
extensions are usually also considered lossy compression
methods, as they usually reproduce a mesh by removing
some geometric details. As discussed above, they require
the construction of a specific mesh structure to facilitate the
choice of geometric details for reconstructing a 3D mesh.

Progressive-mesh-like methods usually arrange mesh
elements with a pre-defined sequence for transmission. If
a specific part of a mesh is required, we may still need to
spend time transmitting most or even the entire set of mesh
data before that specific part can be obtained. This behav‐
iour is particularly unsuitable for the real-time require‐
ments of robotic applications. To address this problem, [13]
developed a cluster-based random accessible compression
scheme, which constructed and compressed independent
clusters of a constant number of mesh triangles, as well as
their first referenced vertices. The random access to mesh
elements was achieved by vertex-to-cluster mapping with
the help of cluster caching and on-demand connectivity
construction. [14] provided random access to mesh ele‐
ments by partitioning the mesh bounding box into a
hierarchical structure, namely nSP-tree, which is composed
of SP cells encoded independently to comprise connectivity
and geometric information. Again, this set of methods still
relies on the construction of a-priori structures, although it
is feasible to only construct structures for local mesh
elements with these random-access methods, reducing the
overhead.

2.3 Robotic Applications and Issues of 3D Mapping and
Reconstruction

Mobile robots [15] have many applications, including
environment exploration, search and rescue, assistance for

Figure 1. Method overview

3Bailin Yang, Xun Wang, Frederick W.B. Li, Binbo Xie, Xiaohui Liang and Zhaoyi Jiang:
3D Mesh Compression and Transmission for Mobile Robotic Applications

disabled or elderly people, edutainment, and home and
industrial automation. Simultaneous localization and
mapping (SLAM) [1] is a key component of robotic systems
for the construction of a representation of the robot’s
operating environment. The comprehensiveness of such a
representation will affect the accuracy of motion planning,
the ability of well-reconstructed environments to support
robot collaboration, and the quality of human-robot
interaction. If an environment is unknown or dynamic,
SLAM becomes challenging due to the unavailability of
landmarks or known features while fulfilling real-time
performance requirements.

3D mapping and reconstruction provides a useful solution
for representing robot operating environments and their
objects, as it produces structural 3D geometric information,
improving motion-planning results for guiding robot
navigation and operations. Early attempts in this area were
presented by [16], who constructed flat surfaces of an
environment by performing region growing and surface
merging on the collected 3D points from range scanners. [2]
applied a Markov Random Field to integrate high-resolu‐
tion image data and low-resolution range data for recov‐
ering range data at the same resolution as the image data.
[3] constructed 3D mapping by decomposing the collected
point cloud into octree cells, followed by a merging and
refinement process and the adding of semantic labels. In
practice, while a robot is exploring an environment, the
captured data about the environment may have a lot of
redundancy. Appropriate methods, such as those present‐
ed in [17, 18], may be adapted to reduce such redundancy.
However, complications are presented if multiple robots
are involved in a robotic application. [19] proposed a
cooperative localization method allowing a moving robot
to explore the environment by making use of stationary
robots as landmarks to assist in mapping and reconstruc‐
tion, where the error of tracker measurement and the
uncertainty in the position of a stationary robot were taken
into account.

Efficient transmission of environment representations is
crucial to robotic applications. For instance, [20] described
VR (virtual reality) interfaces for controlling complex
robotic mechanisms in planetary-surface exploration
missions. The author showed that the large data size of
photo-realistic terrain models and range maps imposed
challenges for data transmission, particularly relating to
latency, unreliability, and limited-bandwidth issues with
the communication link among different sub-systems and
the user interface of a remote robotic system. There exist
different robotic applications. [21] investigated environ‐
ment exploration and 3D mapping in urban search and
rescue, where environments are lacking a-priori informa‐
tion about landmarks and GPS may not be able to assist
robot positioning. The method identified keypoints from
2D images and 3D depth images captured from the
environment by using the SIFT algorithm, which is able to
determine distinctive invariant features from images. It
then clustered the keypoints and performed matching to

define landmarks. [22] demonstrated an MR (mixed-
reality) robotic application allowing a robot to perform
simulation in a real environment with virtual objects or
hazards, which is useful for studying different real situa‐
tions.

3. Our Method

We have developed a simple and quality-driven mesh
compression and transmission method, which does not
require an a-priori structure to be built on top of a mesh.
This avoids introducing dependency or imposing any
access sequence constraint on mesh vertices, and allows a
robotic application to freely choose whether to compress or
transmit either an entire mesh or only its parts. This is
critical, because robotic applications may involve only
partial environment representation (literally is a mesh part)
during run-time, which is incrementally built and updated
according to robot exploration. In addition, this feature also
allows a robotic application to choose whether to compress
or transmit only a mesh part when the network or process‐
ing resources are limited.

Figure 1 presents an overview of our method, which is
geometry-based. We compress geometric coordinates
(mesh vertices) by performing quantization on their
Laplacian transformation and tuning their resultant
quality. We control mesh quality by adjusting the Visual
Distortion Error (VDE) and Low-Frequency Error (LFE).
Mesh connectivity information (topology data) is sent
separately to the client based on [23] to facilitate mesh
reconstruction.

3.1 Mesh Quality

Quantization is a technique to represent data with a
selected quality using a reduced number of bits. Applying
quantization to compress mesh vertices is straightforward.
However, it will induce high-frequency error, which is not
favourable because it becomes noticeable to humans. [24]
addressed this problem by applying quantization to the
Laplacian transformations of mesh vertices, turning the
resultant error into low-frequency error. Such a Laplacian
transformation could be properly produced only if there
existed some anchors, namely vertices without quantiza‐
tion, in the compressed mesh. The author also proposed a
metric to measure the visual quality of a compressed mesh
in terms of its global and local geometric error. Unfortu‐
nately, it is difficult to apply this method in real applica‐
tions as it provides no mechanism to control the amount of
quantization and the number of anchors for mesh com‐
pression. Therefore, we conducted an empirical study to
investigate how the mesh quality relates to the amount of
mesh quantization and the distribution of anchors, devel‐
oping a quality-driven mesh compression and transmis‐
sion method.

The quality of a compressed mesh can be accurately
evaluated based on its global and local geometric error. As
shown in equation 1, the global geometric error can be
determined by measuring the vertex difference between

4 Int J Adv Robot Syst, 2016, 13:9 | doi: 10.5772/62035

the compressed and the original meshes. Since it measures
the geometric change of a mesh after compression, it
essentially represents the low-frequency error (LFE)
induced by mesh compression. We denote this error as
Mq. Alternatively, the local geometric error measures the
difference between the local regions of the compressed and
the original meshes, determined by equation 2. This
essentially represents the extent to which local features of
a mesh are changed after compression such that the change
is visible to users. We regard this as the visual distortion
error (VDE), denoting it as Sq.

1
22

=1
= () ,

n

q i i
i

M v Q vé ù
-ê ú

ë û
å (1)

1
22

=1
= () (()) ,

n

q i i
i

S S v S Q vé ù
-ê ú

ë û
å (2)

where vi represents a vertex of a mesh with n vertices, and
Q(vi) is the counterpart of vi in the compressed model.

S (vi)=vi −
∑ j∈N (i)lij

−1vj

∑ j∈N (i)lij
−1 formulates the smoothness of a local

region surrounding S (vi) by evaluating how a vertex vi

differs from a weighted average of its neighbour vertices,
where lij is the Euclidean distance between vertex vi and
vj, and N (i) is the set of the indices of the neighbour vertices
of vi.

3.2 Mesh Compression through Quantizing the Laplacian
Transformation

Laplacian transformation: The sender compresses a mesh
by performing quantization on the Laplacian transforma‐
tion of mesh vertices, which will avoid inducing noticeable
high-frequency error. Assume a mesh M with n vertices,
where each vertex V i∈M is represented by Cartesian
coordinates vi =(xi,yi,zi) and the set of vertices is
V ={v1,v2,…,vn}. Applying Laplacian transformation on V

will produce δ coordinates δi =(δi
x,δi

y,δi
z)=vi −

1
di
∑k =1

d vik

where di is the degree of vertex V i. We define the set of all
δ coordinates to be Δ={δ1,δ2,…,δn}. The Laplacian operator
L is defined as:

=L D A- (3)

, i j
= 1, i and j are adjacent

0, otherwise
ij

d
L

ì =
ï-í
ï
î

(4)

where A and D are the adjacency matrix and diagonal
matrix, respectively, and L ij represents each element of

L , making Lx = Dδ (x),Ly = Dδ (y),Lz = Dδ (z). Here, L is
symmetric, singular, and positive semi-definite, and its
rank is n −1, meaning the system Lx =δ has an infinite
number of solutions. However, as these solutions differ
from each other by a vector that is constant on each
connected component of the mesh, all the elements of
vector x can be solved when the original Cartesian coordi‐
nates of at least one xi, i.e., the mesh vertices without
quantization, is made available in addition to the δ
coordinates.

The aim of our method is to exploit the low-frequency error
produced from quantizing δ -coordinates to provide a
quality-driven mesh compression method. Simple Lapla‐
cian transformation, which is evaluated by computing the
difference between a vertex and its neighbouring vertices,
is already sufficient to produce δ -coordinates and is
computationally efficient. Therefore, we do not consider
other variants of Laplacian transformation operators or
other spectral transformation methods, which might be
computationally more expensive.

Quantization: This is the main operation contributing to
mesh compression. After the Laplacian transformation, we
then quantize the δ coordinates to reduce the number of
bits representing them. This number will be chosen based
on the VDE level requested by a receiver. We restrict the
choice to between three and eight bits, considering practi‐
cableness and the findings of our experiments. Since a
simple fixed-point quantization is used, the maximum
quantization error qerror is bounded by 2−p(δmax −δmin) if p -
bit quantization is applied.

Adding Anchors: For the δ = Lx obtained from the Lapla‐
cian transformation, the least eigenvalue of the Laplacian
matrix L is very small because of its inherent property,
which amplifies the low-frequency error of the reconstruct‐
ed mesh. Adding an anchor vertex to construct the rectan‐
gular Laplacian matrix L̃ will magnify the least eigenvalue,
reducing the LFE of the reconstructed mesh. Figure 2 shows
the construction of the two-anchor rectangular Laplacian
matrix.

3.3 Mesh Transmission Workflow

During run-time, a receiver may request transmission of a
mesh from a sender by specifying the VDE and LFE levels.
The sender will then perform the following operations:

1. Perform Laplacian transformation on mesh vertices,
producing " δ coordinates".

2. Quantize δ coordinates according to the receiver’s
chosen VDE level.

3. Determine the number of anchors based on the
receiver’s chosen LFE level, with the help of an LFE
fitting function. Identifying the actual anchors to
support mesh reconstruction at the receiver will be
facilitated by the BFS picking method.

5Bailin Yang, Xun Wang, Frederick W.B. Li, Binbo Xie, Xiaohui Liang and Zhaoyi Jiang:
3D Mesh Compression and Transmission for Mobile Robotic Applications

4. Refine the LFE computation by adding extra anchors
with the greedy picking method.

5. After processing the geometric data, we compress the
mesh and send the resultant δ coordinates and anchors
to the receiver. The mesh topological data will be
transmitted based on [23].

The details of operations 3 and 4 will be discussed through
sections 4.2.2 to 4.2.4.

4. Mesh Quality Control: VDE and LFE

In this section, we depict how the Visual Distortion Error
(VDE) and the Low-frequency Error (LFE) are formulated
empirically.

4.1 Visual Distortion Error

The Visual Distortion Error (VDE) evaluates the mesh’s
visual quality according to the user’s perception. We have
conducted experiments to investigate the main factors
affecting such an error. Through our experiments, we found
that VDE is both influenced by the number of anchors
introduced to a reconstructed mesh and the number of bits
used for quantizing a mesh.

Figure 3 shows how the VDE, denoted by Sq of the five-bit
quantized Armadillo model (ref. Figure 8(b)) was influ‐
enced by the introduction of different numbers of anchors.
It was found that the VDE changed dramatically when
introducing around 10 or fewer anchors. Further introduc‐
tion of anchors did not improve the VDE of the model. We
also conducted experiments on a set of mesh models to
investigate how quantization influenced the VDE of a mesh.
The results are shown in Table 1. The table shows that the
VDE of different models was generally reduced by half

coordinates of at least one xi, i.e., the mesh vertices without
quantization, is made available in addition to the δ coordinates.

The aim of our method is to exploit the low-frequency
error produced from quantizing δ-coordinates to provide a
quality-driven mesh compression method. Simple Laplacian
transformation, which is evaluated by computing the difference
between a vertex and its neighbouring vertices, is already
sufficient to produce δ-coordinates and is computationally
efficient. Therefore, we do not consider other variants
of Laplacian transformation operators or other spectral
transformation methods, which might be computationally more
expensive.

Quantization: This is the main operation contributing to
mesh compression. After the Laplacian transformation, we
then quantize the δ coordinates to reduce the number of bits
representing them. This number will be chosen based on the
VDE level requested by a receiver. We restrict the choice to
between three and eight bits, considering practicableness and
the findings of our experiments. Since a simple fixed-point
quantization is used, the maximum quantization error qerror is
bounded by 2−p(δmax − δmin) if p-bit quantization is applied.

Adding Anchors: For the δ = Lx obtained from the Laplacian
transformation, the least eigenvalue of the Laplacian matrix L
is very small because of its inherent property, which amplifies
the low-frequency error of the reconstructed mesh. Adding
an anchor vertex to construct the rectangular Laplacian matrix
L̃ will magnify the least eigenvalue, reducing the LFE of the
reconstructed mesh. Figure 2 shows the construction of the
two-anchor rectangular Laplacian matrix.

Figure 2. Constructing the rectangular Laplacian matrix with two
anchors (denoted in red).

3.3. Mesh Transmission Workflow

During run-time, a receiver may request transmission of a mesh
from a sender by specifying the VDE and LFE levels. The sender
will then perform the following operations:

1. Perform Laplacian transformation on mesh vertices,
producing ”δ coordinates”.

2. Quantize δ coordinates according to the receiver’s chosen
VDE level.

3. Determine the number of anchors based on the receiver’s
chosen LFE level, with the help of an LFE fitting function.
Identifying the actual anchors to support mesh reconstruction
at the receiver will be facilitated by the BFS picking method.

4. Refine the LFE computation by adding extra anchors with the
greedy picking method.

5. After processing the geometric data, we compress the mesh
and send the resultant δ coordinates and anchors to the
receiver. The mesh topological data will be transmitted based
on [23].

The details of operations 3 and 4 will be discussed through
sections 4.2.2 to 4.2.4.

4. Mesh Quality Control: VDE and LFE

In this section, we depict how the Visual Distortion Error (VDE)
and the Low-frequency Error (LFE) are formulated empirically.

4.1. Visual Distortion Error

The Visual Distortion Error (VDE) evaluates the mesh’s visual
quality according to the user’s perception. We have conducted
experiments to investigate the main factors affecting such an
error. Through our experiments, we found that VDE is
both influenced by the number of anchors introduced to a
reconstructed mesh and the number of bits used for quantizing
a mesh.

Figure 3 shows how the VDE, denoted by Sq of the five-bit
quantized Armadillo model (ref. Figure 8(b)) was influenced by
the introduction of different numbers of anchors. It was found
that the VDE changed dramatically when introducing around
10 or fewer anchors. Further introduction of anchors did not
improve the VDE of the model. We also conducted experiments
on a set of mesh models to investigate how quantization
influenced the VDE of a mesh. The results are shown in Table
1. The table shows that the VDE of different models was
generally reduced by half when one or more bits were allocated
for quantizing the models.

Figure 3. Relationship between the number of anchors
introduced and the VDE (Sq).

www.intechopen.com :
3D Mesh Compression and Transmission for Mobile Robotic Applications

5

Figure 2. Constructing the rectangular Laplacian matrix with two anchors
(denoted in red)

when one or more bits were allocated for quantizing the
models.

\ 3bits 4bits 5bits 6bits 7bits 8bits

Happy 0.292384 0.145319 0.0719601 0.0362221 0.0180039 0.00922926

Armadillo 0.191185 0.0959732 0.048215 0.0239428 0.0121191 0.00637002

Laurana 0.192979 0.0970498 0.0485586 0.0244359 0.012074 0.00626471

Male 0.28551 0.147336 0.0731225 0.0368784 0.0186343 0.00928632

Blade 0.331097 0.162402 0.0805344 0.0400648 0.0201787 0.0102335

Bunny 0.216798 0.107884 0.0538479 0.0270194 0.0135266 0.00680747

Table 1. Relationship between the mesh quantization and the VDE (Sq)

4.2 Low-Frequency Error

Low-frequency error (LFE) measures the geometric
difference between the compressed and the original mesh,
globally. We have investigated how this error is influenced
by the number of anchors and the number of bits for
quantization, developing a fitting function to allow an
application to determine the required number of anchors
to be introduced to a mesh based on a given LFE. We have
also developed a breadth-first search (BFS) and a greedy
pick method for identifying the actual anchors to be
introduced in a mesh.

coordinates of at least one xi, i.e., the mesh vertices without
quantization, is made available in addition to the δ coordinates.

The aim of our method is to exploit the low-frequency
error produced from quantizing δ-coordinates to provide a
quality-driven mesh compression method. Simple Laplacian
transformation, which is evaluated by computing the difference
between a vertex and its neighbouring vertices, is already
sufficient to produce δ-coordinates and is computationally
efficient. Therefore, we do not consider other variants
of Laplacian transformation operators or other spectral
transformation methods, which might be computationally more
expensive.

Quantization: This is the main operation contributing to
mesh compression. After the Laplacian transformation, we
then quantize the δ coordinates to reduce the number of bits
representing them. This number will be chosen based on the
VDE level requested by a receiver. We restrict the choice to
between three and eight bits, considering practicableness and
the findings of our experiments. Since a simple fixed-point
quantization is used, the maximum quantization error qerror is
bounded by 2−p(δmax − δmin) if p-bit quantization is applied.

Adding Anchors: For the δ = Lx obtained from the Laplacian
transformation, the least eigenvalue of the Laplacian matrix L
is very small because of its inherent property, which amplifies
the low-frequency error of the reconstructed mesh. Adding
an anchor vertex to construct the rectangular Laplacian matrix
L̃ will magnify the least eigenvalue, reducing the LFE of the
reconstructed mesh. Figure 2 shows the construction of the
two-anchor rectangular Laplacian matrix.

Figure 2. Constructing the rectangular Laplacian matrix with two
anchors (denoted in red).

3.3. Mesh Transmission Workflow

During run-time, a receiver may request transmission of a mesh
from a sender by specifying the VDE and LFE levels. The sender
will then perform the following operations:

1. Perform Laplacian transformation on mesh vertices,
producing ”δ coordinates”.

2. Quantize δ coordinates according to the receiver’s chosen
VDE level.

3. Determine the number of anchors based on the receiver’s
chosen LFE level, with the help of an LFE fitting function.
Identifying the actual anchors to support mesh reconstruction
at the receiver will be facilitated by the BFS picking method.

4. Refine the LFE computation by adding extra anchors with the
greedy picking method.

5. After processing the geometric data, we compress the mesh
and send the resultant δ coordinates and anchors to the
receiver. The mesh topological data will be transmitted based
on [23].

The details of operations 3 and 4 will be discussed through
sections 4.2.2 to 4.2.4.

4. Mesh Quality Control: VDE and LFE

In this section, we depict how the Visual Distortion Error (VDE)
and the Low-frequency Error (LFE) are formulated empirically.

4.1. Visual Distortion Error

The Visual Distortion Error (VDE) evaluates the mesh’s visual
quality according to the user’s perception. We have conducted
experiments to investigate the main factors affecting such an
error. Through our experiments, we found that VDE is
both influenced by the number of anchors introduced to a
reconstructed mesh and the number of bits used for quantizing
a mesh.

Figure 3 shows how the VDE, denoted by Sq of the five-bit
quantized Armadillo model (ref. Figure 8(b)) was influenced by
the introduction of different numbers of anchors. It was found
that the VDE changed dramatically when introducing around
10 or fewer anchors. Further introduction of anchors did not
improve the VDE of the model. We also conducted experiments
on a set of mesh models to investigate how quantization
influenced the VDE of a mesh. The results are shown in Table
1. The table shows that the VDE of different models was
generally reduced by half when one or more bits were allocated
for quantizing the models.

Figure 3. Relationship between the number of anchors
introduced and the VDE (Sq).

www.intechopen.com :
3D Mesh Compression and Transmission for Mobile Robotic Applications

5

Figure 3. Relationship between the number of anchors introduced and the
VDE (Sq)

4.2. Low-Frequency Error

Low-frequency error (LFE) measures the geometric difference
between the compressed and the original mesh, globally. We
have investigated how this error is influenced by the number of
anchors and the number of bits for quantization, developing a
fitting function to allow an application to determine the required
number of anchors to be introduced to a mesh based on a given
LFE. We have also developed a breadth-first search (BFS) and
a greedy pick method for identifying the actual anchors to be
introduced in a mesh.

4.2.1. Formulating Anchor Distribution Density

When introducing anchors to a mesh, we assume they will
be added evenly to maximize the gain in mesh quality. The
distribution density of anchors can then be formulated by a
parameter v. If a mesh with N vertices has k anchors, then
the number of non-anchors is N − k. We denote the Dijkstra
shortest distance of each non-anchor to its nearest anchor by
setting A = {d1, d2, . . . , dN−k}, and v = max(di ∈ A). The
parameter v refers to the maximum Dijkstra shortest distance of
an arbitrary non-anchor (i.e., a quantized vertex) to its nearest
anchor. Measuring the distribution density of anchors in this way
is simple and concise. Figure 4 shows a sample mesh with v = 3.

Figure 4. A sample mesh with anchors (red) and non-anchors
(quantized vertices). The purple points indicate the vertices most
distant from an arbitrary anchor.

4.2.2. Incremental Anchor Recording

After determining the appropriate number of anchors, it is
critical to efficiently identify the actual anchors to be introduced
to a mesh in order to support real-time applications. We have
therefore developed a breadth-first search (BFS) method to
help an application to store anchors with different distribution
densities in a set of different containers. Consequently,
appropriate anchors can be quickly picked out according to a
requested LFE.

Our breadth-first search (BFS) method operates as follows. We
first pick an arbitrary vertex to be an anchor. A breadth-first

Table 1. Relationship between the mesh quantization and the
VDE (Sq).

� 3bits 4bits 5bits 6bits 7bits 8bits
Happy 0.292384 0.145319 0.0719601 0.0362221 0.0180039 0.00922926

Armadillo 0.191185 0.0959732 0.048215 0.0239428 0.0121191 0.00637002
Laurana 0.192979 0.0970498 0.0485586 0.0244359 0.012074 0.00626471

Male 0.28551 0.147336 0.0731225 0.0368784 0.0186343 0.00928632
Blade 0.331097 0.162402 0.0805344 0.0400648 0.0201787 0.0102335
Bunny 0.216798 0.107884 0.0538479 0.0270194 0.0135266 0.00680747

search operation is then performed around this anchor based
on mesh connectivity, which records the geometric distance
between a sought vertex and the anchor as a depth, denoted by
v. The sought vertex with the largest v value is selected as the
second anchor, and used in the performance of the same BFS
operation again. A sought vertex will be assigned the newly
evaluated v if it was assigned a smaller v value in previous search
operations. The above operations are repeated to generate more
anchors. As the number of anchors increases, the evaluated v
of a searched vertex will generally decrease. When the largest v
value reaches a threshold Vu, all selected anchors are stored in
a container ∆Vu. Assume Vu = 15, since the relation between
v and LFE becomes unstable and cannot be formulated when
v > 15, according to our experiments. The BFS operation is
repeated to pick a new set of anchors by reducing the threshold
by 1, i.e., Vu = 14, storing all newly selected anchors to the
container 414. This process is repeated until Vu = Vd, which
is the lower bound threshold. We pick Vd = 5 since LFE
does not change further when Vu is even smaller. Figure 5
shows the creation of containers. With the help of these, suitable
anchors can quickly be picked out during run-time according to
any required anchor distribution density, i.e., the parameter v as
described in section 4.2.1.

Figure 5. Incremental Anchor Recording through containers.

4.2.3. Relationship between Anchor Distribution Density and
LFE

Increasing the number of anchors can effectively reduce the
LFE of a reconstructed mesh. We conducted experiments
to investigate this relationship and develop a fitting function
to model the relationship between anchor distribution density
(parameter v) and LFE (denoted as Mq). Figure 6 demonstrates
this relationship through the Armadillo model, as quantized
using different numbers of bits. It can be seen that the
relationship was quite linear when the model was quantized by
a small number of bits. This was because adding more anchors
effectively enhanced the mesh quality by reducing the LFE. In
contrast, the relationship became exponential when the number
of bits used for quantization became large, because adding more
anchors after this point no longer effectively contributes to the
reduction of the LFE. Based on this finding, a fitting function
Mq = f (v) is constructed as follows:

1. When δ coordinates are quantized by three bits, four bits
or five bits, the fitting function Mq = f (v) is linear and
expressed as Mq = av + b (a,b are variables).

2. When δ coordinates are quantized by seven bits or eight bits,
the fitting function Mq = f (v) becomes exponential and can
be expressed as Mq = aebv (a,b are variables).

3. When δ coordinates are quantized by six bits, the fitting
function Mq = f (v) is either linear or exponential. The
exact form depends on the nature of a mesh.

6 Short Journal Name, 2013, Vol. No, No:2013 www.intechopen.com

Figure 4. A sample mesh with anchors (red) and non-anchors (quantized
vertices). The purple points indicate the vertices most distant from an
arbitrary anchor.

6 Int J Adv Robot Syst, 2016, 13:9 | doi: 10.5772/62035

4.2.1 Formulating Anchor Distribution Density

When introducing anchors to a mesh, we assume they will
be added evenly to maximize the gain in mesh quality. The
distribution density of anchors can then be formulated by
a parameter v. If a mesh with N vertices has k anchors, then
the number of non-anchors is N −k . We denote the Dijkstra
shortest distance of each non-anchor to its nearest anchor
by setting A={d1,d2,…,dN −k }, and v =max(di∈A). The
parameter v refers to the maximum Dijkstra shortest
distance of an arbitrary non-anchor (i.e., a quantized
vertex) to its nearest anchor. Measuring the distribution
density of anchors in this way is simple and concise. Figure
4 shows a sample mesh with v =3.

4.2.2 Incremental Anchor Recording

After determining the appropriate number of anchors, it is
critical to efficiently identify the actual anchors to be
introduced to a mesh in order to support real-time appli‐
cations. We have therefore developed a breadth-first search
(BFS) method to help an application to store anchors with
different distribution densities in a set of different contain‐
ers. Consequently, appropriate anchors can be quickly
picked out according to a requested LFE.

Our breadth-first search (BFS) method operates as follows.
We first pick an arbitrary vertex to be an anchor. A breadth-
first search operation is then performed around this anchor
based on mesh connectivity, which records the geometric
distance between a sought vertex and the anchor as a depth,
denoted by v. The sought vertex with the largest v value is
selected as the second anchor, and used in the performance
of the same BFS operation again. A sought vertex will be
assigned the newly evaluated v if it was assigned a smaller
v value in previous search operations. The above opera‐
tions are repeated to generate more anchors. As the number
of anchors increases, the evaluated v of a searched vertex
will generally decrease. When the largest v value reaches a
threshold Vu, all selected anchors are stored in a container
ΔVu. Assume Vu =15, since the relation between v and LFE
becomes unstable and cannot be formulated when v >15,
according to our experiments. The BFS operation is
repeated to pick a new set of anchors by reducing the
threshold by 1, i.e., Vu =14, storing all newly selected
anchors to the container Δ14. This process is repeated until
Vu =Vd , which is the lower bound threshold. We pick Vd =5
since LFE does not change further when Vu is even smaller.
Figure 5 shows the creation of containers. With the help of
these, suitable anchors can quickly be picked out during
run-time according to any required anchor distribution
density, i.e., the parameter v as described in section 4.2.1.

4.2.3 Relationship between Anchor Distribution Density and
LFE

Increasing the number of anchors can effectively reduce the
LFE of a reconstructed mesh. We conducted experiments

to investigate this relationship and develop a fitting
function to model the relationship between anchor distri‐
bution density (parameter v) and LFE (denoted as Mq).
Figure 6 demonstrates this relationship through the
Armadillo model, as quantized using different numbers of
bits. It can be seen that the relationship was quite linear
when the model was quantized by a small number of bits.
This was because adding more anchors effectively en‐
hanced the mesh quality by reducing the LFE. In contrast,
the relationship became exponential when the number of
bits used for quantization became large, because adding
more anchors after this point no longer effectively contrib‐
utes to the reduction of the LFE. Based on this finding, a
fitting function Mq = f (v) is constructed as follows:

1. When δ coordinates are quantized by three bits, four
bits or five bits, the fitting function Mq = f (v) is linear
and expressed as Mq =av + b (a, b are variables).

2. When δ coordinates are quantized by seven bits or
eight bits, the fitting function Mq = f (v) becomes
exponential and can be expressed as Mq =ae bv (a, b are
variables).

3. When δ coordinates are quantized by six bits, the
fitting function Mq = f (v) is either linear or exponential.
The exact form depends on the nature of a mesh.

4.2.4 Controlling LFE by the Fitting Function

When transmitting a 3D mesh, we select v for two different
parameters and compute their corresponding low-frequen‐
cy errors (Mq). Based on the two key-value pairs
((v1,Mq1),(v2,Mq2)), we can fit these parameters into the
relevant fitting function, helping us estimate the required
number of anchors. The details of this fitting procedure are
as follows:

1. When δ coordinates are quantized by three bits, four
bits or five bits, as the fitting function Mq = f (v) is
expressed as Mq =av + b, we can determine a and b by
the two key-value pairs ((v1,Mq1),(v2,Mq2)), obtaining
the parameter v by the inverse function

v = f −1(Mq)=
Mq −b

a , where the low-frequency error

(Mq) is specified by the client.

2. When δ coordinates are quantized by seven bits or
eight bits, the fitting function Mq = f (v) is expressed as

4.2. Low-Frequency Error

Low-frequency error (LFE) measures the geometric difference
between the compressed and the original mesh, globally. We
have investigated how this error is influenced by the number of
anchors and the number of bits for quantization, developing a
fitting function to allow an application to determine the required
number of anchors to be introduced to a mesh based on a given
LFE. We have also developed a breadth-first search (BFS) and
a greedy pick method for identifying the actual anchors to be
introduced in a mesh.

4.2.1. Formulating Anchor Distribution Density

When introducing anchors to a mesh, we assume they will
be added evenly to maximize the gain in mesh quality. The
distribution density of anchors can then be formulated by a
parameter v. If a mesh with N vertices has k anchors, then
the number of non-anchors is N − k. We denote the Dijkstra
shortest distance of each non-anchor to its nearest anchor by
setting A = {d1, d2, . . . , dN−k}, and v = max(di ∈ A). The
parameter v refers to the maximum Dijkstra shortest distance of
an arbitrary non-anchor (i.e., a quantized vertex) to its nearest
anchor. Measuring the distribution density of anchors in this way
is simple and concise. Figure 4 shows a sample mesh with v = 3.

Figure 4. A sample mesh with anchors (red) and non-anchors
(quantized vertices). The purple points indicate the vertices most
distant from an arbitrary anchor.

4.2.2. Incremental Anchor Recording

After determining the appropriate number of anchors, it is
critical to efficiently identify the actual anchors to be introduced
to a mesh in order to support real-time applications. We have
therefore developed a breadth-first search (BFS) method to
help an application to store anchors with different distribution
densities in a set of different containers. Consequently,
appropriate anchors can be quickly picked out according to a
requested LFE.

Our breadth-first search (BFS) method operates as follows. We
first pick an arbitrary vertex to be an anchor. A breadth-first

Table 1. Relationship between the mesh quantization and the
VDE (Sq).

� 3bits 4bits 5bits 6bits 7bits 8bits
Happy 0.292384 0.145319 0.0719601 0.0362221 0.0180039 0.00922926

Armadillo 0.191185 0.0959732 0.048215 0.0239428 0.0121191 0.00637002
Laurana 0.192979 0.0970498 0.0485586 0.0244359 0.012074 0.00626471

Male 0.28551 0.147336 0.0731225 0.0368784 0.0186343 0.00928632
Blade 0.331097 0.162402 0.0805344 0.0400648 0.0201787 0.0102335
Bunny 0.216798 0.107884 0.0538479 0.0270194 0.0135266 0.00680747

search operation is then performed around this anchor based
on mesh connectivity, which records the geometric distance
between a sought vertex and the anchor as a depth, denoted by
v. The sought vertex with the largest v value is selected as the
second anchor, and used in the performance of the same BFS
operation again. A sought vertex will be assigned the newly
evaluated v if it was assigned a smaller v value in previous search
operations. The above operations are repeated to generate more
anchors. As the number of anchors increases, the evaluated v
of a searched vertex will generally decrease. When the largest v
value reaches a threshold Vu, all selected anchors are stored in
a container ∆Vu. Assume Vu = 15, since the relation between
v and LFE becomes unstable and cannot be formulated when
v > 15, according to our experiments. The BFS operation is
repeated to pick a new set of anchors by reducing the threshold
by 1, i.e., Vu = 14, storing all newly selected anchors to the
container 414. This process is repeated until Vu = Vd, which
is the lower bound threshold. We pick Vd = 5 since LFE
does not change further when Vu is even smaller. Figure 5
shows the creation of containers. With the help of these, suitable
anchors can quickly be picked out during run-time according to
any required anchor distribution density, i.e., the parameter v as
described in section 4.2.1.

Figure 5. Incremental Anchor Recording through containers.

4.2.3. Relationship between Anchor Distribution Density and
LFE

Increasing the number of anchors can effectively reduce the
LFE of a reconstructed mesh. We conducted experiments
to investigate this relationship and develop a fitting function
to model the relationship between anchor distribution density
(parameter v) and LFE (denoted as Mq). Figure 6 demonstrates
this relationship through the Armadillo model, as quantized
using different numbers of bits. It can be seen that the
relationship was quite linear when the model was quantized by
a small number of bits. This was because adding more anchors
effectively enhanced the mesh quality by reducing the LFE. In
contrast, the relationship became exponential when the number
of bits used for quantization became large, because adding more
anchors after this point no longer effectively contributes to the
reduction of the LFE. Based on this finding, a fitting function
Mq = f (v) is constructed as follows:

1. When δ coordinates are quantized by three bits, four bits
or five bits, the fitting function Mq = f (v) is linear and
expressed as Mq = av + b (a,b are variables).

2. When δ coordinates are quantized by seven bits or eight bits,
the fitting function Mq = f (v) becomes exponential and can
be expressed as Mq = aebv (a,b are variables).

3. When δ coordinates are quantized by six bits, the fitting
function Mq = f (v) is either linear or exponential. The
exact form depends on the nature of a mesh.

6 Short Journal Name, 2013, Vol. No, No:2013 www.intechopen.com

Figure 5. Incremental Anchor Recording through containers

7Bailin Yang, Xun Wang, Frederick W.B. Li, Binbo Xie, Xiaohui Liang and Zhaoyi Jiang:
3D Mesh Compression and Transmission for Mobile Robotic Applications

Mq =ae bv. Similarly, we apply the two key-value pairs
((v1,Mq1),(v2,Mq2)) and obtain the parameter v by the

inverse function v = f −1(Mq)=
lnMq − lna

b , where Mq is

given by the client.

3. When δ coordinates are quantized by six bits, the
fitting function Mq = f (v) may be linear or exponential.
We then obtain the parameter v by the weighted

function v =αv1 + (1−α)v2, where v1 = f −1(Mq)=
Mq −b

a

and v2 = f −1(Mq)=
lnMq − lna

b .

After we obtain the parameter v as above, the actual LFE
(Mq) can be computed through reconstructing the mesh. As
the fitting function contains a certain error, there is a
deviation between the actual Mq

' and the Mq given by the
client. To address this problem, we slightly adjust the LFE
by adding some anchors using a greedy method until
∥Mq −Mq

'∥ ≤δ. The greedy method operates as follows. We
first compute Mq(vi)= ∥vi −Q(vi)∥ for the reconstructed
mesh, where Q(vi) is the vertex counterpart of the recon‐
structed model. The vertex whose Mq(vi) is the largest is
then set as an anchor. We proceed in the same manner until
the client’s requirements are met.

5. Results and Discussion

In this section, we analyse how the introduction of anchors
influences the LFE of a reconstructed mesh. We also
compare reconstructed meshes with different VDE and
LFE.

In our experiment, we quantized the δ coordinates of mesh
models from three bits to eight bits, and used 12 bits to store
anchors. Since only a small portion of vertices were selected
as anchors (about 0.2% to 1.5% of the δ coordinates), the
data sizes of anchors are comparatively very small.

By increasing the quantization accuracy of δ coordinates,
the representation of the fitting function Mq = f (v) changed
from linear to exponential. This proves that increasing
quantization accuracy for δ coordinates will weaken the
contribution of anchors to reducing LFE.

When the quantization accuracy of δ coordinates is fixed,
the contribution of each newly added anchor to reducing
LFE decreases when the number of anchors increases.
Figure 7 shows examples to prove this. In Figures 7(a) and
7(b), the Laurana model was quantized with six bits. Figure
7(a) shows the fitting function Mq = f (v) is linear and Figure
7(b) indicates that the relationship between the percentage
of anchors and parameter v can be represented by a power
function. When the parameter v is decreasing, the slope of
the power function becomes significantly larger. Figures
7(c) and 7(d)show the results from performing the same set
of experiments on the bunny model. Obviously, similar
results were obtained, which confirms our claim. We now
consider each anchor’s restraint rate to LFE as:

= = ,
q

q

M
M Cv

na nana
v v

D
D D

D DD
D D

(5)

Figure 6. The relationship between LFE (Mq) and parameter v when the Armadillo model was quantized from three to eight bits

8 Int J Adv Robot Syst, 2016, 13:9 | doi: 10.5772/62035

where C is a constant, and the number of anchors is denoted

by na. When the parameter v decreases, Δna
Δv increases, and

the value
ΔMq
Δna decreases.

Model(Vertices) bits anchors (Sq) (Mq)

Armadillo(18245)

4 150 0.0946 0.5763

4 85 0.0952 0.7423

6 150 0.0236 0.1491

6 85 0.0238 0.2162

8 150 0.0060 0.0688

8 85 0.0061 0.1230

Laurana(6301)

4 52 0.0952 0.5708

4 28 0.0959 0.7341

6 52 0.0241 0.1564

6 28 0.0243 0.1939

8 52 0.0060 0.0449

8 28 0.0060 0.0661

Horse(4243)

4 38 0.0922 0.5514

4 19 0.0930 0.7499

6 38 0.0230 0.1236

6 19 0.0232 0.1779

8 38 0.0058 0.0361

8 19 0.0058 0.0546

Table 2. Influence of the quantization bits and the number of anchors on
VDE Sq and LFE Mq

Table 2 shows the results for different mesh models when
quantized with four, six, and eight bits, respectively. We
assigned either 19 or 38 anchors to these models for each

quantization level. The results showed that the level of
quantization has a great impact on both Sq and Mq. Of
course, the size of the reconstructed mesh data will increase
if we raise the level of quantization. Although adding
anchors has only a small effect on Sq, it has a great effect on
Mq. Since the required data size of storing anchors is
typically small, adding anchors to control Mq is a feasible
method.

Figure 8 compares the visual quality of three mesh models,
which are transmitted with different visual errors. When
the quantization level is increasing, the reconstructed mesh
model is visually more similar to the original model. Our
method still produces visually good results even if a mesh
is quantized by a small number of bits, e.g., three or four
bits. Figure 9 shows the reconstructed model with different
low-frequency errors. When the number of anchors
increases, the low-frequency error decreases, and the
vertices of the reconstructed mesh will be geometrically
closer to the corresponding vertices of the original mesh.

6. Conclusion

In this paper, we have proposed a quality-driven mesh
compression and transmission method. This method is
useful for robotic applications. When such applications
require environment exploration, particularly in dynamic
or unknown environments, they may suffer from a per‐
formance issue when transmitting environment represen‐
tations (here, 3D meshes) that they construct, since these
are typically either partial or dynamic, and need to be
updated continuously. Although mesh compression is a

Figure 7. (a) shows how Mq varied with parameter v when the Laurana model was quantized by six bits; (b) shows how the percentage for anchors varied
with parameter v on the same model. (c) and (d) report the results obtained from performing the same set of experiments on the bunny model.

9Bailin Yang, Xun Wang, Frederick W.B. Li, Binbo Xie, Xiaohui Liang and Zhaoyi Jiang:
3D Mesh Compression and Transmission for Mobile Robotic Applications

(a) Sq = 0.0955429 Mq = 0.648304 (b) Sq = 0.0241647 Mq = 0.166468 (c) Original

(d) Sq = 0.0947895 Mq = 0.627336 (e) Sq = 0.0236499 Mq = 0.172283 (f) Original

(g) Sq = 0.106959 Mq = 0.721855 (h) Sq = 0.0267256 Mq = 0.190774 (i) Original

Figure 8. (a) shows how Mq varied with parameter v when the Laurana model was quantized by six bits; (b) shows how the percentage for
anchors varied with parameter v.

[23] Costa Touma and Craig Gotsman. Triangle mesh
compression. Procs. Graphics Interface, pages 26–34,
1998.

[24] Olga Sorkine, Daniel Cohen-Or, and Sivan Toledo.
High-pass quantization for mesh encoding. In Symposium
on Geometry Processing, pages 42–51. Citeseer, 2003.

10 Short Journal Name, 2013, Vol. No, No:2013 www.intechopen.com

Figure 8. (a) shows how Mq varied with parameter v when the Laurana model was quantized by six bits; (b) shows how the percentage for anchors varied
with parameter v

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 9. Reconstructed meshes of the Horse, Armadillo, and Male models (top, middle, bottom row) with different LFEs, which are 0.6,
0.4, and 0.2, respectively (from left to right). For the reconstructed meshes, each vertex was coloured according to LFE (Mq). According to
the colour principle, if a vertex’s colour is close to green, the reconstructed vertex is geometrically similar to the original one. If (Mq) of a
vertex is positive, the vertex’s colour will be close to red. In contrast, when (Mq) is negative, the vertex’s colour will be close to blue.

www.intechopen.com :
3D Mesh Compression and Transmission for Mobile Robotic Applications

11

Figure 9. Reconstructed meshes of the Horse, Armadillo, and Male models (top, middle, bottom row) with different LFEs, which are 0.6, 0.4, and 0.2, respectively
(from left to right). For the reconstructed meshes, each vertex was coloured according to LFE (Mq). According to the colour principle, if a vertex’s colour is
close to green, the reconstructed vertex is geometrically similar to the original one. If (Mq) of a vertex is positive, the vertex’s colour will be close to red. In
contrast, when (Mq) is negative, the vertex’s colour will be close to blue.

10 Int J Adv Robot Syst, 2016, 13:9 | doi: 10.5772/62035

sensible way to improve data-transmission performance,
the main concern in applying mesh compression is the need
to construct an a-priori structure, which may be time-
consuming and become invalid whenever the mesh is
updated.

Our method is free from the above issues and can also be
applied to locally compress only the updated mesh part. In
addition, our method offers a simple mechanism to control
the visual quality of a compressed mesh. All these features
match well with the requirements of robotic applications,
where frequent mesh updating is required and the resource
availability for mesh transmission may change over time.

To demonstrate our work, we have conducted experiments
to depict mesh quality against different settings and visual
errors. In our future work, segmentation on the large model
will be taken into consideration. This might enhance the
computing efficiency, although the border between
segmentations needs careful handling. We will also
investigate how the compression ratio affects path-
planning accuracy in robotic applications.

7. Acknowledgements

This work was partly supported by the National High
Technology Research and Development Program of China
(863 Program, Grant No. 2013AA013701), the Zhejiang
Province Natural Science Foundation for Distinguished
Young Scientists (Grant No. LR12F02001), the National
Natural Science Foundation of China (Grant Nos. 61170214,
61472363, 61170098) and Zhejiang Province Natural Science
Key Foundation (Grant No. Z1101340).

8. References

[1] Jorge Fuentes-Pacheco, José Ruiz-Ascencio, and
Juan Manuel Rendón-Mancha. Visual simultaneous
localization and mapping: a survey. Artificial
Intelligence Review, 43(1):55–81, 2015.

[2] James Diebel and Sebastian Thrun. An application
of markov random fields to range sensing. In NIPS,
volume 5, pages 291–298, 2005.

[3] Radu Bogdan Rusu, Aravind Sundaresan, Benoit
Morisset, Kris Hauser, Motilal Agrawal, Jean-
Claude Latombe, and Michael Beetz. Leaving
flatland: Efficient real-time three-dimensional
perception and motion planning. Journal of Field
Robotics, 26(10):841–862, 2009.

[4] Yong Liu, Rong Xiong, and Yi Li. Robust and
accurate multiple-camera pose estimation toward
robotic applications. International Journal of Ad‐
vanced Robotic Systems, 11, 2014.

[5] Adrien Maglo, Guillaume Lavoué, Florent Dupont,
and Céline Hudelot. 3d mesh compression: Survey,
comparisons, and emerging trends. ACM Comput‐
ing Surveys (CSUR), 47(3):44, 2015.

[6] Bai-Lin Yang, Frederick W.B. Li, Zhi-Geng Pan, and
Xun Wang. An effective error resilient packetization
scheme for progressive mesh transmission over
unreliable networks. Journal of Computer Science and
Technology, 23(6):1015–1025, 2008.

[7] Frederick W.B. Li, Rynson W.H. Lau, Danny Kilis,
and Lewis W.F. Li. Game-on-demand:: An online
game engine based on geometry streaming. ACM
Transactions on Multimedia Computing, Communica‐
tions, and Applications (TOMM), 7(3):19, 2011.

[8] Hoppe Hugues. Progressive meshes. In Computer
Graphics (SIGGRAPH 96 Proceedings), pages 99–108,
1996.

[9] Albert F Harris III and Robin Kravets. The design of
a transport protocol for on-demand graphical
rendering. In Procs. International Workshop on
Network and Operating Systems Support for Digital
Audio and Video, pages 43–49. ACM, 2002.

[10] Wei Cheng and Wei Tsang Ooi. Receiver-driven
view-dependent streaming of progressive mesh. In
Procs. International Workshop on Network and Operat‐
ing Systems Support for Digital Audio and Video, pages
9–14. ACM, 2008.

[11] Xianfeng Gu, Steven J Gortler, and Hugues Hoppe.
Geometry images. ACM Transactions on Graphics
(TOG), 21(3):355–361, 2002.

[12] Jingliang Peng, Chang-Su Kim, and C-C Jay Kuo.
Technologies for 3d mesh compression: A survey.
Journal of Visual Communication and Image Represen‐
tation, 16(6):688–733, 2005.

[13] Sung-eui Yoon and Peter Lindstrom. Random-
accessible compressed triangle meshes. IEEE
Transactions on Visualization and Computer Graphics,
13(6):1536–1543, 2007.

[14] Clément Jamin, Pierre-Marie Gandoin, and Samir
Akkouche. Chumi viewer: Compressive huge mesh
interactive viewer. Computers & Graphics, 33(4):542–
553, 2009.

[15] Michael A Goodrich and Alan C Schultz. Human-
robot interaction: a survey. Foundations and trends in
human-computer interaction, 1(3):203–275, 2007.

[16] Dirk Hähnel, Wolfram Burgard, and Sebastian
Thrun. Learning compact 3d models of indoor and
outdoor environments with a mobile robot. Robotics
and Autonomous Systems, 44(1):15–27, 2003.

[17] Yanbing Liu, Fen Tang, and Zhimin Zeng. Feature
selection based on dependency margin. IEEE
Transactions on CYBERNETICS, 45(6):1209–1221,
2015.

[18] Liu Yong, Huang Wenliang, Jiang Yunliang, and
Zeng Zhiyong. Quick attribute reduct algorithm for
neighborhood rough set model. Information Scien‐
ces, 271:65–81, 2014.

[19] Ioannis Rekleitis, Gregory Dudek, and Evangelos
Milios. Multi-robot collaboration for robust explo‐

11Bailin Yang, Xun Wang, Frederick W.B. Li, Binbo Xie, Xiaohui Liang and Zhaoyi Jiang:
3D Mesh Compression and Transmission for Mobile Robotic Applications

ration. Annals of Mathematics and Artificial Intelli‐
gence, 31(1-4):7–40, 2001.

[20] Laurent A Nguyen, Maria Bualat, Laurence J
Edwards, Lorenzo Flueckiger, Charles Neveu, Kurt
Schwehr, Michael D Wagner, and Eric Zbinden.
Virtual reality interfaces for visualization and
control of remote vehicles. Autonomous Robots, 11(1):
59–68, 2001.

[21] Zhe Zhang, Hong Guo, Goldie Nejat, and Peisen
Huang. Finding disaster victims: A sensory system
for robot-assisted 3d mapping of urban search and
rescue environments. In IEEE International Confer‐
ence on Robotics and Automation, pages 3889–3894.
IEEE, 2007.

[22] Ian Yen-Hung Chen, Bruce MacDonald, and
Burkhard Wünsche. Mixed reality simulation for
mobile robots. In IEEE International Conference on
Robotics and Automation (ICRA’09), pages 232–237.
IEEE, 2009.

[23] Costa Touma and Craig Gotsman. Triangle mesh
compression. Procs. Graphics Interface, pages 26–34,
1998.

[24] Olga Sorkine, Daniel Cohen-Or, and Sivan Toledo.
High-pass quantization for mesh encoding. In
Symposium on Geometry Processing, pages 42–51.
Citeseer, 2003.

12 Int J Adv Robot Syst, 2016, 13:9 | doi: 10.5772/62035

