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Abstract

We investigate theoretically shear banding in large amplitude oscillatory shear (LAOS) of polymeric and wormlike micellar surfactant fluids. In

large amplitude oscillatory shear strain, we observe banding at low frequencies and sufficiently high strain rate amplitudes in fluids for which the

underlying stationary constitutive curve of shear stress as a function of shear rate is nonmonotonic. This is the direct (and relatively trivial) analog

of quasisteady state banding seen in slow strain rate sweeps along the flow curve. At higher frequencies and sufficiently high strain amplitudes, we

report a different but related phenomenon, which we call “elastic” shear banding. This is associated with an overshoot in the elastic

(Lissajous–Bowditch) curve of stress as a function of strain and we suggest that it might arise rather widely even in fluids that have a monotonic

underlying constitutive curve, and so do not show steady state banding if under a steadily applied shear flow. It is analogous to the elastic banding

triggered by stress overshoot in a fast shear startup predicted previously by R. L. Moorcroft and S. M. Fielding [Phys. Rev. Lett. 110(8), 086001

(2013)], but could be more readily observable experimentally in this oscillatory protocol due to its recurrence in each half cycle. In large

amplitude oscillatory shear stress, we report shear banding in fluids that shear thin strongly enough to have either a negatively or a weakly

positively sloping region in the underlying constitutive curve, noting again that fluids in the latter category do not display steady state banding in a

steadily applied flow. This banding is triggered in each half cycle as the stress magnitude transits the region of weak slope in an upward direction

such that the fluid effectively yields. It is strongly reminiscent of the transient banding predicted previously in step stress [R. L. Moorcroft and S.

M. Fielding, Phys. Rev. Lett. 110(8), 086001 (2013)]. Our numerical calculations are performed in the Rolie-poly model of polymers and worm-

like micelles, but we also provide arguments suggesting that our results should apply more widely. Besides banding in the shear strain rate profile,

which can be measured by velocimetry, we also predict banding in the shear and normal stress components, measurable by birefringence. As a

backdrop to understanding the new results on shear banding in LAOS, we also briefly review earlier work on banding in other time-dependent pro-

tocols, focusing in particular on shear startup and step stress. VC 2016 The Society of Rheology. [http://dx.doi.org/10.1122/1.4960512]

I. INTRODUCTION

Many complex fluids display shear banding, in which a

state of initially homogeneous shear flow gives way to the

formation of coexisting bands of differing shear rate, with

layer normal in the flow-gradient direction. For recent

reviews, see [1–4]. Following its early observation in worm-

like micellar surfactant solutions [5], over the past two deca-

des shear banding has been seen in virtually all the major

classes of complex fluids and soft solids. Examples include

microgels [6], clays [7], emulsions [8] foams [9], lamellar

surfactant phases [10], triblock copolymers [11,12], star pol-

ymers [13], and—subject to ongoing controversy [14–20]—

linear polymers.

Prior to about 2010, the majority of studies of shear band-

ing focused on conditions of a steadily applied shear flow.

The criterion for the presence of steady state banding in this

case is well known: That the underlying homogeneous con-

stitutive curve of shear stress as a function of shear rate has a

regime of negative slope. (In some cases of strong concentra-

tion, coupling shear banding can arise even for a monotonic

constitutive curve [21], but we do not consider that case

here.) Such a regime is predicted by the original tube theory

of Doi and Edwards for nonbreakable polymers [22], and by

the reptation-reaction model of wormlike micellar surfac-

tants [23]. It is straightforward to show that a state of initially

homogeneous shear flow is linearly unstable, in this regime

of negative constitutive slope, to the formation of shear

bands [24]. The composite steady state flow curve of shear

stress as a function of shear rate then displays a characteristi-

cally flat plateau regime, in which shear bands are observed.

From an experimental viewpoint, the evidence for steady

state shear banding under a steadily applied shear flow is

now overwhelming in the case of wormlike micelles. For

reviews, see [25,26]. For linear unbreakable polymers, the

issue remains controversial, as recently reviewed in [27]. In

particular, the original Doi–Edwards model did not account

for a process known as convective constraint release (CCR)

[28–30]. Since CCR (which we describe below) was pro-

posed, there has been an ongoing debate about its efficacy in

potentially eliminating the regime of negative constitutive

slope and restoring a monotonic constitutive curve, thereby

eliminating steady state banding. However, a nonmonotonic

constitutive curve and associated steady state shear banding

has been seen in molecular dynamics simulations of poly-

mers [31], for long enough chain lengths. It is important to

note, though, that the polydispersity that is often present

in practice in unbreakable polymers also tends to restore

monotonicity.
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Besides the conditions of steady state flow just described,

many flows of practical importance involve a strong time

dependence. In view of this, a natural question to ask is

whether shear banding might also arise in these time-dependent

flows and, if so, under what conditions. Over the past decade, a

body of experimental data has accumulated to indicate that it

does indeed occur: In shear startup [6,7,16,32–34], following a

step strain (in practice a rapid strain ramp) [35–41], and follow-

ing a step stress [14,33,34,41–46].

Consistent with this growing body of experimental evi-

dence, theoretical considerations [47–51] also suggest that

shear banding might arise rather generically in flows with a

sufficiently strong time dependence, even in fluids that have

a monotonically increasing constitutive curve and so do not

display steady state banding under conditions of a continu-

ously applied shear. Indeed, the calculations to date suggest

that the set of fluids that show banding in steady state is only

a subset of those that exhibit banding in time-dependent

flows. In view of this, although the question concerning the

existence or otherwise of steady state shear banding in poly-

mers remains an important one, the resolution of that contro-

versy is likely to be of less practical importance to the

broader issue of whether shear banding arises more generally

in time-dependent flows.

In the last five years, progress has been made in establish-

ing theoretically, separately for each of the time-dependent

flow protocols listed above (shear startup, step strain, and

step stress), a fluid-universal criterion [47] for the onset of

shear banding, based on the shape of the time-dependent rhe-

ological response function for the particular protocol in ques-

tion. We now briefly review these criteria as backdrop to

understanding the results that follow below for shear banding

in large amplitude oscillatory shear (LAOS).

In shear startup (the switch-on at some time t¼ 0 of a

constant shear rate _c), the onset of banding is closely associ-

ated with the presence of an overshoot [47–51] in the startup

signal of stress as a function of time (or equivalently as a

function of strain), as it evolves toward its eventual steady

state on the material’s flow curve. This concept builds on the

early insight of [52]. The resulting bands may, or may not,

then persist to steady state, according to whether or not the

underlying constitutive curve of stress as a function of strain

rate is nonmonotonic. This tendency of a startup overshoot

to trigger banding was predicted on the basis of fluid-

universal analytical calculations in [47], and has been con-

firmed in numerical simulations of polymeric fluids (polymer

solutions, polymer melts, and wormlike micelles) [48,50],

polymer glasses [53], and soft glassy materials (SGMs)

(dense emulsions, microgels, foams, etc.) [49,51,54]. It is

consistent with experimental observations in wormlike micel-

lar surfactants [41,44], polymers [14,16,33,34,36,55–57], car-

bopol gels [6,32], and Laponite clay suspensions [7].

Following the imposition of a step stress in a previously

undeformed sample, the onset of shear banding is closely

associated with the existence of a regime of simultaneous

upward slope and upward curvature in the time-differentiated

creep response curve of shear rate as a function of time [3,47].

This criterion was also predicted on the basis of fluid-universal

analytical calculations in [47], and has been confirmed in

numerical simulations of polymeric fluids [48] and SGMs [3].

It is consistent with experimental observations in polymers

[14,33,34,41,44–46,57], carbopol microgels [43], and carbon

black suspensions [42].

In the shear startup and step stress experiments just

described, the time dependence is inherently transient in

nature: After (typically) several strain units, the system

evolves to its eventual steady state on the material’s flow

curve. In any such protocol, for a fluid with a monotonic con-

stitutive curve that precludes steady state banding, any obser-

vation of banding is predicted to be limited to this regime of

time dependence following the inception of the flow. That

poses an obvious technical challenge to experimentalists: Of

imaging the flow with sufficient time resolution to detect

these transient bands. This is particularly true for a poly-

meric fluid with a relatively fast relaxation spectrum. For

SGMs, in contrast, the dynamics are typically much slower

and any bands associated with the onset of flow, though tech-

nically transient, may persist for a sufficiently long time to

be mistaken for the material’s ultimate steady state response

for any practical purpose [3,49].

In the past decade, the rheological community has

devoted considerable attention to the study of LAOS. For a

recent review, see [58]. In this protocol, the applied flow has

the form of a sustained oscillation and is therefore perpetu-

ally time dependent, in contrast to the transient time depen-

dence of the shear startup and step stress protocols just

described. But by analogy with the predictions of transient

shear banding in shear startup and step stress, a sustained

oscillatory flow might (in certain regimes that we shall dis-

cuss) be expected to repeatedly show banding at certain

phases of the cycle, or even to show sustained banding round

the whole cycle. Importantly, again by analogy with our

knowledge of shear startup and step stress, this effect need

not be limited to fluids with a nonmonotonic constitutive

curve that shows steady state banding in a continuously

applied shear flow, but might instead arise as a natural conse-

quence of the time dependence inherent in the oscillation.

Indeed, a particularly attractive feature of LAOS is that

the severity of the flow’s time dependence, relative to the flu-

id’s intrinsic characteristic relaxation timescale s, can be

tuned by varying the frequency x of the applied oscillation.

A series of LAOS experiments can thereby explore the full

range between steady state behavior in the limit x! 0,

where the oscillation effectively corresponds to a repeated

series of quasistatic sweeps up and down the flow curve, and

strongly time-dependent behavior for x > 1=s. A fluid with

a nonmonotonic underlying constitutive curve that admits

steady state banding is then clearly expected to exhibit band-

ing in the limit of x! 0, as the shear rate quasistatically

transits the plateau in the steady state flow curve. In contrast,

a monotonic constitutive curve precludes banding for

x! 0. Crucially, though, as noted above, the absence of

banding in steady state conditions does not rule out the possi-

bility of banding in flows with a strong enough time depen-

dence, x’Oð1=sÞ.
Indeed, intuitively, a square-wave caricature of a large

amplitude oscillatory shear strain (LAOStrain) experiment

points to a perpetual switching between a shear startuplike
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process in the forward direction, followed by “reverse

startup” in the opposite direction. Any regime in which these

startuplike events are associated with an overshoot in the

associated curve of stress as a function of strain then strongly

suggests the possibility of shear banding during those quasis-

tartup parts of the cycle, by analogy with the criterion for

banding in a true shear startup from rest. In the same spirit, a

square-wave caricature of a large amplitude oscillatory shear

stress (LAOStress) experiment indicates a perpetually

repeated series of step stress events, jumping between posi-

tive and negative stress values, and so admitting the possibil-

ity of shear banding if the criterion for banding following a

step stress is met.

In practice, of course, LAOS is more complicated than

the caricatures just described and the criteria for banding in

shear startup and step stress might only be expected to apply

in certain limiting regimes. Nonetheless, in what follows

we shall show that many of our results for banding in

LAOStrain and LAOStress can, to a large extent, be under-

stood within the framework of these existing criteria for the

simpler time-dependent protocols.

Experimentally, shear banding has indeed been observed

in LAOS: In polymer solutions [15], dense colloids [59], and

also in wormlike micellar surfactants that are known to shear

band in steady state [60–62].

From a theoretical viewpoint, several approaches to the

interpretation of LAOS data have been put forward in the lit-

erature [58]. These include Fourier transform rheology [63];

measures for quantifying Lissajous–Bowditch curves

(defined below) in their elastic representation of stress versus

strain, or viscous representation of stress versus strain rate

[64]; a decomposition into characteristic sine, square, and tri-

angular wave prototypical response functions [65,66];

decomposition into elastic and viscous stress contributions

using symmetry arguments [67]; Chebyshev series expan-

sions of these elastic and viscous contributions [68]; and

interpretations of the LAOS cycle in terms of a sequence of

physical processes (SPP) [69,70].

However, many of these existing theoretical studies

assume either explicitly or implicitly that the flow remains

homogeneous, and thereby fail to take account of the possi-

bility of shear banding. An early exception can be found in

[71,72], which studied a model of wormlike micellar surfac-

tants with a nonmonotonic constitutive curve in LAOStrain.

Another exception is in the paper of Adams and Olmsted

[73], which recognized that shear banding can arise even in

the absence of any nonmonotonicity in the underlying consti-

tutive curve.

The work that follows here builds on the remarkable

insight of these early papers, in carrying out a detailed

numerical study of shear banding in LAOStrain and

LAOStress within the Rolie-poly (RP) model [74] of poly-

mers and wormlike micellar surfactant solutions. Consistent

with the above discussion, in LAOStrain we observe banding

at low frequencies x! 0 and sufficiently high strain rate

amplitudes _c’ 1=s in fluids for which the underlying consti-

tutive curve of shear stress as a function of shear rate is

nonmonotonic. At higher frequencies x ¼ Oð1=sÞ and for

sufficiently high strain amplitudes c’ 1, we instead see

“elastic” shear banding associated with an overshoot in the

elastic curve of stress as a function of strain, in close analogy

with the elastic banding predicted in a fast shear startup

experiment [47,48,50,73]. Importantly, we show that this

elastic banding arises robustly even in a wide range of model

parameter space for which the underlying constitutive curve

is monotonic, precluding steady state banding.

In LAOStress, we observe banding in fluids that shear thin

sufficiently strongly to have either a negatively, or weakly

positively, sloping region in the underlying constitutive curve.

We emphasize again that fluids in the latter category do not

display steady state banding, and therefore that, for such flu-

ids, the banding predicted in LAOStress is a direct result of

the time dependence of the applied flow. In this case, the

banding is triggered in each half cycle as the stress magnitude

transits in an upward direction the region of weak slope and

the strain rate magnitude increases dramatically such that the

material effectively yields. This is strongly reminiscent of the

transient banding discussed previously in step stress [47,48].

While it would be interesting to interpret our findings

within one (or more) of the various mathematical methodolo-

gies for analyzing LAOS discussed above (and in particular

to consider the implications of banding for the presence of

higher harmonics in the output rheological time series), in

the present manuscript we focus instead on the physical

understanding that can be gained by considering the shapes

of the signals of stress versus strain or strain rate (in

LAOStrain) and strain rate versus time (in LAOStress). In

that sense, this work is closest in spirit to the SPP approach

of [69,70] (which did not, however, explicitly consider het-

erogeneous response). In particular, we seek to interpret the

emergence of shear banding in LAOS on the basis of the

existing criteria for the onset of banding in the simpler time-

dependent protocols of shear startup and step stress [47].

The paper is structured as follows. In Sec. II, we introduce

the model, flow geometry, and protocols to be considered.

Section III outlines the calculational methods that we shall

use. Section IV contains a summary of previously derived

linear instability criteria for shear banding in steady shear,

fast shear startup, and step shear stress protocols, with the

aim of providing a backdrop to understanding shear banding

in oscillatory protocols. In Secs. V and VI, we present our

results for LAOStrain and LAOStress, respectively, and dis-

cuss their potential experimental verification. Finally, Sec.

VII contains our conclusions and an outlook for future work.

II. MODEL, FLOW GEOMETRY, AND PROTOCOLS

We write the stress Rðr; tÞ at any time t in a fluid element

at position r as the sum of a viscoelastic contribution rðr; tÞ
from the polymer chains or wormlike micelles, a Newtonian

contribution characterized by a viscosity g, and an isotropic

contribution with pressure pðr; tÞ

R ¼ rþ 2gD� pI: (1)

The Newtonian stress 2gDðr; tÞ may arise from the presence

of a true solvent, and from any polymeric degrees of freedom
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considered fast enough not to be ascribed their own viscoelas-

tic dynamics. The symmetric strain rate tensor D ¼ ð1=2Þ
ðK þ KTÞ where Kab ¼ @bva and vðr; tÞ is the fluid velocity

field.

We consider the zero Reynolds number limit of creeping

flow, in which the condition of local force balance requires

the stress field Rðr; tÞ to be divergence free

$ � R ¼ 0: (2)

The pressure field pðr; tÞ is determined by enforcing that the

flow remains incompressible

$ � v ¼ 0: (3)

The viscoelastic stress is then written in terms of a con-

stant elastic modulus G and a tensor Wðr; tÞ characterising

the conformation of the polymer chains or wormlike

micelles, r ¼ G ðW � IÞ. We take the dynamics of W to be

governed by the RP model [74] with

@tW þ v � rW ¼ K �W þW � KT � 1

sd
W � Ið Þ

� 2 1� Að Þ
sR

W þ bA�2d W � Ið Þ
� �

þ Dr2W; (4)

in which A ¼
ffiffiffiffiffiffiffiffiffi
3=T

p
with trace T ¼ tr W. This RP model is

a single mode simplification of the GLAMM model [75],

which provides a microscopically derived stochastic equa-

tion for the dynamics of a test chain (or micelle) in its mean

field tube of entanglements with other chains. The timescale

sd sets the characteristic time on which a chain escapes its

tube by means of 1D curvilinear diffusion along the tube’s

contour, known as reptation, allowing the molecular orienta-

tion to refresh itself. The Rouse timescale sR sets the shorter

time on which chain stretch, as characterized by T ¼ tr W,

relaxes. The ratio sd=sR ¼ 3Z, where Z is the number of

entanglements per chain. The parameters b and d govern a

phenomenon known as CCR [28–30], in which the relaxation

of the stretch of a test chain has the effect of also relaxing

entanglement points, thereby facilitating the relaxation of

tube orientation. The diffusive term Dr2W added to the

right-hand side of Eq. (4) is required to account for the

slightly diffuse nature of the interface between shear bands

[76]: Without it, the shear rate would be discontinuous across

the interface, which is unphysical.

Using this model, we will consider shear flow between

infinite flat parallel plates at y ¼ f0; Lg, with the top plate

moving in the x̂ direction at speed �_cðtÞL. We assume transla-

tional invariance in the flow direction x̂ and vorticity direc-

tion ẑ such that the fluid velocity can be written as

v ¼ vðy; tÞx̂. The local shear rate at any position y is then

given by

_cðy; tÞ ¼ @yvðy; tÞ; (5)

and the spatially averaged shear rate

�_c tð Þ ¼ 1

L

ðL

0

_c y; tð Þdy: (6)

Such a flow automatically satisfies the constraint of incom-

pressibility, Eq. (3). The force balance condition, Eq. (2),

further demands that the total shear stress is uniform across

the cell, in the planar flow situation considered here, giving

@yRxy ¼ 0. The viscoelastic and Newtonian contributions

may, however, each depend on space provided their sum

remains uniform

RxyðtÞ ¼ GWxyðy; tÞ þ g _cðy; tÞ: (7)

For such a flow, the RP model can be written component-

wise as

_Wxy ¼ _cWyy�
Wxy

sd
� 2 1�Að Þ

sR
1þbAð ÞWxyþD@2

y Wxy;

_Wyy ¼�
Wyy� 1

sd
� 2 1�Að Þ

sR
WyyþbA Wyy� 1ð Þ
� �

þD@2
y Wyy;

_T ¼ 2 _cWxy�
T� 3

sd
� 2 1�Að Þ

sR
TþbA T� 3ð Þ
� �

þD@2
y T:

(8)

(The other components of W decouple to form a separate

equation set, with trivial dynamics.) In the limit of fast

chain stretch relaxation sR ! 0, we obtain the simpler

“nonstretching” RP model in which the trace T¼ 3 and

_Wxy ¼ _c Wyy�
2

3
1þ bð ÞW2

xy

� �
� 1

sd
Wxy;þD@2

y Wxy;

_Wyy ¼
2

3
_c bWxy� 1þ bð ÞWxyWyy

� �
� 1

sd
Wyy� 1ð ÞþD@2

y Wyy:

(9)

For convenient shorthand, we shall refer to this simpler non-

stretching form as the nRP model. We refer to the full

“stretching” model of Eq. (8) as the sRP model.

For boundary conditions at the walls of the flow cell, we

assume no slip and no permeation for the fluid velocity, and

zero gradient @yWab ¼ 0 for every component ab of the

polymeric conformation tensor.

In what follows, we consider the behavior of the RP

model in the following two flow protocols:

• LAOStrain, with an imposed strain

cðtÞ ¼ c0 sinðxtÞ; (10)

to which corresponds the strain rate

_cðtÞ ¼ c0x cosðxtÞ ¼ _c0 cosðxtÞ: (11)

• LAOStress, with an imposed stress

RðtÞ ¼ R0 sinðxtÞ: (12)

The model, flow geometry, and protocol just described are

characterized by the following parameters: The polymer
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modulus G, the reptation timescale sd, the stretch relaxation

timescale sR, the CCR parameters b and d, the stress diffu-

sivity D, the solvent viscosity g, the gap size L, the frequency

x, and the amplitude c0 (for LAOStrain) or R0 (for

LAOStress). We are free to choose units of mass, length, and

time, thereby reducing the list by three: We work in units of

length in which the gap size L¼ 1, of time in which the

reptation time sd ¼ 1 and of mass (or actually stress) in

which the polymer modulus G¼ 1. We then set the value of

the diffusion constant D such that the interface between the

bands has a typical width ‘ ¼
ffiffiffiffiffiffiffiffi
Dsd

p
¼ 2� 10�2L, much

smaller than the gap size. This is the physically relevant

regime for the macroscopic flow cells of interest here, and

we expect the results we report to be robust to reducing l fur-

ther. Following [74], we set d ¼ �1=2.

Adimensional quantities remaining to be explored are

then the model parameters g, b, and (for the sRP model

only) sR; and the protocol parameters x and c0 or R0. For

each set of model parameters, we explore the whole plane of

feasibly accessible values of protocol parameters x and c0

or R0.

Among the model parameters, the CCR parameter has the

range 0 � b � 1. Within this, there is no current consensus

as to its precise value, and we shall therefore explore widely

the full range 0! 1. For the fluids of interest, here the

Newtonian viscosity is typically much smaller than the zero

shear viscosity of the viscoelastic component, giving g� 1

in our units. Based on a survey of the experimental data, a

range of 10�7–10�3 was suggested by Graham et al. in [77].

Consistent with comments made in [78], we find values less

than 10�5 unfeasible to explore numerically, due to a result-

ing large separation of timescales between sd and g=G.

Therefore we adopt typical values g ¼ 10�4 and 10�5. Given

that the susceptibility to shear banding increases with

decreasing g, we note that the levels of banding reported in

what follows are likely, if anything, to be an underestimate

of what might be observed experimentally. We return in our

concluding remarks to discuss this issue further.

We explore a wide range of values of the stretch relaxa-

tion time sR, or equivalently of the degree of entanglement

Z ¼ sd=3sR: We consider Z¼ 1 to 350 for the sRP model

(and note that the nRP model has Z !1 by definition).

Experimentally, values of Z in the range of 50 appear com-

monplace and 100 toward the upper end of what might cur-

rently be used experimentally in nonlinear rheological

studies. One of the objectives of this work is to provide a

roadmap of values of Z and b in which shear banding is

expected to be observed, for typical small values of g, in a

sequence of LAOS protocols that scan amplitude and fre-

quency space.

III. CALCULATION METHODS

In this section, we outline the theoretical methods to be

used throughout the paper. In order to develop a generalized

framework encompassing both the nRP and sRP models, we

combine all the relevant dynamical variables (for any given

model) into a state vector s, with s ¼ ðWxy;WyyÞT for the

nRP model and s ¼ ðWxy;Wyy; TÞT for the sRP model.

Alongside this, we define a projection vector p of corre-

sponding dimensionality d, with p ¼ ð1; 0Þ for the nRP

model and p ¼ ð1; 0; 0Þ for sRP.

The total shear stress Rxy ¼ R, from which we drop the xy
subscript for notational brevity, is then given by

RðtÞ ¼ Gp � sðy; tÞ þ g _cðy; tÞ; (13)

and the viscoelastic constitutive equation has the generalized

form

@t sðy; tÞ ¼ Qðs; _cÞ þ D@2
y s: (14)

The dimensionality and functional form of Q then specify

the particular constitutive model. In this way, our general-

ized notation in fact encompasses not only the nRP model

(for which d¼ 2) and sRP model (for which d¼ 3) but many

more besides, including the Johnson Segalman, Giesekus,

and Oldroyd B models [79].

A. Homogeneous base state

For any given applied flow, our approach will be first to

calculate the fluid’s response within the simplifying assump-

tion that the deformation must remain homogeneous across

the cell. While this is an artificial (and indeed incorrect) con-

straint in any regime where shear banding is expected, it

nonetheless forms an important starting point for understand-

ing the mechanism by which shear banding sets in. (We also

note that most papers in the literature make this assumption

throughout, thereby disallowing any possibility of shear

banding altogether.)

Within this assumption of homogeneous flow, the response

of the system follows as the solution to the set of ordinary dif-

ferential equations

R̂ðtÞ ¼ Gp � ŝðtÞ þ g _̂cðtÞ; (15)

and

_̂sðtÞ ¼ Qðŝ; _̂cÞ: (16)

In these either _̂cðtÞ or R̂ðtÞ is imposed, in LAOStrain and

LAOStress, respectively, and the other dynamical quantities

are calculated numerically using an explicit Euler algorithm

[80]. We use the “hat” notation to denote that the state being

considered is homogeneous.

B. Linear stability analysis

Having calculated the behavior of the fluid within the

assumption that the flow remains homogeneous, we now

proceed to consider whether this homogeneous “base state”

flow will, at any point during an applied oscillatory proto-

col, be unstable to the formation of shear bands. To do so,

we add to the base state, for which we continue to use the

hat notation, heterogeneous perturbations of (initially) small

amplitude

887SHEAR BANDING IN LAOSTRAIN AND LAOSTRESS

 Redistribution subject to SOR license or copyright; see http://scitation.aip.org/content/sor/journal/jor2/info/about. Downloaded to IP:  129.234.252.66 On: Tue, 11 Oct 2016

12:53:42



RðtÞ ¼ R̂ðtÞ;

_cðy; tÞ ¼ _̂cðtÞ þ
X1
n¼1

d _cnðtÞ cosðnpy=LÞ;

sðy; tÞ ¼ ŝðtÞ þ
X1
n¼1

dsnðtÞ cosðnpy=LÞ: (17)

Note that the total stress, R, is not subject to heterogeneous

perturbations because the constraint of force balance decrees

that it must remain uniform across the gap, at least in a pla-

nar shear cell. Substituting Eq. (17) into Eqs. (13) and (14),

and expanding in successive powers of the magnitude of

the small perturbations d _cn; dsn, we recover at zeroth order

Eqs. (15) and (16) for the dynamics of the base state. At first

order, the heterogeneous perturbations obey

0 ¼ Gp � dsnðtÞ þ gd _cnðtÞ;
_dsn ¼ MðtÞ � dsn þ qd _cn; (18)

in which M ¼ @sQjŝ; _̂c � dDðnp=LÞ2 and q ¼ @ _cQjŝ; _̂c .

Combining these gives

_dsn ¼ PðtÞ � dsn; (19)

with

P tð Þ ¼ M tð Þ � G

g
q tð Þ p: (20)

In any regime where the heterogeneity remains small, terms

of second order and above can be neglected.

To determine whether at any time t during an imposed

oscillatory flow the heterogeneous perturbations d _cn; dsnðtÞ
have positive rate of growth, indicating linear instability of

the underlying homogeneous base state to the onset of shear

banding, we consider first of all the instantaneous sign of the

eigenvalue kðtÞ of PðtÞ that has the largest real part. A posi-

tive value of kðtÞ is clearly suggestive that heterogeneous

perturbations will be instantaneously growing at that time t.
We note, however, that the concept of a time-dependent

eigenvalue must be treated with caution. In view of this, we

cross check predictions made on the basis of the eigenvalue

by also directly numerically integrating the linearized Eq.

(19) using an explicit Euler algorithm. This allows us to

determine unambiguously whether the heterogeneous pertur-

bations will be at any instant growing (taking the system

toward a banded state) or decaying (restoring a homoge-

neous state), at the level of this linear calculation.

In these linear stability calculations, we neglect the diffu-

sive term in the viscoelastic constitutive equation, setting

D¼ 0. Reinstating it would simply transform any eigenvalue

k! kn ¼ k� Dn2p2=L2 and provide a mechanism whereby

any heterogeneity with a wavelength of order the micro-

scopic length scale l, or below, diffusively decays.

Accordingly, the results of this linear calculation only prop-

erly capture the dynamics of any heterogeneous perturba-

tions that have macroscopically large wavelengths, which

are the ones of interest in determining the initial formation

of shear bands starting from a homogeneous base state.

As a measure of the degree of flow heterogeneity at any

time t in this linear calculation, we shall report in our results

sections d _cðtÞ is normalized by the amplitude of the imposed

oscillation _c0 in LAOStrain, or by 1þ j _cðtÞj in LAOStress,

where _cðtÞ is the instantaneous value of the shear rate. (We

find numerically that bands tend to form in LAOStress when

j _cðtÞj � 1. The additional 1 in the normalization is used sim-

ply to prevent the divergence of this measure when _cðtÞ
passes through 0 in each half cycle.) Note that we no longer

need to specify the mode number n for d _c because within the

assumption D¼ 0 just described, we are confining our atten-

tion to the limit of long wavelength modes only and noting

them all to have the same dynamics, to within small correc-

tions set by D.

C. Full nonlinear simulation

While the linear analysis just described provides a calcu-

lationally convenient method for determining whether shear

banding will arise in any given oscillatory measurement,

enabling us to quickly build up an overall roadmap of param-

eter space, it cannot predict the detailed dynamics of the

shear bands once the amplitude of heterogeneity has grown

sufficiently large that nonlinear effects are no longer negligi-

ble. Therefore in what follows we shall also perform full

nonlinear simulations of the model’s spatiotemporal dynam-

ics by directly integrating the full model Eqs. (13) and (14)

using a Crank–Nicolson algorithm [80], with the system’s

state discretized on a grid of J values of the spatial coordi-

nate y, checked in all cases for convergence with respect to

increasing the number of grid points.

As a measure of the degree of shear banding at any time t
in this nonlinear calculation, we report the difference

between the maximum and minimum values of the shear rate

across the cell

D _c tð Þ ¼ 1

N
j _cmax tð Þ � _cmin tð Þj
� �

; (21)

again normalized depending upon the employed protocol, by

N, where N is the amplitude of the imposed oscillation _c0 in

LAOStrain, and 1þ j _cðtÞj in LAOStress.

D. Seeding the heterogeneity

When integrating the model equations to determine the

time evolution of any flow heterogeneity, whether linear-

ized or in their full nonlinear form, we must also specify the

way in which whatever heterogeneous perturbations that are

the precursor to the formation of shear bands are seeded ini-

tially. Candidates include any residual heterogeneity left in

the fluid by the initial procedure of sample preparation;

imperfections in the alignment of the rheometer plates; true

thermal noise with an amplitude set by kBT; and rheometer

curvature in cone-and-plate or cylindrical Couette devices.

We consider in particular the last of these because it is

likely to be the dominant source of heterogeneity in com-

monly used flow cells, which typically have a curvature of

about 10%.
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While modeling the full effects of curvature is a compli-

cated task, its dominant consequence can be captured simply

by including a slight heterogeneity in the total stress field.

(The assumption made above of a uniform stress across the

gap only holds in an idealized planar device.) Accordingly,

we set RðtÞ ! RðtÞ½1þ qhðyÞ� where q sets the amplitude of

the curvature and h(y) is a function with an amplitude of

O(1) that prescribes its spatial dependence. The detailed

form of h(y) will differ from device to device: For example

in a cylindrical Couette, it is known to have a 1=r2 depen-

dence, where r is the radial coordinate. However, the aim

here is not to model any particular device geometry in detail,

but simply to capture the dominant effect of curvature

in seeding the flow heterogeneity. Accordingly, we set

hðyÞ ¼ cosðp=LÞ which is the lowest Fourier mode to fit into

the simulation cell while still obeying the boundary condi-

tions at the walls.

IV. SHEAR BANDING IN OTHER TIME-DEPENDENT
PROTOCOLS

As a preamble to presenting our results for shear banding

in oscillatory flow protocols in Secs. V and VI, we first

briefly collect together criteria derived in previous work for

linear instability to the formation of shear bands in simpler

time-dependent protocols: Slow shear rate sweep, fast shear

startup, and step stress.

A. Slow shear rate sweep

A common experimental protocol consists of slowly

sweeping the shear rate _c upward (or downward) in order to

measure a fluid’s (quasi) steady state flow curve. In this pro-

tocol, the criterion for linear instability to the onset of shear

banding, given a base state of initially homogeneous shear

flow, has long been known to be [24]

@R
@ _c

< 0: (22)

B. Fast shear startup

Another common experimental protocol consists of taking

a sample of fluid that is initially at rest and with any residual

stresses well relaxed, then suddenly jumping the strain rate

from zero to some constant value such that _cðtÞ ¼ _c0HðtÞ,
where HðtÞ is the Heaviside function. Commonly measured

in response to this applied flow is the time-dependent stress

signal RðtÞ as it evolves toward its eventual steady state

value, for that particular applied shear rate, on the fluid’s

flow curve. This evolution typically has the form of an initial

elastic regime with R 	 Gc while the strain c remains small,

followed by an overshoot in the stress at a strain of O(1),

then a decline to the final steady state stress on the flow

curve. In [47,48,50], we gave evidence that the presence of

an overshoot in this stress startup signal is generically indica-

tive of a strong tendency to form shear bands, at least tran-

siently. These bands may, or may not, then persist for as

long as the shear remains applied, according to whether or

not the underlying constitutive curve of stress as a function

of strain rate is nonmonotonic.

Such behavior is to be expected intuitively. Consider a

shear startup run performed at a high enough strain rate that

the material’s response is initially elastic, with the stress

startup signal depending only on the accumulated strain c ¼ _ct
and not separately on the strain rate _c. The decline in stress fol-

lowing an overshoot in the stress startup signal corresponds to

a negative derivative

@R
@c

< 0: (23)

This clearly has the same form as Eq. (22) above, with the

strain rate now replaced by the strain. As such it is the crite-

rion that we might intuitively expect for the onset of strain

bands in a nonlinear elastic solid, following the early intui-

tion of [52].

In close analogy to this intuitive expectation, for a com-

plex fluid subject to a fast, elastically dominated startup the

criterion for the onset of banding was shown in [47] to be

that the stress signal Rðc ¼ _ctÞ of the initially homogeneous

startup flow obeys

�trM
@R
@c
þ _c

@2R
@c2

< 0; (24)

where trM < 0 in this startup protocol. This result holds

exactly for any model whose equations are of the generalized

form in Sec. III above, and have only two relevant dynamical

variables, d¼ 2. (Recall that for the nRP model these two

variables are the shear stress Wxy and one component of nor-

mal stress Wyy, in units in which the polymer modulus

G¼ 1.) The criterion (24) closely resembles the simpler

form Eq. (23) motivated intuitively above, with an additional

term informed by the curvature in the signal of stress as a

function of strain. The effect of this additional term is to trig-

ger the onset of banding just before overshoot, as the stress

startup signal starts to curve downward from its initial

regime of linear elastic response.

What this criterion tells us is that the presence of an over-

shoot in the stress signal of an underlying base state of ini-

tially homogeneous shear startup acts as a causative trigger

for the formation of shear bands. A common misconception

is that instead it is the onset of shear banding that causes the

stress drop. While it is true that the onset of banding may

reduce the stress further compared to that expected on the

basis of a homogeneous calculation, we emphasize that the

direction of mechanistic causality here is that the stress drop

following overshoot causes shear banding and not (primar-

ily) vice versa.

With criterion (24) in mind, theorists should be alert that

any model predicting startup stress overshoot in a calculation

in which the flow is artificially constrained to remain homo-

geneous is likely to further predict the formation of shear

bands in a full heterogeneous calculation that allows bands

to form. Likewise, experimentalists should be alert that any

observations of stress overshoot in shear startup is strongly
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suggestive of the presence of banding in the material’s flow

profile.

In [48], the analytically derived criterion (24) was con-

firmed numerically for fast shear startup in the nRP model,

where it should indeed apply exactly due to the presence of

just d¼ 2 relevant dynamical variables Wxy and Wyy in that

model. It was also shown to apply to good approximation in

the sRP model, for which d¼ 3, for strain rates lower than

the inverse stretch relaxation time (where the dynamics of

the sRP model indeed well approximate those of the nRP

model).

Banding associated with startup stress overshoot has also

been demonstrated in several numerical studies of SGMs

[3,49,51]. (The term SGM is used to describe a broad class

of materials including foams, emulsions, colloids, surfactant

onion phases, and microgels, all of which show structural

disorder, metastability, a yield stress, and often also rheolog-

ical ageing below the yield stress.) In these soft glasses, how-

ever, it should be noted that the decrease in stress following

the startup overshoot arises from increasing plasticity rather

than falling elasticity. This makes it more difficult to derive

an analytical criterion analogous to Eq. (24). Accordingly,

the theoretical evidence for shear banding following startup

overshoot in these soft glasses, while very convincing,

remains primarily numerical to date.

Consistent with these theoretical predictions, experimen-

tal observations of banding associated with startup stress

overshoot are widespread: In wormlike micellar surfactants

[41,44], polymers [14,16,33,34,36,55–57], carbopol gels

[6,32], and Laponite clay suspensions [7]. Nonetheless, we

also note other studies of polymer solutions [19] where stress

overshoot is seen without observable banding. It would be

particularly interesting to see further experimental work on

polymeric fluids to delineate more fully the regimes, for

example entanglement number and degree of polydispersity,

in which banding arises with sufficient amplitude to be

observed experimentally.

C. Step stress

Besides the strain-controlled protocols just described, a

fluid’s rheological behavior can also be probed under condi-

tions of imposed stress. In a step stress experiment, an ini-

tially well relaxed fluid is suddenly subject to the switch-on

of a shear stress R0 that is held constant thereafter, such that

RðtÞ ¼ HðtÞR0. Commonly measured in response to this

applied stress is the material’s creep curve, cðtÞ, or the tem-

poral derivative of this, _cðtÞ. In [47], the criterion for linear

instability to the formation of shear bands, starting from a

state of initially homogeneous creep shear response, was

shown to be that

@2 _c
@t2

�
@ _c
@t
> 0: (25)

This tells us that shear banding should be expected in any step

stress experiment in which the differentiated creep response

curve simultaneously curves upward and slopes upward.

(Indeed, it should also be expected in any experiment where

that response function simultaneously curves downward and

slopes downward, though we do not know of any instances of

such behavior.) This prediction has been confirmed numeri-

cally in the RP model of polymers and wormlike micelles

[48], as well as in the soft glassy rheology model of foams,

dense emulsions, microgels, etc [3].

Experimentally, shear banding associated with a simulta-

neously upwardly curving and upwardly sloping differenti-

ated creep response curve has indeed been seen in entangled

polymers [14,33,34,41,44–46,57], carbopol microgels [43],

and carbon black suspensions [42].

V. LARGE AMPLITUDE OSCILLATORY STRAIN

We now consider shear banding in the time-dependent

strain-imposed oscillatory protocol of LAOStrain. Here a

sample of fluid, initially well relaxed at time t¼ 0, is subject

for times t> 0 to a strain of the form

cðtÞ ¼ c0 sinðxtÞ; (26)

to which corresponds the strain rate

_cðtÞ ¼ c0x cosðxtÞ ¼ _c0 cosðxtÞ: (27)

After an initial transient, once many cycles have been exe-

cuted, the response of the system is expected to attain a state

that is time-translationally invariant from cycle to cycle,

t! tþ 2p=x. All the results presented below are in this

long-time regime, usually for the N¼ 20th cycle after the

flow commenced. The dependence of the stress on the cycle

number was carefully studied in wormlike micelles in [81].

To characterize any given applied LAOStrain, we must

clearly specify two quantities: The strain amplitude and the

frequency ðc0;xÞ, or alternatively the strain rate amplitude

and the frequency ð_c0;xÞ, where _c0 ¼ c0x. In what follows

we usually choose the latter pairing ð _c0;xÞ. Any given

LAOStrain experiment is then represented by its location in

that plane of _c0 and x. See Fig. 1.

In any experiment where the applied strain rate remains

small, _c0 � 1, a regime of linear response is expected.

(Recall that in dimensional form this condition corresponds

to _c0sd � 1.) But even in an experiment where the strain

rate does not remain small, linear response can nonetheless

still be expected if the overall applied strain remains small,

c0 � 1. Accordingly, linear response should obtain in the

region below the long-dashed line marked in Fig. 1. Because

shear banding is an inherently nonlinear phenomenon, we

expect the interesting region of this ð_c0;xÞ plane from our

viewpoint to be in the nonlinear regime, above the long-

dashed line, and we focus our attention mostly on this in

what follows.

Besides considering whether any given applied

LAOStrain will result in linear or nonlinear response, also

relevant is the characteristic timescale 1=x of the oscillation

compared to the fluid’s intrinsic terminal relaxation time-

scale sd ¼ 1. For low frequencies x� 1, to the left of the

leftmost dotted line in Fig. 1, we expect the material’s
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reconfiguration dynamics to keep pace with the applied

deformation. This will lead to quasisteady state response in

which the stress slowly sweeps up and down the steady state

flow curve as the shear rate varies through a cycle. In con-

trast for high frequencies x� 1, to the right of the rightmost

dotted line in Fig. 1, the material’s relaxation dynamics can-

not keep pace with the applied deformation and we expect

elasticlike response.

We illustrate these two limiting regimes by studying the

response of the nRP model to an imposed LAOStrain at each

of the two locations marked XL and XH in Fig. 1. For simplic-

ity, for the moment, we artificially constrain the flow to

remain homogeneous and confine ourselves to calculating

the uniform base state as outlined in Sec. III A. The results

are shown in Fig. 2 for the nRP model with parameters for

which the underlying constitutive curve is nonmonotonic

such that (in any heterogeneous calculation) the fluid would

show shear banding under conditions of steady applied shear.

Figure 3 shows results with model parameters for which the

constitutive curve is monotonic such that no banding would

be expected in steady shear flow.

The left panels of Figs. 2 and 3 contain results for the low

frequency oscillation marked XL in Fig. 1. Here we choose to

plot the stress response RðtÞ in a Lissajous-Bowditch figure

as a parametric function of the time-varying imposed strain

rate _cðtÞ, consistent with the expectation of fluidlike response

in this low-frequency regime. (Throughout the paper, we

shall describe such a plot of stress versus strain rate as being

in the “viscous” representation.) As can be seen, in each

case the fluid indeed tracks up and down its (quasi) steady

state homogeneous constitutive curve Rð _cÞ in the range

� _c0 < _c < _c0. For any set of model parameters, several of

these LAOStrain response curves Rð _cÞ collected together for

different _c0 and low frequency x would all collapse onto this

master constitutive curve.

Also shown by the color scale in the left panels of Figs. 2

and 3 is the eigenvalue as introduced in Sec. III B. Recall

that a positive eigenvalue at any point in the cycle strongly

suggests that the homogeneous base state is linearly unstable

to the development of shear banding at that point in the

cycle. (In any region where this scale shows black, the eigen-

value is either negative, or so weakly positive as to cause

only negligible banding growth.) As expected, a regime of

instability is indeed seen in Fig. 2, in the region where the

constitutive curve has negative slope

@R
@ _c

< 0: (28)

For a fluid with a monotonic constitutive curve, no instability

is observed at this low frequency (Fig. 3, left).

The corresponding results for the high frequency run

marked XH in Fig. 1 are shown in the right panels of Figs. 2

and 3. Here we choose to plot the stress response RðtÞ in a

Lissajous–Bowditch figure as a parametric function of the

time-varying strain cðtÞ, in the so-called elastic representa-

tion. Indeed, just as in the low frequency regime, the material

behaved as a viscous fluid with the stress response falling

onto the steady state master constitutive curve in the viscous

representation Rð _cÞ, for a high frequency cycle we might

instead expect a regime of elastic response in which only the

FIG. 1. LAOStrain: Sketch of regions of shear rate amplitude and frequency

space in which we expect limiting low frequency viscous and high frequency

elastic behaviors, and regimes of linear and nonlinear response. LAOStrain

runs at the locations marked XL and XH are explored in Figs. 2 and 3 for the

nRP model with nonmonotonic and monotonic underlying constitutive

curve, respectively.

FIG. 2. LAOStrain in the nRP model with a nonmonotonic underlying con-

stitutive curve. Model parameters b ¼ 0:4; g ¼ 10�5. Left: Viscous

Lissajous–Bowditch figure shows stress R versus strain rate _c for an imposed

frequency and strain rate ðx; _c0Þ ¼ ð0:001; 50:0Þ marked as XL in the low

frequency regime of Fig. 1. Right: Elastic Lissajous–Bowditch figure

shows stress R versus strain c for an imposed frequency and strain rate

ðx; _c0Þ ¼ ð31:6; 200:0Þ marked as XH in the high frequency regime of

Fig. 1. Color scale shows eigenvalue.

FIG. 3. As in Fig. 2, but for a value of the CCR parameter b ¼ 1:0, for

which the underlying homogeneous constitutive curve is monotonic.
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accumulated strain is important, and not (separately) the

strain rate, giving a master response curve of stress versus

strain, RðcÞ.
We might further have intuitively expected this curve to

be the same as that obtained in a fast shear startup from rest,

with (in the positive strain part of the cycle) elastic response

R 	 Gc at low strain c� 1, followed by stress overshoot at

a typical strain c ¼ þOð1Þ, then decline toward a constant

stress at larger strains (with the symmetric curve in the

negative-strain part of the cycle such that R! �R for

c! �c). In other words, in LAOStrain at high frequency,

we might have expected the system to continuously explore

its elastic shear startup curve RðcÞ between c ¼ �c0 and

c ¼ þc0.

However, this intuition is not met in a straightforward

way. In the right panels of Figs. 2 and 3, we observe instead

an open cycle that is explored in a clockwise sense as time

proceeds through an oscillation: The stress transits the upper

part of the loop (from bottom left to top right) in the forward

part of the cycle as the strain increases from left to right, and

the symmetry-related lower part of the loop in the backward

part, where the strain decreases from right to left.

This can be understood as follows. For any LAOStrain

run at high frequency x� 1 but in the linear regime with

strain amplitude c0 � 1, we do indeed find the stress

response to fall onto a closed master curve RðcÞ, which also

corresponds to that obtained in a fast stress startup from rest,

with linear elastic response R 	 Gc. (Data not shown.) In

contrast, for amplitudes c0 > 1, the system only explores this

startup-from-rest curve in the first half of the first cycle after

the inception of flow. (This has the usual form, with elastic

response for small strains, stress overshoot at a strain

c ¼ Oð1Þ, then decline to a constant stress.) In the second

half of the cycle, when the strain rate reverses and the strain

decreases, the stress response departs from the startup-from-

rest curve. With hindsight this is in fact obvious: As this

backward shear part of the cycle commences the initial con-

dition is not that of a well-relaxed fluid, but one that has just

suffered a large forward strain.

The same is true for the next forward half cycle: Its initial

condition is that of a fluid that has just suffered a large nega-

tive strain, corresponding to the lower left point in the right

panel of Figs. 2 or 3. Starting from that initial condition, the

stress evolution nonetheless thereafter resembles that of a

fast startup, with an initial fast rise followed by an overshoot

then decline to constant stress, before doing the same in

reverse (with a symmetry-related “negative overshoot”) dur-

ing the next half cycle, giving the open curves as described.

Associated with this overshoot in each half cycle is a positive

eigenvalue indicating instability to the onset of shear band-

ing. Importantly, we note that this arises even in the case of a

monotonic underlying constitutive curve (Fig. 3, right), and

therefore even in a fluid that would not display steady state

banding under a steadily applied shear flow. It is the counter-

part for LAOStrain of the elastic banding triggered by stress

overshoot in a fast shear startup from rest, as explored previ-

ously in [47,48,50].

Indeed, following the calculation first set out in [47], it is

straightforward to show that the condition for a linear

instability to banding in this elastic high frequency regime

x� 1 is the same as in fast shear startup

�trM
@R
@c
þ _c

@2R
@c2

< 0: (29)

As already discussed, this gives a window of instability set-

ting in just before the stress overshoot (or negative over-

shoot) in each half cycle in the right panels of Fig. 2 and 3

due to (in the positive _c part of the cycle in which the stress

transits from bottom left to top right) the negatively sloping

and curving RðcÞ. An analogous statement applies in the

other part of the cycle, with the appropriate sign reversals.

Note that these overshoots are sufficiently weak as to be dif-

ficult to resolve by eye on the scale of Figs. 2 and 3.

Interestingly, Eq. (29) also predicts a region of (weaker)

instability immediately after the reversal of strain in each

half cycle, as also seen in the right panels of Figs. 2 and 3.

Analytical considerations show that this additional regime of

instability is not driven by any negative slope or curvature in

RðcÞ, but instead arises from a change in sign of M. This

instability has no counterpart that we know of in shear

startup. Its associated eigenvector is dominated by the nor-

mal stress component Wyy rather than the strain rate or shear

stress. Heterogeneity in this quantity could feasibly be

accessed in birefringence experiments.

The results of Figs. 2 and 3 can be summarized as fol-

lows. At low frequencies, the system sweeps slowly up and

down the underlying constitutive curve Rð _cÞ as the shear rate

varies through the cycle. If that curve is nonmonotonic, this

homogeneous base state is unstable to shear banding in the

region of negative constitutive slope, dR=d _c < 0. At high

frequencies, the system instead executes a process reminis-

cent of elastic shear startup in each half cycle, but with an

initial condition corresponding to the state left by the shear

of opposite sense in the previous half cycle. Associated with

this is a stress overshoot in each half cycle, giving instability

to elastic shear banding. Crucially, this elastic instability

occurs whether or not the underlying constitutive curve is

nonmonotonic or monotonic, and therefore whether or not

the fluid would shear band in steady shear.

From a practical experimental viewpoint, it is important

to note that, whereas in a single shear startup run these elas-

tic strain bands would form transiently then heal back to

homogeneous flow (unless the sample has a nonmonotonic

underlying constitutive curve and so also bands in steady

state), in LAOStrain the banding will recur in each half cycle

and so be potentially easier to access experimentally. Any

time-averaging measurement should of course only take data

in the forward part of each cycle, to avoid averaging to zero

over the cycle.

Having explored in Figs. 2 and 3, the tendency to form

shear bands in two particular LAOStrain runs (one in the

limit of low frequency, XL in Fig. 1, and one in the limit of

high frequency, XH), we now explore the full ð_c0;xÞ plane

of Fig. 1 by showing in Figs. 4 and 5 color maps of the extent

of shear banding across this plane. Recall that each pinpoint

in this plane corresponds to a single LAOS experiment with

strain rate amplitude _c0 and frequency x. To build up these
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color maps, we sweep over a grid of 100� 100 values of

_c0;x and execute a LAOStrain run at each point. Solving the

model’s full nonlinear dynamics on such a dense grid would

be unfeasibly time-consuming computationally. Therefore at

each _c0;x we instead integrate the linearized equations set

out in Sec. III B. In each such run, we record the degree of

banding d _c, maximized over the cycle after many cycles. It is

this quantity, normalized by the maximum strain rate ampli-

tude _c0, that is represented by the color scale in Figs. 4 and 5.

Figure 4 pertains to the nRP model with model parameters

for which the underlying constitutive curve is nonmonotonic.

As expected, significant banding (bright/yellow region) is

observed even in the limit of low frequency x! 0 for strain

rate amplitudes _c0 exceeding the onset of negative slope in

the underlying constitutive curve. This region of banding

is the direct (and relatively trivial) analog of banding in a

slow strain rate sweep along the steady state flow curve.

Figure 5 shows results for the nRP model with parameters

such that the underlying constitutive curve is monotonic.

Here steady state banding is absent in the limit x! 0. In

both Figs. 4 and 5, however, significant banding is observed

at high frequencies for a strain amplitude c0 > 1: This is the

elastic banding associated with the stress overshoot in each

half cycle, described in detail above for the ð_c0;xÞ values

denoted by XH in Fig. 1.

It is important to emphasize, therefore, that even a fluid

with a purely monotonic constitutive curve, which does not

shear band in steady flow, is still nonetheless capable of

showing strong shear banding in a time-dependent protocol

of high enough frequency (Fig. 5). Also important to note is

that for a fluid with a nonmonotonic constitutive curve, the

region of steady state viscous banding at low frequencies

crosses over smoothly to that of elastic banding as the fre-

quency increases (Fig. 4).

Corresponding to the degree of banding in the shear rate

d _c, as plotted in Figs. 4 and 5, is an equivalent degree of

banding GdWxy ¼ �gd _c (to within small corrections of order

the cell curvature, q) in the shear component of the poly-

meric conformation tensor. This follows trivially by impos-

ing force balance at zero Reynolds number. Counterpart

maps for the degree of banding in the component dWyy of the

polymeric conformation tensor can also be built up. These

reveal closely similar regions of banding to those shown in

Figs. 4 and 5. (Data not shown.) Experimentally, heterogene-

ities in the polymeric conformation tensor can be accessed

by flow birefringence.

As noted above, to build up such comprehensive road-

maps as in Figs. 4 and 5 in a computationally efficient way,

we omitted all nonlinear effects and integrated instead the

linearized equations of Sec. III B. These are only strictly

valid in any regime where the amplitude of the heterogeneity

remains small. In omitting nonlinear effects, they tend to

overestimate the degree of banding in any regime of sus-

tained positive eigenvalue, in predicting the heterogeneity to

grow exponentially without bound, whereas in practice it

would be cut off by nonlinear effects. We now remedy this

shortcoming by exploring the model’s full nonlinear spatio-

temporal dynamics. To do so within feasible computational

run times, we focus on a restricted grid of values in the _c0;x
plane, marked by crosses in Figs. 4 and 5.

The results are shown in Fig. 6 for the nRP model with

model parameters for which the underlying constitutive

curve is nonmonotonic. At low frequencies, the results tend

toward the limiting fluidlike behavior discussed above, in

which the stress slowly tracks up and down the steady state

flow curve Rð _cÞ (Progression toward this limit can be seen

by following the top row of panels in Fig. 6(b) to the left.).

Viscous banding is seen for sufficiently high strain rate

amplitudes _c0 due to the negatively sloping underlying

homogeneous constitutive curve. At high frequencies, the

response tends instead toward the limiting elasticlike behav-

ior discussed above. For large enough strain amplitudes, the

stress then shows an open cycle RðcÞ as a function of strain,

with an overshoot in each half cycle that triggers the forma-

tion of elastic banding. [Progression toward this limit is seen

by following the top row of panels in Fig. 6(a) to the right.]

FIG. 4. Color map of the normalized degree of shear banding for the nRP

model with a nonmonotonic constitutive curve. Each point in this _c0;x
plane corresponds to a particular LAOStrain run with strain rate amplitude
_c0 and frequency x. For computational efficiency, these calculations are per-

formed by integrating the linearized equations in Sec. III B. Reported is the

maximum degree of banding that occurs at any point in the cycle, after

many cycles. Model parameters: b ¼ 0:4, g ¼ 10�5. Cell curvature

q ¼ 10�4. Crosses indicate the grid of values of _c0 and x in Pipkin diagram

of Fig. 6.

FIG. 5. As in Fig. 4, but with a CCR parameter b ¼ 1:0, for which the fluid

has a monotonic underlying constitutive curve. Crosses indicate the grid of

values of _c0 and x used in the Pipkin diagram of Fig. 7.
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Overshoots in the elastic Lissajous–Bowditch curve of

stress as a function of strain have been identified in earlier

work [82] as leading to self-intersection of the corresponding

viscous Lissajous–Bowditch curve of stress as a function of

strain rate. Such an effect is clearly seen here in the RP

model: See for example the runs highlighted by the thicker

boxes in Figs. 6 and 7.

For intermediate frequencies, the stress is a complicated

function of both strain rate and also, separately, the strain.

The three dimensional curve ðR; _c; cÞ is then best shown as

two separate projections: First in the elastic representation of

the R; c plane [Fig. 6(a)], and second, in the viscous repre-

sentation of the ðR; _cÞ plane [Fig. 6(b)]. Collections of these

Lissajous–Bowditch curves on a grid of ð _c0;xÞ values as in

Fig. 6 are called Pipkin diagrams.

For the particular LAOStrain run highlighted by a thicker

box in Fig. 6, a detailed portrait of the system’s dynamics is

shown in Fig. 8. Here the stress is shown in the elastic repre-

sentation, as a function of strain c (left hand panel). Two

curves are shown here. The first shows the stress signal in a

calculation in which the flow is artificially constrained to

remain homogeneous. A linear instability analysis for the

FIG. 6. Lissajous–Bowditch curves in LAOStrain for the nRP model with a

nonmonotonic constitutive curve. Results are shown in the elastic represen-

tation in (a), and the viscous representation in (b). Columns of fixed fre-

quency x and rows of fixed strain-rate amplitude _c0 are labeled at the top

and right-hand side. Color scale shows the time-dependent degree of shear

banding. Model parameters: b ¼ 0:4; g ¼ 10�5. Cell curvature: q ¼ 10�4.

Number of numerical grid points J¼ 512. A detailed portrait of the run out-

lined by the thicker box is shown in Fig. 8.

FIG. 7. As in Fig. 6 but for a value of the CCR parameter b ¼ 1:0, for which

the fluid’s underlying constitutive curve is monotonic. Number of numerical

grid points J¼ 512. A detailed portrait of the run outlined by the thicker box

is shown in Fig. 9.
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dynamics of small heterogeneous perturbations about this

time-evolving homogeneous base state then reveals instabil-

ity toward the formation of shear bands (a positive eigen-

value) in the portion of that curve shown as a red dashed

line. A full nonlinear simulation then reveals the formation

of shear bands and leads to a stress signal (green dot-dashed

line) that deviates from that of the homogeneously con-

strained calculation, in particular in having a much more pre-

cipitous stress drop due to the formation of bands.

The associated velocity profiles at four points round the

part of the cycle with increasing strain are shown in the right

panel. Before the stress overshoot, no banding is apparent

(black circles). The overshoot then triggers strong shear

banding (red squares), with most of the shear concentrated in

a thin band at the left hand edge of the cell. Interestingly, the

shear in the right hand part of the cell is in the opposite sense

to the overall applied shear. This is consistent with the fact

that the stress is a decreasing function of strain in this

regime: The material is being unloaded, and an elasticlike

material being unloaded will shear backward. As the overall

applied strain increases toward the end of the window of

instability, the flow heterogeneity gradually decays away.

This process repeats in each half cycle (with the obvious

sign reversals in the part of the cycle in which the strain is

decreasing).

The corresponding Pipkin diagram for a fluid with a

monotonic constitutive curve (Fig. 7) likewise confirms its

counterpart linear diagram in Fig. 5. Here viscous banding is

absent at low frequencies because the fluid is not capable of

steady state banding. Crucially, however, a strong effect of

elastic banding is still seen at high frequencies. A detailed

portrait of the system’s dynamics in this elastic regime, for

the strain rate amplitude and frequency marked by the

thicker box in Fig. 7, is shown in Fig. 9. As can be seen, it

shows similar features to those just described in Fig. 8. We

emphasize, then, that even polymeric fluids that do not band

under conditions of steady shear are still capable of showing

strong banding in a time-dependent protocol at high enough

frequency. This important prediction is consistent with the

early insight of Adams and Olmsted in [73].

So far, we have presented results for the nRP model,

which assumes an infinitely fast rate of chain stretch relaxa-

tion compared to the rate of reptation such that the ratio

sR=sd ! 0. This corresponds to assuming that the polymer

chains are very highly entangled, with a number of entangle-

ments per chain Z ¼ sd=3sR !1. We now consider the

robustness of these results to reduced entanglement numbers,

and accordingly increased chain stretch relaxation time sr
(in units of sd).

The results are summarized in Fig. 10, which shows the

regions of the plane of the CCR parameter b and entangle-

ment number Z in which significant banding (filled circles),

observable banding (hatched circles), and no banding (open

circles) occur. (Recall that results presented for the nRP

FIG. 8. LAOStrain in the nRP model with a nonmonotonic constitutive

curve. Strain rate amplitude _c0 ¼ 10:0 and frequency x ¼ 3:16. Model

parameters b ¼ 0:4; g ¼ 10�5. Cell curvature q ¼ 10�4. Number of numeri-

cal grid points J¼ 1024. Left: Stress response in the elastic representation.

Solid black and red-dashed line: Calculation in which the flow is constrained

to be homogeneous. Red-dashed region indicates a positive eigenvalue

showing instability to the onset of shear banding. Green dot-dashed line:

Stress response in a full nonlinear simulation that allows banding. Right:

Velocity profiles corresponding to stages in the cycle indicated by matching

symbols in the left panel. Each profile is normalized by the speed of the

moving plate.

FIG. 9. As in Fig. 8 but for the nRP model with a CCR parameter b ¼ 1:0
for which the underlying homogeneous constitutive curve is monotonic, and

for a LAOStrain with strain rate amplitude c0 ¼ 56:2 and frequency

x ¼ 10:0. Number of numerical grid points J¼ 512.

FIG. 10. Effect of CCR parameter b and entanglement number Z (and so of

chain stretch relaxation time sR ¼ sd=3Z) on shear banding in LAOStrain.

(Recall that the nonstretching version of the model has sR ! 0 and

so Z !1.) Empty circles: No observable banding. Hatched circles:

Observable banding, typically D _c= _c0 	 10%–100%. Filled circles:

Significant banding D _c= _c0 
 100%. For hatched and filled symbols we used

the criterion that banding of the typical magnitude stated is apparent in a

region spanning at least half a decade by half a decade in the plane of _c0;x,

by examining maps as in Fig. 11 in by eye. The square shows the parameter

values explored in detail in Fig. 11.
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model above pertain to the values b ¼ 0:4; 1:0 in the limit

Z !1.) As can be seen, by reducing the number of entan-

glements per chain, the effect of shear banding is reduced

and eventually eliminated. However it is important to note

that, depending on the value of b, significant banding is still

observed for experimentally commonly used entanglement

numbers, typically in the range 20� 100. Furthermore, sig-

nificant banding is seen in a large region of the (b; Z) plane

for which the material’s underlying constitutive curve is

monotonic. As discussed above, there is no current consen-

sus as to the value of the CCR parameter b in the range

0 < b < 1. Using the route map provided in Fig. 10, a study

of shear banding in LAOStrain experiments could provide

one way to obtain a more accurate estimate of the value of

this parameter.

For the pairing of b and Z values marked by the square in

Fig. 10, we show in Fig. 11 a color map of the degree of

banding expected in LAOStrain in the space of strain rate

amplitude _c0 and frequency x. This figure, which is for the

sRP model, is the counterpart of the earlier Figs. 4 and 5 dis-

cussed above for the nRP model, with the degree of banding

calculated for computational efficiency within the assump-

tion of linearized dynamics. Recall that each pinpoint in this

plane corresponds to a single LAOStrain run with applied

strain rate _cðtÞ ¼ _c0 cosðxtÞ.
Consistent with the underlying constitutive curve being

monotonic for these parameters, viscous banding is absent in

the limit of low frequencies x! 0. However, significant

banding is still observed for runs with strain rate amplitudes

Oð10–100Þ and frequencies Oð1–10Þ. This is the counterpart

of the elastic banding reported above in the nRP model,

though the effect of finite chain stretch in the sRP model is

to moderate the degree of banding. A detailed portrait of the

model’s nonlinear banding dynamics at a strain rate ampli-

tude _c0 and frequency x marked by the cross in Fig. 11 is

shown in Fig. 12. Significant shear banding associated with

the stress overshoot is apparent in each half cycle.

VI. LARGE AMPLITUDE OSCILLATORY STRESS

We now consider the time-dependent stress-imposed

oscillatory protocol of LAOStress. Here the sample is subject

for times t> 0 to a stress of the form

RðtÞ ¼ R0 sinðxtÞ; (30)

characterized by the frequency x and stress amplitude R0.

As for the case of LAOStrain above, all the results presented

below are in the long-time regime, once many (N¼ 20)

cycles have been executed and the response of the system

has settled to be time-translationally invariant from cycle to

cycle, t! tþ 2p=x.

In Sec. IV C, we reviewed existing work demonstrating

the tendency to form shear bands in a step stress experiment.

Here an initially well relaxed sample is suddenly subject at

time t¼ 0 to the switch-on of a shear stress of amplitude R0,

which is held constant for all subsequent times. The criterion

for an underlying base state of initially homogeneous

creep response to become linearly unstable to the formation

of shear bands is then that the time-differentiated creep

response curve _cðtÞ obeys [47]

@2 _c
@t2

�
@ _c
@t
> 0: (31)

Therefore, shear banding is expected in any regime where

the time-differentiated creep curve simultaneously slopes up

and curves upward; or instead simultaneously slopes down

and curves downward.

FIG. 11. Color map of the normalized degree of shear banding for the sRP

model with a monotonic constitutive curve. Each point in this _c0;x plane

corresponds to a particular LAOStrain run with strain rate amplitude _c0 and

frequency x. For computational efficiency, these calculations are performed

by integrating the linearized equations in Sec. III B. Reported is the maxi-

mum degree of banding at any point in the cycle, after many cycles. Model

parameters: b ¼ 0:7, Z¼ 75 (and so sR ¼ 0:0044), g ¼ 10�5. Cell curvature

q ¼ 2� 10�3. Note the different color scale from Figs. 2 and 3. The model’s

full nonlinear dynamics for the (_c0;x) value marked by the cross are

explored in Fig. 12.

FIG. 12. sRP model with a monotonic constitutive curve in LAOStrain of

strain rate amplitude _c0 ¼ 20:0 and frequency x ¼ 8:0. Model parameters

b ¼ 0:7; Z ¼ 75; g ¼ 10�5. Cell curvature q ¼ 2� 10�3. Number of numer-

ical grid points J¼ 512. Left: Stress response in the elastic representation.

Solid black and red-dashed line: Calculation in which the flow is constrained

to be homogeneous. Red-dashed region indicates a positive eigenvalue

showing instability to the onset of shear banding. Green dot-dashed line:

Stress response in a full nonlinear simulation that allows banding (almost

indistinguishable from homogeneous signal in this case). Right: Velocity

profiles corresponding to stages in the cycle indicated by matching symbols

in left panel.
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Having been derived within the assumption of an imposed

stress that is constant in time, criterion (31) would not a pri-
ori be expected to hold for the case of LAOStress.

Nonetheless, it might reasonably be expected to apply, to

good approximation, in any regime of a LAOStress experi-

ment where a separation of timescales arises such that the

shear rate _cðtÞ evolves on a much shorter timescale than the

stress. In this case, from the viewpoint of the strain rate sig-

nal, the stress appears constant in comparison and the

constant-stress criterion (31) is expected to hold. Indeed, in

what follows we shall show that many of our results for

LAOStress can be understood on the basis of this simple

piece of intuition.

We start in Fig. 13 by considering the nRP model in a

parameter regime for which the underlying constitutive

curve is nonmonotonic (see the dotted line in the left panel)

such that shear banding would be expected under conditions

of a steadily applied shear rate. With the backdrop of this

constitutive curve, we consider a LAOStress run at low fre-

quency x! 0. For definiteness, we will focus on the part of

the cycle where the stress is positive, but analogous remarks

will apply to the other half of the cycle, with appropriate

changes of sign.

Consider first the regime in which the stress is slowly

increased from 0 toward its maximum value R0. In this part

of the cycle, at the low frequencies of interest here, we

expect the system to initially follow the high viscosity

branch of the constitutive curve. In any experiment for which

the final stress R0 exceeds the local maximum in the consti-

tutive curve, the system must at some stage during this

increasing stress part of the cycle transit from the high to

low viscosity branch of the constitutive curve. This transition

is indeed seen in Fig. 13: It occurs via “top jumping” from

the stress maximum across to the low viscosity branch.

Conversely, on the downward part of the sweep as the stress

decreases from its maximum value R0, the system initially

follows the low viscosity branch until it eventually jumps

back to the high viscosity branch. (We return in our conclud-

ing remarks to discuss the possible effect of thermal nucle-

ation events, which are not included in these simulations, on

this process of jumping between the two branches of the con-

stitutive curve.)

The corresponding signal of strain rate versus time during

this slow up-then-down stress oscillation is shown in the

right panel of Fig. 13. As can be seen, the regimes where the

shear rate transits between the two different branches of the

constitutive curve occur over relatively short time intervals.

(The duration of this process is informed by the short time-

scale g=G, whereas the stress evolves on the much longer

timescale 2p=x.) This separation of timescales renders the

stress signal approximately constant in comparison to the

fast evolution of the strain rate. Criterion (31) might there-

fore be expected to apply in this regime of transition, at least

to good approximation.

Furthermore, during the transition from the high to low

viscosity branch, we see a regime in which the shear rate sig-

nal simultaneously slopes up and curves up as a function of

time: Criterion (31) not only applies but is also met, and we

therefore expect an instability to banding. Plotting, by means

of a color scale, the eigenvalue as defined in Sec. III B, we

find that it is indeed positive. Likewise, during the rapid tran-

sition back from the low to high viscosity branch, we find a

regime in which the shear rate signal simultaneously slopes

down and curves down. As seen from the color scale, the

eigenvalue is also positive in this regime (although more

weakly than during the upward transition). In what follows,

we will confirm the expectation of shear band formation dur-

ing these times of positive eigenvalue by simulating the

model’s full nonlinear spatiotemporal dynamics.

These processes of rapid transition between different

branches of the constitutive curve are of course not expected

in a LAOStress experiment at low frequency for a fluid with

a monotonic constitutive curve. In this case, for a LAOStress

run in the limit x! 0 the system instead sweeps quasistati-

cally along the monotonic constitutive curve, with no associ-

ated banding. As in the case of LAOStrain, however, it is

crucial to realise that the absence of banding in an experi-

ment at zero frequency does not preclude the possibility of

banding in a time-dependent protocol at finite frequency,

even in a fluid with a monotonic constitutive curve.

With this in mind, we show in Fig. 14 the counterpart of

Fig. 13, but now for the nRP model with a monotonic

FIG. 13. LAOStress in the nRP model with a nonmonotonic constitutive

curve. Model parameters: b ¼ 0:1; g ¼ 10�4. Frequency x ¼ 0:01 and

stress amplitude R0 ¼ 0:7. Left: Stress versus strain rate (shown on a log

scale) in the positive stress part of the cycle. Color scale shows eigenvalue,

with negative values also shown as black. Green dashed line: Underlying

constitutive curve. Right: Corresponding stress versus time plot.

FIG. 14. As in Fig. 13 but at a higher imposed frequency x ¼ 1:0 and for a

value of the CCR b ¼ 0:9, for which the nRP model has a monotonic under-

lying constitutive curve. Right: Corresponding stress versus time plot.
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constitutive curve subject to a LAOStress run at a finite fre-

quency x¼ 1, of order the fluid’s reciprocal stress relaxation

timescale. The key to understanding the emergent dynamics

in this case is the existence in the underlying zero-frequency

constitutive curve (shown by a dotted line in the left panel)

of a region in which the stress is a relatively flat (though still

increasing) function of the strain rate. As the system transits

this region during the increasing stress part of a finite-

frequency stress cycle, we again observe a regime of quite

sudden progression from low to high strain rate. This is seen

in the left to right transition in the stress versus strain rate

representation in the left panel of Fig. 14, and (correspond-

ingly) in the rapid increase of strain rate versus time in the

right panel.

During this regime of rapid transit, we again have condi-

tions in which the strain rate evolves rapidly compared to the

stress such that the constant-stress criterion (31) should apply

to good approximation. Furthermore, during the first part of

the transition, the strain rate signal simultaneously slopes

and curves upward as a function of time. The eigenvalue is

therefore positive, indicating linear instability of an initially

homogeneous base state to the formation of shear bands. We

will again confirm this prediction by simulating the model’s

full nonlinear spatiotemporal dynamics below.

In the context of Figs. 13 and 14, we have discussed the

dynamics of the nRP model with a nonmonotonic and mono-

tonic constitutive curve, respectively, focusing in each case

on one particular value of the imposed frequency x and

stress amplitude R0. We now consider the full plane of

ðR0;xÞ by showing in Figs. 15 and 16 color maps of the

extent of banding across it. Recall that each point in this

plane corresponds to a single LAOS experiment with stress

amplitude R0 and frequency x. To build up these maps, we

sweep over a grid of 20� 20 values of R0;x and execute at

each point a LAOStress run, integrating the model’s linear-

ized equations set out in Sec. III B. We then represent the

degree of banding d _c, maximized over the cycle after many

cycles, by the color scale.

Figure 15 shows results with model parameters for which

the underlying constitutive curve is nonmonotonic. As

expected, for stress amplitudes R0 exceeding the local maxi-

mum in the underlying constitutive curve, significant band-

ing is observed even in the limit of low frequency x! 0.

This is associated with the processes of jumping between the

two different branches of the constitutive curve discussed

above.

Figure 16 shows results for the nRP model with a mono-

tonic underlying constitutive curve. Here steady state band-

ing is absent in the limit x! 0, as expected. However,

significant banding is still nonetheless observed at frequen-

cies of order the reciprocal reptation time, for imposed stress

amplitudes exceeding the region of weak slope in the consti-

tutive curve, consistent with our discussion of Fig. 14 above.

To obtain the comprehensive roadmaps of Figs. 15 and 16

in a computationally efficient way, we discarded any nonlin-

ear effects and integrated the linearized model equations set

out in Sec. III B. However, these linearized equations tend to

overestimate the degree of banding in any regime of sustained

positive eigenvalue. Therefore in Figs. 17 and 18, we now

simulate the model’s full nonlinear spatiotemporal dynamics,

restricting ourselves for computational efficiency to grids of

4� 4 values of R0;x as marked by crosses in Figs. 15 and 16.

Figure 17 pertains to the nRP model with model parame-

ters for which the underlying constitutive curve is nonmono-

tonic. At low frequencies, the results tend toward the

limiting behavior discussed above, in which the stress slowly

tracks up and down the steady state flow curve Rð _cÞ in

between regimes of sudden transition between the two

branches of the curve, during which shear bands form. This

is most pronounced in the case of the jump between the high

and low viscosity branches during the upward sweep.

Banding on the downward sweep is only apparent in a rela-

tively more limited region of R0; _c space, consistent with the

transition of _c0 being more modest in this part of the cycle

during which the stress decreases.

For the particular run highlighted by the thicker box in

Fig. 17, a detailed portrait of the system’s dynamics is shown

FIG. 15. Color map of the normalized degree of shear banding for the nRP

model with a nonmonotonic constitutive curve. Each point in this R0;x
plane corresponds to a particular LAOStress run with stress amplitude R0

and frequency x. For computational efficiency, these calculations are per-

formed by integrating the linearized equations in Sec. III B. Reported is the

maximum degree of banding that occurs at any point in the cycle, after

many cycles. Model parameters: b ¼ 0:4, g ¼ 10�4. Cell curvature

q ¼ 2� 10�3. Crosses indicate the grid of values of R0 and x in Fig. 17.

FIG. 16. As in Fig. 4, but with a CCR parameter b ¼ 0:9, for which the fluid

has a monotonic underlying constitutive curve. Crosses indicate the grid of

values of R0 and x used in the Pipkin diagram of Fig. 18.
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in Fig. 19. The left panel shows the strain rate signal as a

function of time, zoomed on the region in which the strain

rate makes its transit from the high to low viscosity branch

of the constitutive curve. The black and red-dashed lines

show the results of a calculation in which the flow is artifi-

cially constrained to remain homogeneous. The red-dashed

region indicates the regime in which the criterion (31) for

linear instability to the formation of shear bands is met,

which also corresponds to the regime in which the strain rate

signal simultaneously slopes up and curves upward.

In a simulation that properly takes account of flow hetero-

geneity, shear bands indeed develop during this regime

where the criterion is met, then decay again once the strain

rate signal curves down and stability is restored. This

sequence can be seen in the velocity profiles in the right

hand panel. The stress signal associated with this run that

allows bands to form is shown by the green dot-dashed line

in the left panel, and is only barely distinguishable from that

FIG. 17. Lissajous–Bowditch curves in LAOStress for the nRP model with

a nonmonotonic constitutive curve. Results are shown as shear-rate versus

time in (a), and in the viscous representation of stress versus strain rate in

(b). Columns of fixed frequency x and rows of fixed strain-rate amplitude _c0

are labeled at the top and right-hand side. Color scale shows the time-

dependent degree of shear banding. Model parameters: b ¼ 0:4; g ¼ 10�4;
l ¼ 0:02. Cell curvature: q ¼ 2� 10�3. Number of numerical grid points

J¼ 512. A detailed portrait of the run outlined by the thicker box is shown

in Fig. 19.

FIG. 18. As in Fig. 17 but for a value of the CCR parameter b ¼ 0:9, for

which the fluid’s underlying constitutive curve is monotonic. Number of

numerical grid points J¼ 512. A detailed portrait of the run outlined by the

thicker box is shown in Fig. 20.
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of the run in which the flow is constrained to remain

homogeneous.

Figure 18 pertains to the nRP model with model parame-

ters for which the underlying constitutive curve is mono-

tonic, with the grid of ðR0;xÞ values that it explores marked

by crosses in Fig. 16. True top-jumping events are absent

here, and no shear banding arises in the limit of zero fre-

quency. As discussed above, however, a similar rapid transi-

tion from low to high shear rate is seen in runs at a

frequency O(1), as the stress transits the region of weak slope

in the constitutive curve during the increasing stress part of

the cycle. Associated with this transit is a pronounced ten-

dency to form shear bands.

This can be seen for the run highlighted by the thicker box

in Fig. 18, of which a detailed portrait is shown in Fig. 20.

This shows very similar features to its counterpart for a non-

monotonic underlying constitutive curve. In particular, the

regime of simultaneous upward slope and upward curvature

in the strain rate signal as the stress transits the region of

weak positive constitutive slope triggers pronounced shear

banding.

These results illustrate again the crucial point: That shear

bands can form in a protocol with sufficiently strong time

dependence, even in a fluid for which the underlying consti-

tutive curve is monotonic such that banding is forbidden in

steady state flows.

So far, we have restricted our discussion of LAOStress to

the nRP model, for which the stretch relaxation time sr is set

to zero upfront so that any chain stretch relaxes to zero

instantaneously, however strong the applied flow. The results

of these calculations are expected to apply, to good approxi-

mation, to experiments performed in flow regimes where

chain stretch remains small. This typically imposes the

restriction _csR � 1. We now turn to the sRP model to con-

sider the effects of finite chain stretch in experiments where

this restriction is not met.

Figure 21 shows the regions of the plane of the CCR

parameter b and entanglement number Z in which banding

can be expected even with chain stretch. As for the case of

LAOStrain above we note that, depending on the value of b,

significant banding is still observed for experimentally com-

monly used entanglement numbers, typically in the range

20–100. Furthermore, observable banding is clearly evident

over a large region of this plane in which the underlying con-

stitutive curve is monotonic, precluding steady state banding.

Again, we hope that this figure might act as a roadmap to

inform the discussion concerning the value of the CCR

parameter b.

For the pairing of b and Z values marked by the square in

Fig. 21, we show in Fig. 22 a detailed portrait of the model’s

FIG. 19. LAOStress in the nRP model with a nonmonotonic constitutive

curve. Stress amplitude R0 ¼ 0:8 and frequency x ¼ 1:0. Model parameters

b ¼ 0:4; g ¼ 10�4; l ¼ 0:02. Cell curvature q ¼ 2� 10�3. Number of

numerical grid points J¼ 512. Left: Strain rate response as a function of

time, focusing on the region in which the system transits from the high to

low viscosity branch of the constitutive curve. Solid black and red-dashed

line: Calculation in which the flow is constrained to be homogeneous. Red-

dashed region indicates a positive eigenvalue showing instability to the onset

of shear banding. Green dot-dashed line: Stress response in a full nonlinear

simulation that allows banding. Right: Velocity profiles corresponding to

stages in the cycle indicated by matching symbols in the left panel.

FIG. 20. As in Fig. 19 but for the nRP model with a CCR parameter b ¼ 0:9
for which the underlying homogeneous constitutive curve is monotonic.

Number of numerical grid points J¼ 512.

FIG. 21. Effect of CCR parameter b and entanglement number Z (and so of

chain stretch relaxation time sR ¼ sd=3Z) on shear banding in LAOStress.

(Recall that the nonstretching version of the model has sR ! 0 and so

Z !1.) Empty circles: No observable banding. Hatched circles:

Observable banding, D _c=ð1þ j_cðtÞjÞ ¼ 10%–31:6%. Dot-filled circles:

Significant banding, D_c=ð1þ j _cðtÞjÞ ¼ 31:6%–100%. Filled circles: Strong

banding, D_c=ð1þ j _cðtÞjÞ > 100%. For the hatched, dot-filled, and filled

symbols, we used the criterion that banding of the typical magnitude stated

is apparent for any of x ¼ 0:1; 0:316 or 1.0, given a stress amplitude R0

exceeding the region of weak slope in the constitutive curve. The square

shows the parameter values explored in detail in Fig. 22. The solvent viscos-

ity g is 3:16� 10�5.
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nonlinear dynamics at a stress amplitude R0 and frequency x
for which observable banding occurs.

VII. CONCLUSIONS

We have studied theoretically the formation of shear

bands in LAOS in the RP model of polymers and wormlike

micellar surfactants, with the particular aim of identifying

the regimes of parameter space in which shear banding is

significant, and the mechanisms that trigger its onset.

At low frequencies, the protocol of LAOStrain effectively

corresponds to a repeating series of quasistatic sweeps up

and down the steady state flow curve. Here, as expected, we

see shear banding in those regimes of parameter space for

which the fluid’s underlying constitutive curve is nonmono-

tonic, for strain rate amplitudes large enough to enter the

banding regime in which the stress is a characteristically flat

function of strain rate.

In LAOStrain at higher frequencies, we report banding

not only in the case of a nonmonotonic constitutive curve,

but also over a large region of parameter space for which the

constitutive curve is monotonic and so precludes steady state

banding. We emphasize that this is an intrinsically time-

dependent banding phenomenon that would be absent under

steady state conditions, and we interpret it as the counterpart

of the elastic banding predicted recently in the context of

shear startup experiments at high strain rates [47].

In LAOStress, we report shear banding in those regimes

of parameter space for which the underlying constitutive

curve is either negatively or weakly positively sloping. In

this case, the bands form during the process of yielding asso-

ciated with the dramatic increase in shear rate that arises dur-

ing that part of the cycle in which the stress magnitude

transits the regime of weak constitutive slope in an upward

direction. Although the banding that we observe here is

dramatically apparent during those yielding events, these

events are nonetheless confined to a relatively small part of

the stress cycle as a whole and would therefore need careful

focus to be resolved experimentally. (A possible related pro-

tocol, more focused on the banding regime, could be to per-

form a shifted stress oscillation RðtÞ ¼ Rplat þ DR sinðxtÞ
where Rplat is a characteristic stress value in the region of

weak slope in the constitutive curve and DR smaller in

comparison.)

The dramatic increase in strain rate associated with tran-

siting to the high shear branch in LAOStress is likely to pre-

sent practical experimental difficulties in open flow cells

such as Couette or cone-and-plate. To circumvent this, flow

in a closed microfluidic channel provides an attractive alter-

native to those macroscopic geometries in seeking to access

this effect experimentally.

In each case, we have demonstrated that the onset of shear

banding can, for the most part, be understood on the basis of

previously derived criteria for banding in simpler time-

dependent protocols [47]. In particular, the trigger for banding

in LAOStrain at low frequencies is that of a negatively slop-

ing stress versus strain rate, which has long been recognized

as the criterion for banding under conditions of a steady

applied shear flow. The trigger in LAOStrain at high frequen-

cies is instead that of an overshoot in the signal of stress as a

function of strain, in close analogy to the criterion for banding

onset during a fast shear startup run. The trigger for banding

in LAOStress is that of a regime of simultaneous upward

slope and upward curvature in the time-differentiated creep

response curve of strain rate as a function of time. This again

is a close counterpart to the criterion for banding following

the imposition of a step stress.

For both LAOStrain and LAOStress, we have provided a

map of shear banding intensity in the space of entanglement

number Z and CCR parameter b. We hope that this will pro-

vide a helpful roadmap to experimentalists and might even

help to pin down the value of the CCR parameter, for which

no consensus currently exists.

We have also commented that the value of the Newtonian

viscosity g is typically much smaller than the zero shear viscos-

ity Gs of the viscoelastic contribution, giving g� 1 in our

units. Experimental literature suggests a range g ¼ 10�7–10�3.

We have typically used g ¼ 10�5 or g ¼ 10�4 in our numerics,

and noted that the degree of banding tends to increase with

decreasing g. We also noted that the timescale to transit from

the high to low viscosity branch during yielding in each half

cycle in LAOStress decreases with decreasing g=G. In view of

these facts, a study of time-dependent banding in fluids with

smaller values of g than those used here might warrant the

inclusion of inertia because the small timescale for the propa-

gation of momentum might exceed the short timescale g=G in

those cases.

In all our numerical studies, the initial seed triggering the

formation of shear bands was taken to be the weak curvature

that is present in commonly used experimental flow cells. In

order to demonstrate the principle that the banding we report

requires only a minimal seed, rather than being an artefact of

strong cell curvature, all our runs have assumed a curvature

that is much smaller than that of most flow cells in practice.

FIG. 22. sRP model with a monotonic constitutive curve in LAOStress

of stress amplitude R0 ¼ 0:8 and frequency x ¼ 0:1. Model parameters

b ¼ 0:7;Z ¼ 100; g ¼ 3:16� 10�5. Cell curvature q ¼ 2� 10�3. Number

of numerical grid points J¼ 512. Left: Strain rate signal versus time. Solid

black and red-dashed line: Calculation in which the flow is constrained to be

homogeneous. Red-dashed region indicates a positive eigenvalue showing

instability to the onset of shear banding. Green dot-dashed line: Stress

response in a full nonlinear simulation that allows banding (indistinguish-

able from homogeneous signal in this case.) Right: Velocity profiles corre-

sponding to stages in the cycle indicated by matching symbols in left panel.
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We also neglected stochastic noise altogether in all the

results presented here. (We have nonetheless also performed

runs with small stochastic noise instead of cell curvature and

find qualitatively all the same effects.)

However, one obvious shortcoming to this approach of

taking only a very small initial seed is that it tends to sup-

press the nucleation events that are, in a real experimental

situation, likely to trigger banding even before the regime of

true linear instability [83], particularly in low frequency

runs. It would therefore be interesting in future work to study

the effect of a finite temperature with particular regard to the

nucleation kinetics to which it would give rise.

The calculations performed in this work all assumed from

the outset that spatial structure develops only in the flow gra-

dient direction, imposing upfront translational invariance in

the flow and vorticity directions. We defer to future work a

study of whether, besides the basic shear banding instabil-

ities predicted here, secondary instabilities [84] of the inter-

face between the bands [85,86] or of the high shear band

itself [87] will have time to form in any given regime of

amplitude and frequency space.

We have ignored throughout the effects of spatial varia-

tions in the concentration field. However, it is well known

that in a viscoelastic solution heterogeneities in the flow

field, and in particular in the normal stresses, can couple to

the dynamics of concentration fluctuations via a positive

feedback mechanism that enhances the tendency to form

shear bands [21,88–91]. In the calculations performed here

in LAOS, we have observed significant differences in the

viscoelastic normal stresses between the bands (approaching

50%–70% of the cycle-averaged value of the same quantity,

at least in the calculations without chain stretch). It would

therefore clearly be interesting in future work to consider the

effects of concentration coupling on the phenomena reported

here.

Throughout we have ignored the possibility of edge frac-

ture because the one-dimensional calculations performed

here lack any free surfaces and are unable to address it. It

would clearly be interesting in future work to address the

effects of edge fracture with regard to the phenomena con-

sidered here [17,19,92].

All the calculations performed here have adopted what is

essentially a single-mode approach, taking account of just

one reptation relaxation timescale sd and one stretch relaxa-

tion timescale sR. It would be interesting in future work to

consider the effect of multiple relaxation timescales, which

is likely to be an important feature of the dynamics of

unbreakable polymers. (In wormlike micelles, in contrast,

chain breakage and recombination narrows the relaxation

spectrum significantly such that the single-mode approach

adopted here is already likely to provide a reasonably full

picture.)

We hope that this work will stimulate further experimen-

tal studies of shear banding in time-dependent flows of com-

plex fluids, with a particular focus on the concept that

banding is likely to arise rather generically during yielding-

like events (following a stress overshoot in strain controlled

protocols, or during a sudden increase in strain rate in stress-

controlled protocols) even in fluids with a monotonic

constitutive curve that precludes steady state banding in a

continuously applied shear. In polymers, this could form part

of the lively ongoing debate concerning the presence or oth-

erwise of shear banding in those materials. In wormlike

micelles, it would be interesting to see a study of LAOS

across the full phase diagram (as set out, for example, in

[93]), from samples that band in steady state to those above

the dynamical critical point, which do not.
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