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Abstract 

Stable isotope mass balance modeling results of meteoric δ18O values from the 

Cenomanian Stage of the Cretaceous Western Interior Basin (KWIB) suggest that 

precipitation and evaporation fluxes were greater than that of the present and significantly 

different from simulations of Albian KWIB paleohydrology. Sphaerosiderite meteoric 

δ18O values have been compiled from the Lower Tuscaloosa Formation of southwestern 

Mississippi (25°N paleolatitude), The Dakota Formation Rose Creek Pit, Fairbury 

Nebraska (35°N) and the Dunvegan Formation of eastern British Columbia (55°N 

paleolatitude). These paleosol siderite δ18O values define a paleolatitudinal gradient 

ranging from -4.2 ‰ VPDB at 25°N to -12.5‰ VPDB at 55°N. This trend is significantly 

steeper and more depleted than a modern theoretical siderite gradient (25°N: -1.7 ‰ ; 

65°N: -5.6 ‰ VPDB ), and a Holocene meteoric calcite trend (27°N: -3.6 ‰ ; 67°N: -7.4 

‰ VPDB). The Cenomanian gradient is also comparatively steeper than the Albian trend 

determined for the KWIB in the mid- to high-latitudes. The steep latitudinal trend in 

meteoric δ18O values may be the result of increased precipitation and evaporation fluxes 

(amount effects) under a more vigorous greenhouse-world hydrologic cycle.  A stable-

isotope mass balance model has been used to generate estimates of precipitation and 

evaporation fluxes and precipitation rates. Estimates of Cenomanian precipitation rates 
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based upon the mass-balance modeling of the KWIB range from 1400 mm/yr at 25°N 

paleolatitude to 3600 mm/yr at 45°N paleolatitude. The precipitation-evaporation (P-E) 

flux values were used to delineate zones of moisture surplus and moisture deficit. 

Comparisons between Cenomanian P-E and modern theoretical siderite, and Holocene 

calcite latitudinal trends shows an amplification of low-latitude moisture deficits between 

5-25°N paleolatitude and moisture surpluses between 40-60°N paleolatitude. The low 

latitude moisture deficits correlate with a mean annual average heat loss of 48 W/m2 at 

10°N paleolatitude (present, 8 W/m2 at 15°N). The increased precipitation flux and 

moisture surplus in the mid-latitudes corresponds to a mean average annual heat gain of 

180 W/m2 at 50°N paleolatitude (present, 17 W/m2 at 50°N). The Cenomanian low 

latitude moisture deficit is similar to that of the Albian, however the mid-latitude (40-

60°N) precipitation flux values and precipitation rates are significantly higher (Albian: 

2200 mm/yr at 45°N; Cenomanian: 3600 mm/yr at 45°N). Furthermore, the heat 

transferred to the atmosphere via latent heat of condensation was approximately 10.6 x 

that of the present at 50°N. The intensified hydrologic cycle of the mid-Cretaceous 

greenhouse warming may have played a significant role in the poleward transfer of heat 

and more equable global conditions. Paleoclimatological reconstructions from multiple 

time periods during the mid-Cretaceous will aid in a better understanding of the dynamics 

of the hydrologic cycle and latent heat flux during greenhouse world conditions. 

 

1.  Introduction 

 

1.1.  Purpose 
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The purpose of this study is to show that siderite nodules in paleosols of the 

Cenomanian Lower Tuscaloosa Formation (LTF), Dakota Formation, and the Dunvegan 

Formation have oxygen isotopic values that are a proxy record for low-altitude, coastal 

plain rainfall δ18O values during the mid-Cretaceous greenhouse warming (Fig. 1). The 

new stable isotopic data has been used to reconstruct a latitudinal trend in Cenomanian 

Stage precipitation isotopic values and model estimates for Cretaceous Western Interior 

Basin (KWIB) precipitation rates and latent heat flux values during the Cenomanian 

Stage. 

 

1.2. Geologic Significance 

Quantifying global transfers of sensible heat by the oceans (Covey and Barron, 

1988; Crowley, 1991; Barron et al., 1995; Sloan et al., 1995) and latent heat by the 

atmosphere are necessary to explain warmer polar temperatures (Parrish and Spicer, 

1988a, b) during greenhouse periods of Earth history (Schneider et al., 1985; Huber et al., 

1995; Upchurch et al., 1999).  Increased global temperatures increase the saturation vapor 

pressure of the troposphere, and modify latent heat transfer from low to high latitudes 

(Hay and DeConto, 1999).  Furthermore, as water vapor is a greenhouse gas, the 

increased vapor content of the lower atmosphere enhances the “greenhouse effect” (Rind 

and Chandler, 1991). Elevated atmospheric pCO2 levels from large igneous province 

eruptions (Larson, 1991; Tarduno et al., 1998), and the presence of continental seaways 

(Poulsen et al., 1999) may have reduced regional thermal gradients by as much as 15°C. 

Latent heat flux (LHF) through the atmosphere may also contribute significantly to 
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greenhouse-world heat transfer (Schmidt and Mysak, 1996; DeConto et al., 1999; Hay 

and DeConto, 1999).   

Empirical isotopic data from paleosol siderite nodules (sphaerosiderites) in the 

KWIB (Fig. 2; Ludvigson et al., 1998; Ufnar et al., 2001, 2002, 2004a,b,c, 2005, White et 

al., 2000a, b, 2001, 2005) are used to quantify precipitation and evaporation fluxes in the 

hydrologic cycle (Ludvigson et al., 1998, White et al., 2001; Ufnar et al., 2002). The use 

of sphaerosiderite δ18O values as a paleohydrologic proxy record is made possible by the 

recognition of Meteoric Sphaerosiderite Lines – MSLs (Ludvigson et al., 1998).  MSLs 

are early-diagenetic trends defined by sphaerosiderite isotopic values with invariant δ18O 

values, and highly variable δ13C values.  The MSLs are analogous to meteoric calcite 

lines (Lohman, 1988).  The invariant δ18O values reflect precipitation in a ground water 

system with stable δ18O values, and uniform temperature (Ludvigson et al., 1998; White 

et al., 2001; Ufnar et al., 2002).  

Mass-balance modeling of the hydrologic cycle (Ufnar et al., 2002) during the 

Albian Stage suggests enhanced LHF during the mid-Cretaceous greenhouse warming 

(Ufnar et al., 2004c). Quantifying LHF is essential to understanding reduced equator-to-

pole temperature gradients. 

 

1.3.  The mid-Cretaceous Hydrologic Cycle 

The δ18O values of sphaerosiderites from paleosol horizons (Fig. 3) define a 

latitudinal gradient in meteoric δ18O values that is steeper and more depleted than modern 

analogues (Fig. 4).  The Cenomanian δ18O latitudinal trend is also 7.5 (at 25°N lat.) to 9.0 

‰ (at 55°N lat.) lighter than the trend predicted using modern empirical temperature-
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δ18O relationships  (Dansgaard, 1964; Rozanski et al., 1993). The sphaerosiderite proxy 

data have been used to constrain a mass-balance model (modified from Ufnar et al., 

2002) of isotopic compositions of precipitation to quantify changes in the Cenomanian 

hydrologic cycle. The model results show increased precipitation and evaporation fluxes, 

and accounts for the steeper meteoric δ18O gradient with some significant differences 

from the results generated for the Albian. The intensified hydrologic cycle provides an 

effective mechanism for exporting large amounts of tropical heat to higher latitudes, and 

the mass-balance model results have been used to generate quantitative estimates of LHF 

during the Cenomanian greenhouse warming. 

These data provide quantitative estimates of paleoprecipitation and LHF for the 

Cenomanian stage of the mid-Cretaceous. It is essential to refine the empirically-based 

estimates of LHF during greenhouse periods because General Circulation Models (GCM) 

of the mid-Cretaceous tend to underestimate the export of tropical heat to higher latitudes 

through the atmosphere.  

 

2.  Methods 

 

2.1 Sphaerosiderite-bearing Paleosols 

 The Cenomanian-aged (Mancini et al., 1987) sphaerosiderite-bearing paleosols of 

the Lower Tuscaloosa Formation were obtained from the Kern Brooks Oil Operations #1-

11 Harrell Smith Core from Jefferson County, Mississippi (Cameron et al., 1992). The 

Dakota Formation samples were obtained from the fluvial/estuarine deposits of the Rose 

Creek Pit (RCP) near Fairbury, Nebraska (Gröeke et al., 2006). The sphaerosiderite-
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bearing paleosols analysed from the Dunvegan Formation were obtained from the Type 5 

paleosol pedocomplex marking position “E” in the east section of the Kaskatinaw River 

(New Bridge) section described by McCarthy et al. (1999).  

 

2.2 Stable Isotopes 

 The stable Isotope analyses from the Lower Tuscaloosa Formation were 

conducted at the University of Kansas Stable Isotope Research Lab directed by Luis A. 

González. The Dakota Formation siderite analyses were conducted by Lora Wingate at 

the University of Michigan Stable Isotope Laboratory. The Dunvegan Formation siderite 

analyses were produced by the authors at the Paul H. Nelson Stable Isotope Laboratory at 

the University of Iowa (Ufnar et al., 1999). The powdered samples were roasted in vacuo 

at 380°C to remove volatile contaminants.  Samples were then reacted with anhydrous 

phosphoric acid at 75°C in a Kiel III automated carbonate reaction device coupled to the 

inlet of a Finnigan MAT 252 or 253 isotope ratio mass spectrometer.  All isotope ratios 

are reported relative to the Vienna PeeDee Belemnite (VPDB) standard, with analytical 

precision of better than ±0.1‰ δ13C and d18O values.  The siderite data were corrected 

with the experimentally determined temperature-dependent oxygen isotope fractionation 

factor (Carothers et al., 1988).  

 

2.3.  Mass Balance Model  

The sphaerosiderite isotope values from the Cenomanian paleosols described here 

have been used to generate a latitudinal gradient in meteoric δ18O values between 25°-

55°N paleolatitude. The Cenomanian trend in siderite δ18O values is compared to three 
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modern analogues. The modern trends in meteoric δ18O values were used to calibrate the 

stable isotope mass balance model. The first trend used is a theoretical siderite δ18O 

gradient that was calculated from the International Atomic Energy Agency, World 

Meteorological Organization (IAEA/WMO) mean annual δ18O values of precipitation 

from low altitude monitoring stations around the world (Rozanski et al., 1993). This is 

the same gradient that was generated for the Albian Mass Balance modeling of Ufnar et 

al., 2002. The second modern trend was adopted from the δ18O of precipitation gradient 

modeled by Bowen and Wilkinson (2002). Their polynomial equation which represents 

the latitudinal gradient in precipitation values was coupled with the modern mean annual 

temperature gradient and the fractionation factor of Carothers et al. (1988) to calculate a 

theoretical modern siderite δ18O gradient. Bowen and Wilkinson’s (2002) equation has an 

elevation factor and the value of 10 m was used to represent low elevation modern 

siderite values. The third modern trend was compiled from Holocene speleothem and 

meteoric calcite cement values over a broad range of latitudes (22°-65° latitude; Table 1). 

The Holocene calcite values were used to compare recent empirical proxy records for 

meteoric water δ18O values to the Cenomanian empirical proxy records in addition to the 

theoretical modern siderite values. 

Detailed descriptions of the stable isotope mass balance model used for this 

investigation are provided in Ufnar et al (2002). The mass balance model is designed to 

reproduce a latitudinal trend in siderite δ18O values and it is controlled by 6 input 

variables: (1) a latitudinal temperature gradient; (2) a latitudinal trend in relative 

humidity; (3) a latitudinal trend in meteoric δ18O values; (4) the mean δ18O value of 

ocean water; (5) precipitation flux; and (6) evaporation flux. The model is designed to 
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simulate the changes in meteoric δ18O values that occur as a theoretical airmass develops 

in the tropics and progresses towards higher latitudes through Hadley, Farrell, and Polar 

cell circulation. With each step in its latitudinal traverse, the airmass is losing a fraction 

of its water vapor through precipitation (precipitation flux) and gaining some moisture 

back through evapotranspiration (evaporative flux). With each step in latitude, the δ18O 

value of the air mass water vapor is recalculated (water vapor fractionation factors of 

Majoube, 1971) with the mass balance equation (Ufnar et al., 2002) based upon the input 

values (equation 1). 

 (1) 

      d18Oa(n)    =     composition of water vapor in the air mass. 

          f    =     fraction of vapor remaining in the vapor reservoir. 

 d18Ov    =     composition of vapor added via evaporation. 

 de/dt    =     vapor fraction added through evaporation (vapor flux). 

 d18Or    =      composition of precipitation removed from the air mass. 

              dr/dt   =      vapor fraction removed through precipitation (precipitation flux).   

        n    =      latitude 

 

The model is dimensionless, thus precipitation and evaporation fluxes are used to 

add or remove a fraction of vapor from a supply that starts at 0° latitude with an initial 

value of 1. In executing the model, the latitudinal temperature gradient, meteoric δ18O 

gradient; relative humidity gradient; and δ18O of ocean water are held constant. The 
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precipitation and evaporation fluxes are the variables that are altered through multiple 

iterations until the model reproduces a gradient in siderite δ18O values that is identical to 

the polynomial regression “best-fit” line of the empirical siderite data. The model was 

first calibrated by using a modern latitudinal trend in mean annual temperatures, δ18O of 

precipitation, and 0‰ VSMOW for the δ18O value of ocean water.  For the Holocene 

meteoric calcite trend, the model was reconfigured to calculate calcite δ18O values rather 

than siderite (calcite-water fractionation factor from Faure, 1986). The modeled δ18O 

values account for the kinetic effects of humidity using the relationship established by 

Gonfiantini (1986; see equation 2 in Ufnar et al., 2002) 

Upon completing the modern simulations, the input variables were changed for 

the Cenomanian gradient. The modern temperature gradient was replaced with the 

temperature gradient of Spicer and Corfield (1992) based upon the fossil vegetation data 

of Wolfe and Upchurch (1987). The δ18O value of ocean water was changed to -1 ‰ 

VSMOW (Shakelton and Kennett, 1975; Dettman and Lohman, 2000); and the latitudinal 

trend in meteoric δ18O values was changed to a gradient that is very similar to the 

meteoric values calculated from the sphaerosiderites. Using the δ18O values calculated 

from the sphaerosiderites presents some circular reasoning; however the alternative is to 

input completely hypothetical values. Sensitivity tests have shown that the model outputs 

are sensitive to changes in the continental vapor feedback parameter (Ufnar et al., 2002). 

Independently-determined meteoric δ18O values are lacking, thus the meteoric values 

estimated from the sphaerosiderites are the best analogue until an independent empirical 

data set can be compiled. 
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3.  Results 

 

3.1. Paleosol  Descriptions 

 

3.1.1.  Lower Tuscaloosa Formation  

The sphaerosiderite bearing paleosols observed in the Harrell Smith core (3,210.6-3,211 

m) are clay dominated mudstones with <10% very fine-grained quartz sand. The 

mudstones exhibit a striated birefringence fabric (b-fabric) and common clay coatings 

and infillings. The clay coatings are characterized by moderate- to well-oriented clay 

particles characterized by wavy extinction patterns under cross-polarized light (Bullock et 

al., 1985) and correspond to the sepic plasmic fabrics of Brewer (1964). The clay 

coatings are generally fragmented, discontinuous, and exhibit gradational contacts with 

the surrounding matrix. The paleosol groundmass is predominantly grey with 30-50% 

prominent, coarse, purple-red mottling. The sphaerosiderites range from 1.0-1.75 mm in 

diameter, have radial concentric crystalline microstructures, and have faint to prominent 

oxidation rings (Fig. 2). The oxidation rings are thicker and more prominent in the red-

mottled domains. 

 

3.1.2.  Dakota Formation Rose Creek Pit 

The Rose Creek Pit claystone paleosols exhibits striated b-fabrics characterized 

by elongated zones of oriented clay particles that exhibit simultaneous extinction 

patterns. The matrix contains discontinuous, fragmented and degraded clay coatings. The 
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matrix contains a minor amount of pyrite (0.01 - 0.02 mm) framboids encased within 

fine, faint yellow mottles. The sphaerosiderites generally occur as individual nodules up 

to 1.0 mm in diameter. The nodules have a microcrystalline siderite (micrite-like) core 

surrounded by bladed, radial-concentric siderite crystallites. The outer terminations of the 

bladed crystallites are euhedral to eroded and moderately- to strongly impregnated with a 

red iron oxide stain. Commonly, the sphaerosiderite nodules contain minor inclusions of 

pyrite (0.01 - 0.02 mm size framboids) or quartz silt grains.  

  

3.1.3.  Dunvegan Formation 

The sphaerosiderite-bearing paleosols are characterized by silty- to very fine-grained 

sandy mudstones with speckled- and striated b-fabrics.  The matrix is dominated by 

domains of prominent, dark red (ferruginous) mottles complexly mixed with domains of 

light grey-green reduction halos or rhizohaloes (Kraus and Hasiotis, 2005). Clay coatings 

and infillings are common, and generally occur as discontinuous pore and void coatings 

with moderate- to well-oriented clay particles. The sphaerosiderite nodules (0.25-0.5 mm 

diameter) are often observed in linear arrays adjacent to voids, and as pseudomorphs of 

organic fragments. Internally, the nodules generally exhibit a radial concentric crystalline 

microstructure and often contain cubic or framboidal pyrite inclusions (generally <0.2 

mm in size). Commonly, individual sphaerosiderite nodules are characterized by serrated 

margins with a prominent, opaque oxidation rim.  

  

3.2.  Stable Isotope Data 
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3.2.1.  Lower Tuscaloosa Formation 

The 3210.6 m interval of the Harrell Smith core yielded δ18O values that ranged 

from -5.4 to -4.8‰ with an average, MSL value of -5.0 ± 0.19‰ VPDB (Fig. 3). The 

δ13C values ranged from -22.6 to -20.3‰ with an average value of -21.8‰ VPDB. The 

3,211 m interval yielded δ18O values that ranged from -5.3 to -4.9‰ and the average, 

MSL value is -5.2 ± 0.113‰ VPDB. The δ13C values ranged from -21.1 to -19.3‰ and 

the average value is -19.8‰ VPDB. Based upon the paleotemperature gradient of Spicer 

and Corfield, 1992, the estimated soil groundwater δ18O values for the Lower Tuscaloosa 

Formation ranged from -7.0 to -6.1‰ VSMOW (Fig. 5).  

 

3.2.2.  Dakota Formation RCP 

 The δ18O and δ13C values of the sphaerosiderites from the 8.6 m interval of the 

RCP section define a meteoric sphaerosiderite line (Ludvigson et al., 1998) with an 

average δ18O value of -5.05 ± 0.27‰ VPDB. The 7.6 m interval defines a meteoric 

sphaerosiderite line with an average value of -4.1 ± 0.124‰ VPDB. The δ18O values 

range from -5.5 ‰ to -4.7 ‰ VPDB and the δ13C values range from -19.1 ‰ to -14.1 

‰VPDB for the 8.6 m interval. The δ18O values range from -4.4 ‰ to -4.0 ‰ VPDB and 

the δ13C values range from -11.9 ‰ to -6.7 ‰VPDB for the 7.6 m interval. The MSL 

values are a proxy for estimated meteoric water δ18O values ranging from -7.0 ‰ to – 5.0 

‰ VSMOW. 

 

3.2.3.  Dunvegan Formation 
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The Kaskatinaw Gorge sphaerosiderites yield d18O compositions that define an 

MSL of -12.5 ± 0.312 ‰ VPDB. The δ18O values range from -13.1 to -12.1‰ VPDB and 

the δ13C values range from -10.1 to -8.9‰ VPDB. Based upon the paleotemperature 

gradient of Spicer and Corfield, 1992, the estimated soil groundwater δ18O values for the 

Dunvegan Formation ranged from -16.0 to -15.7‰ VSMOW. 

 

 

3.3.  Mass Balance Modeling Results 

 

 The three different modern/Holocene gradients that were used to calibrate the 

mass balance model generated very similar results. The precipitation and evaporation flux 

profiles with latitude vary by a maximum of 0.16 at any given latitude. The temperature 

gradients, continental vapor feedback δ18O values, relative humidity, and δ18O of ocean 

water input values (or trends) were all held constant for these simulations. Each of the 

modern simulations showed a peak in precipitation flux in the tropics, decreased values in 

the 10-30° latitudinal range, a secondary peak in precipitation fluxes between 45 and 

55°N, and values tapering off toward the pole (Fig. 6). There is a maximum difference 

between the precipitation flux values of 28% at 5°, 50% at 25°, 30% at 45°, and 100% at 

75°N latitude for the modern model simulations.  

 The Cenomanian was modeled to reproduce the sphaerosiderite δ18O gradient that 

ranges from -4.0 to -12.5‰ VPDB over the range of 25-55°N paleolatitudes. The 

maximum range of error in the 	d18O data from each location were used to estimate the 

upper and lower limits of the precipitation and evaporation fluxes (Fig. 7). The minimum 
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values include a gradient that ranged from -4 to -9.0 ‰ VPDB over the range 25-65° N 

latitude. This simulation uses the calculated equivalent siderite δ18O values for the 

Dunvegan Formation based upon the groundwater δ18O values of Vitali et al. (2002) 

estimated from clay mineral stable isotopic analyses (discussed below). The higher 

paleolatitude was used to estimate the potential error in the model related to varying 

paleogeographic reconstructions (e.g. Irving et al., 1993; Witzke, 2003). The gray shaded 

areas on Figures 6,7,8, and 9 reflect the estimated range in error of the model estimates 

propagated from the maximum range in d18O values and the potential variance in the 

paleolatitudinal reconstructions. 

 By comparison, the Cenomanian precipitation flux profiles are significantly 

different from the three modern precipitation flux profiles. The most noteworthy 

differences are between 10-20°, 20-30°, and 35-55°N latitudes (Fig. 6). A 1.6 to 1.8 x 

increase in precipitation flux was modeled at 25°N, and a 2.2 to 2.5 x increase in 

precipitation flux is modeled at 45°N for the Cenomanian. A 2.3 to 2.5 x decrease in 

precipitation flux compared to the modern simulations is modeled for 15°N paleolatitude. 

Between 55-80°N latitudes, the Cenomanian  precipitation flux profile is very similar to 

the modern precipitation flux values. 

 The evaporation flux profiles for the Cenomanian are significantly elevated in the 

low latitudes compared to all of the modern model simulations (Fig. 6). The Cenomanian 

was modeled with evaporation fluxes that are approximately 2.4 x greater at 5°N latitude 

and 1.8 x greater than the modern at 25°N latitude.  

 

3.4. Precipitation Rate Estimates 
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 Using the precipitation flux values calculated from the model coupled with the 

paleotemperature estimates (Spicer and Corfield, 1992; Wolfe and Upchurch, 1987), 

modern mean annual temperatures, and modern, zonally-averaged mean annual 

precipitation rates, estimates of paleoprecipitation rates can be calculated for the KWIB 

(Ufnar et al., 2002, 2004b). The saturation vapor pressure of the Cenomanian atmosphere 

would have been significantly greater than that of the present particularly in the higher 

latitudes. The modeled precipitation flux values are an estimate of the long-term average 

fraction of vapor removed from airmasses at a given latitude. Using the modern zonally 

averaged rainfall rate for a given latitude (e.g. mid-continent, North America, 45°N, 

approximately 1000 mm/yr; Aguado and Burt, 2004), and the modern modeled 

precipitation flux values, we can estimate the potential precipitation rate. The potential 

precipitation rate (PPR) represents the amount of rainfall that would occur on average if 

the atmosphere were to completely exhaust its moisture supply. This is unrealistic 

however; it provides a value by which we can compare the saturation vapor pressures of 

the modern to the ancient. Using the equation (0.0002T3 + 0.0111T2 + 0.321T + 4.8; 

Clark and Fritz, 1997), the saturation vapor pressure at 45°N has an average value of 10.3 

g/m3 based upon a mean annual temperature of 11.5°C. With an estimated mid-

Cretaceous MAT of 19.1°C (Spicer and Corfield, 1992; Wolfe and Upchurch, 1987) at 

45°N, the average saturation vapor pressure would have been 16.3 g/m3, approximately 

59% greater than present. The precipitation flux for the modern simulations ranges from 

0.26-0.34. Using equation 4 of Ufnar et al. (2002), the modern zonally-averaged 

precipitation rate at 45°N (1000 mm/yr) divided by the modeled precipitation flux values 

(0.28-0.32), results in a PPR ranging from 3100-3600 mm/yr. If the Cenomanian 
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atmosphere could hold 59% more water vapor, then the equivalent PPR would have 

ranged from 4900-5700 mm/yr. The modeled Cenomanian fluxes for 45°N range from 

0.42 to 0.93 with the best scenario value of 0.73, thus multiplying the precipitation fluxes 

by the PPR values results in precipitation rate estimates ranging from 2000 to 5200 

mm/yr, with a best scenario value of 3600 mm/yr. The equator-pole precipitation rate 

estimates through the KWIB are significantly greater in the tropics and the mid-latitudes 

compared to modern precipitation rates (Fig.8). The precipitation rates estimated for the 

Cenomanian are also potentially greater than those estimated for the Albian in the mid-

latitudes (Ufnar et al., 2002). 

 

3.5.  Latent Heat Flux Calculations 

 

 The modeled precipitation and evaporation fluxes and estimated precipitation 

rates were used to estimate changes in latent heat flux over the KWIB during the 

Cenomanian Stage (Fig. 9). The methods of Ufnar et al., 2004c were used to calculate 

long-term average latent heat flux (LHF) values in W/m2. The theoretical estimates are 

for one square meter of ground surface along a North-South latitudinal transect through 

the KWIB. The temperature-dependent equation for the latent heat of vaporization, Q = 

Lm (Q = heat in calories, m = mass of H2O in kilograms, and L is a temperature-

dependent variable), was used to calculate heat loss or gain along the latitudinal transect. 

The term L varies as a linear function between 0 and 100 °C [–0.57(T) + 597 cal/g; T = 

temperature in °C] (Ufnar et al., 2004). Figure 6 illustrates the modeled difference in 

moisture balance between the modern and Cenomanian. The moisture deficit in the low 
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latitudes (10-20°N) based upon the modeled precipitation minus evaporation flux values 

(P-E) is approximately 5.5 x greater in the Cenomanian simulations compared to the 

modern. The moisture surplus (40-60°N) based upon the P-E values is approximately 2.3 

x greater than the modern values in the Cenomanian simulation.  

 The present moisture deficit in the tropics is on the order of -8.6 W/m2 at 20°N 

latitude (the negative value indicates a net heat loss). The estimated LHF values for the 

Cenomanian are approximately 3.4 x greater at 20°N (3.0 to 3.4 x greater than present). 

The moisture surplus at 50°N latitude presently equates to a heat gain of 17 W/m2. The 

peak at 50°N in the Cenomanian simulation equates to an LHF value of 180 W/m2. The 

LHF in the mid latitudes during the Cenomanian is estimated to have been 10.6 x greater 

than the present. 

 

4. Discussion 

 

 The modeling results for the Cenomanian Stage in the KWIB are somewhat 

different from those of the Albian (Fig. 6; Ufnar et al., 2002, 2004c). The “bump” in the 

Cenomanian precipitation flux profile around 25°N was necessitated to generate δ18O 

values that are only slightly depleted relative to the δ18O values at 35°N paleolatitude. 

The Albian model results suggest that 25°N was an area of significant moisture deficit. 

The Cenomanian model results and the lithofacies suggest that during the Cenomanian, 

the eastern margin of the Western Interior Seaway at approximately 25°N paleolatitude 

was not excessively dry. The sphaerosiderites of the Lower Tuscaloosa fall within a 

domain that the Cenomanian model results suggest was an area of near moisture balance 
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with P-E values ranging from -0.2 to 0.06. The moisture balance is supported by 

GENESIS model results of the early Turonian that  illustrate the 0 mm/day contour for P-

E in the geographic area occupied by the sampled intervals of the Lower Tuscaloosa 

(Slingerland et al., 1996).  The LHF values range from a slight heat deficit of -22 W/m2  

at 25°N to a moisture balance of 0 W/m2 at 30°N. The precipitation rate estimates from 

this study are on the order of 1500-1800 mm/yr. Current mean annual precipitation rates 

at 25°N in North America (e.g. near Brownsville, Texas) are on the order of 635 mm/yr; 

however the potential evapotranspiration rates are more than 2 x that (1400 mm/yr; Fipps 

et al., 2006). The precipitation rates at 25°N during the Cenomanian were more like they 

are in coastal Mississippi at present, ranging from 1400-1600 mm/yr (NOAA Climatic 

Data Center, 2006). Several thin (30-50 cm), coal seams and highly carbonaceous 

mudstone intervals are observed in the Lower Tuscaloosa Formation (Mancini et al., 

1987; Cameron and Hamilton, 1992). Also, the pedogenically modified interfluvial 

deposits are characterized by an abundance of clay coatings, pedogenic slickensides, and 

striated b-fabrics all suggesting well-drained conditions, with frequent wetting and drying 

cycles (FitzPatrick, 1984; McCarthy et al., 1998; McCarthy et al., 1999a).  

There are no indicators for a significant moisture deficit nor arid paleoclimatic 

conditions in the Lower Tuscaloosa Formation of southwestern Mississippi. Conversely, 

paleosols developed in the Lower Albian upper Glen Rose Formation near Austin, Texas 

(25°N paleolatitude) are characterized by pedogenic calcretes and positive covariant 

trends in δ18O vs. δ13C values suggesting substantial evaporative enrichment of vadose 

fluids (Ludvigson et al., 2005; Ufnar et al., 2005a,b). A meteoric calcite line (MCL: -

3.8‰ VPDB) defined for the Upper Glen Rose Formation yields estimated meteoric δ18O 
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values ranging from -2.0 to -1.6‰ VSMOW. These estimates are significantly enriched 

relative to those estimated for the Lower Tuscaloosa (-6.8 to -4.5‰ VSMOW) from the 

same paleolatitude. The vast difference in the soils and meteoric water values may be 

related to changes in sea-level and paleoceanographic circulation between the Early 

Albian and the Cenomanian.  

The Late Albian was characterized by lower eustatic sea-level compared to the 

Cenomanian (Haq et al., 1987), and the Late Albian of the KWIB is marked by a 

significant regression and coastal offlap (Kauffman and Caldwell, 1993). The Glen Rose 

paleosol described above is a sequence-bounding paleosol that marks the unconformity 

surface between the Edwards Group and the overlying Fredricksburg Group (Moore, 

1996; Mancini and Puckett, 2005; Talbert and Atchley, 2000). The Upper Glen Rose 

paleosol developed during the regressive phase of sea-level prior to the T5 maximum 

transgression of the Kiowa Skull Creek cycle in the KWIB (Talbert and Atchley, 2000; 

Kauffman, 1969, 1977, Caldwell, 1984; Kauffman and Caldwell, 1993). The Kiowa-

Skull Creek cycle was one of the first times in which the northern and southern arms of 

the western interior seaway were able to flood across the continental arch, connect and 

mix (Kauffman, 1969, 1977, Caldwell, 1984; Stelck and Koke, 1987, Kauffman and 

Caldwell, 1993). However, the paleosol developed in the Upper Glen Rose likely 

developed during a regressive phase preceding this cycle (Fig. 10), as the southern arm of 

the seaway was retreating and was isolated from the northern, cooler water connection.  

The paleosols of the Lower Tuscaloosa most-likely developed during the multiple 

sea-level fluctuations that occurred during the initial Cenomanian transgression of the 

Greenhorn Cycle in the KWIB (Fig. 10; Kauffman and Caldwell, 1993). The Western 
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Interior Seaway was fully connected between the proto-Gulf of Mexico and the Boreal 

Sea during that time, and peak flooding during the latest Cenomanian may have reached 

elevations of 295-300 m above present sea-level (McDonough and Cross; 1991; 

Kauffman and Caldwell, 1993). The mixing of cool, slightly brackish northern waters 

with warm, subtropical normal-salinity water masses would have had a significantly 

different impact on precipitation patterns and rates vs. that of a retreating, isolated, warm 

southern arm of the seaway (Kauffman and Caldwell, 1993; Slingerland et al., 1996).    

GENESIS model results for the mid-Cretaceous (early Turonian) suggest that the 

climate was warm, humid and non-seasonal with precipitation rates on the order of 1100 

mm/yr along the northern margin of Tethys (Slingerland et al., 1996). These values are 

consistent with the precipitation estimates presented here as well as paleobotanical 

evidence from Wolfe and Upchurch (1987). Albian Community Climate Model 

simulations (~100 Ma) however, that do not have a fully connected western interior 

seaway, predict zonally averaged precipitation rates on the order of approximately 730 

mm/yr with a P-E value of -1.4 mm/day at 25°N paleolatitude (Barron et al., 1989). The 

mid-Cretaceous GENESIS model experiments of Bice and Norris (2002) that used the 

plate reconstruction of Barron (1987), which does not have a fully-connected KWIS, 

predict P-E values of -0.7 to -0.9 mm/day at 25°N paleolatitude.  Thus, the Late Albian 

Commanche Shelf area (Rose, 1972; Bay, 1982) at 25°N was characterized by more arid 

conditions. The southeastern margin of the western interior seaway (25°N paleolatitude) 

was characterized by more humid and balanced P-E conditions during Cenomanian 

through early Turonian time. Thus, the mass-balance modeled difference in Albian vs. 

Cenomanian P-E flux values and precipitation rates are supported by late-Early Albian 
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δ18O values and pedogegenic features of the Upper Glen Rose Formation, and CCM and 

GENESIS model results for the Albian and Cenomanian-Turonian respectively (Barron et 

al., 1989; Slingerland et al., 1996).  

Both the Albian and Cenomanian mass balance model results suggest increased 

precipitation rates in the mid- to high-latitudes compared to the present. The estimates 

based upon the Cenomanian mass-balance model results suggest that the precipitation 

rates between 40-50°N latitude increased significantly (approximately 40%) when 

compared to the estimates for the Albian (Fig. 8). An increase in mid-latitude (40-45°N) 

precipitation rates from the Albian to Turonian is also predicted by GENESIS modeling 

experiments, with an increase on the order of 15% (Poulsen et al., 1999).  

Are the mass-balance model estimates excessive? It has been suggested that the 

sphaerosiderites from the Kaskatinaw Gorge (55°N paleolatitude) locality have been 

subjected to later diagenetic alterations and may not be a good proxy for precipitation 

δ18O values (Vitali et al., 2002). Petrographic, cathodoluminescence, and microprobe 

analyses of the Dunvegan sphaerosiderites show no evidence for textural or geochemical 

alterations of the nodules. Vitali et al. (2002) present δ18O water value estimates for the 

Dunvegan Formation that were obtained from the stable isotopic values of pedogenic clay 

minerals. The clay minerals yield estimated δ18O values of -12.9 to -11.6‰ VSMOW for 

the soil groundwater (Vitali et al., 2002). These values were used to estimate equivalent 

siderite values of -8 to -9.5‰ VPDB for the Cenomanian minimum simulations using the 

paleotemperature estimates of Wolfe and Upchurch (1987). The δ18O values of the 

pedogenic clays should reflect that of the water involved in the weathering reactions 

(Faure, 1986). Thus, the pedogenic clay δ18O values provide a reasonable alternative 
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proxy, however the clays formed under significantly different conditions than the 

sphaerosiderites. The equivalent siderite values determined from the δ18O values of Vitali 

et al. (2002) are close to the siderite values obtained from the Late Albian Boulder Creek 

and Peace River Formations (52ºN paleolatitude) of western Canada (-11 to -8.5‰ ; 

Ufnar et al., 2001; 2005). The Cenomanian minimum simulations yield more 

conservative precipitation flux values and precipitation rate estimates. Precipitation rates 

at 45°N are estimated to be approximately 2300 mm/yr using the δ18O values of Vitali et 

al. (2002) compared to 2100 mm/yr for the Albian model (Ufnar et al., 2002). This results 

in a 9% increase in Cenomanian precipitation rates relative to the Albian and is consistent 

with the GENESIS results of Poulsen et al. (1999). The Cenomanian minimum 

precipitation rate estimates are also much closer to the Late Cenomanian-Early Turonion 

GENESIS precipitation rates estimated for 25-41ºN in North America by Flögel et al. 

(2005) which are on the order of 1600 mm/yr (Cenomanian minimum estimates at 41°N 

are 1500 mm/yr). The Cenomanian best scenario values obtained from this investigation 

are probably more representative of the North American western interior precipitation 

rates, and the Cenomanian minimum estimates are more conservative, and may be more 

representative of average Northern Hemisphere values during the Cenomanian.  In either 

scenario, the Cenomanian mid-latitude precipitation rates (40-50°N) are significantly 

higher than those of the present, and based upon the sphaerosiderite values there is a 

marked increase from those of the Albian. 

The Cenomanian simulation has identical evaporation flux values to the Albian 

from 0-20°N paleolatitude, however the values drop off more rapidly between 22-38°N. 

Between 40-60°N the evaporation fluxes for the Cenomanian simulations were 
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significantly greater than those of the Albian. The Cenomanian minimum simulation had 

significantly lower evaporation fluxes in the low latitudes (0-20°N), similar values 

between 22-35°N, and identical values to the Albian for latitudes greater than 35°N. The 

depleted δ18O values of the lower Tuscaloosa Formation necessitated a greater balance 

between precipitation and evaporation flux between 20-35°N in the Cenomanian best 

scenario simulation. However, increased vapor feedback was needed in the higher 

latitudes to generate δ18O values similar to the Dunvegan Formation sphaerosiderites. 

Decreased evaporation flux values in the tropics were needed to produce a shallower δ18O 

gradient in the mid- to high latitudes for the Cenomanian minimum simulation.  

The implications for net transfer of heat through the atmosphere are significantly 

different in the Cenomanian modeling experiments compared to earlier investigations of 

the Albian (Ufnar et al., 2004). The Cenomanian simulations suggest a massive increase 

in heat transfer to the atmosphere between 40-50°N paleolatitude. The LHF values 

calculated from the Albian model simulations are estimated to have been 3.6 x present 

values at 45°N (Ufnar et al., 2004), The estimates based upon the Cenomanian high 

experiments presented here suggest LHF values were approximately 10.6 x the present at 

45°N. More conservative estimates based upon the Cenomanian Low experiments 

suggest a 4.2 x increase in LHF compared to the modern. In the Cenomanian 

experiments, the total heat exported from the tropical dry-belt is reduced relative to the 

Albian, and LHF to the higher latitudes, north of 55° is reduced relative to the Albian. 

The lithofacies and δ18O values of the lower Tuscaloosa Formation suggest that 

conditions in the southeastern portion of the KWIB were much less arid during the early 

Cenomanian than they were during the early Albian. Thus, the LHF estimates for the 
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tropical dry-belt are reduced in the Cenomanian relative to the Albian, however they are 

still greater than that of the present. High latitude sphaerosiderite data are needed to 

better constrain the heat flux estimates for the high latitudes during the Cenomanian. The 

large increase in LHF predicted for 45°N may be reduced to values more comparable 

with those estimated for the Albian, and the higher latitudes might be characterized by 

increased LHF values.  

The empirical latitudinal trend in meteoric sphaerosiderite δ18O values for the 

Cenomanian of the KWIB reinforces the concept of an intensified hydrologic cycle 

during greenhouse-world time periods. These data demonstrate that North American mid-

latitude precipitation rates were much higher than present, and perhaps greater than they 

were during the Albian. Transfer of heat through the atmosphere was also an important 

process during the Cenomanian, however the distribution of that heat may have been 

quite different from the Albian. The empirical and modeled paleoclimatological 

differences between the Albian and Cenomanian are interpreted to be closely linked to 

paleoceanographic variations associated with sea-level changes between the Kiowa-

Skull-Creek and Greenhorn cyclothems in the KWIB (Kauffman and Caldwell, 1993). 

The variability in the Albian vs. Cenomanian sphaerosiderite δ18O paleolatitudinal trends 

and modeling results underscores the need to reconstruct paleoclimatological conditions 

from multiple time-slices during the mid-Cretaceous in an effort to better understand the 

dynamics of a greenhouse world hydrologic cycle. 

 

8. Conclusions 
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(1) The empirical paleolatitudinal trend in sphaerosiderite δ18O values form the 

Cenomanian of the KWIB is steeper and more depleted than that of the modern and the 

Albian reconstruction of Ludvigson et al. (1998) and Ufnar et al. (2002). 

 

(2) Stable isotope mass-balance modeling results suggest that Cenomanian tropical 

precipitation rates were approximately 1.8 x present values (5°N), mid-latitude 

precipitation rates were approximately 3.6 x present values (45-50°N), and high-latitude 

precipitation rates were approximately 2.0 x present values (75°N). The subtropical dry 

belt precipitation rates were approximately 2.5 x less than modern rates at 15°N and 1.9 x 

greater at 25°N. 

 

(3) The increased evaporation/evapotranspiration and precipitation rates in the 

Cenomanian contributed significantly to the transfer of heat through the atmosphere as 

Latent Heat. The average heat export from the subtropics via evaporation was 

approximately 3.4 x present values (-29 W/m2, Cenomanian vs. -8.6 W/m2, present) and 

the average amount of heat released due to condensation in the mid-latitudes was up to 

10.6 x present values (180 W/m2, Cenomanian vs. 17 W/m2, present).  

 

(4) The intensified hydrologic cycle of the mid-Cretaceous may have contributed to the 

reduced equator-to-pole temperature gradients and a more equable global climate. The 

high sea-level and extensive continental flooding that occurred during the Greenhorn 

Cyclothem (Kauffman and Caldwell, 1993) may have resulted in the steeper 
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paleolatitudinal trend in meteoric δ18O values compared to those of the Albian Stage 

(Ufnar et al., 2002). 
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8. Tables 
 
Table 1. Sources of δ18O values from Holocene meteoric calcites. 
Latitude Avg δ18O VPDB     

(age <5 ka) Location Source 

27.2 -3.6 Caverna Botuverá, Brazil  Wang et al, 2005 
31.5 -5.3 Soreq Cave, Central Israel  Bar-Matthews et al, 2003 
32.1 -5.3 Nahal Qanah cave, Israel  Frumkin et al, 1999 
32.6 -5.5 Peqiin Cave, Northern Israel  Bar-Matthews et al, 2003 
34.3 -3.5 Moondyne Cave, Australia  Treble et al, 2005 
41.7 -3.5 northwest South Island, NZ  Williams et al, 2004 
43.5 -7.4 Cold Water Cave, IA, USA  Denniston et al, 1999a 
44.1 -6.5 Mystery Cave, MN, USA  Denniston et al, 1999b 
44.1 -4.3 Spring Valley, MN, USA  Denniston et al, 1999b 
44.8 -7.8 Crystal Cave, WI, USA  Denniston et al, 1999b 
45.8 -7.9 Postojna Cave,  Horvantinčič et al, 2003 
47.1 -7.8 Ursilor Cave, near Oradea, Romania  Onac et al, 2002 
51.1 -5.8 Atta cave, Attendorn, Germany  Niggemann et al, 2003b 
51.4 -5.8 B7 Cave, Hagen, Germany  Niggemann et al, 2003a 
53.5 -5.1 Stump Cross Caverns, Yorkshire, England Baker et al 1997  
66.4 -7.1 Mo i Rana, Norway  Linge et al, 2001 

 
9.  Figure Captions 
 
Figure 1.  The map illustrates a paleogeographic reconstruction of the North American 

continent during Cenomanian-Turonian time. The gradients in the upper right illustrate 
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the temperature gradients and polynomial equations used in the mass-balance modeling 

experiments (map modified from Witzke, 1993). 

 

Figure 2.  The photomicrographs illustrate representative sphaerosiderites from the (A) 

Lower Tuscaloosa Formation, Harrell Smith Core #1-11, Mississippi, (B) Dakota 

Formation, Rose Creek Pit, Nebraska, and (C) The Dunvegan Formation, Kaskatinaw 

Gorge, British Columbia. 

 

Figure 3. The plot shows the range of δ18O vs. δ13C values for sphaerosiderites obtained 

from the Lower Tuscaloosa Formation (LTF HS), #1-11 Harrell Smith Core (2936.6 -

2936.7 m depth intervals), the Dakota Formation Rose Creek Pit (Dak RCP) 7.6 and 8.6 

m intervals, and the Dunvegan Formation Kaskatinaw River Gorge (Dun KG, sequence 

boundary F, position marked “E” in Fig. 7 of McCarthy et al., 1999b). The vertical lines 

through the data points illustrate the average δ18O value with the range of δ13C values 

defining the MSL. The δ13C values are more variable than the δ18O values and are used 

to show that the MSLs are early diagenetic trends resulting from siderite precipitation in a 

stable groundwater system. Additional MSLs for the Dakota Formation Cenomanian 

(Cen) and Albian-Cenomanian Boundary (ACB) are illustrated from White et al. (2005). 

 

Figure 4. The gradients illustrated on the graph are the latitudinal trends in Cenomanian 

sphaerosiderite δ18O values, Albian sphaerosiderite δ18O values, modern Theoretical 

siderite δ18O values based upon the latitudinal trend in meteoric δ18O values from Bowen 
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and Wilkinson (2002), and a Holocene trend in meteoric calcite δ18O values from a broad 

range of latitudes (see Table 1. for sources). 

 

Figure 5. The graph illustrates the differences in the latitudinal trends in meteoric water 

δ18O values for the present (gradient from Bowen and Wilkinson, 2002), and the 

Cenomanian of the KWIB. The Cenomanian trend is estimated from the 

paleotemperature estimates of Wolfe and Upchurch (1987) and the Lower Tuscaloosa, 

Dakota, and Dunvegan Formation sphaerosiderite δ18O values. 

 

Figure 6. The graphs illustrate the precipitation (A), evaporation (B), and precipitation-

evaporation (C) latitudinal profiles used in the mass-balance modeling experiments. The 

precipitation and evaporation fluxes are dimensionless quantities of vapor added 

(precipitation) or removed (evaporation) from the theoretical airmasses as they progress 

from the equator toward the North Pole via Hadley, Ferrell, and Polar cell circulation. 

The mass-balance model recomputed the isotopic values of the air mass vapor with each 

step in latitude based upon the temperature, relative humidity, feedback moisture δ18O 

values, precipitation flux, evaporation flux, and the vapor δ18O value from the previous 

step. The light gray shading illustrates the range of values (error) that may be input into 

the model to reproduce the Cenomanian latitudinal gradient in siderite d18O values. 

 

Figure 7. The graph illustrates the polynomial trends that are fit to the empirical (and 

theoretical) modern and Cretaceous data, and the mass-balance model generated 
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gradients (dashed lines). The mass-balance model is designed to reproduce the latitudinal 

trend in empirical siderite (or calcite) δ18O values.  

 

Figure 8. The graph illustrates estimated precipitation rates for the KWIB during the 

Albian and Cenomanian with modern precipitation rates for comparison. The 

Cenomanian estimates range between two different modeling scenarios (High and Low) 

with the “High” estimates based upon the steep paleolatitudinal trend with the 

sphaerosiderite proxy data from the Dunvegan Formation (average: -12.5 ‰ VPDB). The 

“Cenomanian Low” estimates use the siderite-equivalent δ18O value of (-8.0 to -9.5 ‰ 

VPDB) for the Dunvegan Formation based upon the meteoric δ18O values of Vitali et al. 

(2002). The shaded area between 35-55°N above the Cenomanian Low curve represents 

the estimated range of precipitation rates based upon the range in δ18O values from Vitali 

et al. (2002). 

 

Figure 9.  The curves denote latitudinal domains of heat gain (positive values) vs. heat 

loss (negative values) over the North American continent for the present, Albian, and 

Cenomanian time. The values represent long-term estimates of the average heat (W/m2 ) 

lost from the tropics to evaporating water vapor, and heat released (gained) in the mid-

high latitudes through the condensation of water vapor. 

 

Figure 10. The chart illustrates transgressive-regressive cycles, onlap-offlap cycles, and 

eustatic sea-level changes during the mid-Cretaceous (modified from Kauffman and 

Caldwell, 1993). The approximate position of the upper Glen Rose Formation (GR) 
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paleosol described in the text is shown by the white arrow on the left (age determined 

from Talbert and Atchley, 2000). The approximate position of the beginning of Lower 

Tuscaloosa Formation deposition is also illustrated (LTF, white arrow) during the early 

transgressive phase of the Greenhorn Cycle. 
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