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ABSTRACT
In this paper, we investigate the impact that realistic scale-dependent systematic effects may
have on cosmic shear tomography. We model spatially varying residual galaxy ellipticity and
galaxy size variations in weak lensing measurements and propagate these through to predicted
changes in the uncertainty and bias of cosmological parameters. We show that the survey
strategy – whether it is regular or randomized – is an important factor in determining the
impact of a systematic effect: a purely randomized survey strategy produces the smallest
biases, at the expense of larger parameter uncertainties, and a very regularized survey strategy
produces large biases, but unaffected uncertainties. However, by removing, or modelling, the
affected scales (�-modes) in the regular cases the biases are reduced to negligible levels. We
find that the integral of the systematic power spectrum is not a good metric for dark energy
performance, and we advocate that systematic effects should be modelled accurately in real
space, where they enter the measurement process, and their effect subsequently propagated
into power spectrum contributions.

Key words: cosmology: theory – large-scale structure of Universe.

1 IN T RO D U C T I O N

Weak gravitational lensing is the effect whereby the image of a
background object is distorted as a result of the intervening mass,
causing tidal effects along the line of sight. An effect of weak lensing
on the images of galaxies is to cause the third eccentricity (or third
flattening) – colloquially referred to as ‘ellipticity’ – of the images to
change. This change, to first order, in ellipticity is known as ‘shear’.
Galaxy images can be affected by shear distortions as a result of
the gravitational potential around galaxies or clusters. Along with
galaxy cluster scales, they can also be affected by lensing from all
scales in the cosmic web (large-scale structure), so that every galaxy
is sheared by a very small amount; this is known as cosmic shear.

Cosmic shear is a particularly interesting phenomenon because
the amplitude of the excess probability for any pair of galaxies to
have aligned shear distortions – the correlation function – is related
to the power spectrum of matter density perturbations, the growth of
structure, and the distance–redshift relation. In this paper, and in the
majority of the theoretical and methodological literature on cosmic
shear the harmonic (Fourier) transform of the correlation function is
used, which is known as the power spectrum. This statistic depends
on several aspects of the cosmos that have a strong sensitivity to

�E-mail: t.kitching@ucl.ac.uk

variations in cosmological parameters, and as a function of redshift.
In particular, cosmic shear is a statistic that is sensitive to changes
in the dark energy equation of state (see e.g. Kilbinger 2014).

Supplementing cosmic shear information with redshift informa-
tion of galaxies is known as 3D cosmic shear (see Kitching et al.
2014, and references therein for an exposition). Cosmic shear ‘to-
mography’ is an approximation of 3D cosmic shear by assuming a
fixed linear relation between the radial and azimuthal wavenumbers
for the 3D shear field (the Limber approximation), and a binning in
redshift (Kitching, Heavens & Miller 2011). For reviews of weak
lensing and cosmic shear see for example Bartelmann & Schneider
(2001), Hoekstra & Jain (2008) and Kilbinger (2014). In this paper,
we will focus on the requirements on systematic effects set when
using cosmic shear tomography for cosmology.

Because cosmic shear can potentially measure the dark energy
equation of state very accurately, there are several experiments ei-
ther ongoing, or planned, that will use cosmic shear. From the
ground these are KiDS,1 DES,2 HSC,3 LSST,4 and from space

1 http://kids.strw.leidenuniv.nl
2 www.darkenergysurvey.org
3 www.subarutelescope.org/Projects/HSC/
4 http://www.lsst.org
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Euclid5 and WFIRST-AFTA.6 For example, Euclid is expected
to measure the dark energy equation of state, parametrized by
w(z) = w0 + wa[z/(1 + z)], to an accuracy of ∼5 per cent on
w0 and 10 per cent on wa from weak lensing alone; however, these
exact figures are subject to assumptions on the intrinsic alignment
contamination and range of scales used (Laureijs et al. 2011). We
refer to Amendola et al. (2013) and Kitching & Taylor (2015) for a
discussion of the accuracy required, both of which suggest percent
level accuracies on dark energy equation of state parameters are
sufficient for a high probability of distinguishing a cosmological
constant from a dynamical dark energy.

The shear effect is a very small change in the ellipticity of a galaxy
image: a change in the third flattening (‘ellipticity’) of ∼10−2 (or,
∼10 per cent of the amplitude, which is ∼10−1 on average). The
measurement from data is complicated in several respects: even
without the shear effect galaxy images would appear elliptical, there
are ‘intrinsic’ ellipticity correlations (see Troxel & Ishak 2014,
Joachimi et al. 2015 for reviews); the measurement of ellipticity is
affected by noise (Viola, Kitching & Joachimi 2014) and modelling
uncertainties (if a galaxy model is used, see for example Voigt
& Bridle 2010; Kitching et al. 2012); telescopes have an impulse
response, or point spread function (PSF) that blurs images (and,
for ground-based telescopes, atmospheric effects further blur the
images), and the PSF is typically also elliptical to some degree;
CCD detectors themselves can also degrade ellipticity as a result of
radiation damage charge transfer inefficiency (CTI), manufacturing
errors, or properties inherent to the devices. Therefore, the control of
systematic effects in experiments that wish to measure cosmic shear
need to be characterized and accounted for in a rigorous manner.

There have been a numbers of studies of systematic effects that
can degrade cosmic shear measurements (for example Amara &
Réfrégier 2008; Kitching et al. 2009; Massey et al. 2013 and refer-
ences therein). These have typically looked at requirements either
on an individual galaxy basis or under the assumption that sys-
tematic effects are not dependent on angular scale (or a random
dependency). Some exceptions include the galaxy ellipticity mea-
surement simulations in Kitching et al. (2012) that investigated the
change in power spectra from imperfect measurements, and Hoek-
stra (2004) who compared PSF modelling errors to the cosmic shear
signal in data. Those studies that have included some scale depen-
dence have made an assumption that all systematic effects have
scale-dependent functional behaviour that mimics a cosmological
signal, the requirement used being an integral over all scales used in
the analysis. This was the approach taken in Massey et al. (2013) and
Cropper et al. (2013) that propagated requirements on systematic
effects through to the performance on cosmological parameters.

In this paper, we look at more realistic scenarios for the scale
dependence of systematic effects, on CCD detector, field of view,
and larger scales. To realize a concrete version of these scales, we
assume the baseline design of the Euclid hardware (Laureijs et al.
2011). We then propagate the expected angular behaviour of sys-
tematic effects through to cosmic shear tomography cosmological
parameter predictions. We also present a simple way to mitigate
their impact by removing the scales at which the systematic has an
effect.

The paper is presented as follows. In Section 2, we outline the
basic methodology. In Section 3, we present some simple examples
to demonstrate the main conclusions of the paper. In Section 4,

5 http://euclid-ec.org
6 http://wfirst.gsfc.nasa.gov

we present some more realistic cases, and an application to CTI
requirements. In Section 5, we present some conclusions.

2 M E T H O D

The method we use is the following. We introduce realistic spatially
varying systematics into our images, then measure the power spectra
of these, and propagate them into the shear power spectra. We use
the notation from Massey et al. (2013) and Cropper et al. (2013)
where the observed tomographic cosmic shear power spectra Cobs

ij ,�

can be related to the true (systematic free) power spectra CT
ij,� given

by

Cobs
ij ,� = (1 + Mij ,�)CT

ij,� + Aij ,�, (1)

where � labels the angular wavenumber, and ij labels a redshift
bin pair for which i = [1, Nbin]. We consider in this expression
a ‘multiplicative’ term Mij ,� and an ‘additive’ term Aij ,�; here,
we label the redshift bin pair ij for generality, but for most of this
paper, we assume that they are redshift-independent effects and so
do not use these labels. Equation (1) neglects mode-mixing that
could contaminate E and B-mode power, intrinsic alignment terms
(as shown in Kitching et al. 2012, Appendix A), and assumes that
the multiplicative term is uncorrelated in � (this term should be∑

�′ M��′Cij,�′ , so we are assuming no offdiagonal terms in M��′ ,
we will investigate this further in future work). A ‘systematic’ power
spectrum can then be defined as

C
sys
ij ,� = M�C

T
ij,� + A�. (2)

The shear power spectrum can be related to the matter power spec-
trum P(k; r(z)), where k h Mpc−1 is a radial wavenumber and r(z)
is a comoving distance, and angular diameter distance through

CT
ij,� = A

∫ r(zH )

0
dr ′ Wi(r ′)Wj (r ′)

a(r ′)2
P (�/r ′; r[z]), (3)

where A = (3�MH 2
0 /2c2)2, and �M is the dimensionless matter

density, H0 is the current value of the Hubble parameter, zH is the
redshift of the cosmic horizon, c is the speed of light in a vacuum
and a(r) is the dimensionless scale factor. The weight function is
Wi(r) = ∫ r(zH )

r
dr ′p(r ′|r[zi])fK (r ′ − r)/fK (r ′), with i labelling a

redshift bin, where fK(r) = sinh (r), r, sin (r) for curvatures of K =
−1, 0, 1, and p(r′|r) is the probability that a galaxy with comoving
distance r is observed at distance r′. This representation of the shear
power spectrum assumes the Limber approximation, a spherical
Bessel transform to comoving distance, and a binning in redshift
for a derivation of this from the full 3D cosmic shear power spectrum
see Kitching et al. (2011).

2.1 Systematic propagation

In Massey et al. (2013) and Cropper et al. (2013), the multiplica-
tive and additive terms were linked to systematic changes in con-
volutive effects on the image (e.g. PSF effects and other effects
that occur in the optics), non-convolutive effects (e.g. CTI effects
and other effects that occur within the CCDs) and inaccuracies
in the measurement of ellipticities. These papers looked at corre-
lations of complex residuals 〈δxδx∗〉 where δx = xM − xT, the
difference between the measured and true values of some quan-
tity which is then decomposed into a bias and variance 〈δxδx∗〉 =
〈(xM − xM )2〉 + 〈(xM − xT )2〉 = σ 2(xM ) + b2(xM ), where a bar de-
notes a mean quantity. Requirements can then be set on the bias,
and the variance that are functions of xM. In this paper, we expand
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On scale-dependent cosmic shear systematic effects 3321

the variance to the Fourier power spectrum of the variable and treat
the bias as a constant term. Massey et al. (2013) used an unconven-
tional angle bracket notation when referring to the power spectra,
as explained in Cropper et al. (2013).

In this paper, we are concerned with systematic effects that leave a
residual, unknown pattern, in the data that may occur after modelling
and correction. We will focus on the residuals that may occur as a
result of PSF measurement, CTI correction and shape measurement
such that the variables that we model are residual PSF ellipticity
εPSF, residual PSF size measurements R2

PSF, residual CTI ellipticity
εCTI, residual CTI size measurements R2

CTI and systematic effects
in shape measurement, μ and α, that contribute to the multiplicative
and additive parts of the power spectrum, respectively. Throughout
we will refer to normalized sizes, so that all quantities are divided
by their mean values e.g. R2

PSF = R2
PSF,unnormalized/R

2
PSF,unnormalized.

These quantities are related to the terms A and M in Massey et al.
(2013), and are summarized in Cropper et al. (2013), which we
reproduce in the following equations using the power spectrum
notation. The multiplicative and additive terms have weighted con-
tributions from the residual systematic effects given by

M� = m1R
2
PSF + m2RCTI

+m3R
−4
PSFC

R2
PSF

� + m4R
−2
CTIC

RCTI
�

+m5δμ, (4)

and

A� = a1C
εPSF
� + a2C

εCTI
�

+a3R
−4
PSFC

R2
PSF

� + a4R
−2
CTIC

RCTI
�

+a5C
α
� , (5)

where overline denotes the mean of a quantity. In converting these
quantities from the real-space notation to power spectra, we note
the following aspects. For constants (like the m1 and m2 terms), the
Fourier transform results in a delta function, but the propagation
through to multiplicative bias also involves a convolution. Carrying
out the convolution turns them into constant multiplicative biases
in the power spectra. The remaining terms, which still convolve C�,
are then treated as diagonal, and hence �-dependent multiplicative
biases. The terms m3 and m4 in Cropper et al. (2013) only refer to
errors not biases, but as stated in Massey et al. (2013) they ‘[Ignore]
a bias term in M proportional to the square of one already present
(therefore negligible if the bias is small)’, so these convert to C�

terms, despite no bias being referred to.
The constants ai and mi can be derived from galaxy and in-

strumental properties, and have values, taken from Cropper et al.
(2013), of: a1 = 0.1, a2 = 0.74, a3 = 0.001, a4 = 0.0042, a5 =
0.001, and m1 = 1.20, m2 = 0.34, m3 = 0.18, m4 = 0.015, m5 =
1.20. We note that there are two errata in Cropper et al. (2013) for
the numerical values of the terms: a′

4 = 4a′
3 should be 0.004 not

0.0042, and m′
4 = (m′

2)2/4 should be 0.007 225 not 0.0075. These
slightly increased values add some flexibility to the requirements
by increasing the contribution from these systematic effects to the
overall systematic power spectrum, so we use the larger values in
this paper. These expressions make the same assumptions as in
Massey et al. (2013) that there is no correlation between systemat-
ics, and that some quantities are negligible with respect to others
(for example the potential mode-mixing from correlations in μ).

We also note that the m5 term in Cropper et al. (2013) could have
read m5(〈δμ〉 + (1/2)[〈δμ〉2 + σ 2(μ)]) (propagating both terms
from Cropper et al. 2013, equation 4, rather than only the 〈m〉 term).
However, as the σ (μ) term is assumed to be negligible (emulations

of the data can be increased until this is the case where any errors
due to sample variance issues, and noise are reduced to negligible
levels), to linear order the term was used correctly and this is what we
use in this paper. We have generalized the assessment of systematics
to include scale dependence, and we leave the investigation of these
assumptions to future work.

2.2 Procedure

Given the equations (5) and (4), we can now assess the impact
of spatially varying, scale-dependent, effects on cosmic shear
tomographic power spectra. The procedure that we follow is the
following.

(i) We create 2D residual ellipticity and size fields for each of
the systematic effects. These can be any form, but in this paper we
use prescriptions that mimic realistic scenarios.

(ii) We compute the power spectrum for each field. This uses the
steps shown in Kitching et al. (2012) that take the Fourier transform
of the field, rotate in Fourier space to an E/B-mode frame, and take
the average of the Fourier transform of the real part in shells in
angular wavenumber �.

(iii) We combine these power spectra using equations (5) and (4)
to create additive A and multiplicative M functions.

(iv) We propagate the systematic power spectrum into Fisher
matrix predictions to assess the change in cosmological parameter
error (uncertainty), and bias, caused by the systematic.

2.3 Prediction method

To compute expected cosmological parameter errors, we use the
Fisher matrix formalism presented in Hu (1999) for cosmic shear
tomography. This results in a matrix Fαβ (the Greek letters de-
note cosmological parameter pairs), where the [(F−1)αα]1/2 is a
vector of expected, marginalized, cosmological parameter error.
To compute the expected biases in cosmology parameters, we
use the formalism described in Kitching et al. (2009), where the
predicted shift in a parameter α caused by a systematic effect
is bα = −(F−1)αβBβ , where the vector B for each parameter β

is Bβ = ∑
ij ,�(1/σ 2

C)Csys
ij ,�(∂Cij,�/∂β), and the error on the power

spectra σ C is given in Hu (1999).
We use a CDM cosmology with a varying dark energy equation

of state, where the free parameters are �M, �B, σ 8, w0, wa, h, ns (re-
spectively the dimensionless matter density; dimensionless baryon
density; the amplitude of matter fluctuations on 8 h−1 Mpc scales
– a normalization of the power spectrum of matter perturbation;
the dark energy equation of state parametrized by w(z) = w0 +
waz/(1 + z) (Chevallier & Polarski 2001); the Hubble parameter
h = H0/100 km s−1 Mpc−1; and the scalar spectral index of initial
matter perturbations). For each parameter, we use the Planck max-
imum likelihood values (Planck Collaboration XVI 2014) about
which we take derivatives of the power spectra for the Fisher ma-
trix and bias vector. All parameter errors and biases we quote
are marginalized over all other parameters in this set. We use
the CAMB sources7 code to compute the cosmic shear tomographic
power spectra.8 We use a maximum radial wavenumber of kmax

= 5 h Mpc−1 and a corresponding redshift-dependent maximum
�-mode of � = kmaxr[z].

The cosmic shear survey we assume is a Euclid-like experiment
that has an area of 15 000 deg2 , a median redshift of zm = 0.9,

7 http://camb.info/sources/
8 MATLAB code to reproduce the results of this paper is available on request.
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3322 T. D. Kitching et al.

Figure 1. A simple example of the impact on the bias/error for the dark energy equation of state parameter w0, for the survey parameters described in Section
2.3. The systematic functional form in � is set to a Gaussian in � centred on � = 4500 with three different full width half-maximum of 1000, 100 and 10 from
right- to left-hand panels. The upper panels show the systematic power spectra: the y-axes are �2C(�)/(2π) and the x-axes are �-mode. The lower panels show
the dark energy parameters with wa on the y-axes and w0 on the x-axes; the contours are two-parameter 1σ predicted confidence ellipses; the blue shows the
systematic-free case, and the red shows the case with the systematic effect.

a number density of 30 galaxies per square arcminute (this is the
number for which shapes can be measured, not the actual number
density down to the limiting magnitude), with a number density
distribution n(z) given in Taylor et al. (2006), and a photometric
redshift probability distribution that is assumed to be Gaussian with
a standard deviation of σ (z) = 0.05(1 + z) (the photometric redshifts
will be derived from onboard near-infrared filters and overlapping
ground-based optical imaging). These characteristics are described
in Laureijs et al. (2011), and are the same as those used in Massey
et al. (2013). We assume that a field of view is 0.5 deg2, covered by
a 6 × 6 array of detectors, that are assumed to be four-side buttable
(i.e. no gaps between the chips).

3 A N INVESTIGATION O F POW ER SPECT RUM
R E QU I R E M E N T S

In Massey et al. (2013), requirements were set by Monte Carlo
evaluation of the functional form of A� and M�, and estimating the
error, and bias, on the dark energy equation of state using the method
described in Kitching et al. (2009). This found the ‘worst case’ vari-
ation of these functions arising from the selection of a functional
behaviour of A and M that most closely matched the derivative of
the shear power spectrum with respect to the dark energy equation
of state ∂Cij,�/∂w0, with additional considerations arising because
of the multiple tomographic bins and degeneracies with other cos-
mological parameters. Once this function was found the mean val-
ues of theA andMwere computed and this was used to set require-
ment on PSF, CTI and shape measurement quantities through the
weighting scheme in equations (4) and (5). The requirements on the
mean integrated values9 are A ≤ 2.6 × 10−7 and M ≤ 1.4 × 10−2

9 From Cropper et al. 2013, where these are labelled A′ and M′.

using a maximum wavenumber of �max = 5000 to avoid the highly
non-linear regime. A more stringent combined requirement on the
integrated quantity10 (1/2π)

∫
d�(� + 1)Csys

ij ,� ≤ 10−7 was set by
Amara & Réfrégier (2008), which they termed σ 2

sys.
This was a conservative approach to setting the requirement for

systematic effects. In reality the propagation of systematic effects
through to the dark energy equation of state depends on the ampli-
tude, the total integral constraint of the systematic effects and the
functional form in � that the systematic effect causes.

3.1 Simple examples

In Fig. 1, we show an example of an additive Gaussian systematic
power spectrum in �, with a total integrated constraint of σ 2

sys = 10−7

(using an �max = 20 000). A wide range of biases meet this require-
ment. We find that a sharp high amplitude systematic effect in �

causes the largest bias, and a systematic with a slope of approxi-
mately unity in �2C(�) has the smallest bias.

In a second test, in Fig. 2, we show an ellipticity field with
different real-space 2D spatial patterns: from a rectilinear pattern to
a randomized pattern. In this case we find that the regular pattern
produces the largest bias, whereas the smallest bias is caused by the
randomized pattern.

In fact a systematic effect that has the same functional form
as pure shot noise will, by definition, not cause any biases in the
inferred cosmological parameters, but the error bar on those param-
eters will increase. A shot noise power spectrum is flat in �-space,
having equal power at all scales. In this case, the systematic would
add to the measured ellipticity shot noise, but we note that an

10 The integration limits were not defined for this quantity but in the text the
range 10 < � < 2 × 104 was specified.

MNRAS 455, 3319–3332 (2016)
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On scale-dependent cosmic shear systematic effects 3323

Figure 2. The upper panels show a simulated 50 deg2 patch with a residual ellipticity field whose amplitude is represented by the colour (yellow is maximum
blue is minimum). The middle row of panels show the power spectra of the systematic effects all normalized to have an integrated value of σ 2

sys = 10−7: the

y-axes are �2C(�)/(2π) and the x-axes are �-mode. The lower panels show the impact on the dark energy parameters with wa on the y-axes and w0 on the
x-axes; the contours are two-parameter 1σ predicted confidence ellipses, the blue shows the systematic-free case and the red shows the case with the systematic
effect. The survey parameters are described in Section 2.3. The left-hand column is the case where the field-of-view patches are observed in a random order,
as the CTI increases linearly over the observation sequence; the middle panels show the case where 5 deg2 patches are observed contiguously before moving
on to a new 5 deg2 patch at random; the right-hand panels show the case that the full 50 deg2 are observed in a regular rectilinear scan, with no randomness in
the tiling, and an increasing ellipticity. The spike in power at high-� comes from the CCD scale.

unknown shot-noise-like component would still cause biases in the
infered amplitude of the cosmic shear power spectra. We numeri-
cally test this in Fig. 3 where we show that the bias is minimized
when an additive systematic effect has a slope of zero i.e. is con-
sistent with shot noise. This conclusion is also supported by the
Figs 1 and 2.

3.2 Functional sampling

In these tests, we also find that the total integral constraint on the sys-
tematic power spectrum is in fact not a good metric. A single integral
constraint can allow for dramatically different functional behaviour
in the power spectra, and eventual biases: we can find example for

which almost no cosmological parameter biases are introduced, but
for which requirements of are not met using the published limits on
this integral. This is because in previous studies functional forms
were chosen by randomly sampling from truncated functional ex-
pansions. For example 200 bins in � were used in Massey et al.
(2014), and this is very unlikely to create an isolated spike in the re-
produced power spectrum (a less than 1 : 10100 chance of producing
a single �-mode peak at a height of 90 per cent of the maximum).
We show this in Fig. 4 where we do the same test as in Massey
et al. (2014), but also supplement this with realizations that ran-
domly sample from a Gaussian with a width chosen between σ (�) =
[0, 500] and a mean chosen between [100, 5000]. We find that in-
deed with a truncated functional expansion an integrated limit of

MNRAS 455, 3319–3332 (2016)
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3324 T. D. Kitching et al.

Figure 3. The upper panels show systematic power spectra, with a power-law functional form �n with slopes of n = −2, 0 and 2 as a function of �-mode:
the y-axes are �2C(�)/(2π) and the x-axes are �-mode. Three different integrated values of σ 2

sys are shown: σ 2
sys = 10−7 (dashed), σ 2

sys = 10−6 (dot–dashed)

and σ 2
sys = 10−5 (solid). The lower panels show the dark energy parameters with wa on the y-axes and w0 on the x-axes; the contours are two-parameter

1σ predicted confidence ellipses, the blue shows the systematic-free case and the black shows the case with the systematic effect (dashed, dot–dashed and
solid corresponding to the three cases in the upper panels). Where the contours used are not visible it is overlapping with the blue solid contour to within the
thickness of the plotting line. The survey parameters are described in Section 2.3.

Figure 4. This Fig. shows the impact that different functional forms for
the systematic power spectrum have on the ratio of bias/error for the dark
energy parameter w0. The x-axes shows the integrated value of the systematic
power spectrum σ 2

sys, the y-axes shows the bias/error. The solid horizontal
lines show bias/error = 1 and 0.31, the vertical (orange) dashed line shows
σ 2

sys = 10−7. The blue dots show the range of biases found when taking
1000 realizations of the Guassian functional form described in Section 3.1.
The green dots show the upper limit of the biases caused by realizations of
a binned functional form in �-mode (repeating the analysis of Massey et al.
2013). The survey parameters are described in Section 2.3.

σ 2
sys ≤ 10−7 does ensure that dark energy biases are below bias/

error = 1 (or the revised requirement of 0.31 used in Massey et al.
2014), but that a more thorough functional search, including power
spectra with spike-like functional features can produce biases that
are an order of magnitude larger.

These larger bias are caused because by spike-like features be-
cause it is not in fact a worst case when whole functional form of
C

sys
� resembles the sensitivity of the power spectrum with respect to

a parameter, but instead a sufficiently large change in amplitude at a
single �-mode can cause a large bias. As an example consider fitting
a straight line to some data points, one of which is offset by a very
large amount: this would cause a bias in the fit of a gradient or offset
despite only affecting a single data point (i.e. the systematic would
not resemble the derivative of the model with resepct to either the
gradient or offset at all data points). We note that the goodness of fit
would be less in such a scenario, and indeed this could be measured
to test if systematics are present, we leave this sophistication for
future work.

We therefore conclude that integrated power spectrum require-
ments are not a good metric for dark energy performance. In
Fig. 2, we showed that the same integrated requirement can pro-
duce very different biases, and in Fig. 4, we showed that sampling
parameter values of a different functional form can result in dra-
matically different dark energy biases. Consequently, we advocate
here an approach where the systematic ellipticity field in real space
is modelled, and the effect on the predicted cosmological inference
propagated through a power spectrum estimation of that field. In
this paper, we look at realistic angular behaviour of systematics to
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investigate realistic cases, and assess at what level there is margin11

in the requirements for cosmic shear tomography.

4 R EALISTIC SCENARIOS

To investigate the impact that spatially varying systematic effects
may have we begin by defining three realistic scenarios. In each
case, we model a representative 50 deg2 patch of data, and assume
that this pattern is repeated across whole survey area. These 50 deg2

are tiled with 10 arcsecond pixels which is the smallest angular
scale that can be used in a cosmic shear analysis; this angular scale
corresponds to radial scales (k-modes) of a few tens of Mpc−1 at the
highest redshifts in a typical weak lensing survey (see Kitching &
Taylor 2011 for a discussion of this point). This is the same method
that was used for Fig. 2. Throughout we use a flat-sky approximation
in the power spectrum analyses.

4.1 Experimental setup

The three scenarios are meant to represent some extreme cases
where uncertainty in the PSF and CTI modelling result in residuals
that would formally not meet the requirements specified in Cropper
et al. (2013). The scenarios also investigate different observing
strategies. We do not explore all possible survey scenarios, but
choose examples to highlight the flexibility of the modelling. The
three ingredients in each scenario are as follows.

4.1.1 CTI residual modelling

CTI is an effect caused in CCDs that are exposed to radiation. The
radiation causes defects in the CCD in which electrons become
trapped, which manifests itself as a blurred image in the readout
direction of the CCD. Therefore, the expected residuals should be
limited to a CCD chip scale and in the direction of the readout
registers. To model the charge trailing due to CTI (see Massey
et al. 2014), we use a model where a maximum residual ellipticity,
or size, after correction is assigned at the centre of a chip and
linearly decreases to zero towards the chip edge. The amplitude of
the maximum ellipticity, and the slope of the linear function can
be changed on a chip-by-chip basis or over a field of view. The
maximum ellipticity residual allowed due to imperfect corrective
CTI modelling is taken from Cropper et al. (2013) to be 2.3 ×
10−4, and the maximum fractional size residual is set to 5 × 10−4

to match the maximum PSF size (although this requirement is not
set in Cropper et al. 2013).

4.1.2 PSF residual modelling

To model residual ellipticity and size resulting from imperfect PSF
modelling, we use a polynomial of the form

δεPSF = [c0 + (c1x) + (c2y)

+ (c3x
2) + (c4xy) + (c5y

2)

+ (c6x
3) + (c7y

3)][1 + (c8x
2) + (c9y

2)]−1 (6)

11 A systems engineering term that means the difference between the re-
quirement assumed during development/construction and the true/applicable
requirement, a difference that typically leads to increased actual performance
of an experiment over its design expectation.

from Hoekstra (2004) that looked at the impact of PSF variation on
shear correlation functions, where x and y are Cartesian coordinates
in the field of view. The size residuals are assumed to have the same
spatial behaviour as those of the ellipticity although this assumption
could be relaxed. The coefficients are chosen to create PSF patterns
that have features in them that may be expected from data shown
in Section 4.2. The polynomial variation is scaled such that the
maximum ellipticity residual in the PSF residuals is 1.1 × 10−4 from
Cropper et al. (2013), and the maximum fractional size residual is
5 × 10−4.

4.1.3 Shape measurement modelling

In the scenarios we investigate, we assume that half of the survey
can be observed with four exposures and half with three exposures;
this is a pessimistic implementation of a fiducial Euclid survey (e.g.
Amiaux et al. 2012). Biases in shape measurement are dominated
by uncertainty in the signal to noise of the galaxy images (see for
example Viola et al. 2014); here, we assume that residual uncertain-
ties are a function of the initial bias, and hence we simulate spatial
variation in the multiplicative and additive parameters δμ and δα

as being proportional to the number of exposures, that varies on
field-of-view scales. The spatial variation is scaled such that the
maximum values of these fields are 5 × 10−4 and 2 × 10−3 for α

and δμ, respectively (defined in Cropper et al. 2013).
We emphasize that these models are only examples, and that in

fact any functional or non-parametric spatial behaviour could have
been included in this analysis.

4.2 Scenarios

Using the descriptions from the previous section, we examine three
Scenarios with variations about these basic prescriptions, described
in Table 1. These scenarios were chosen to represent extreme cases
in survey design and systematics modelling. In particular the way
that systematics evolve over the survey were taken to be constant,
random or evolving which are distinct categories. Figs 5, 6 and 7
show the spatial patterns that the scenarios induce.

In Scenario 1, the CTI model and PSF model are constant for
all fields of view: the values of the PSF coefficients used are
c0 = 0.5, c1 = 1.5, c2 = 0.01, c3 = 1.4, c4 = 0.8, c5 = 1,
c6 = 10, c7 = 0.01, c8 = 0.01 and c9 = 0.01, the weighting function
used is a checkerboard patter with alternative field of view having
weights of 1 and 0.75. Scenario 2 has a different residual pattern
for every field-of-view, which is randomly assigned: the CTI am-
plitude is chosen to be between zero and the requirement stated in
Section 2, the weight function is also randomly assigned a value of
either 1 or 0.75 for each field of view, the PSF has a wider residual
pattern with coefficient values c0 = 100, c1 = 2.5, c2 = 0.1, c3 =
2.4, c4 = 1000, c5 = 1, c6 = 200, c7 = 0.1, c8 = 0.1 and c9 = 0.1.
Scenario 3 has the PSF and CTI residual patterns changing slowly
over the survey area: the CTI amplitude linearly increases between
each field of view, starting with zero and increasing in stripes over
the survey, the PSF amplitude decreases between each field of view,
starting with the requirement value and decreasig to zero, the PSF
model has coefficient values c0 = 0.5, c1 = 2.5, c2 = 0.1, c3 = 2.4,
c4 = 100, c5 = 1, c6 = 20, c7 = 0.1, c8 = 0.1, c9 = 0.1, and the
weight function has value of 1 and 0.75 arranged in stripes that are
perpendicular to the direction over which the CTI and PSF change.
These are realizations from a wide range of possible configurations
that were chosen to be particulary extreme. We find that for all cases
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Table 1. The three example scenarios. The constant modelling scenario has no field-to-field variation of either
CTI or PSF, and a checkerboard pattern of shape measurement weighting. In the randomized case, the CTI, PSF
and weighting vary randomly across the survey area. In the evolution case, we assume a rectilinear scanning
strategy over the 50 deg2 where the CTI gets progressively worse from the first to last field of view, and the
PSF model gets progressively better. The PSF polynomial is chosen to represent a range of cases over the three
scenarios as used in Figs 5, 6 and 7.

Scenario (1) Constant modelling (2) Randomized model (3) FoV evolution

1. CTI behaviour Constant ∀ chip and FoV Random amplitude Increase in amplitude
2. PSF behaviour Constant & compact variation Large random variation Decrease in amplitude
3. Field-of-view tiling Checkerboard Random Stripes

the dark energy figure of merit, 1/(σ (w0)σ (wa) − [σ 2(w0, wa)]),
is ∼100, similar to that found in Laureijs et al. (2011) for cosmic
shear tomography alone with 10 redshift bins centred on [0.2, 0.4,
0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0].

Figs 5, 6 and 7 show the power spectrum from each component
of the introduced systematic effects. It can be seen that the repeated
spatial pattern of the systematics – on chip and field-of-view scales
(�chip ∼ 2π/(0.5π/180/6) = 4320) – causes distinct features in the
systematic power spectrum C

sys
� at these scales and their harmon-

ics. The exact functional form depends on the distribution and the
amplitude of the systematic effect modelled. Importantly, in none of
the extreme cases, we consider does the systematic power spectrum
mimic the derivative of the shear power spectrum with respect to any
cosmological parameter. Hence, in all three cases there is a small
change in the predicted cosmological parameter errors, and bias,
despite there being significant systematic effects in the modelled
data. We find that, in agreement with the simple models in Section
3.1, systematic effects with an approximately shot-noise-like power
spectrum have a smaller bias. We also try filtering these scales, as
we describe in Section 4.3.

The systematic effects that we simulate in this paper are all red-
shift independent. Therefore, the primary impact they have is on
w0, which is a constant with redshift; wa should be more affected
by redshift-dependent systematic effects, and this is indeed seen in
investigations on intrinsic alignments (see e.g. Kirk et al. 2015).

In Fig. 5, the constant patterns produce variation only on the chip
and field-of-view scales; hence, the power spectra of the systematic
effects are all at high-�, and in the case of CTI localized at the
chip scale, or multiples thereof. Therefore, the removal of the chip
scale power is particularly effective at removing bias. In Fig. 6,
the randomized nature of the systematic effects spreads the power
over all scales. In particular, it can be seen that the single spike
in power due to CTI now has a broad shot-noise-like component.
These systematic power spectra therefore cause smaller biases, but
the less clearly defined spike at the chip scale means that the removal
of these modes is less effective. The removal of modes also increases
the error bar, through the loss of information. In Fig. 7, the regular
field-of-view scale variation adds power at these scales, and the
gradual changes over the entire field add power at low-�.

The values of the integrated additive and multiplicative contribu-
tions in each of the scenarios are for Figs 5, 6 and 7 :A = 3.0 × 10−6

and M = 1.0 × 10−1; A = 2.9 × 10−5 and M = 8.1 × 10−2; and
A = 3.4 × 10−5 and M = 7.6 × 10−2, respectively. These in some
cases exceed the requirement set in Cropper et al. (2013) and Massey
et al. (2013) despite the fact that the dark energy measurement
would remain largely unaffected. This suggests that an improved
set of requirements can be set, taking into account the expected spa-
tial variation in the systematic effects. However, we note that this
can only be done once a model set up is evaluated for a particular
experiment.

4.3 CTI requirements

In each of the Figs 5, 6 and 7, we show the effect of removing
power that is present around the CCD scale, and find that the dark
energy biases are reduced in doing this. We now explore this �-mode
filtering further within the context of the CTI systematic effect.

What the examples in Sections 3.1 and 4.2 show is that the
dominant effect that causes a systematic bias in cosmic shear is
the regularity (or stochasticity), of the spatially varying nature of
the effect, that focuses power at particular frequency ranges in the
power spectrum. To explore this further, we consider requirements
on one aspect of cosmic shear survey design: the amplitude of the
detector CTI ellipticity residuals.

We set requirements on CTI by assuming that a scenario where
all the contribution to the total systematic additive bias comes from
CTI only. These requirements will set an upper limit on the contri-
bution of CTI to the total error budget on cosmic shear calculations.
We assume that the CTI residual amplitude increases linearly in
amplitude, similar to the ‘field-of-view evolution’ scenarios in the
previous section, and we vary the size of the patch over which the
rectilinear scanning strategy is constant. We look at two cases, one
where the full 50 deg2 is scanned in a rectilinear fashion, and other
where the scanning strategy is entirely random. In each case, the
spatial arrangement of the fields is the same, so that the maxima
and minima of the CTI pattern are the same, and it is only the order
with which the fields are observed, and hence the amplitude of the
CTI (which grows with time) that is different at different parts in
the field. This is similar to the simple example given in Fig. 2.

In Fig. 8, we show how the bias on the dark energy equation of
state varies with CTI amplitude for regular and randomized scanning
strategies. We find, consistent with the previous results in this paper,
that a randomized scanning strategy has a lower bias than a regular
one. We also find that the requirement of 2.3 × 10−4 used in Cropper
et al. (2013) is indeed a good level for this systematic effect. How-
ever, given that the CTI effect creates a sharply peaked systematic
effect at the scale of the detector �chip ≈ 2π/(0.5π/180/6) = 4320
it should be possible to simply remove scales around this peak from
the analysis to recover an unbiased estimate of cosmological param-
eters. We test this �-mode filtering by removing scales �chip ± 100
from analysis. The dark energy figure of merit is reduced through
the loss of information on these scales. However, this is still conser-
vative as we could have allowed a coherent pattern in the detector
frame that we then modelled instead of removed. In the absence of
a model, the removal of these scales leads to a relatively modest
reduction in figure of merit of 10 per cent. In Fig. 8, we show the
impact of this filtering on the cosmology bias estimates. We find
that for the case of a single 50 deg2 patch the requirement on the
CTI ellipticity amplitude is reduced by a factor of 9. In this case
(as also shown in Fig. 2), the power spectrum is sharply peaked at
the chip scale. For the randomized patch design the improvement
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Figure 5. Scenario 1 systematic effects. The upper panels show the spatial variation in ellipticity for CTI, weighting and PSF (left to right), from top to bottom
these are progressive zooms in over 50, 10 and over 0.5 deg2 (a field of view); the size variations have a similar pattern. The middle right-hand panel shows
the power spectra for each ellipticity systematic effect, the cosmic shear tomography power spectra, and the per-�-mode shot noise power spectrum. The total
systematic power spectra are shown (both the additive A� and multiplicative M� terms) for the lowest redshift autocorrelation power spectra. In the middle
left-hand panel, we show the predicted marginalized two-parameter 1σ error bars in the (w0, wa) plane with and without the systematic effects included for
this case, and also in the case that the chip-scale �-modes are filtered. The lower panels show the individual power spectra for each systematic effect. The
survey parameters are described in Section 2.3.
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3328 T. D. Kitching et al.

Figure 6. Scenario 2 systematic effects. The caption is the same as Fig. 5.
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Figure 7. Scenario 3 systematic effects. The caption is the same as Fig. 5.
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Figure 8. The change in dark energy parameter w0 bias/error as a function
of CTI ellipticity amplitude. Shown are solid lines with no �-mode filtering
and dashed lines with �-mode filtering, for surveys that have a random
surveying strategy (blue lines) and a rectilinear observing strategy (red
lines). The horizontal dashed line shows the requirements from Massey
et al. (2014) that the bias/error is less than 0.31. The survey parameters are
described in Section 2.3.

is less, because the power is spread over a larger range of scales.
Therefore we find that although a regularized survey design has a
slightly larger bias, compared to a randomized pattern, the removal
of scales affected by systematics can reduce biases. This however
will only work for additive-type biases as the multiplicative bias
acts as a convolution in Fourier space. Previous work in this area
includes Kilbinger & Schneider (2004) who investigated survey ge-
ometry effects on weak lensing in some specific settings of patchy
surveys versus contiguous ones.

We explore the concept of �-mode filtering further in Fig. 9 where
we show three examples where the CTI is (1) constant over the entire
50 deg2 – leading to a spike in the power spectrum at the chip scale,
(2) evolves to reach a maximum after over 10 per cent of fields are
observed and (3) evolves to a maximum over the whole area. In this
case, we see that if the CTI is constant, then it is easily removed and
leads to negligible parameter biases. In each plot, the harmonics
of the chip scale are outside the plotting and maximum �-mode
used. In the case that the CTI evolves, the power is spread from the
chip scale to the field-of-view scale, meaning it is more difficult to
remove the contaminated scales, causing larger parameter biases.
The difference in the power spectra between the second and third
cases is very slight, an overall change in amplitude over most scales.

5 C O N C L U S I O N

In this paper, we investigated how spatially varying systematic ef-
fects can propagate into tomographic cosmic shear power spectra,
and into the biases on the dark energy equation of state parameters
w0 and wa inferred from these power spectra. This is a generaliza-
tion of previous studies that assumed systematics with no spatial
variation (that affect all parts in a field of view equally), or ran-
dom spatial variation. Many realistic systematics can be identified
and nulled, and many residuals do not cause changes in the power
spectrum that cause large biases in dark energy equation of state
measurements. Consequently, both the previous approaches lead

to requirements on weak lensing that are too stringent. Given that
several surveys have been designed with these conservative assump-
tions in mind, this means that the expected performance is better or
requirements can be relaxed (i.e. there is likely to be ‘margin’ in the
design).

We find that the metric used to set requirements on systematic
effects by e.g. Amara & Réfrégier (2008) and Massey et al. (2013)
– namely the multiplicative and additive biases on the power spec-
trum integrated equally over all scales – do not account for the full
story. These requirements can be exceeded in many realistic sce-
narios whilst the dark energy measurement can remain unbiased.
This all assumes that a survey is driven by dark energy measure-
ments, but a further aim may be to measure power spectra for more
general purposes. An additional point is that most of the biases we
find are present on small scales (� > 1000) which are generally
more difficult to model astrophysically (due to example baryonic
feedback effects). So a cleaner cosmological probe both in terms
of systematic effects and poor modelling may be one that removes
such scale from an analysis and supplements the weak lensing with
additional data (e.g. information from clusters, see Sartoris et al.
2015).

Through a series of simplified examples, we show that there is a
trade off between the spatial regularity of a systematic effect, its am-
plitude and the integrated systematic power spectrum. A systematic
effect that has a purely random spatial pattern acts to introduce shot-
noise-like power to the cosmic shear, and as a result only slightly
increases the cosmological parameter uncertainties – without caus-
ing a bias in the parameters. Conversely, a very regular spatial
pattern will cause sharply peaked features in the power spectrum,
that can cause large biases but not impact the error bar. However if
a systematic effect causes localized changes in the power spectrum,
these are easy to remove by ignoring those �-modes in a cosmolog-
ical analysis; this is a conservative approach because one could also
model these changes in the power spectrum.

We show three example scenarios that include modelling of CCD
CTI effects, shape measurement error variation, and PSF modelling
variation. These are extreme examples that serve to highlight that
even in these cases the effect on dark energy equation of state
measurements is small. We find that a significant contributor to
bias in the dark energy equation of state comes from the survey
observing pattern. If a survey has a randomized pattern of field-
to-field weighting this acts to spread the systematic power over
a larger range of scales. In contrast, a rectilinear or striped pattern
concentrates power on smaller scales that can be more easily filtered.

It should be noted however that throughout we make a number of
simplifying assumptions, for example we do not include the effects
of image ‘dithering’, and use a flat-sky approximation, also survey
masks (see e.g. Hikage et al. 2011) and galaxy shape estimation
(see e.g. Kitching et al. 2012), and the number density of stars
(see e.g. Soumagnac et al. 2013) can affect cosmic shear power
spectrum estimation. The image dithering, and the use of multiple
50 deg2 patches over the sky in the full survey, the phasing of the
effects in each of which will not necessarily be maintained, will
also qualify the effectiveness of the filtering. In particular, a sharp
spike-like feature on the chip scale may be spread out over several
�-modes in a similar way to that seen in the randomized scenerio we
investigate. In this case, the filtering will become less effective, but
the systematic itself will be closer to a randomized pattern which
is likely to reduce bias in any case. We leave a full investigation of
dithering effects for future work.

We use the formalism to investigate requirements on the ampli-
tude of the CTI effect for cosmic shear. We find that in the case
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Figure 9. The top row of panels show three different cases where CTI amplitude changes over a 50 deg2 patch, where the colour represents residual ellipticity
amplitude caused by CTI (red high and blue small): the left-hand panel where the CTI is the same over the whole patch; the middle panel where CTI is the
same for 90 per cent of the patch and zero for the remainder; the right-hand panel where the CTI amplitude randomly changes from field to field. The second
row shows the corresponding power spectra for each systematic ellipticity field (the y-axes are �2C(�)/(2π) and the x-axes are �-mode). The lower panels show
the expected errors in the (w0, wa) plane: the blue contours are with no CTI, the red contours with CTI and the green contours with CTI and �-mode filtering.
The survey parameters are described in Section 2.3.

that the survey strategy is random, the contribution to the power
spectrum is spread over a wide range in �-mode, and that the result
from previous studies are recovered: that the ellipticity amplitude
should be less than 2 × 10−4. If the survey strategy is more regular,
then the systematic power spectrum is concentrated at a particular
scale – with a larger amplitude – and causes larger biases. However,
because the systematic effect is very localized in �-mode, then a
straightforward mitigation strategy is to remove those scales from
a cosmological analyses, and we find that such �-mode filtering
reduces cosmological parameter biases relative to the randomized
survey strategy case at the expenses of a 10 per cent increase in the
size of error bars.

The framework presented in this paper is a generalization of
investigations into systematic effects in cosmic shear surveys. Such
a framework can be used to build more optimal survey strategies,
and find margin in imaging survey specifications, potentially leading
to less stringent requirements on the control of systematic effects in
instrument and algorithmic design.

AC K N OW L E D G E M E N T S

TDK and RM are supported by Royal Society University Research
Fellowships. RM acknowledges the Science and Technology Fa-
cilities Council (grant number ST/H005234/1) and the Leverhulme
Trust (grant number PLP-2011-003). Part of this work was an ex-
tension of the work presented in Hood (2014), a UCL Space Science
and Engineering MSc thesis project (supervisor TDK).

R E F E R E N C E S
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