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Abstract 
In this paper we investigate the relationship between economic and 

population growth in an endogenous growth model driven by human 

capital accumulation à la Lucas (1988). Since we allow for endogenous 

population growth, we adopt the population criterion Relative Critical 

Level Utilitarianism (an extension of Critical Level Utilitarianism, 

Blackorby et al. 1995) which allows axiomatically founded welfare 

orderings under variable population. Under this extension the Critical 

Level Utility is dependent on parents’ wellbeing. In this scenario we 

investigate the equilibrium relation between economic growth and 

population growth as functions of the underlying parameters and we 

provide the conditions for the economic take-off to occur. A simulation 

analysis calibrated on Developing Countries shows that the model has 

the potential to  explain the divergent dynamics of GDP per capita 

growth and population growth experienced by those countries. 
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1. Introduction 

 

Endogenous growth models have been flourishing over the last three decades. Starting from the 

pioneering work by Romer (1986) such a strand of literature has provided new insights on the 

relationship between human capital accumulation, technological progress and economic growth. 

These contributions have clarified that long-run per capita growth, in the absence of exogenous 

technological progress, can only be achieved if returns to capital are constant asymptotically (see 

Barro and Sala-i-Martin 2004, ch. 5). There are various approaches to this, such as Romer (1986), 

in which externalities deriving from existing capital (spillovers as “learning by doing”) are 

introduced, Lucas (1988), where growth is due to linearity in human capital accumulation,
1
 and the 

R&D/quality ladder models, following Romer (1990), Grossman and Helpman (1991), Aghion and 

Howitt (1992). 
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 Lucas (1988) building on a framework developed by Uzawa (1964) showed that decreasing returns to capital could be 

avoided by adopting a broad view of capital itself that entails human capital as well (externalities from “human 

capital”). Under the Uzawa-Lucas model, human capital accumulation is in fact the engine of growth that can avoid 

diminishing returns to capital. 



 2 

A strand of this literature has focused on the interaction between long-run (endogenous) 

economic growth and population growth. The question of population growth comes naturally in the 

R&D models and the human capital models. In the human capital model a larger population growth 

rate makes per-capita physical capital accumulation more costly, and consequently more resources 

are devoted to human capital accumulation, and thereby increasing the economic growth rate. In the 

R&D framework there is the potential scale effect, in that larger populations produce more 

ideas/innovations, and therefore would grow faster. If the scale effect is removed by assuming 

diminishing returns in creation of ideas (as in Jones 1995, Kortum 1997, Segerstrom 1998) then the 

long-run economic growth rate is positively related only to the population growth rate. 

However, there seems to be little or no evidence at all, in postwar data or from historical data of 

the past 200 years, that faster population growth leads to a higher equilibrium growth rate (once 

other factors such as education, quality of institutions, country size and openness to trade have been 

taken into account), (see Acemoglu 2009, p. 448, Bloom et. al. 2003, p. 17). 

In light of this, models have been developed to allow for a richer relationship between economic 

growth and population growth.
2
 Dalgaard and Kreiner (2001) introduce human capital accumulation 

in the R&D model. A fraction of output is used in the production of human capital (i.e. not time). 

This produces congestion in human capital accumulation, making per capita human capital more 

costly to sustain at higher population sizes. In this model economic growth and population growth 

are negatively related. Strulik (2005) proposes a two-sector research model where human capital is 

used in discovery of new varieties and in quality improvement of existing ones. Here, the effect of 

population growth on economic growth is ambiguous. 

Analogously, Bucci (2008, 2013), in a model with human capital accumulation and expanding 

varieties, shows that the relation between population growth and economic growth can be 

ambiguous. 

A key feature of the combined R&D and human capital models above is that, by specification, 

the growth rate of per capita human capital is negative in the population growth rate,
3
 and is central 

in producing the negative relationship between economic growth and population growth. 

There is also a strand of literature, seeking to analyse the relationship between economic growth 

and population growth when both are endogenous. In doing so, all articles we have come across, 

use a version of the objective function proposed by Barro and Becker (1989), specifying utility of 

parents as a function of the number of children (an exception is Tournemaine and Luangaram, 2012, 

who specify utility as a function of population size). The question is then how both growth rates 

vary with underlying parameters of the model. 

Connolly and Peretto (2003) investigate endogenous fertility in the presence of  horizontal and 

vertical R&D. Under this scenario they show that in the long run, growth and fertility may diverge 

due to exogenous shocks (policies) affecting vertical R&D costs or horizontal innovation costs, 

while, again in the long run, they still move in the same direction under demographic shocks 

concerning the mortality rate or the cost of reproduction. However, such results are obtained 

through simulations. 

In the model by Tournemaine and Luangaram (2012), economic growth is driven by two 

sectors: R&D (which increases total factor productivity) and human capital accumulation (which 

increases labour productivity). Preferences are specified over per capita consumption and 

population size. Policy, acting as a subsidy to the R&D sector, induces a move from human capital 

to R&D, affecting both economic growth and population growth, which both go in opposite 

directions (apart from a razors edge case when policy is neutral). 

                                                 
2
 Some authors in removing the scale effect, obtain the result that the economic growth rate is independent of the 

population growth rate, see Dinopoulos and Thompson (1998) and Peretto (1998) (though in the latter, per-capita 

consumption growth is positively related to the population growth rate. 
3
 Bucci (2008) also allows for the case where the population growth rate does not enter the per capital human capital 

accumulation equation. In that case, under perfect altruism, the population growth rate has no effect on the economic 

growth rate. 
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Chu et al. (2013) propose a quality-ladder model  with human capital. Again, by specification, the 

growth rate of per capita human capital is negative in the population growth rate. Among their 

results are that population growth is increasing in patent protection, while consumption growth is 

ambiguous. Consequently the relationship between population growth and economic growth is 

ambiguous, when patent protection is the deep parameter being varied. 

Prettner (2013) introduces a Blanchard type overlapping generations model, where each individual 

is facing a constant death probability at each date, in order to study the effect of birth rates and 

longevity. Nesting the frameworks of Romer (1990) and Jones (1995), depending on parameters, 

three cases are found. In one case population growth is negative and economic growth is zero and in 

the second case population growth is zero and economic growth is exponential in the Romer 

framework and zero in the Jones framework. In the final case, population growth is positive and 

economic growth is hyper exponential in the Romer framework and exponential in the framework 

of Jones. Consequently, varying the spillover parameter, the model suggests a positive relationship 

between population growth and economic growth. 

Previous literature has relied on Barro-Becker population preferences.
4
 However, there is a 

parallel literature on objective functions for population decisions (for an overview see Blackorby et 

al 2005). This research puts particular emphasis on the fact that, in the presence of endogenous 

population, welfare evaluations typically imply the comparisons between states of the world in 

which the size of population is different. This observation has two consequences: first, one needs 

Social Welfare Orderings that are axiomatically founded also in presence of variable population. 

Second, one also aims at avoiding undesirable outcomes such as the so-called Repugnant 

Conclusion (RC henceforth; see Parfit 1976, 1984, Blackorby et al. 2002). According to the RC, 

any state in which each member of the population enjoys a life above neutrality is declared inferior 

to a state in which each member of a larger population lives a life with lower utility (Blackorby et 

al. 1995, 2002). In particular, in an economic growth setting, the RC takes the form of an upper-

corner solution for the population growth rate (i.e. society reproduces at its physical maximum rate, 

see Renström and Spataro 2011 for a discussion). 

To cope with these problems we adopt a population criterion proposed in Renström and 

Spataro (2012), referred to as Relative Critical Level Utilitarianism (RCLU), which is in the spirit 

of the Critical Level Utilitarianism
5
, in that it is axiomatically founded. Under RCLU the judgment 

(the critical level of utility for life worth living) is relative to the existing generation’s level of 

wellbeing. In other words, according to such a criterion a society or an individual household
6
 at 

low level of utility will set a lower threshold of utility for the next generation, and a society or an 

individual household with high living standard will set a higher level. So if parents had a good life, 

they require their children to have a good life as well, and vice versa. 

In the light of this background, in the present paper we aim at taking a step further by 

addressing the following question: what does the relationship between endogenous economic 

growth, human capital and endogenous fertility look like under Relative Critical Utilitarianism? To 

the best of our knowledge, this has not been done before. 

We have seen that previous literature has been successful in generating a negative relationship 

between economic growth and population growth, in models where an R&D sector and human 

                                                 
4
 There is also a literature on (optimal) endogenous fertility, although without endogenous economic growth, see, for 

example, de la Croix et al. (2012) and Pestieau and Ponthiere (2014), as well as a literature on endogenous fertility and 

endogenous growth in non-dynastic economies, where the planning horizon for each agent is 2 or 3 periods, see 

Blackburn and Cipriani (2002). In the latter, two regimes are generated, one with low economic growth and high 

population growth, and on with the opposite. 
5
 Critical Level Utilitarianism (see Blackorby et al. 1995), is an axiomatically founded population principle where the 

Critical Level is defined as a utility value (α) of an extra person, who if added to the (unaffected) population, would 

make society as well off as without that person. 
6
 One can apply the RCLU criterion at either social level (for normative analysis) or at individual family level (for 

positive analysis) by aggregating over individuals that have preferences with both intergenerational altruism and 

reference point represented by previous generation’s welfare. See next footnote. 
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capital are combined, and where per-capita human capital accumulation is specified to be negatively 

related to the population growth rate. To highlight the role of endogenous population growth under 

Relative Critical Level Utilitarianism, we will rely on only one growth generating sector (human 

capital), and we also propose a specification of per-capita human capital accumulation where the 

population growth rate does not enter (we derive such a formulation in appendix). 

To summarize, we explore the relationship between endogenous growth and population 

growth under RCLU, when economic growth is driven by human capital accumulation, by pinning 

down the conditions under which sustained long-run growth occurs and by unveiling the 

circumstances under which population growth and economic growth are positively or negatively 

correlated. 

The paper is organized as follows: in section 2 we lay out the model; in section 3 we characterize 

the solution; in section 4 we prove local stability of the endogenous growth path; in section 5 we 

carry out comparative statics; and in section 6 we perform calibration and numerical simulations. 

Section 7 concludes. 

 

 

2. The model 

 

2.1 Preferences 

 

Following Renström and Spataro (2012), we focus on a single dynasty (household) or a 

policymaker choosing consumption and population growth over time, so as to maximize: 

 

   




 
0

1111 ,...,,,
s
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s

tttt uuNNuNuW        (1) 

 

where Nt is the population (family) size of generation t,   0 tt cuu  is the utility function of 

an individual of generation t, with   00 u , 0''0, <u>u' ,  1,0,
1

1



 


  the intergenerational 

discount factor and 0  the intergenerational discount rate; 1tu  is the Critical Level Utility, 

with  1,0  applied to generation t. Such a critical value is a positive function of previous 

generation’s utility (only if 1tu  is a constant, this social ordering would coincide with CLU). 

Renström and Spataro (2012) refer to this population criterion as “Relative CLU” (RCLU)
 7

. 

The continuous time version of (1) can be written as (see Appendix A1): 

 

    dtρnαcuNe=U ttt

ρt




 
0

1 .         (2) 

                                                 
7
 In fact, if one assumes that individuals are entailed with both intergenerational altruism and relative-consumption (or 

relative-welfare) preferences, with the reference group being the previous generation’s consumption (or welfare), then 

an individual’s preferences could be written as: 

 

  1
1
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

  t
t

t
ttt U

N

N
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such that, aggregating over individuals, we obtain: 

 

  111   tttttttt UNuuNUNW   

which coincides with eq. (1) in the text. Hence, as shown in Renström and Spataro (2012), the current analysis can be 

interpreted as being either normative or positive. 
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nt is the (endogenous) population growth rate, i.e.  

 

t

t

t n=
N

N
           (3) 

 

with  nnnt , . The integral is finite only if   0>nρ  , which we assume throughout the paper, 

implying that  ρnα t 1 >0.  

 

 

2.2. Manufacturing sector 

 

As in Lucas (1988) we assume a Cobb-Douglas constant returns-to-scale (CRS) production 

technology: 

 

 

Yt=F(Kt,Lt)= 
 1

tt LAK          (4) 

 

where A is the parameter representing total factor productivity,   1,0  is the output elasticity with 

respect to capital, Kt. tttt NvhL   is effective labour, ht is the human capital stock, vt is the fraction 

of time dedicated to work (and 1-vt the time dedicated to education), such that vtNt is the number of 

individuals that are at work in each instant t. The capital accumulation equation is: 

 

  ttttt NcL,KFK            (5) 

 

Note that in eq. (5) there is no explicit cost for raising children. This is done for two reasons: 

first, we aim to keep or analysis in the spirit of Renström and Spataro (2011), where the same 

assumption is posed, and look at the very consequences of introducing RCLU in an endogenous 

growth model, other things being equal. Second, for the sake of tractability, we aim to be as 

parsimonious as possible in terms of parameters: as it will be clear in the next section, a trade-off in 

the choice of giving birth to an extra child clearly emerges in our model, which allows us to avoid 

the adoption of explicit childbearing costs of any particular form, without loss of generality
8
. 

 

2.3 The human capital sector 

 

We specify the accumulation of human capital, ht, in per-capita terms. In Appendix E we show how 

it can be derived, by disaggregating human capital accumulation into a research sector and an 

education sector. With congestion in education, as the population grows larger, more individuals are 

needed to educate the larger population the scale effect is neutralised. The increase in human capital 

is then a function of the fraction of the population allocated to  

 

  ttt hvh  1           (6) 

 

Notice that we have neither positive, nor negative scale effect. 

 

 

                                                 
8
 For a model with CLU and taxation in the presence of childbearing costs, see Spataro and Renström (2012). 
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3. Solution 

 

Since the dynastic objective (1) is also the social welfare function, and since there are no 

externalities, a decentralized version of the model (where firms and individuals are price takers) 

would yield exactly the same equilibrium (i.e. the First Welfare Theorem applies). This means we 

can interpret our equilibrium as either a decentralized one or as a socially optimal one (i.e. positive 

and normative analysis coincide). We may therefore use the terminology “socially optimal” or 

“individually optimal” interchangeably.
9
 

 

The current-value Hamiltonian of the household’s problem is the following: 

 

          tttttttttttttttt hvpNnλ+NcL,KFq+ρnαcuN=H  11    (7) 

 

The term λtntNt in the Hamiltonian associated with eq. (3) (the law of motion for population 

size) and captures the fact that at each instant of time the population size is given (and thus is a state 

variable) and can only be controlled by the choice of nt (which is a control variable). Hence, λt can 

be interpreted as the shadow value of population. tq  and tp  are the usual shadow prices of physical 

and human capital respectively. 

 

 

From the first-order conditions (see Appendix A.2), we obtain four dynamic equations that, together 

with the transversality conditions (see Appendix B), fully characterise our dynamic system (from 

now on, we omit time subscripts for the sake of notation): 

 


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u
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α
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+
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u
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u
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where 0)(1  nρα+G . Eq. (9) is (5) in per capita terms, where NKk / . 

We now briefly comment on aspects of the solution. In particular eq. (9) states that, along 

the transition path, both the of growth of population, n, and consumption, c, must satisfy the 

resources available for the economy, while. eq. (10) recovers the law of accumulation of human 

capital. Moreover, eq. (8) states that at the optimum both consumption and fertility should be 

chosen in such a way the rate of growth of consumption is proportional to the difference between 

the increase of social welfare due to an extra individual at the margin, u, and the marginal value (in 

utility units) of what a newborn takes out of society, Gu′[c-FN], which is positive due to the 

presence of a positive capital stock. This is a consequence of RCLU. 

In order to simplifying the analysis of the dynamic system, let us define: 

                                                 
9
 We show in Appendix E that the economy can be decentralised. 

. 
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k

vh
h 
~

;           (12) 

 

Then we have (see Appendix A.2): 

 



 KFn

h

h 
~

~
.          (13) 

 

 

 

3.1. Balanced growth path (BGP) 

 

Along the balanced-growth path h
~

=0, such that, from (13): 

 

nFK             (14) 

 

Moreover, by equating (9) and (10) and using (14) we get 

 

 nv
k

c



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




1
          (15) 

giving us the consumption-capital ratio, along the BGP. Finally, from eq. (11), a BGP, where 

0=n , implies 

 

)(c

ρF

c

c K







           (16) 

 

where   0
'

''


u

cu
c  is the inverse of the intertemporal elasticity of substitution (IES) of 

consumption. Throughout the paper we will assume the constancy of such a IES, by adopting a CES 

function for utility. 

 

Moreover, by equating (16) and (10) it follows: 

 

ρvFK  )1(           (17) 

 

and from (14) and (17): 

 

  ρvn )1( .          (18) 

 

At first sight eq. (18), combined with eq. (10), indicates a positive relationship between population 

growth and economic growth. However, such a relationship is more complex, given that v enters 

both equations and is, in turn, endogenous. We derive the BGP value for v in Appendix B. 

Substituting this solution for v into (17), (18), (15) and (10), gives the balanced-growth values for 

,KF  n, c/k and the growth rate of the economy, respectively.  

 

Note that, in order to have interior solution for v, it must be that v<1. This implies, a set of 

restrictions on the parameters that insures interiority of the solution for v: 
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Proposition 1: Necessary and sufficient for having v<1 is: 

 

  
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Proof: See Appendix B.
10

          □ 

 

 

Proposition 1 states that some economies can be trapped at zero (per-capita) growth when 

educational efficiency is too low (  too low): in that case society (or households) finds it 

convenient to employ all labour force (or work) in the manufacturing sector (with v=1 and, thus, 

0)1(  v
h

h



.  

 

 

3.2. Zero growth steady state 

 

If v is at its upper corner (v=1), i.e. (19) is violated, balanced growth is not achievable. In 

this case the growth rates are zero 

 

0)1(  v
h

h

c

c



.          (20) 

 

Hence, by (16) (or 28)  

 

KF            (21) 

 

which univocally pins down the steady-state capital intensity. Moreover, the derivative of the 

Hamiltonian with respect to v (eq. (A.7) in Appendix A.2) now becomes:  
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


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t
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v

H
t
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In this case the steady state values of c and n  are provided by the system of equations (8) and 

(9), both being equal to zero, which yield: 
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Note that since (19) is violated, * >  , and eq. (14) is now an inequality:  

 

 n .           (24) 

 

                                                 
10

 We have written inequality (19) as a restriction of θ, as a function of the other parameters. Of course we could have 

rewritten the inequality to provide restrictions on another parameter, as a function of θ. 



 9 

To summarise the analysis carried out so far, we can state that in the present model a crucial 

condition for sustained long-run growth to emerge is that the efficiency of human capital 

production, represented by  , is sufficiently high. In fact, if returns to human capital investment are 

too low, income per capita will be constant and the economy will be entrapped in a zero per-capita-

growth regime, where aggregate quantities are driven by population growth. On the other hand, if 

educational efficiency is large enough, then society (or household) will find it convenient to invest 

resources in the education sector, so that a BGP regime will emerge.  

In fact, in the BGP regime the relationship between the economic growth and population 

growth is nontrivial, and will be analyzed in the section that follows. 

Finally, it can be shown that necessary for avoiding the RC is that 0  (i.e. the proof 

provided in Renström and Spataro (2012) applies also our model with human capital accumulation). 

 

4. Stability 

 

We now analyze the local stability of the BGP equilibrium
11

. First, let us define 
k

c
c ~ , 

which is constant along the BGP. We can reformulate the dynamic equations characterizing our 

economy as follows: 
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The associated Jacobian matrix is: 
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where 
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0~
1
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
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G
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Hence, we can provide the following Proposition: 

 

Proposition 2: The balanced growth path is locally stable. 

 

Proof: See Appendix C.           □ 
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 As for the local stability of the zero-growth equilibrium, it has been analyzed in Renström and Spataro (2012). 



 10 

5. Comparative statics 

 

In this section we carry out some comparative statics analyses in order to characterize the 

role of the models’ parameters in affecting the economic growth rate and the population growth 

rate. 

 

5.1. The role of deep parameters of the model 

 

We first focus on parameters for which we obtain a negative relationship between economic 

growth and population growth. 

 

The results of the analysis can be summarised through the following Proposition: 

 

Proposition 3: The balanced growth-rate is increasing in  (human capital production efficiency), 

and decreasing in  (the intertemporal discount rate). The rate of growth of population is 

increasing in   and decreasing in  . 

 

Proof: See Appendix D.           □ 

 

Consequently, economic growth and population growth move in opposite directions when the 

human capital production parameter or the intertemporal discount rate changes. As for the other 

parameters we have: 

 

Proposition 4: The balanced growth-rate is increasing in  (capital’s share) and  (the critical 

level parameter) and decreasing in  (the inverse of consumption elasticity of substitution). The 

rate of growth of population is increasing in and   and ambiguous in  . 

 

Proof: See Appendix D.           □ 

Consequently, for some parameter, a positive relation between economic growth and population 

growth is obtained. 

 

We summarise Proposition 3 in Table 1 

 

Table 1. The effect of parameters on equilibrium growth 
Parameters/Variables v 

(Proportion of 

individuals allocated to 

production) 

g 

(Balanced growth rate) 

n 

(Population growth 

rate) 

  

(Efficiency in human 

capital production) 

- + - 

  

(Capital share) 
- + + 

  

(Critical level 

parameter) 
- + + 

  

(Intertemporal 

discount rate) 

+ - + 

  

(Inverse of 

consumption elasticity 

of substitution) 

+ - +/- 
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The above propositions have some remarkable implications: 

First, according to our model, differences in long-run growth rates among countries may 

depend on differences in both 1) preferences and 2) technology, the latter being concerned with 

both i) the manufacturing sector and ii) the education sector. 

1) As for preferences, an increase in the critical level parameter,  , will make consumption 

more costly for society (in that future generations wellbeing will be more demanding in terms of 

resources required to current generations). This will induce individuals to devote more resources to 

the accumulation of both physical and human capital. As a consequence, economic growth will 

increase. As a consequence, economic growth will increase. However, since output per capita will 

be higher, there is room for a higher number of individuals to share the increased amount of 

resources, so that the optimal rate of growth of population will be higher. 

On the other hand, an increase of the discount rate,  , by making wellbeing of future 

generations less relevant, will make it less costly for society to reduce future consumption. This will 

be possible by increasing the number of children per household on the one hand (increase in n; 

recall that utility function is linear in the population size) and by reducing the pace of accumulation 

of both human and physical capital on the other hand (i.e. reducing future per-capita consumption; 

recall that social welfare is concave in per-capita consumption). 

2) As for technology: 

i) in the manufacturing sector, an increase of   will cause an increase in the factor price 

ratio between capital and labour, such that individuals will tend to move from the manufacturing 

sector to the education sector. This will imply higher accumulation of human capital and higher per-

capita growth, which leaves room for more individuals to be brought into life. 

ii) as for the education sector, as already stressed in the previous section, the parameter 

measuring the efficiency of the production function of human capital,  , is capable to produce a 

qualitative switch in the growth regime. In fact, under the zero-growth rate regime ( < * ), changes 

in the latter parameter do not produce any effect on the economy’s equilibrium. However, increases 

of   beyond such a threshold, by making investment in human capital more attractive, will produce 

an increase of the latter and thus, of per-capita income growth rate. Since such a shift will generate 

a less than proportional increase in the steady state value of marginal productivity of capital (see eq. 

28), according to eq. (14) the population growth rate must necessarily decrease. 

 

5.2. The relationship between balanced growth and population dynamics 

 

In this section we illustrate our results, by comparing them with the ones delivered by the 

existing literature. 

Recall that in most previous work (Uzawa-Lucas and the semi-endogenous growth models a 

la Jones 1995), fertility affects positively the economic growth and, moreover, is the only engine of 

economic growth. However, our model tells a somehow different story. In fact, by eqs. (10) and 

(18) we get that the economic growth rate associated with the BGP is: 

 








ρn
vg


 )1(          (28) 

 

which is positive even if population growth is null. In fact, in our model the engine of growth is the 

accumulation of human capital, and, in particular, by the effectiveness of such a process, whose 

returns are measured by  .  

Furthermore, according to the above expression, it is still possible that higher fertility is 

associated with higher growth. The most straightforward example is the case of higher critical level 

  that positively affects g only through n. 
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  

                    
 

   

g~0
 

g>0
 

n>>0
 

n=0
 

g>>0
 

n>0
 

B
 

C
 

However, we have also shown that lower population growth does not necessarily imply 

lower economic growth, in that n is also a function of parameters that affect g. Similarly, according 

to our results higher population growth rates can be associated with lower economic growth rates. 

To make our point clearer, we depict our results in Figure 1. 

The solid lines are “iso-g” lines, that is, the loci of all combinations of the parameters (in 

this case  , ) that provide the same economic growth rate g. According to Proposition 3, such 

locus is negatively sloped and the associated g increases pointing north-east. The dotted lines are 

the “iso-n” lines, that is the loci of all combinations of parameters that entail the same rate of 

growth of population. Our results imply that these loci are positively sloped and the associated n 

increases going south-east. Take for example two points in this Figure (B and C): in the first case 

low population growth is associated with high levels of economic growth, while in the latter a high 

level of population growth is associated with low economic growth. 

We can conclude that in our paper, the link between population dynamics and economic 

development is weakened, on one hand, because the former is no longer essential for the latter, and 

enriched, on the other hand, since more combinations are possible between the two variables, 

depending on the fundamental parameters of the economy. Thus we argue that the different 

combinations of such fundamental parameters might be at the origin of the observed cross-countries 

differences in long-run performances. The analysis of this argument is left for future research. 

 

Figure 1: Iso-growth curves as functions of parameters 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Simulation exercise 

 

In order to assess the properties of the dynamics of the model and to provide a quantitative 

assessment of the effects of the main parameters, in this section we describe results obtained from 

some numerical simulations. 

 

6.1. Calibration 

  

The exercise has been carried out by calibrating the parameters in order to match some 

macroeconomic variables, as for years 1970-1979, of Developing Countries, as classified by World 

Bank (2015), and making use of the equilibrium equations of our model. The group of Developing 

Countries is of particular interest in that, especially since the early 1980s, it has been experiencing a 
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clear divergent dynamics between population growth and GDP per capita growth, which is precisely 

the phenomenon addressed in this work. 

Data have been obtained from World Bank database and Penn World Table 8. Given that in 

our model one period is about 50 years (life-length of an adult individual), all variables used in the 

simulations have been computed accordingly. Table 2 reports the precise values of the parameters.  

As for the individual parameters, the choice of the inverse of the elasticity of substituion, σ, 

of the intertemporal discount rate ρ, and of the critical level α, although not based on observed data, 

was not completely arbitrary. 
 

Table 2: Parameters calibration for Developing Countries (1970-1979) 
Observed data  Estimated from BGP 

equilibrium 

equations 

 Calibrated 

parameteres 

Capital intensity 

 k = 9621 

 Efficiency of human 

capital production  

θ = 18.24  

 Critical level 

utility parameter 

α= 0.928 

Human capital per 

capita  

 h =4.08 

 Per worker human 

capital intensity 
41021.3

~ h  

 Intertermporal 

discount rate 

ρ=6% 

GDP per capita 

growth rate 

 g = 3.43% 

 TFP 

 A=1670.44 

 CIES parameter 

σ=0.62 

Population growth 

rate  

 n=2.15% 

 Proportion of 

individuals allocated to 

production 

 v=0.76 

  

Capital share 

 =0.53 

    

Data source: our calculations on World Bank (2015) and Penn World Table 8. 

In fact, on the one hand, we were constrained by the fact that all the three parameters above 

must be positive and lower than 1. Moreover, after fixing all the other parameters and , two 

equilibrium equations of our model provide the relationships for these three variables (namely, eqs. 

17 and B.4). 

Figure 2 shows such equilibrium relationships, with all other parameters calibrated 

according to the data and equilibrium equations, as reported in the first two columns of Table 2. 

 
Figure 2: BGP Equilibrium relations from our model between intertemporal discount 

rate ρ, critical level parameter α and the inverse of the elasticity of substituion, σ. 

 
All other parameters have been fixed at values presented in Table 2 
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In fact, as shown in the Figure, the range of variation in ρ is very small (it stands around 6% 

for any possible values of σ below unity). Hence, we decided to fix ρ at 6%, that is the lowest level 

compatible with acceptable values of α; such a choice also allowed for a sufficiently high value for 

σ.  More precisely, σ and α were fixed at 0.62 and 0.928 respectively. 

 

6.2. Simulation results 

 

We now present the results of the simulation exercise, by showing the impulse functions for 

the population growth rate and the per-capita GDP growth rate resulting from exogenous shocks 

hitting the model parameters. The system has been linearised around the BGP equilibrium presented 

in Table 2. 

It is worth noting that g presents no dynamics, in that it jumps immediately on its new BGP 

level. On the other hand, n takes, on average, about 0.2 periods (i.e. 10 years) to reach the new 

equilibrium level, depending on the size of the shock and on which parameter has changed.
 12

 

As for the long run changes, all the simulated variations confirm the signs of the derivatives 

of g and n provided in section 5; moreover, recall that the sign of the effect of a change in σ, the 

inverse of the consumption elasticity of substituion, on the population growth rate, is in principle 

ambiguous. However, under the parameters specification used in this calibrated exercise, such a 

sign is positive, pointing to the fact that a decrease in σ, that is an increase in the IES of 

consumption, will decrease both GDP per capita growth and population growth rate, both in the 

short and in the long run. 

As for the quantitative effect of parameter changes, under our specification it turns out that 

long run responses of both g and n to changes in   are larger than the responses occurring due to 

changes in  . In fact, a 1% change of the former parameter produces a 0.87% increase in the 

equilibrium value of g and about 3.23% decrease in the equilibrium value of n, while the same 

percentage change in the parameter measuring the share of capital increases both equilibrium g and 

n by 0.56% and 1% respectively. However, the sizes of the short run responses are reversed. 

As for the quantitative size of parameters changes, under our specification it turns out that 

long run responses of both g and n to changes in   are wider than the responses occurring to 

changes in  . In fact, a 1% change of the former parameter produces a 0.87% increase in the 

equilibrium value of g and about 3.23% decrease in the equilibrium value of n, while the same 

percentage change in the parameter measuring the share of capital increases both equilibrium g and 

n by 0.56% and 1% respectively. However, the sizes of the short run responses are reversed. 

Although the simulation exercise was carried out for illustrative purposes, one may wonder 

if the numerical simulations could somehow help interpreting any episodes of the past or recent 

economic history of some countries. 

 

                                                 
12

 In fact our model presents some properties of the AK model, in that, on the one hand, after that an exogenous shock 

has hit the economy, the per capita GDP growth rate, θ (1-v) jumps immediately to its equilibrium value. This is due to 

the fact that the variable v, the fraction of individuals employed in the manufacturing sector, is a flow variable, while 

the population growth rate, although jumping itself, has a nonzero dynamics. 

The explanation of the different dynamic behaviour of the latter two variables (v and n) is that v is “costless” to the 

household, while n is not (it enters directly the utility function). Hence, while the former can optimally jump to its new 

BGP value, following the change in the relative prices (marginal costs and benefits) caused by the exogenous shock, the 

latter variables jumps at an intermediate level and moves steadily towards its new equilibrium value. Finally, c~ , while 

jumping itself after the exogenous shock, moves accordingly with n to satisfy the feasibility constraint. 
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Fig. 3: Impulse responses of GDP per capita growth rate and population growth rate 
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Trying to address this, in Figure 3 we report some data from Developing Countries (source: 

World Bank 2015 and Penn World Table 8.), which show that, over the last 40 years, the dynamics 

of g and n previously mentioned has been accompanied by a steady increase of the capital share 

(from 0.53% of the 1970s to 0.58% in the period 2000-2010), together with a 25% increase of 

human capital per worker in the same period (see Feenstra et al. 2013). Finally, the indexes of 

human capital production show a sharp improvement (such as the decreasing pupil-teacher ratio, 

and the increase in the completion rates of both primary and secondary education). 

If we interpret the changes in g and n as responses to increases in   and  , other things 

being equal, we can try verify how our model would perform in replicating these data. Notice that 

according to our model, an increase in the capital share parameter, as the one documented by the 

data, would unambiguously increase both equilibrium g and n in the long run, which is at odds with 

the decrease in n documented by the empirical evidence. Hence, in order to match these trends, we 

should also allow for an increase of  . Unfortunately, although there is evidence of improvement in 

education systems in developed countries, there is no clear index providing an estimate for  , the 

parameter measuring the efficiency in the production of the human capital. Hence, in our long-run 

simulation exercise we tried different changes in  . 

 
Figure 4: population growth (5 year moving average) GDP per capita growth (5 year moving average), 

completion rates at primary levels, capital share in Developed Countries (% values). 

 
Source: our computations on World Bank (2015) and Feenstra et al. (2013) 
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More precisely, by using data for the share of capital for the period 1995-2010 for 

Developing Countries (equal to 0.5733), we also simulated different increases in  . The best results 

we obtained were those occurring with an increase of 10% of the parameter measuring the 

efficiency in the production of human capital: as shown in Table 3, we would obtain long run values 

of g and n that are not far from the real values, although underestimating the yearly rate of growth 

of GDP per capita by 0.15%. 

 
Table 3 Long run simulation for Developing Countries (1995-2010) 

Observed Values 

(%) 

Simulated Values 

(%) 

g n g n 

4% 1,31 3.85 1.30 

 =0.57 (observed values), θ = 20.64 All other parameters were set at values shown in Table 2. 

 

Although not conclusive, these numerical computations show that both the qualitative and 

quantitative results of our model are not at odds with some recent empirical evidence of Developing 

Countries. Consequently, our framework could be further developed for carrying out robust 

empirical analyses.  In particular, we are aware of the fact that, for applicability to real data, we 

should have a better estimate of θ, the parameter measuring the efficiency of the human capital 

production. This task is left for future research. 

 

7. Conclusions 

 

In this work we have analysed the long-run relationship between population growth, human 

capital accumulation and economic growth. For doing this we have adopted a framework that 

entails both endogenous economic growth and endogenous fertility. Moreover, we have assumed a 

Social Welfare function that is axiomatically founded, purely welfarist and that allows avoidance of 

the Repugnant Conclusion (that is, upper-corner solutions for population growth). 

Under these assumptions we have shown that the take-off regime of sustained long-run 

economic growth can only take place when the efficiency of human capital accumulation (the 

education sector) reaches a certain threshold. Below such a level, increases of the efficiency in the 

education system produce no effect on the economy, which will continue to be stuck at its zero per-

capita-growth regime. On the other hand, beyond such a threshold, sustained growth does occur, 

and further increases in efficiency in the education sector will generate an increase of the economic 

growth rate, an increase in human capital accumulation, and a decrease in the population growth 

rate. The latter results seem in line with the empirical findings concerning the co-movements of the 

above mentioned variables in the last decades (see, for example, Galor 2005). 

Moreover, we have shown that in the long run, population growth and economic growth can 

diverge, in that positive and high economic growth rates can be associated with low levels of 

population growth, and vice-versa. Since both variables depend on the parameters of the underlying 

economy, the exact shape of their relationship is ultimately an empirical matter. 

Finally, we have also performed some simulation exercises showing the impulse-response 

functions for the variables, when exogenous shocks hit the models parameters. The results have 

shown that in the long run, the per-capita GDP growth rate and the population growth rate are more 

sensitive to changes in human capital production efficiency, relative to capital share, while in the 

short run such degree of sensitivity is reversed. 

As for policy implications, according to our model any policy aimed at producing the 

conditions for underdeveloped countries to escape from poverty traps and to enter the regime of 

sustained growth should be focused on the enhancement of human capital accumulation, that is, on 

the development of the education sector of such countries. The analysis of the effects of public 

expenditure on the education sector is left for future research. 
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Appendix A.1: The form of eq. (2) (drawn from Renström and Spataro 2012).  

 

By starting from eq. (1) and collecting utility terms of the same date, the welfare function W can be 

written as: 
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By ignoring 1c  as it is irrelevant for the planning horizon, and defining 
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expression can be written  as follows: 
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Appendix A.2: The first-order conditions and the solution  

 

The first order conditions to the problem imply: 
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plus eqs. (3) and (5) and the transversality conditions 
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In what follows we assume interiority of the solution for nt, such that eq. (A.4) holds along the 

transition path.
13

 By substituting for eqs. (A.3) and (A.4) into (A.5) we get: 
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Eq. (8) is obtained by taking the time derivative of eq. (A.4) and combining with eq. (A.10), eq. (9) 

is (5) in per capita terms, where NKk / , (10) stems from eq. (6) and (11) stems from the time 

derivative of (A.3) and combining with eq. (A.6), (A.3) and (8). Next, differentiating (12) with 

respect to time, the from (A.7) and (A.8) it follows: 

 

   
v

h

F

F
hv

p

p
1


               (A.11) 

 

where we have exploited 
h

v

F

F

v

h  . Moreover, substituting for hNFF Lv   into (A.7) and exploiting 

    hAFL

~
1 , time derivative of (A.7) is: 

 

 

p

p

h

h

N

N

q

q 

 ~

~

                  (A.12) 

 

such that, by exploiting (3), (A.6), and (A.11), we obtain(13). 

 

 

Appendix B: The BGP value of v 

 

By equating eq. (8) to (10) we get: 

 

 
  
















c

F

α

n
+

α
v N1

1

1

1
)1(




 .                (B.1) 

 

Equation (B.1), using (14) and recalling that K

N F
c

k

c

F






1
, becomes: 

 

 
  

 
















 ρv

c

k

α

v

α
v )1(

1
1

)1(1

1

1







             (B.2) 

 

Finally, by using (15) and (18), eq. (B.2) can be written as: 

 

 
 

 

 
 



























 








11

1

1
1

1

1

v

v
αv

α
v ,              (B.3) 
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 For corner nt the economy would behave as in Lucas (1988). 
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which provides the following second order equation for v: 

 

 
 

0
11

2










a

bm
v

a

mab
v                   (B.4) 

 

with 


21
a , 







1

11
b ,  









1
m . 

 

For a<1, the (strictly) positive root of (B.4) is: 

 

 
  a

bm

a

mab

a

mab
v














114

11

12

1
2

2

1


.                (B.5) 

 

For a>1, eq. (B.4) has two positive roots; however, since the argmax ( v̂ ) of the parabola in eq. 

(B.4) in v is bigger than 1, i.e. 

 

 
  0

1

1211
21

1
21

2

1

1

1121

12

1
ˆ 












































































 a

mab
v  

 

then the only (strictly positive) root of eq. (B.4) that can be lower than 1 is  

 

 

  a

bm

a

mab

a

mab
v














114

11

12

1
2

2

2


.                (B.6) 

Note that, in order to have interior solution for v, it must be that v<1. This implies, both for 

1v  and 2v  that the following inequality, stemming from (B.4), must be satisfied: 

 

    01 2  bmmaba                   (B.7) 

 

The latter condition identifies a set of restrictions on the parameters that insures interiority 

of the solution for v, as reported in Proposition 1. The tranversality conditions are also satisfied.
14
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 The transversality conditions (A.9) hold under the endogenous growth path. To see this, let g denote the balanced 

growth rate, then (using (A.6) and (3)) we have qKgnFqK
dt

d
K )()(   , which when integrated, together with 

(A.9) gives vttgnF
tt

t eKqeKqKqe K    00
)(

00 (where the last equality follows from (10) and (14)). Next, by 

(A.4), we have λN=αuN, thus   NngNn
c

c

u

u
N

dt

d
 











 )1()(


, where the last equality follows from the iso-

elastic utility function. Integrating, together with (A.9), gives 
vttgn

tt
t eNeNNe     00

])1([
00

(where the 

last equality follows from (10) and (18)). Finally, using (A.11), we have phgph
dt

d
)()(   , which when 

integrated, together with (A.9), gives vttg
tt

t ehpehphpe    00
)(

00 (where the last equality follows from (10)). 

Thus all three terms in (A.9) go to zero as t→∞. 
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Appendix C: Proof of Proposition 2 

 

Let   be the eigenvalues, then the characteristic equation associated with the Jacobian matrix above 

is: 

 

  0321

23                     (C.1) 

 

where 

 

     01~1
)( 2

1  GGGc
G

Jtr 


              (C.2) 

 

     c
G

cc
G

c ~1
2

1~2~1
~

2 







 







              (C.3) 

 

        



 GGcGG

G

c
J ~11

~
)det( 2

3            (C.4) 

 

Since we do not obtain closed solutions to eq. (C.1), we characterize the shape of   . 

First of all,   




lim  and    0  3 . Moreover,  first derivative: 

 

 ' = 21

2 23                     (C.5) 

 

has a positive argmax in   and   


'lim 


. Hence,    is either always decreasing (if (C.5) 

has no real roots then  '  is always negative) or it is increasing in the interval,  21, , (which 

are the smaller and the larger roots to (C.5) respectively). In either cases, we recall that stability is 

ensured by the existence of one negative root to eq. (C.1). The analysis carried out so far implies 

that sufficient for eq. (C.1) to have only one negative root is that 3 <0. We now show that 3 <0. 

By exploiting the definition of   and rearranging terms, (C.4) becomes: 

 

  
















 2

3
~~1 ccF

GG
F KK





                (C.6) 

with 

















 











1

1
1

1
 and 
















 











1

1
. Next, substituting for 2~c  in (C.6) from the 

identity  

22

2 11~1
2

1~~







 








 











 
 KKKK FFcFFcc
















, where 

0
1~ 







 
 NK FFc




 and rearranging terms, we get: 
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
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





 








 
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













 
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






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








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


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 

















 


2

3

1~1~1
2

11
1

KKKK

KKK

FcFcFF
G

FF
GG

F



























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Since 0  and 0
1








 





, the first expression in square brackets is positive. Moreover, 

since 











 1
2 >0, also the expression in the second square brackets is positive. Hence, we can 

conclude that 3 <0         □ 

 

 

Appendix D: Proof of Proposition 3 

 

Preliminarily, let us rewrite eq. (B.4) as follows: 

 

 

     01
2

 bmvmabva                    (D.1) 

 

and differentiate it with respect to the parameters, such that: 

 

          0)(12  dmbvdbmvadavbvvdmabva               (D.2) 

 

by recognizing from (D.1) that 
 

v

vabd
mab




2

)1( 
  and plugging it into the first term in 

square brackets of (D.2) we get that the latter term is: 

 

       vambvbm
vv

bm
va 


 










1
1                 (D.3) 

 

Given that   vb    0
1

11
1 





 v                  (D.4) 

 

and      01
1

















 
 vvmva 




                 (D.5) 

 

It also follows that >0. 

 

 

D.1. The effect of  . 

 

When   varies, we get that: 

 

0da , ddb  , 



ddm 







 


1
.  

 

Preliminarily, note that, from eq. (D.2): 
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 
 










 




vbvam

d

vd











1

                  (D.6) 

 

which, by eqs. (D.3), (D.4) and (D.5) is positive.  

 

Next, we can write: 
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v
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v
d

vd

d
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
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, 

 

which yields: 
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b

d
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
















1
21

11
             (D.7) 

 

Note that, while the sign of the first term in square brackets is negative, the one of the second term 

in square brackets can be ambiguous. If it is negative, then 
d

dv
>0; if it is positive, then the sign of 

(D.7) is ambiguous; in the latter case we can check whether, for v=1, the whole expression in (D.7) 

can be positive as well. In fact, we get that, for v=1, (D.7) becomes: 

 







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

 






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
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1
2

b

d

dv
<0.                  (D.8) 

 

Hence, we can conclude that 
d

dv
<0. 

 

As for the economy’s rate of growth )1( v
h

h



, we get that 

 

  01 














 d
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v

d

h

h
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

                   (D.9) 

 

Finally, as for   vn )1( , one gets: 

 

 
 

01 





 d

vd
v

d

dn
                (D.10) 

 

by eq. (D.6). 
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D.2. The effect of  . 

 

When   varies, we get that: 

 





dda

2
 , 0db , 




ddm

2


 . Substituting in to (B.2) and collecting terms, we get: 

 

 
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As for the economy’s rate of growth )1( v
h

h



, we get that 
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
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


 d
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                  (D.12) 

 

Finally, as for   vn )1( , one gets: 

 

0



 d

dv

d

dn
.                  (D.13) 

 

 

D.3. The effect of  . 

 

When   varies, we get that: 

 

0da , 


ddb 











1

11
2

, 0dm . Substituting in to (B.2) and collecting terms, we get: 

 

        012  dbmvavdmabva                (D.14) 

 

such that, 
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As for the economy’s rate of growth )1( v
h

h



, we get that 
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                  (D.16) 

 

Finally, as for   vn )1( , one gets: 
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0



 d

dv

d

dn
.                  (D.17) 

 

 

D.4. The effect of  . 

 

As for the effect of  , when the latter parameter changes one obtains: 

 

0da , 0db , 



ddm 



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 
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1
. 

 

Substituting into (D.2) it descends: 
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As for the economy’s rate of growth )1( v
h

h



, we get that 
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                  (D.19) 

 

Finally, as for   vn )1( , one gets: 

 

1



 d

dv

d

dn
.                  (D.20) 

 

which, in principle, could take any sign. However by expanding it we get: 
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d
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
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1
.              (D.21) 

 

The source of ambiguity of the sign of (D.21) are the second and the third term in the square 

brackets. However, by checking whether, for v=1, (D.21) is positive or negative, we get: 
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Hence, we can conclude that 
d

dn
>0 for any level of v. 
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D.5. The effect of  . 

 

When   varies, we get that: 

 





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21
 , 
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
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





 
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1
. Substituting in to (D.2) and collecting 

terms, we get: 
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As for the economy’s rate of growth )1( v
h

h



, we get that 
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Finally, as for   vn )1( , one gets: 

 


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which is ambiguous. In fact, we can evaluate such a derivative at the extremes of the existence 

interval. Such an interval is defined by 0  and *  (where v=1): 
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Hence, we can conclude that the derivative of n with respect to   can change sign. 

 

Appendix E: The human capital sector  

 

Consider a research sector and an education sector (dissemination of knowledge). The 

population not working in manufacturing, (1-vt)Nt, is divided between research and schooling, 

denoted Nt
h
 and Nt

s
, respectively. Each researcher discovers new knowledge, δt, proportional to 

existing human capital, ht, implying total research discovery is: 

 
h

tt

h

tt NhN            (E.1) 
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where μ is a research-productivity parameter. Let Δt be the addition to knowledge per person 

through education. The entire population is educated according to a function of research discovery 

and educators (whose productivity is proportional to existing human capital): 

 

    





1s

tt

h

tttt NhNhN         

 (E.2) 

 

where ω is a schooling-productivity parameter and   1,0  the elasticity of the additional 

knowledge with respect to research activity. Notice that the entire population is educated, including 

researchers and educators (to account for the fact that research and teaching is specialised, and 

researchers and teachers need to learn from other fields). 

 

Efficiency in education requires allocation between researchers and educators to maximise (E.2), 

subject to (1-vt)Nt= Nt
h
 + Nt

s
. The first-order conditions (w.r.t h

tN  and s

tN ) give 

 

 

  tt

h

t NvN  1          (E.3) 

 

   tt

s

t NvN  11           (E.4) 

 

Substituting (E.3) and (E.4) into (E.2) gives 

 

  ttttt NhvN  1          (E.5) 

 

where     





1
1 , which is a measure of research efficiency and schooling efficiency, 

which in reality may differ across countries and also time. 

 

Dividing (E.5) by Nt we have the per-person addition to knowledge, which in continuous time is th , 

(equation (6)).
15
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 The economy can also be decentralised as follows. Let us suppose for simplicity that the government produces 

education, hiring s
t

h
t

g
t NNN  . Efficiency for the government implies (by using eq. (E.2) ): 

max      s
t

h
tt

gs
tt

h
tt NNhwNhNh 




1
, which gives 

g
t

h
t NN  ,   g

t
s
t NN  1  and 

g
tttt NhN  . Let us 

assume that the cost to the government, given by g
t

g
t Nw , is financed by a lump-sum tax, tT . Manufacturing firms hire 

capital and labour services by solving: max tt
y
tt

yy
ttt KrNhwNhKF ),( . Under this scenario the household sector 

faces the following constraint: tttttt
g
tttt

y
tttt NcTNvhwNvhwKrK  )1( . Market clearing conditions give: 

t
g
t

y
t www  , y

ttt NNv  , g
ttt NNv  )1( , g

tttt NhwT  , tK rF
t
 , tL wF

t
 . Finally, substituting the latter 

conditions into the household sector budget constraint and exploiting CRS of the manufacturing production function, 

we get eq. (5). 


