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Flows past symmetric two-dimensional bluff bodies such as the circular cylinder, the
square cylinder, and the normal flat plate produce large separation bubbles which (in
the steady restriction) may become very elongated at comparatively low Reynolds
numbers. The present work focuses on the steady/symmetric wake of a square cylinder
at Re ≤ 300, which loses stability to anti-symmetric two-dimensional global modes
at Rec = 45. It is observed that while there is a continuous evolution in the parameters
of the leading instability mode with increasing Re, a change in spatial structure of
the modes begins near Re = 175, where the peak growth rate is found. At lower Re,
instability modes are generally associated with the wake downstream of the separation
bubble, but as Re increases the origin of the modes migrates into the separated shear
layers. At the optimal Reynolds number Re = 175, the base flow streamlines around
the end of the bubble are most parallel. The observed relation between structures of
the bubble and global instabilities is explained on the basis of local stability analyses.
C© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4887518]

I. INTRODUCTION

The initial progression of primary and secondary instabilities of the wakes of symmetric bluff
bodies with Reynolds number has received extensive study and is now moderately well understood:1–3

the primary two-dimensional instability breaks the symmetry of the steady wake to produce periodic
vortex shedding and the first two leading secondary three-dimensional instabilities break the space-
time symmetry of the two-dimensional vortex street in the two generically possible ways.4, 5 The
wake dynamics for Reynolds numbers much above a few hundred become chaotic and for a range of
higher Reynolds number it becomes difficult to establish a simple understanding of wake processes.
However, at still higher Reynolds numbers, the next clearly identifiable progression is that the
separated shear layers themselves become unstable before they are engulfed into the turbulent
wake, starting at Re ∼ 1000.1 Eventually with increasing Reynolds number these instabilities
progress upstream to reach the separation points, bringing on the drag crisis for flow past a circular
cylinder.

In the present work we study the two-dimensional global instability of the symmetric wake of a
square cylinder: the wake is constrained to be symmetric (and consequently, at the Reynolds numbers
studied, also steady) by imposing suitable boundary conditions on the wake centreline. As a result,
the primary instability of the whole wake is of symmetry-breaking nature. However, as the separation
bubble becomes more and more extended with increasing Reynolds number, the instability mode
evolves from downstream of the separation bubble into the separated shear layers. Thus we are able
to produce shear layer instabilities, reported to be related with two-dimensional Kelvin–Helmholtz
instabilities in the near wake of the nonlinear saturated (vortex shedding) flow,6 at relatively small
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Reynolds number, Re ≤ 300, without progressing through three-dimensional regimes. Since we are
here concerned with instability of the steady two-dimensional flow, the three-dimensional instability
of the vortex shedding state, occurring at, e.g., Re ≥ 190 for circular cylinder flow, is not considered
in this work.

II. METHODOLOGY

In global stability analyses of flow past a square cylinder, we choose to place the origin of the
Cartesian coordinate system at the centre of the square, with the x-axis aligned with the oncoming
flow direction and the y-axis along the vertical direction. Taking the free stream flow speed U∞ as a
velocity scale and the side length of the square d as a length scale, fluid motion in primitive (velocity,
pressure) variables can be described using the non-dimensional incompressible Navier–Stokes (NS)
equations in a computational domain �:

∂t u = −u · ∇u − ∇ p + Re−1∇2u,

with ∇ · u = 0 in �, (1)

where u is the velocity vector field and p is the modified pressure. The Reynolds number Re
= U∞d/ν. The flow field can be decomposed into the summation of a (steady) base flow field and a
perturbation field as

(u, p) = (U, P) + (u′, p′). (2)

The x-components of the base flow and perturbation will be denoted as U and u′ while the y-
components will be represented as V and v′ when required in the following.

Substituting (2) into (1) and omitting interactions of the perturbation with itself, we obtain the
linearized Navier–Stokes (LNS) equations:

∂t u′ = −U · ∇u′ − u′·∇U − ∇ p′ + Re−1∇2u′, with ∇·u′ = 0. (3)

This set of equations defines a linear evolution operator A, which evolves perturbations forward in
time:

∂t u′(t) = A(U)u′(t).

The perturbation flow u′(t) can be decomposed as a linear summation of eigenmodes, u′(t)
= ∑∞

j=0 û j exp (σ j t), where û j and σ j are the eigenvectors and eigenvalues of the time-independent
operator A. It is noted that the real and imaginary parts of σ j are the growth rate and frequency of the
corresponding eigenvector or eigenmode û j . The eigenmode with the largest growth rate is defined
as the most unstable mode. Therefore if at least one of the eigenvalues of A has a positive real
part, the corresponding eigenmode will grow in time and consequently the flow is unstable. When
all the eigenvalues of A have negative real parts, the flow is asymptotically stable. To calculate the
eigenvalues and eigenvectors of A, we define an operator M evolving the perturbation from time t
= 0 to t = τ ,

u′(τ ) = M(τ )u′(0).

It follows that M(τ ) = exp (τA). Then an eigenvalue of A can be calculated as σ = τ−1ln λ, where
λ is an eigenvalue of M and the corresponding eigenvector is the eigenvector of A associated with
eigenvalue σ .

To compute λ, the LNS equations are integrated iteratively to build a (Krylov) vector se-
quence: u′(0),Mu′(0),M2u′(0), . . . ,MN u′(0), where u′(0) is a random initial perturbation and
the leading eigenvalues and eigenvectors of M can be extracted from this sequence by an Arnoldi
method.7

Where local stability analysis results are presented (Sec. VI), these were computed using
sectional profiles of streamwise velocity component extracted from the base flows on a Chebyshev-
spaced grid.8 The method was cross-checked against the global stability code described above, using
the same profiles in two-dimensional periodic domains of appropriate lengths.
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FIG. 1. Spectral element decomposition of the computational domain for direct numerical simulations (DNS) and stability
analyses. (a) Whole domain; (b) subdomain close to the square.

III. DISCRETIZATION AND CONVERGENCE

Spectral elements employing piecewise continuous nodal-based tensor-product polynomial ex-
pansions with order P within mapped-quadrilateral elemental subdomains were adopted for spatial
discretization,9 as depicted in Fig. 1. A second-order-time scheme was chosen for the temporal dis-
cretization and the time step was set to �t = 2.5 × 10−3. When solving the NS equations to obtain
the base flows, the inflow and far-field boundary conditions are set to U = (1, 0) and zero Neumann
and zero Dirichlet velocity boundary conditions are implemented on the outflow boundary and the
surface of the square, respectively. When solving the LNS equations, zero Neumann conditions are
used for velocity on the outflow boundary and zero Dirichlet is adopted for all the other boundaries.

Table I shows dependence of the eigenvalue of A with the largest real part, denoted as σ max, with
respect to the spectral element polynomial order P. The eigenvalue converges to four significant
figures and the relative difference compared to P = 8 has dropped to approximately 0.002% at
P = 6. In all the following computations involving both NS and LNS equations, P = 6 was adopted.

IV. BASE FLOWS

Base flows U were obtained by solving the NS equations (1) in a semi-domain with symmetry
boundary conditions implemented on the x-axis, until the solution converged to a steady state. We
then projected the velocity field from the half domain to the full domain, as illustrated in Fig. 2, for
subsequent analysis based on the LNS equations (3). We note that since the unsteady NS equations
are used to find the base flow in a semi-domain, the fact that steady solutions are obtained indicates
that the base flows must be stable to symmetric disturbances over the range of Reynolds numbers
employed.

As illustrated in Figs. 2(a)–2(c), contour lines of spanwise vorticity at level ±0.01 are plotted
to identify the border of the wake. We see in Fig. 2 that at Re = 50, the width of the wake expands
downstream of the bubble, at Re = 175, the width is almost constant, while at Re = 300, the
width contracts after passing the bubble. In Fig. 2(d) we define the bubble length L (measured from
the centre of the square to the end of the bubble), the maximum width of the bubble W , and the

TABLE I. Convergence of the largest growth rate of perturbations, denoted as Re(σmax), with respect to the polynomial
order P used in each spectral element for flow past a square cylinder at Re = 300.

P Re(σmax) Relative difference

3 5.0883 × 10−2 6.6 × 10−2

4 4.8226 × 10−2 1.1 × 10−2

5 4.7822 × 10−2 2.3 × 10−3

6 4.7711 × 10−2 2.0 × 10−5

7 4.7710 × 10−2 0
8 4.7710 × 10−2 ...
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FIG. 2. Steady base flow passing a square cylinder at (a), Re = 50; (b), Re = 175; (c), Re = 300. Parameters related with the
recirculation bubble are defined in (d). Thin solid lines are contour lines for vorticity 0.01 and 0.4 and thin dashed lines are
contour lines for vorticity −0.01 and −0.4. The thick solid lines represent the border streamlines of the recirculation bubble.

downstream length H (measured from the widest point to the end of the bubble). It is seen that the
ratio H/W is a measure of the “closing angle” of the bubble. Since the border of the bubble consists
of streamlines, the larger H/W , the more parallel flow is downstream of the bubble.

Figure 3 compares the size of the recirculation bubble in flow past a square cylinder with that
past a circular cylinder (in the latter case, the reference length d is the diameter of the cylinder—
this was a separate set of calculations carried out for purposes of comparison). We see that the
current calculations for a circular cylinder agree well with a previous investigation.10 It is noted
that over the range of Reynolds numbers considered, the bubble length is almost a linear function
with respect to the Reynolds number in flow past a circular cylinder and for the square cylinder at
lower Reynolds numbers, but increases rather more sharply at higher Reynolds numbers in flow past
a square cylinder. This apparent discrepancy in behaviour is a consequence of the upper limit of
Reynolds number, since it is found that for a circular cylinder, similar behaviour is observed, but at
still larger Reynolds numbers.10

FIG. 3. Key parameters of base flow wakes for 40 ≤ Re ≤ 300. (a), bubble length; (b), bubble width; (c), ratio of bubble
closure length to width (see also Fig. 2(d)).
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At Re = 300, the recirculation bubble downstream of a square cylinder is more than twice longer
than the bubble downstream of a circular cylinder, indicating that the stability study for flow past a
square cylinder requires more resolution and would be more sensitive to spatial discretization than
the circular cylinder flow.

Bubble width exhibits similar trends as the length at increasing Reynolds number. As can be
observed in Fig. 3(b), the bubble width for the circular cylinder flow increases almost linearly with
the Reynolds number over the range considered while that for square cylinder expands much more
rapidly for higher Reynolds number, after an almost linear initial increase. Similar behaviour was
noted for flows past a circular cylinder by Fornberg, but the Reynolds number at which the steepening
occurs for a circular cylinder is above the range we have considered.10

At Re = 300, the bubble for flow past a square cylinder is approximately four times wider than
that in the circular cylinder flow. For Reynolds number higher than 300, owing to the rapid extension
of the bubble, the current resolution does not yield well-converged results. Since the “closing angle”
of the bubble is closely related with instabilities as will be discussed in Secs. V and VI, we present the
ratio H/W , which quantifies this angle, in Fig. 3(d). It is observed that this ratio reaches maximum
at Re ≈ 175 in the square cylinder flow and Re ≈ 200 in the circular cylinder flow, corresponding
to the Reynolds numbers where flow downstream of the bubble is most parallel with the free stream
velocity.

In general, the separation bubbles for symmetrical and laminar circular and square cylinder
wakes display many similarities although the trends are generally characterised by lower Reynolds
numbers in the case of the square cylinder. This is not very surprising given that for the square
cylinder the separation points are fixed and the initial departure angle of the separation streamline
must be 90◦, so the wake is always liable to be wider than is the case for a circular cylinder at the
same Reynolds number. This suggests that many of the stability outcomes to be described below for
the symmetric wake of a square cylinder could be generalised to a circular cylinder wake, or indeed
that of any symmetric two-dimensional bluff body.

V. GLOBAL STABILITY MODES

The growth rate of the most unstable mode for square cylinder flow is compared against those
for circular cylinder flow in the range 40 ≤ Re ≤ 300 in Fig. 4(a). It is seen that for the square
cylinder case, the critical Reynolds number, above which the growth rate becomes positive, is Rec

= 45. This critical Reynolds number has also been calculated using the Stuart–Landau equation11

as Rec = 45 and measured in experiment12 as Rec = 47 ± 2; both results agree very well with our
prediction.

We see that for the square cylinder flow, the growth rate reaches maximum near Re = 175,
while for circular cylinder flow, this “optimal” Reynolds number is approximately Re = 200, but for

FIG. 4. Comparison of the instabilities for flow around a square cylinder and flow past a circular cylinder at 40 ≤ Re ≤ 300.
(a) Growth rate, i.e., Re(σmax) and (b) dominant streamwise wavenumber of the global most unstable mode, denoted as kg.
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(a)

(b)

(c)

FIG. 5. Contours of vorticity for eigenmodes at (a), Re = 50; (b), Re = 175; (c), Re = 300. The contour levels are chosen
to highlight structural information. Solid and dashed lines denote positive and negative contour levels, respectively. Hollow
circles represent the border of the base flow wake (contour lines of base flow vorticity ±0.01) and the thick solid lines are
border streamlines of the recirculation bubble in the base flow as plotted in Fig. 2. In (a), the short dotted lines denote the
positions of inflection points near x = 30.

larger Reynolds number, the growth rate for square cylinder flow drops more rapidly with Reynolds
number than for the circular cylinder flow. We notice that the instability reaches maximum at almost
the same Reynolds number as the ratio H/W , as shown in Fig. 3(c) for both circular cylinder flow
and square cylinder flow. At these “optimal” Reynolds numbers, the border of the wake is almost
parallel with the x axis, while for smaller and larger Reynolds numbers the border downstream of the
separation bubble, respectively, expands and contracts. These observations suggest a conclusion that
the flow becomes most unstable when the bubble instability and downstream shear flow instability
are smoothly coupled.

Figure 4(b) shows the dominant, or most energetic streamwise wavenumber of the most unstable
mode, obtained by Fourier decomposition of the streamwise velocity of the mode along the axis
of the cylinder. We observe that at larger Reynolds numbers, when the separation bubble becomes
longer, the wavenumber of the eigenmode decreases, and in the square cylinder flow, this dominant
wavenumber decreases more rapidly with increasing Reynolds number than for the circular cylinder
flow, owing to the more rapid extension of the bubble.

Structures of the most unstable eigenmodes are presented in Fig. 5. We see that at low Reynolds
numbers, e.g., Re = 50, the structure of the eigenmode is associated with the wake downstream of
the bubble (see Fig. 5(a)). This distribution agrees with previous experimental observations of the
stability bifurcation in a circular cylinder flow: wake instability is associated with the formation
of sinuous waves travelling downstream on the sides of the recirculation region.13 In this locally
unstable region, the distribution of the streamwise velocity in the y direction has two inflection
points, whose vertical locations at x = 30 are marked by dotted lines. These inflection points induce
inflection point instabilities. It is noted that on traverses in the y direction, the vorticity of the
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eigenmode changes sign from “A” to “B,” corresponding to crossing the inflection point above the
axis and from “B” to “C,” corresponding to crossing the inflection point below the axis.

At larger Reynolds number, e.g., Re = 175, the instability associated with the bubble becomes
dominant and it is noticed that the instability extends upstream to the bubble owing to the inflection
points on the upper and lower sides of the bubble (see Fig. 5(b)). We see that the sign of modal
vorticity changes on traverses from “D” to “F,” and from “F” to “E,” which are associated with the
inflection points on the upper and lower sides of the bubble. The positions of these inflection points
are not marked in the figure since they are close to the border of the bubble, as discussed in the
context of a recirculation bubble in a backward-facing step flow.14

When the Reynolds number is increased to Re = 300, the bubble expands extensively and the
inflection point instabilities on both sides of the bubble become clearer. In Fig. 5(c), we see that
vorticity strips “D” and “F” stem from the inflection points on the upper side of the bubble while
“G” and “E” are associated with the lower inflection points. Inspecting magnitudes of the vorticity
strips, we see that “D” and “E” are much stronger than “F” and “G” and therefore “D” and “E”
induce another string of vorticity strips along the axis, marked as “H.” Since “F” and “H” have the
same signs and are spatially separated, they induce vorticity strips between them, marked as “I” and
similarly “H” and “G” induce “J.” We notice that at Re = 175, where the bubble is not large enough
to accommodate these vorticity strips, the three strings of vorticity strips in the bubble observed in
Fig. 5(c) (“F,” “G,” and “H”) merge into a single string which was marked as “F” in Fig. 5(b), and
therefore the induced vorticity strips “I” and “J” do not appear.

Also presented in Fig. 5 is the border of the wake, represented by contour lines of spanwise
vorticity ±0.01. We see that this border acts as an envelope of the eigenmode. As discussed above,
at Re = 50, this envelope expands in the vertical direction downstream of the bubble, contracts at
Re = 300, and is almost parallel with the axis of the square cylinder at Re = 175. The shape of
this envelope indicates that the unstable structure associated with the bubble instabilities can be
convected smoothly into the region downstream of the bubble at Re = 175, where the growth rate
maximises.

VI. LOCAL STABILITY ANALYSIS

To better illustrate the mechanism that the growth rate reaches maximum when the base wake
flow becomes parallel around the end of the bubble, we conduct local stability analyses based on the
streamwise velocity component of the base flow by assuming that the base flow is locally parallel
at each streamwise location. Growth rate of local eigenmodes with streamwise wavenumber k is
shown in Fig. 6. The location of the end of the bubble is illustrated by dashed lines. The filled circles
denote the points whose streamwise wavenumber and local growth rate agree with the dominant
streamwise wavenumber (marked as kg in Fig. 4(b)) and growth rate of the global mode (see
Fig. 4(a)). Therefore the global stability characters can be largely represented by the local stability
of the flow at the streamwise location of the circles.

It is seen that the maximum growth appears immediately downstream of the square and reduces
for increasing x, while the most amplified streamwise wavenumbers are in the range 0.5 < k
< 1 over the parameters considered. However the contour lines are dense for the region close to the
square, indicating that the stability characteristics of the base flow changes rapidly and that the base
flow is not parallel, which breaks the assumption of the local stability analysis. Therefore the high
local instabilities in the region around the square are not directly related to the global instabilities.

At Re = 50, it is seen from Fig. 6(a) that the cycle is located far downstream of the end of the
bubble and at a frequency close to the locally most unstable frequency. This is because the wake far
downstream of the bubble is more parallel and supports the global instabilities, while the locally most
unstable region, which is upstream of the end of the bubble, does not support the global instabilities
since the streamlines are unparallel ( Fig. 2(a)) and show dramatic changes of the local growth rate.

As the Reynolds number increases to Re = 175, it is seen that the cycle moves towards the end
of the bubble. This is because H/W increases with the Reynolds number (Fig. 3(d)) resulting in
an increasingly parallel flow around the end of the bubble, which can support global instabilities
and is locally more unstable than the downstream locations. Another point worth noting is that the
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FIG. 6. Contours of growth rates from local stability analyses at (a) Re = 50, (b) Re = 100, (c) Re = 150, (d) Re = 175,
(e) Re = 200, and (f) Re = 300. k denotes the streamwise wavenumber of local eigenmodes. The dashed lines represent the
streamwise location of the end of the bubble as shown in Fig. 4(b). The filled circles have the local wavenumber and growth
rate that agree with the wavenumber and growth rate of the global mode.

bubble induces a reduction of instabilities to high frequency perturbations and this reduction effect
increases with the Reynolds number. In this range of the Reynolds number, this reduction effect has
not affected the global mode yet, since the locally most unstable wavenumbers are k < 1 and the
reduction effect only appears at k > 1.

As the Reynolds number increases beyond 175, the region upstream of the end of the bubble
becomes more unparallel (Fig. 3(d)) and cannot support global instabilities. However the region
downstream of the bubble is still parallel. Therefore the cycle does not move upstream further and is
located around the end of the bubble. At Re = 300, the reduction effect of the bubble has penetrated
into k > 0.2, resulting in dramatic change of amplifications of perturbations with k > 0.2. Therefore
the local instabilities at k > 0.2, which relies on the parallel assumption, do not support global
instabilities. As marked by the cycle, the global mode has a dominant frequency k = 0.18, which
is locally smoothly amplified across the streamwise locations. It has been argued that in a circular
cylinder flow, the instabilities develop from the end of the bubble,2 which is consistent with this
local study and the distribution of the global modes shown in Fig. 5.

All the local and global stabilities discussed above are based on the steady base flow. It is
noticed that the wake of the mean flow of the nonlinear self-sustained oscillation state is not parallel
and becomes shorter at higher Reynolds numbers.15 Therefore it is expected that the distribution
of eigenmodes is significantly different if the mean flow of the non-symmetric wake were to be
adopted as the base flow. Even though it is observed that the most unstable eigenmode of the mean
flow predicts the Strouhal number better than the symmetric base flow directly obtained from DNS,
using mean flow as base flow has its own disadvantages. For example, the mean flow is a statistical
construction and not a solution of the steady NS equations, and as revealed in the flow past a
circular cylinder, the mean flow is marginally stable, which makes the stability analysis equivalent
to a mode decomposition. In this work we focus on the bifurcation process, which is related with
the development of perturbations on the basis of an unperturbed solution of the NS equations, and
therefore we study the unperturbed symmetric base flow rather than the mean flow.

VII. CONCLUSION

The global stability of symmetrised flow around a square cylinder is studied at Reynolds
numbers Re ≤ 300 and compared to circular cylinder flow. The base flow is obtained by DNS on
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a semi-domain with symmetry boundary conditions on the axis of the cylinder and then projecting
the converged steady flow field from the half domain to the full domain. The fact that steady base
flows are obtained using DNS in the semi-domain shows that the base flows are stable to symmetric
disturbances, in agreement with the linear stability analysis. It is observed that the length and width
of the recirculation bubble downstream of the square cylinder increases with Reynolds number over
the range of values considered in a manner consistent with that for the symmetric wake (albeit at
higher Reynolds numbers) of a circular cylinder.10

The critical Reynolds number, i.e., the threshold for asymptotic instability is observed to be
Rec = 45, which agrees well with the published results.11, 12 At Reynolds numbers above the critical
value, three typical unstable eigenmodes are identified. At Reynolds number slightly higher than
Rec, e.g., Re = 50, the most unstable eigenmode is associated with the inflection points in the wake
downstream of the bubble. At increasing Reynolds number, the inflection points around the upper
and lower sides of the bubble induce instabilities, with the result that the unstable eigenmodes extend
upstream into the bubble. At Re > 175, when the bubble significantly expands, induced vorticity
strips are observed along the axis inside the bubble and the growth rate of the eigenmodes reduces
at further increasing Reynolds numbers. Inspecting the border of the wake in the base flow, we see
that the most unstable base flow corresponds to a parallel wake border and a minimum closing angle
of the bubble.

Using local stability analyses, it is shown that the region around the cylinder is locally most
unstable but the stability characteristics change rapidly in the streamwise direction and cannot
support global instabilities. As Reynolds number increases, the bubble induces a reduction of local
instabilities to high frequency perturbations, which also results in significant change of stabilities
over the streamwise direction and fails to support global modes with high frequency. For Re < 175,
the streamwise location which determines the global stabilities moves towards the end of the bubble
and the dominant wavenumber does not change dramatically; for Re > 175 the point is always
associated with the end of the bubble, but the wavenumber of the global modes reduces owing to the
reduction effect associated with the expanding bubble.

The three-dimensional development of the vortex shedding state at Re > 190 (for circular
cylinder flow) was not considered in the scope of the current work. It is worth noticing that all the
global modes calculated in this work are anti-symmetric with respect to the axis of the cylinder.
However, symmetric unstable modes could appear if the shear layer became unstable to two-
dimensional Kelvin–Helmholtz instabilities at Re > 1000,6 which is much larger than that considered
in this work.
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