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Abstract 

Glacier advances in the southern mid-latitudes during the last glacial cycle (ca. 110-10 ka) 

were controlled by changes in temperature and precipitation linked to several important 

ocean-climate systems. As such, the timing of glacial advance and retreat can yield 

important insights into the mechanisms of Southern Hemisphere climate change. This is 

particularly important given that several recent studies have demonstrated significant glacial 

advances prior to the global Last Glacial Maximum (gLGM) in Patagonia and New Zealand, 

the cause of which are uncertain. The recent increase in chronological studies in these 

regions offers the opportunity to compare regional trends in glacial activity. Here, we compile 

the first consistent 10Be exposure-dating chronologies for Patagonia and New Zealand to 

highlight the broad pattern of mid-latitude glacial activity over the last glacial cycle. Our 

results show that advances or still stands culminated at 26-27 ka, 18-19 ka, 13-14 ka in both 

Patagonia and New Zealand and were broadly synchronous, but with an offset between 

regions of up to 900 years that cannot be explained by age calculation or physically plausible 

erosion differences. Furthermore, there is evidence in both regions for glacial advances 

culminating from at least 45 ka, during the latter half of Marine Isotope Stage (MIS) 3. Glacial 

activity prior to the gLGM differ from the large Northern Hemisphere ice sheets, likely due to 

favourable Southern Hemisphere conditions during late MIS 3: summer insolation reached a 

minimum, seasonality was reduced, winter duration was increasing, and sea ice had 

expanded significantly, inducing stratification of the ocean and triggering northward migration 

of oceanic fronts and the Southern Westerly Winds. Glacial advances in Patagonia and New 
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Zealand during the gLGM were probably primed by underlying orbital parameters. However, 

the precise timing is likely to have been intrinsically linked to migration of the coupled ocean-

atmosphere system, which may account for the small offset between Patagonia and New 

Zealand due to differences in oceanic frontal migration. During deglaciation, advances or still 

stands occurred in both regions during the southern Antarctic Cold Reversal (ca. 14.5-12.9 

ka) rather than the northern Younger Dryas (ca. 12.9-11.7 ka). Our findings suggest that 

major rearrangements of the Southern Hemisphere climate system occurred at various times 

during the last glacial cycle, with associated impacts on the position and intensity of the 

Southern Westerly Winds and oceanic fronts, as well as wind-driven upwelling and 

degassing of the deep Southern Ocean. Thus, reconstructing the timing of glacial 

advance/retreat using our compilation is a powerful way to understand the mechanisms of 

past interhemispheric climate change. 

 

1 Introduction 

Patagonia, in southern South America, and South Island, New Zealand, hosted the two 

largest non-Antarctic ice masses in the Southern Hemisphere during Quaternary glaciations 

(Coronato & Rabassa, 2011; Barrell, 2011; Figure 1). The former Patagonian Ice Sheet 

extended from the Andean range to cover significant parts of Chile and Argentina between 

~36 and ~56°S (Figure 2), and the New Zealand icefield occupied much of the Southern 

Alps between ~40 and ~46°S (Figure 3). Together, glaciers extending from these two ice 

masses covered a broad latitudinal range in the southern mid-latitudes and were influenced 

by important global ocean-climate systems. These include the oceanic Sub Tropical, Sub 

Antarctic and Polar Fronts, the Antarctic Circumpolar Current and Agulhaus Current leakage, 

and the position and/or strength of the Southern Westerly Wind system. Moreover, a number 

of modes of variability such as the Southern Annular Mode and embedded phenomena in 

the three Walker Circulations (e.g. the Indian Ocean Dipole and El Niño Southern 

Oscillation) may have influenced glacier behaviour. As a result, glacial records from 

Patagonia and New Zealand have the potential to improve our understanding of global 

climate teleconnections and have been widely used to reconstruct past climatic change. 
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Figure 1. Map of the Southern Hemisphere showing the modern positions of the Sub-Tropical Front (red), Sub-
Antarctic Front (green) and Polar Front (blue), as well as the core region of the Southern Westerly Winds (yellow-
brown) and the locations of ice and marine core records referred to in the text. Note the latitudinal difference of 
the oceanic frontal systems around Patagonia compared to New Zealand.  

 

Recent work (Glasser et al., 2011; Putnam et al., 2013b; Kelley et al., 2014; Rother et al., 

2014; Doughty et al., 2015; Schaefer et al., 2015; Darvill et al., 2015) has identified that 

some glaciers in Patagonia and New Zealand advanced to greater extents prior to the global 

Last Glacial Maximum (gLGM; ca. 26.5-19 ka; Clark et al., 2009) and Marine Isotope Stage 

(MIS) 2. This is not necessarily surprising: Hughes et al., (2013) suggested that many ice 

sheets around the world did not achieve maximum extent at the same time during the last 

glacial cycle (ca. 110-10 ka). However, it does indicate that our understanding of southern 

mid-latitude glacial advances might be incomplete, with implications for our understanding of 

southern climate systems more generally. Specifically, the new glacial chronologies raise 

two important issues. First, it is unclear whether pre-gLGM glacial advances were 

representative of the Patagonian and New Zealand ice masses more broadly and, if so, 

whether they were synchronous across the southern mid-latitudes. Secondly, the forcing 

factors behind southern mid-latitude glaciation during the last glacial cycle are ambiguous, 

as is the relationship to climatic drivers in the Northern Hemisphere. For example, insolation 

does not appear to directly control Southern Hemisphere climate change (Huybers & 

Denton, 2008; Doughty et al., 2015), whereas the movement of the southern westerly winds 

and oceanic frontal systems have been invoked as drivers of climate and glacial advances 

by controlling precipitation and sea surface temperatures (Lamy et al., 2004, 2007; Barrows 
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et al., 2007a; Denton et al., 2010). The roles of sea ice and ocean stratification, whilst likely 

important, also remain unclear (Allen et al., 2011; Denton et al., 2010; Putnam et al., 2013b). 

Moreover, the interplay between Southern and Northern Hemisphere climate systems is 

particularly contentious (Sugden et al., 2005), with some suggesting that global climate is 

driven by changes in the north (e.g. Denton et al., 2010) and others advocating initial triggers 

in the south (e.g. Wolff et al., 2009). 

Tackling these problems requires a synthesis of the evidence for the timing of glacial activity 

in Patagonia and New Zealand. Given the high volume of new chronological data that has 

been published in recent years, this paper compiles glacial chronologies for both regions 

during the last glacial cycle to examine, for the first time, if similar trends are evident and 

whether these are replicated over large geographic areas. We then compare the timing of 

culminations of glacial advances with terrestrial, marine and ice core proxy records and test 

hypotheses regarding how southern climatic systems operated through time. Whilst other ice 

caps and glaciers existed in Chile, Australia, Tasmania, North Island (New Zealand) and 

elsewhere in the sub-Antarctic during the last glacial cycle, we limit our focus to Patagonia 

and South Island. This is because they hosted the largest ice masses and produced 

similarly-detailed and well-preserved glacial records that have been studied in the greatest 

detail. We primarily focus on 10Be cosmogenic nuclide dating because it offers direct age 

estimates for glacial moraine records and has been used extensively in both regions. 
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Figure 2. (Left) Map of Patagonia, showing the hypothesised extent of the gLGM ice sheet from Coronato & 
Rabassa (2011) and -125 m bathymetric contour to give an impression of the likely drop in sea-level at the time. 
Glacial valleys or systems used in this study are labelled (A-K; corresponding to names on the right) as well as 
major oceanic circulations (blue arrows), Southern Westerly Wind direction (brown dashed arrows), and the Sub-
Antarctic Front (green line). (Right) Probability density functions for each glacial system consisting of all exposure 
ages (lighter shading) and with author-identified outliers removed (darker shading), normalised in both cases. 
The numbers of exposure ages relating to each system are shown without and with (in brackets) outliers 
removed. 
  

 
 
Figure 3. (Left) Map of South Island, New Zealand, showing the hypothesised extent of the gLGM ice sheet from 
Barrell (2011) and -125 m bathymetric contour to give an impression of the likely drop in sea-level at the time. 
Glacial valleys or systems used in this study are labelled (A-K; corresponding to names on the right) as well as 
major oceanic circulations (blue arrows), Southern Westerly Wind direction (brown dashed arrows), and the Sub-
Tropical Front (red line). (Right) Probability density functions for each glacial system consisting of all exposure 
ages (lighter shading) and with author-identified outliers removed (darker shading), normalised in both cases. 
The numbers of exposure ages relating to each system are shown without and with (in brackets) outliers 
removed.  
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2 Methods 

Our compilation consists of 10Be cosmogenic nuclide exposure data from studies across 

Patagonia and New Zealand (Figures 2 and 3; Table 1). We collated published 10Be 

exposure ages for moraine boulders and outwash cobbles, which record the timing of the 

onset of glacial retreat following an advance (Figure 4). Only two studies have used outwash 

cobbles in this manner, and in both cases they are essentially equivalent to exposure ages 

from boulders (Hein et al., 2009; Darvill et al., 2015). We excluded bedrock and moraine 

cobble samples due to potential issues with re-setting and because they do not necessarily 

represent glacial activity in the same way. For consistency, we recalculated all exposure 

ages, applying the Putnam et al. (2010) New Zealand 10Be production rate for exposure 

ages in New Zealand and Patagonia, as well as the Kaplan et al. (2011) Patagonian 10Be 

production rate for exposure ages in Patagonia. We also calculated ages using five scaling 

schemes and a range of erosion rates (1 mm ka-1 intervals between 0 and 10 mm ka-1) to 

evaluate the effects of these parameters on age distributions (Figure 5). All other 

parameters, including standards, were taken from the original literature or subsequent 

updates (e.g. Kaplan et al., 2011), and we used a standard density of 2.7 g cm-3 where none 

was given in the original studies. To aid the identification of cumulative peaks in exposure 

time we employed cumulative Probability Density Functions (PDFs; Barrows et al., 2002) 

using 100-year bins, and excluded any exposure ages that, within errors, fall outside the last 

glacial cycle between 110 and 10 ka. 

 

3 Results 

3.1 10Be chronology and outliers 

Glacial systems have yielded cosmogenic nuclide exposure ages throughout the last glacial 

cycle and, since ca. 45 ka, show a similar pattern in Patagonia and New Zealand (Figure 4; 

Table 2). In contrast exposure ages prior to 45 ka are more scattered or are not reproduced 

across different glacial systems. There are also significant gaps in the record, with few or no 

exposure ages between 79 and 110 ka (MIS 5). A key goal of this study is to assess a large 

compilation dataset to see if there are regional trends that have previously been missed in 

individual studies. Therefore, it is important to ensure that author-identified outliers were not 

removed erroneously. We calculated all of the ages twice, once with all data included 

(nPatagonia = 289; nNew Zealand = 531) and the second time with all author-identified outliers 

removed (nPatagonia = 241; nNew Zealand = 482; Figure 5; Table 1). We only removed outliers that 

were clearly identified in the original studies and if there was any ambiguity, we retained the 
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data. Removing author-identified outliers made negligible difference to the timing of the 

compiled PDF peaks, and so the reduced compilation was used for all other analysis in this 

paper. 

 

3.2 Examining peaks in 10Be timing 

Peaks in the PDF plots for all exposure ages in Patagonia and New Zealand help to illustrate 

times when a larger number of glaciers started to retreat. This technique is useful for 

identifying patterns in a large number of exposure ages, but should be used with caution, as 

it does not convey the spatial distribution (e.g. down-ice extent) of exposure ages and can 

be influenced by uncertainty in factors such as erosion rate and inheritance during age 

calculation (factors which we explore in the following sections). Different glaciers within the 

compilation likely advanced and retreated at different times, and the PDF technique removes 

this subtle variability. In a discussion about the possible forcing factors responsible for 

regional glacial activity, we are interested in the commonality between the timing of glacial 

retreat from a robust chronological dataset, so this approach is useful. It is important to note 

that the fact that our compilation produces clear PDF peaks at all implies that there is 

regional commonality in the timing of glacial activity during the last glacial cycle. 

The timing of PDF peaks in Patagonia and New Zealand are shown in Table 2. Peaks at 

56.4 ka (Patagonia), 65.3 ka and 89.7 ka (New Zealand) are intriguing, especially at 65.3 ka, 

which is largely attributable to a focused study of the former Pukaki Glacier by Schaefer et 

al. (2015). However, because the replication of exposure ages between glaciers is much 

weaker prior to 45 ka, we focus on peaks after this time. Table 2 shows broad commonality 

of peaks after 45 ka, but there appears to be a variable offset between Patagonia and New 

Zealand in the timing of the three dominant PDF peaks. These peaks are at 26-27 ka (with 

an offset of 300 years between the Patagonia and New Zealand peaks), 18-19 ka (with an 

offset of 700 years) and 13-14 ka (with an offset of 900 years). The PDF peaks occur in 

Patagonia before New Zealand and the offset decreases back in time (Table 2). Before 

exploring whether there is a geographical or climatological reason for this effect, it is first 

necessary to examine whether factors inherent in the age calculation process can account 

for the offset. Specifically, we assess sensitivity to the production rate or scaling scheme 

used; the erosion rate applied; possible inheritance issues; or analytical uncertainty. This 

exercise is also useful for assessing how the overall spread of ages changes when these 

parameters are varied. 
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Figure 4. The compilation of 
10

Be 
exposure ages from Patagonia and New 
Zealand used in this study (see Table 1), 
shown against the Marine Isotope Stages 
from Lisiecki & Raymo (2005) and the 
gLGM from Clark et al. (2009). (A and C) 
For Patagonia and New Zealand, 
respectively: all 

10
Be exposure ages 

within 110-10 ka, including author-
identified outliers, as mean ages with 
standard errors recalculated using the 
Putnam et al. (2010b) production rate, 
with no erosion rate applied. The 
exposure ages are colour-coded 
according to the glacial system from 
which they are derived, and associated 
references can be found in Table 1. (B 
and D) For Patagonia and New Zealand, 
respectively: normalised cumulative 
relative probability density function 
curves, calculated from all of the 
exposure ages shown in (A and C).  
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Figure 5. Examining the effects of 
calculation parameters on the overall 
spread of ages in our compilation. (A, B 
and C) Normalised probability density 
functions from Figure 4 without and with 
author-identified outliers removed. There 
is little resulting difference in the timing of 
peaks. (B) The effect of calculating all 
exposure ages from Patagonia with the 
Patagonian production rate of Kaplan et 
al. (2011). (D and E) The effect on the 
resulting normalised probability density 
functions of incrementally increasing the 
erosion rate by 1 mm ka-1 during the 
calculation of all ages in Patagonia and 
New Zealand. The timing of peaks can 
be found in Table 2. (F and G) The effect 
of altering the scaling scheme used. The 
scaling schemes are: the time-
independent Lal (1991) and Stone (2000; 
St); Desilets et al. (2006; De); Dunai 
(2001; Du); Lifton et al. (2005; Li); and 
time-dependent Lal (1991) and Stone 
(2000; Lm). In (D, E, F and G), all author-
identified outliers have been removed, 
the New Zealand production rate is used 
and, where relevant, no erosion rate is 
applied.  
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Figure 6. (A and B) Binned results from 
an analysis of skewness of probability 
density functions from individual moraine 
sets in Patagonia and New Zealand as a 
crude proxy for differential inheritance 
signatures. The data suggest that 
inheritance cannot fully explain the 
consistent offset between Patagonia and 
New Zealand. (C and D) Skewness 
results against the number of exposure 
ages per moraine and age, respectively, 
demonstrating that these variables do not 
influence skewness (i.e. inheritance) in 
Patagonia more or less than New 
Zealand. (D) Younger moraines in both 
regions show greater skewness, 
indicating greater inheritance. See main 
text for discussion. 
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3.2.1 Production rate and scaling scheme 

An offset in the timing of PDF peaks in Patagonia and New Zealand could be an artefact of 

recalculating all ages using the New Zealand production rate, even though this overlaps with 

the Patagonian production rate at 1σ. Figure 5 and Table 2 show all exposure ages 

recalculated using the Putnam et al. (2010) Macaulay River, New Zealand, 10Be production 

rate of 3.74 ± 0.08 atoms g-1 a-1, and also the Patagonian exposure ages recalculated using 

the Kaplan et al. (2011) Lago Argentino, Patagonia, 10Be production rate of 3.81 ± 0.13 

atoms g-1 a-1. The production rate alone can only explain the offset in PDF peaks at 26-27 

ka, although these peaks are very similar in age, regardless of the production rate used. 

When recalculated using the Patagonian production rate, the 16.7 ka peak can no longer be 

resolved and the 26.9 ka and 18.8 ka peaks become broader. 

We also calculated ages using different scaling schemes (Figure 5; using just the New 

Zealand production rate). It is illogical to use different scaling schemes for the Patagonian 

and New Zealand datasets, so the important part of this analysis is to see whether the 

choice of scaling scheme can account for a discrepancy in the timing of PDF peaks. While 

the choice of scaling scheme can alter the timing (by as much as 1.7 ka for the 37.8 ka peak 

in Patagonia) it cannot explain any differences between Patagonia and New Zealand. 

 

3.2.2 Surface erosion rate 

Differential surface erosion rates in Patagonia or New Zealand could have affected the 

timing of PDF peaks because increased erosion offsets the build-up of 10Be nuclides, 

artificially yielding younger ages. To test the effects of the selected erosion rate, we 

recalculated all ages using increasing rates between 0 mm ka-1 and 10 mm ka-1 (Figure 5 

and Table 2). The difference in the erosion rate required for the peaks in New Zealand to 

match Patagonia varied non-uniformly from 6 mm ka-1 to 0 mm ka-1, and decreased back in 

time. At high erosion rates (> 6 mm ka-1), some of the peaks flattened-out because there 

were insufficient high-precision exposure ages. Overall, high (though not necessarily 

unreasonable, see Kaplan et al. (2007)) erosion rates are required for the 13-14 ka peaks to 

have been synchronous in Patagonia and New Zealand. Lower erosion rates are required for 

the 18-19 ka and 26-27 ka peaks to have been synchronous.  
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3.2.3 Inheritance 

Consistent inheritance in boulder populations in Patagonia could potentially have resulted in 

an offset in PDF peaks compared to New Zealand. To test this, we constructed PDF plots for 

moraine age populations. The shape of the PDF was heavily influenced by the number of 

boulder samples from each moraine if the plot was constructed from less than four samples, 

so we excluded all age populations containing three exposure ages or fewer, and removed 

any age populations that were not completely resolved between 10 and 110 ka. We then 

used a skewness test to examine if age populations showed greater inheritance in either 

region – a simplified approach to the modelling of Applegate et al. (2010), where we took 

positive skew in a moraine PDF distribution to indicate outliers due to increased inheritance. 

A consistent positive skew in one region compared to another might indicate that greater 

levels of inheritance influenced the timing of PDF peaks. Author-identified outliers had 

already been removed, so any inheritance-skew was in addition to the outliers that had 

already been removed (Figure 6). New Zealand contained moraine age populations that 

were more skewed (mean = 5.51; max. = 8.33) than Patagonia (mean = 5.05; max = 7.51). 

This relationship was not influenced by the number of exposure ages from each moraine and 

there is no difference in the relationship between moraine age and skew over time between 

the two regions. Consequently, inheritance cannot explain the offset between PDF peaks, as 

greater inheritance in New Zealand compared to Patagonia would only serve to have 

increased the age difference. Interestingly, it appears that the range of skew values is 

greater for younger moraines in both Patagonia and New Zealand (Figure 6D). This might 

imply greater inheritance in younger moraines, possibly linked to re-working of older moraine 

boulders, although the trend may be influenced by sampling techniques. 

 

3.2.4 Analytical uncertainty 

Assessing whether differences between two cosmogenic nuclide datasets are the result of 

differences in analytical uncertainty is particularly challenging. This is because it is rare for 

the same samples to be analysed by different laboratories; indeed, there are no such 

examples in our compilation. We examined the Rakaia Valley system in New Zealand – the 

only location in our study in which the same glacial sequence (but not the same samples) 

has been analysed by two different preparatory/AMS laboratories (see Shulmeister et al., 

2010 and Putnam et al., 2013a). Comparing the exposure ages produced by the two studies 

appears to suggest that analytical uncertainty could account for as much as a 1.3 ka 

difference in the timing of exposure age PDF peaks (supplementary figure). However, in 

reality, this comparison means little because: (1) the analysis was conducted on different 
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samples; (2) the populations consist of different numbers of samples; and (3) there was 

uncertainty in comparing the geomorphic context of the two studies (Putnam et al., 2013a). 

Ultimately, we cannot discount analytical uncertainty as a potentially important factor in 

affecting the timing of PDF peaks, but we note that many laboratory groups have produced 

exposure ages from both Patagonia and New Zealand. Consequently, we have no reason to 

suspect that analytical uncertainty has caused a consistent offset between the two regions. 

 

3.2.5 Summary: Offset of peaks in timing 

Production rate, scaling scheme, erosion rate and inheritance all have an effect on the 

calculation of ages from 10Be data, but none of these factors can provide a satisfactory 

explanation for the offset between Patagonia and New Zealand at 26-27 ka, 18-19 ka and 

13-14 ka. This is because the offset does not decrease or increase uniformly back in time. 

Changing the scaling scheme does not reduce the offset, and using the Patagonian 

production rate neither reduces the offset sufficiently, nor accounts for a variable offset over 

time. Increasing the erosion rate in New Zealand can reduce the offset, but does not explain 

why the difference decreases back in time, and it is unlikely that inheritance is responsible 

for the difference. A combination of these factors may explain the offset observed in the 

timing of PDF peaks in Patagonia and New Zealand, but this starts to invoke cyclical 

arguments, some of which are themselves climate-related (e.g. variable erosion rates over 

time). A simpler explanation, which we prefer, is that the offset is real and PDF peaks in 

Patagonia occurred earlier than in New Zealand at 26-27 ka, 18-19 ka and 13-14 ka. We 

now discuss the timing of these peaks and their possible causes. 

 

4 Discussion 

4.1 The timing of glacial activity 

4.1.1 Evidence from the compilation of exposure ages 

We interpret the peaks in the PDF distributions at ca. 41.3 ka, 37.8 ka, 32.7 ka, 26-27 ka, 

18-19 ka and 13-14 ka to reflect the deposition of moraine boulders and cobbles during the 

culminations of glacial advances or, at the very least, still stands during retreat. The 

resolution of these events is determined in part by sampling strategies that have targeted 

glacial limits and the corresponding dating errors – hence the gLGM and late glacial peaks 

are the best-resolved in both regions. This does not mean that the pre-gLGM limits were 

necessarily less distinct, and our method says little about the extent of limits other than that 
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they were preserved. It is also important to note that Putnam et al. (2010a) found closely-

spaced moraines in one New Zealand valley that yielded exposure ages differing by ca. 1 

ka, but this signal is not well represented in the compilation. Nonetheless, our 10Be 

compilation from Patagonia and New Zealand reveals a broad similarity in the timing of 

glacial activity in both regions, especially during MIS 3 and MIS 2. This suggests that the 

same forcing factors may have controlled the timing of glacial activity in both regions over 

the last glacial cycle and strongly suggests that glaciers advanced by at least 45 ka, or mid-

MIS 3, well before the gLGM. Although this study focuses on chronology, it is worth 

highlighting that several studies found the limits relating to these advances to be as 

extensive, if not significantly more extensive, than those deposited during the gLGM 

(Glasser et al., 2011; Putnam et al., 2013b; Kelley et al., 2014; Rother et al., 2014; Doughty 

et al., 2015; Darvill et al., 2015; Schaefer et al., 2015). 

A large dataset of minimum and maximum radiocarbon dates for the Chilean Lake District 

was constructed by Denton et al. (1999) to constrain the timing of glacial activity, recently 

extended by Moreno et al. (2015). The radiocarbon data demonstrate glacial advances at ca. 

33.6 ka, 30.8 ka, 26.9 ka, 26.0 ka and 17.7-18.1 ka (Moreno et al., 2015), which is consistent 

with our compiled 10Be peaks at 26.9 ka and 18 ka and pre-30 ka during the last glacial cycle 

across Patagonia. The replication of 10Be exposure ages over multiple glaciers in Patagonia 

and New Zealand, supported by radiocarbon dates, gives us confidence in discussing peaks 

in the timing of deposition as regional culminations of glacial advances. We now compare 

these events with other proxies for glacial and climatic change in order to assess possible 

forcing mechanisms within the terrestrial-ocean-atmosphere system during the last glacial 

cycle (Figures 7 and 8). 

 

4.1.2 Late MIS 5 (ca. 110-71 ka) 

Little evidence exists for glacial activity during MIS 5, with only occasional exposure ages 

from individual glaciers around 90 ka (Sutherland et al., 2007; Glasser et al., 2011) that 

change significantly with slight alterations in erosion rate (Figure 5). Low Antarctic dust 

concentrations (Fischer et al., 2007) support the absence of glacial activity, particularly in 

Patagonia (Sugden et al., 2009; Kaiser & Lamy, 2010; McGee et al., 2010; Figure 8K). 

Antarctic temperatures were warmer, but with millennial-scale variability (EPICA, 2006), 

including a cooling between ca. 92 ka and 87 ka (Figure 8B, C and D) that is also recorded 

in local Sea Surface Temperatures (SSTs; Barrows et al., 2007a) and preceded a decline in 

New Zealand forest pollen after 82 ka (Ryan et al., 2012; Vandergoes et al., 2013). 

However, overall, MIS 5 was not likely to have promoted ice expansion in either region, 
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which is in contrast to the Northern Hemisphere where both the Northern American Ice 

Sheet complex and the Fennoscandian Ice Sheet are thought to have grown rapidly during 

MIS 5d (Clark et al., 1993; Kleman et al., 1997; Stokes et al., 2012). 

Figure 7. Orbital insolation parameters 
relevant to this study, from Berger & 
Loutre (1991). (A) LR04 benthic 
foraminiferal δ

18
O stack (Lisiecki & 

Raymo, 2005), which shows a combined 
signature of global temperature and ice 
volume, (B) CO2 record from EPICA 
Dome C (Lüthi et al., 2008), and (C) 
Northern Hemisphere summer (June) 
insolation intensity at 60°N. These three 
proxies show that global temperatures 
and Northern Hemisphere ice sheets 
followed Northern Hemisphere insolation 
during the last glacial cycle. (C) also 
shows Southern Hemisphere winter 
duration, given that decreasing northern 
summer insolation co-varies with 
increasing southern winter length 
(Huybers & Denton, 2008). (D) Southern 
Hemisphere summer (December) 
insolation intensity and (E) Southern 
Hemisphere seasonality at 60°S, 50°S, 
40°S and 30°S. Seasonality values are 
calculated for each latitude by 
subtracting the June (winter) insolation 
from the December (summer) insolation 
at a given time, such that decreasing 
seasonality indicates cooler summers 
and warmer winters. These values are 
then normalised against the mean 
seasonality at each latitude for 110-10 
ka. (F, G, H and I) Illustrations of 
decreasing CO2 levels (F); Northern 
Hemisphere summer insolation intensity 
minima (G); Southern Hemisphere 
summer insolation intensity minima (H); 
and the broad overlap between the 
insolation minima in the Northern and 
Southern Hemispheres (I). The insolation 
intensity thresholds for these illustrations 
are entirely arbitrary: below 500 W m

-2
 for 

the Northern Hemisphere and below 490 
W m

-2
 for the Southern Hemisphere 

(60˚S, except for the prolonged 
decreases at 93-85 ka and 47-34 ka, 
where threshold is raised).  (J and K) The 
timing of peaks in our compilation for 
Patagonia and New Zealand, 
respectively, from Table 2. (L) Our 

10
Be 

compilation from Patagonia and New 
Zealand with outliers removed.  
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Figure 8. A comparison of the timing of glacial advances in the southern mid-latitudes during 110-10 ka with a 
range of other palaeoclimatic proxies. (A) The LR04 benthic foraminiferal stack (Lisiecki & Raymo, 2005). (B) The 
East Dronning Maud Land (EDML) ice core δ

18
O record (EPICA, 2006); (D) the EPICA Dome C (EDC) ice core 

δD record (EPICA, 2006); and (E) the Byrd ice core δ
18

O record (Blunier & Brook, 2001) as proxies for Antarctic 
temperature changes from different parts of the ice sheet. The EDML and EDC records are shown on the 
AICC2012 common timescale (Veres et al., 2013), whereas the Byrd ice core is plotted on its own timescale. (E) 
Faunal-based Sea Surface Temperature (SST) record from core SO136-GC3 as a proxy for regional temperature 
changes west of New Zealand (Barrows et al., 2007a). (F and G) Alkenone-derived SST reconstructions for 
ODP-1233 off the western coast of northern Patagonia (Kaiser et al., 2005) and for MD07-3128 off the western 
coast of southern Patagonia (Caniupán et al., 2011), both plotted on the same scale. (H and I) Records of opal 
flux from cores TN057-13 and -14 in the South Atlantic, south of the Polar Front, as a proxy for wind-driven 
upwelling (Anderson et al., 2009). Note that the scales are different.  (J) Diatom-based reconstruction of sea ice 
extent from south of the Sub-Antarctic Front (Crosta et al., 2004), measured as the number of months per year 
that sea ice covered site SO136-111. (K) Ca

2+
 flux as recorded in the EDC ice core as a proxy for dust deposition 

over Antarctica, sourced predominantly from Patagonia (Fischer et al., 2007). (L) A record of Ice-Rafted Debris 
(IRD) from core MD07-3128 (Caniupán et al., 2011). (M and N) Peaks in the timing of glacial advances from 
Table 2. (O) Overlap between Northern Hemisphere and Southern Hemisphere summer insolation intensity 
minima from Figure 7. (P and Q) Our 

10
Be compilation from Patagonia and New Zealand with outliers removed. 

 

 

4.1.3 MIS 4 (ca. 71-57 ka) 

There is limited evidence for glacial activity during MIS 4 from our dataset. Scattered 

exposure ages suggest that some glaciers expanded during this time and the Pukaki Glacier 

in New Zealand shows evidence for an MIS 4 advance around 65 ka (Schaefer et al., 2015; 

Figure 4), which would be consistent with a similarly-timed maxima in the Northern 

Hemisphere during MIS 4 (Clark et al., 1993; Stokes et al., 2012). The exposure ages from 

this glacier correlate with significant increases in dust production in the East Dronning Maud 

Land (EDML) and EPICA Dome C (EDC) Antarctic ice core records (Fischer et al., 2007; 

Wolff et al., 2006; EPICA, 2004, 2006; Figure 8K), and a reduction in upwelling (Anderson et 

al., 2009; Figure 8H). Antarctic temperatures show a marked cooling equivalent to the gLGM 

in the EDML and EDC ice cores until around 63 ka (EPICA, 2004, 2006; Figure 8B and C). 

There was a similar drop in localised SST records around New Zealand (Barrows et al., 

2007a); Figure 8E) that is also reflected in speleothem records indicating cooler conditions at 

67-63 ka and wetter conditions at 71-61 ka (Williams et al., 2015). An even greater SST 

reduction occurred off the west coast of northern Patagonia, where temperatures reached 

their lowest levels of the last glacial cycle (Kaiser et al., 2005; Figure 8F). Southern 

Hemisphere summer insolation was decreasing (Berger & Loutre, 1991), and there was a 

period of longer duration winters prior to MIS 4 (Huybers & Denton, 2008) followed by a 

period of decreased seasonality (Figure 7). Therefore, the evidence suggests that MIS 4 was 

a major cool period in the southern mid-latitudes, and should have instigated significant 

glacial advances across Patagonia and New Zealand. The absence of exposure ages from 

multiple glaciers suggests that either glacial activity was not as extensive as later advances, 

or that MIS 4 moraines have not been sufficiently sampled. 
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4.1.4 Early MIS 3 (ca. 57-45 ka) 

Only scattered exposure ages have been recorded during early MIS 3, with a small peak in 

Patagonia at 56.4 ka. In this interval, dust and IRD records show little change beyond 

occasional small peaks (Fischer et al., 2007; Caniupán et al., 2011; Figure 8K and L) and 

SSTs were equivalent to those during the Holocene (Barrows et al., 2007a). Antarctic 

temperatures warmed following MIS 4 (EPICA, 2006), and early MIS 3 showed a strong 

millennial-scale pattern of warming and cooling into and out of the A4-1 events (Blunier & 

Brook, 2001; Figure 8D). The absence of prolonged cooling or build-up of sea-ice (Crosta et 

al., 2004; Wolff et al., 2006) suggests that these were only transient events and so may have 

prevented any significant glacial advances. In New Zealand, speleothem records suggest a 

cooler period at 51-45 ka (Williams et al., 2015), and the Te Anau cave stratigraphy 

suggests a glacial advance at ca. 48 ka (Williams, 1996). However, the Aurora Cave 

speleothem indicates continuous growth between 55.3 ka and 42.8 ka, implying local ice-

free conditions at this time (Williams, 1996; Williams et al., 2015). The implication is that 

while millennial-scale events may have caused some glacial activity that is not well recorded 

in our compilation (e.g. between 50 ka and 46 ka), overall climatic conditions were not well 

suited for glacial advances during early MIS 3. 

 

4.1.5 Late MIS 3 (ca. 45-29 ka) 

There is evidence for glacial advances culminating during late MIS 3, at 37.8 ka in 

Patagonia, and 41.3 ka and 32.7 ka in New Zealand. In the same period there are small 

peaks in IRD off Patagonia (Caniupán et al., 2011), and increasing dust levels in the EDML 

and EDC ice cores towards the end of the period (Fischer et al., 2007; Figure 8K and L). 

Regionally, the EDML, EDC and Byrd ice cores show a cooling trend during MIS 3 (EPICA, 

2006, 2004; Blunier & Brook, 2001; Figure 8B, C and D), mirroring the NGRIP record 

(Rasmussen et al., 2006), although this is overprinted by millennial-scale variability, 

including the A1 event (Blunier & Brook, 2001; EPICA, 2006; Wolff et al., 2009, 2010). 

Likewise, numerous SST reconstructions suggest that the decline towards peak glacial 

conditions had started by at least 30 ka in the south-eastern Pacific (Lamy et al., 2004; 

Kaiser et al., 2005; Lamy et al., 2007; Caniupán et al., 2011; Figure 8F and G), west of New 

Zealand and south of Australia (Pelejero et al., 2006; Barrows et al., 2007a; Calvo et al., 

2007; Figure 8E), the Indian Ocean (Labeyrie et al., 1996), and the southeast Atlantic 

(Barker et al., 2009). A reconstruction from south of the Polar Front also shows a marked 

increase in Antarctic sea ice between ca. 32 and 21 ka, at least in the Atlantic sector of the 

Southern Ocean (Crosta et al., 2004; Allen et al., 2011), correlating with a reduction in 
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upwelling (Anderson et al., 2009), which reached a minimum in the last glacial cycle at 30 ka 

(Figure 8H). 

Southern Hemisphere insolation and seasonality both decreased between ca. 45 ka and 30 

ka, and there was a switch to more rapidly increasing winter duration from ca. 36 ka 

(Huybers & Denton, 2008) that correlates with the timing of culmination of glacial advances 

in both regions (Figure 7). Terrestrial records complement the evidence for an advance in 

New Zealand at around 32.7 ka, but do not obviously record earlier advances in New 

Zealand and Patagonia during late MIS 3. For example, reduced growth in New Zealand 

speleothems suggest a cooler period from 33 ka into the gLGM (Williams et al., 2015), and 

the Potrok Aike site in southern Patagonia shows maximum lake levels by 34 ka, indicative 

of glacial conditions (Hahn et al., 2013; Kliem et al., 2013) and complemented by increasing 

magnetic susceptibility after ca. 32 ka (Lisé-Pronovost et al., 2015). In short, climatic 

conditions in the southern mid-latitudes were well suited for glacial advances during late MIS 

3, although advances during the earlier part of the period show a stronger correlation with 

insolation variability than with proxy records. 

 

4.1.6 MIS 2 (ca. 29-14 ka) and the gLGM period (26.5-19 ka) 

There were clear glacial advances during MIS 2, with peaks marking the onset of retreat 

either side of the gLGM at 26.9 ka and 18.8 ka in Patagonia and 26.6 ka and 18.1 ka in New 

Zealand. These correlate with a large (>5%) peak in IRD off the southwest coast of 

Patagonia, centred on 27 ka and matching a Patagonian glacial advance at that time 

(Caniupán et al., 2011; Figure 8L). The data also correlate with a significant increase in dust 

flux in the EDML and EDC ice cores during early MIS 2 (Fischer et al., 2007; Figure 8K and 

L). Whilst dust levels remained relatively high, IRD reduced markedly through the gLGM, 

perhaps due to retreating marine-terminating glaciers (Caniupán et al., 2011). Summer 

insolation increased and peaked at around 21 ka, and seasonality increased, with a 

latitudinal offset from ca. 30 ka (Figure 7). Broadly speaking, the EDML, EDC and Byrd ice 

cores (Blunier & Brook, 2001; EPICA, 2004, 2006) and NGRIP ice core from Greenland 

(Rasmussen et al., 2006), demonstrate peak cooling during MIS 2 (and specifically during 

the gLGM). The onset of glacial retreat occurred at the start and end of a period of intense 

cooling in Antarctica and Greenland, when significant millennial-scale variability ceased in 

Antarctica (EPICA, 2006; Rasmussen et al., 2006; Figure 8B and C). Thus, many of the 

glaciers may have responded rapidly to a drop in Southern Hemisphere temperatures at 

around 27.5 ka, perhaps because they had already advanced during late MIS 3.  
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Local SST records around Patagonia show a continuation of the cooler temperatures from 

late MIS 3 (Lamy et al., 2004; Kaiser et al., 2005), although proximal ice melt off the west 

coast of southern Patagonia may have caused enhanced cooling of surface waters 

(Caniupán et al., 2011; Figure 8F). SST changes off the west coast of New Zealand 

demonstrate the culmination of a cooling trend from MIS 3 into the gLGM (Figure 8E), after 

which SSTs warmed in both regions. Reconstructions from south of the Polar Front suggest 

that Antarctic sea ice duration in the southwest Atlantic was at its greatest during the last 

glacial cycle between ca. 32 and 22 ka, consistent with decreasing temperatures in 

Antarctica (Gersonde, 2003; Allen et al., 2011; Crosta et al., 2004). Maximum summer sea 

ice retreated to south of 61°S by ca. 22 ka, although winter sea ice did not retreat until ca. 19 

ka, causing a large expanse of seasonally open waters within the Scotia Sea from 22 ka 

onwards (Allen et al., 2011). Concurrent with this change was an associated increase in 

upwelling after ca. 20 ka (Anderson et al., 2009). 

Terrestrially,  magnetic susceptibility from Potrok Aike shows a significant increase during 

the gLGM (Lisé-Pronovost et al., 2015), and speleothem records from New Zealand suggest 

cooler periods from 33 ka into the gLGM and particularly wet conditions at around 24.7 ka 

(Williams et al., 2015). Barrell et al. (2013) suggested that full glacial conditions may have 

begun around 28.8 ka based on a large increase in herb pollen around this time 

(Vandergoes et al., 2005). Climatic amelioration occurred around 18 ka, based on pollen 

assemblages and speleothem records (Williams et al., 2015). Overall, in contrast to the 

Northern Hemisphere (Clark et al., 2009), conditions in the southern mid-latitudes during 

much of MIS 2 do not seem to have been as well suited for glacial advances compared to 

late MIS 3: summer insolation and seasonality increased; winter duration decreased; local 

SSTs decreased little; and IRD, dust flux and Antarctic sea-ice reduced through the period. It 

is possible that the Southern Hemisphere glacial advances were driven by global 

temperatures reaching a minimum around the gLGM, driven dominantly by Northern 

Hemisphere forcing (Clark et al., 2009). Indeed, SSTs in the western Pacific, Indian and 

Southern Oceans reached a minimum at this time (Barrows & Juggins, 2005). One issue is 

that many proxy records mitigate against a climatic reversal in Patagonia and New Zealand 

around 18-19 ka, but glacial advances or still stands clearly occurred at this time. 

 

4.1.7 gLGM to Holocene (ca. 19-10 ka) 

Our compilation suggests that glacial advances culminated at 13.9 ka in Patagonia and 13.0 

ka in New Zealand, during the Antarctic Cold Reversal (ca. 14.5-12.9 ka; Jouzel et al., 2001) 

rather than the Younger Dryas cold period in the North Atlantic (ca. 12.9-11.7 ka; 
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Rasmussen et al., 2006; Lowe et al., 2008). An absence of evidence for changes in the IRD 

or dust records may imply that the advance was either weak or, more probably, a prolonged 

still stand (Figure 8K and L). Antarctic temperatures decreased at this time (Figure 8B and 

C), in anti-phase with a warm period in Greenland, so that the event was prior to the 

Younger Dryas (EPICA, 2006; Rasmussen et al., 2006). This temperature drop only 

registers as a plateau in overall warming in the local SST records (Caniupán et al., 2011), 

consistent with a minimal advance of glaciers at this time. Southern Hemisphere insolation 

was decreasing (Berger & Loutre, 1991), but the sub-orbital timescale of the events 

suggests that they were not likely related to changes in insolation intensity (Figure 7). There 

was an apparent drop in upwelling (Anderson et al., 2009; Figure 8I), which could indicate 

northern migration of the Southern Westerly Winds and oceanic fronts, triggering a 

slowdown in the recession of glaciers in Patagonia and New Zealand. 

 

4.2 The cause of glacial advances 

The evidence from our dating compilation shows that glacial advances culminated at various 

times during the last glacial cycle, with some major advances occurring prior to the gLGM 

and some advances in Patagonia and New Zealand culminating broadly synchronously. We 

now consider the possible forcing factors controlling glacial activity, including the reasons for 

the offsets in timing between Patagonia and New Zealand glaciers. Previous studies have 

focussed on insolation variability and shifts in atmospheric and/or oceanic frontal systems as 

the most likely controls on glacial activity. These include summer insolation; winter duration; 

seasonality; the migration of the Sub-Antarctic and Sub-tropical fronts; and the shifting of the 

Southern Westerly Winds. Antarctic sea ice and Southern Ocean stratification may also have 

triggered feedbacks within the climate system. Determining which of these systems is 

important is complex, and the forcing factors may have changed between glacial advances. 

 

4.2.1 Insolation changes 

The expansion of large ice sheets in the Northern Hemisphere broadly followed decreases in 

summer insolation intensity (Figure 7). There are two conundrums associated with this 

model in the Southern Hemisphere. The first is that many Southern Hemisphere climate 

proxies, including Antarctic temperature records, suggest glacial-interglacial climate change 

occurred broadly in-phase between the Southern and Northern Hemispheres, despite 

covariance of summer insolation (Mercer, 1984; Jouzel et al., 2007; Wolff et al., 2010a; 

Huybers & Denton, 2008). Secondly, glacial activity prior to the gLGM, as observed in our 
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compiled chronology, is at odds with a model in which conditions suited to maximum ice 

growth occurred during the gLGM (Barrows et al., 2007a; Wolff et al., 2009; Doughty et al., 

2015). One explanation is that, for the Southern Hemisphere, the duration of seasons may 

exert a greater control on climate than insolation intensity (Huybers & Denton, 2008). 

Increasing southern winter duration, synchronous with decreasing northern summer 

insolation, could explain why broad glacial-interglacial changes in both hemispheres 

occurred at the same time (Putnam et al., 2013b; Figure 7C). Winter duration may also 

explain why glacial culminations in the southern mid-latitudes occurred prior to the gLGM, 

given that there was a trend toward longer winters during MIS 3 and into MIS 2 (Huybers & 

Denton, 2008). Furthermore, reduced seasonality might also have promoted ice mass 

growth (taken here as times of cooler summers and warmer winters; Figure 7E). 

Doughty et al. (2015) noted that activity of the Pukaki glacier in New Zealand showed no 

consistent relationship with Southern Hemisphere insolation. Our compilation shows a 

pattern between the timing of glacial activity in Patagonia and New Zealand and the broad 

overlap in insolation minima between the Northern and Southern Hemispheres (Figure 7F-I). 

However, like Doughty et al. (2015), we find that culminations in advances in both regions 

occurred during both the rising and falling limbs of insolation change (Figure 7D, J and K). 

Consequently, we suggest that whilst weaker Southern Hemisphere insolation may have 

established temperature conditions that primed glaciers for advances, it is unlikely to have 

been the primary forcing factor. 

 

4.2.2 Atmospheric and sea surface temperature changes 

Warming events in the Antarctic ice cores during MIS 4 and MIS 3 (A1-4; Blunier & Brook, 

2001) have been correlated across the southern mid-latitudes (Lamy et al., 2004; Barrows et 

al., 2007a; Kelley et al., 2014; Figure 8D). Additional Antarctic Isotope Maxima (AIM) events, 

identified in the EDML ice core (EPICA, 2006; Figure 8B), broadly coincide with Dansgaard-

Oeschger events in NGRIP. However, both ice core and SST records show a lead in the 

Southern Hemisphere during the last glacial cycle (EPICA, 2006; Wolff et al., 2009). The 

propagation of Antarctic temperature changes through the atmosphere has been advocated 

as a trigger for glacial advances in the southern mid-latitudes (Kelley et al., 2014), and there 

seems to be a link between the onset of minimum temperatures recorded in Antarctica at the 

start of MIS 2 (Figure 8B and C) and the glacial culminations we identify at 26-27 ka (Figure 

8M and N). Whilst individual glacial records may align with temperature minima in Antarctica 

(e.g. Kelley et al., 2014), our compilation does not show a clear, consistent pattern between 

Antarctic events and glacial activity.  
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Millennial-scale events recorded in mid-latitude SST records likely reflect changes in the 

position of oceanic fronts (Barrows et al., 2007a). The migration of the Sub-Tropical Front 

and Sub-Antarctic Front over time would have altered SSTs around Patagonia and New 

Zealand by altering heat-transfer flows such as the Agulhas Current off southern Africa 

(Barrows et al., 2007a) and the position and/or intensity of the Antarctic Circumpolar Current 

and Southern Westerly Wind system, whilst also influencing latitudinal SST gradients 

(Shulmeister et al., 2004; Kaiser et al., 2005). Lamy et al. (2007) and Denton et al. (2010) 

considered a coupled atmosphere-ocean system in which latitudinal shifts in the Sub-

Tropical Front and Southern Westerly Winds occurred in response to changes in the Inter-

Tropical Convergence Zone, driven by Northern Hemisphere sea ice extent, and changes in 

the sea ice extent around Antarctica. Several records suggest northward migration of 

oceanic fronts during globally-cooler periods that resulted in reduced SSTs around 

Patagonia and New Zealand. In the southwest and central Pacific, the Sub-Tropical Front 

may have migrated 1-2° (Sikes et al., 2009) or more (Barrows et al., 2000), whilst in the 

southeast Pacific the Sub-Tropical Front and Sub-Antarctic Front may have shifted 

substantially, possibly as much as 5-6° during MIS 2 (Gersonde et al., 2005; Kaiser et al., 

2005; Caniupán et al., 2011). The effect on SSTs in northern Patagonia and New Zealand 

(Lamy et al., 2004; Barrows et al., 2007a; Figure 8E and F) compared to southern Patagonia 

(Caniupán et al., 2011; Figure 8G) supports the role of a coupled oceanic-atmospheric 

frontal system, rather than hemisphere-wide cooling. It is also possible that the migration of 

the Southern Westerly Winds, followed by the oceanic fronts, may explain the offset in 

glacial timing between Patagonia and New Zealand at 26-27 ka, 18-19 ka and 13-14 ka, 

given that higher latitude glaciers would have responded first to a northward migration of 

precipitation and temperature. However, the reason that Patagonian advances culminated 

prior to those in New Zealand is less clear. Notwithstanding this uncertainty, the shifting of 

fronts in both regions would have resulted in reasonably rapid increases in precipitation 

followed by changes in local temperatures, triggering terrestrial cooling and glacial 

advances. 

The migration of a coupled atmosphere-ocean system is sufficient to explain most of the 

glacial patterns in our compilation, and is broadly supported by SST records. A key 

exception are the advances culminating at 18-19 ka, when SSTs west of Patagonia 

decreased (Figure 8F and G), but SSTs west of New Zealand increased (Figure 8E) and 

Antarctic temperatures suggest warming (Figure 8B-D). Furthermore, terrestrial proxy 

records such as grass pollen in Patagonia (Heusser et al., 1999), and forest pollen (Ryan et 

al., 2012; Vandergoes et al., 2013) and speleothem records in New Zealand (Williams et al., 

2015), indicate climatic amelioration at this time. The glacial activity in Patagonia may be 
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linked to a regional drop in SST, but the reason for similar activity in New Zealand is unclear, 

and we are not yet able to establish a satisfactory mechanism that can account for the 

culmination of advances in both regions, despite differing regional SST records. 

 

4.2.3 The role of sea ice and ocean stratification 

A critical component of a coupled atmosphere-ocean system as a control on southern mid-

latitude glacial activity is the role of sea ice and oceanic upwelling on the stratification of the 

Southern Ocean. Antarctic sea ice has been invoked in several explanations for global 

climate change during the last glacial cycle (Allen et al., 2011). It is likely that seasonally-

expanded sea ice would have increased deep water formation and expansion (Seidov & 

Maslin, 2001; Ferrari et al., 2014) and promoted stratification of the Southern Ocean due to 

freshening of the surface waters (Putnam et al., 2013b). Sea-ice extent is also likely to have 

been reduced by a southward shift of the Southern Westerly Winds and oceanic fronts, 

helping to destabilise any stratification of the Southern Ocean. There is, then, a potentially 

important link between Antarctic sea ice and global glacial-interglacial climate change 

(Denton et al., 2010), and an intrinsic link between sea ice and Southern Ocean stratification 

(Putnam et al., 2013b). 

The Southern Ocean may have entered a fully stratified state by ca. 70 ka (Anderson et al., 

2009; Figure 8H), consistent with the build-up of Antarctic sea ice at this time (Crosta et al., 

2004; Figure 8J), and possibly linked to increased winter duration (Putnam et al., 2013b). 

Greater sea ice extent would have promoted stratification and forced the Southern Ocean 

fronts northward, increasing SST gradients so that the Southern Westerly Winds also 

migrated north. Migration of the winds may have enhanced sea ice growth, creating a 

positive feedback. This model, advocated by Denton et al. (2010) and Putnam et al. (2013), 

amongst others, provides a theoretical link between sea ice formation, Sub-Tropical front 

and Sub-Antarctic Front migration, Southern Westerly Wind migration, and SST changes 

around Patagonia and New Zealand. However, until more detailed and spatially-extensive 

records of sea-ice and upwelling have been produced, it is difficult to ascertain whether 

these factors lead or lag changes in the climatic system. 

 

5 Conclusions 

The first compilation of previously published 10Be exposure dating for Patagonia and New 

Zealand suggests that glacial advances culminated at various times throughout the last 
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glacial cycle. There is commonality in the timing of glacial activity between numerous 

glaciers in both Patagonia and New Zealand, and we infer this to represent periods of broad, 

regional glacial advances. However, this does not mean that all glaciers advanced and 

retreated synchronously and does not necessarily provide information on the extent of the 

glacial activity. That said, it is clear that the chronologies from Patagonia and New Zealand 

show remarkable similarities, suggesting that similar forcing factors may have influenced 

both ice masses during the last glacial cycle. In particular, both regions show a trend for 

glacial activity, replicated by different glaciers, from at least 45 ka, with culminations in either 

region at 41.3 ka, 37.8 ka and 32.7 ka, and in both regions at ca. 26-27 ka, 18-19 ka and 13-

14 ka. 

Our compilation reveals a number of significant characteristics in the timing of glacial activity 

in the southern mid-latitudes. Glaciers were advancing by the latter half of MIS 3, well before 

the gLGM, with clear evidence of advances culminating prior to 30 ka. Further advances 

culminated just before and after the gLGM and during the Antarctic Cold Reversal. Future 

work should target glacial limits down-ice of those dated to the gLGM, particularly in 

Patagonia, where there are substantially fewer exposure ages. In particular, a general 

absence of dated limits from MIS 4 is puzzling given that numerous proxy records suggest 

that this period resulted in significant climate deterioration in the southern mid-latitudes. A 

well dated limit of the Pukaki glacier at this time may indicate that other, similar glacial limits 

have not yet been sampled. 

There is no clear correlation between a single climatic forcing factor and the glacial activity 

from our compilation. Rather, the forcing factors responsible likely varied over time. Glacial 

advances may have been paced by underlying orbital parameters, but insolation changes 

alone cannot explain their timing. Our study suggests that ice expansion was broadly 

synchronous between Patagonia and New Zealand, implying that the forcing factors involved 

coherent zonal fluctuations of the oceanic fronts and/or southern westerly winds. Late MIS 3 

likely experienced optimum conditions for glacial activity in the southern mid-latitudes, 

despite preceding the coolest temperatures in Antarctica. Summer insolation reached a 

minimum, seasonality was reduced, winter duration was increasing, and sea ice had 

expanded significantly. Such conditions may have induced stratification of the ocean and an 

equatorward shift in the moisture-bearing Southern Westerly Winds, delivering greater 

precipitation to Patagonia and New Zealand prior to colder temperatures as the Sub-tropical 

Front and Sub-Antarctic Front migrated northwards. 

Whilst global temperatures did not reach a minimum until MIS 2, summer insolation in the 

Southern Hemisphere was greater by that time, and Antarctic sea ice had reduced markedly. 
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Glacial advances during MIS 2 in Patagonia and New Zealand occurred rapidly with the 

onset of a prolonged cool phase across the gLGM, marked by a discontinuation of 

hemispheric millennial-scale variability. A consistent offset in the timing of glacial activity 

after 30 ka, in which Patagonian glaciers began retreating before those in New Zealand, is 

unlikely to be an artefact of age calculation. The offset could instead relate to the latitudinal 

migration of the coupled ocean-atmosphere system or a latitudinal offset in seasonality from 

ca. 30 ka. The implication is that our dataset not only suggests that glaciers in Patagonia 

and New Zealand advanced and retreated at different times to the large Northern 

Hemisphere ice sheets, but that this activity was the result of major rearrangements of the 

Southern Hemisphere climate system during the last glacial cycle. Such rearrangements 

would have altered the position and intensity of the Southern Westerly Winds and oceanic 

fronts, as well as wind-driven upwelling of the deep Southern Ocean. To conclude, glacial 

activity during the last glacial cycle in Patagonia and New Zealand responded primarily to 

oceanic and atmospheric feedbacks in the Southern Hemisphere climate system paced by 

underlying orbital forcing. 
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9 Tables 1 

Table 1. Details of the published literature compiled in this study, ordered by location and showing the latitude, longitude and total number of 2 

exposure ages compiled from the period 110-10 ka without and with (in brackets) author-identified outliers removed. 3 

Glacier system Lat. (°S) Long. (°W/E) Total no. ages References 

Patagonia      

Lago Bueno Aires -46/-47 -71/-73 76 (64) (Kaplan et al., 2004, 2005; Douglass et al., 2005, 2006; Glasser et al., 2012) 

Río Bayo valley -47 -73 3 (3) (Glasser et al., 2006)  

Nef valley -47 -73 6 (5) (Glasser et al., 2012)  

Pueyrredón -47/-48 -71/-73 19 (16) (Hein et al., 2009, 2010, 2011; Glasser et al., 2012)  

San Martín valley -49 -72/-73 10 (10) (Glasser et al., 2011)  

Río Guanaco -50 -73 21 (21) (Murray et al., 2012)  

Lago Argentino -50 -73 30 (27) (Ackert et al., 2008; Kaplan et al., 2011)  

Torres del Paine -51 -73/-74 54 (45) (Fogwill, 2003; Fogwill & Kubik, 2005; Moreno et al., 2009; García et al., 2012)  

Río Gallegos -51/-52 -71/-72 7 (6) (Kaplan et al., 2007; Evenson et al., 2009; Sagredo et al., 2011)  

Magellan -52/-53 -69/-71 17 (10) (McCulloch et al., 2005; Kaplan et al., 2008, 2007)  

BI-SSb -53/-54 -68/-70 46 (34) (McCulloch et al., 2005; Kaplan et al., 2007, 2008; Evenson et al., 2009; Darvill et al., 2015)  

Total within Last Glacial Cycle 289 (241)  

New Zealand      

Cobb Valley -41 173 12 (9) (Shulmeister et al., 2005)  

Taramakau -43 171/172 34 (29) (Barrows et al., 2013)  

Arthur’s Pass -43 172 5 (4) (Ivy-Ochs et al., 1999)  

Waimakariri -43 172 31 (29) (Rother et al., 2015) 

Rakaia Valley -43/-44 171/172 55 (46) (Shulmeister et al., 2010; Putnam et al., 2013a)  

Cameron glacier -43 171 10 (10) (Putnam et al., 2012)  

Franz Josef -43/-44 170 6 (6) (Barrows et al., 2007b)  

Rangitata Valley -43/-44 171 56 (51) (Rother et al., 2014)  

Pukaki -44 170/171 169 (159) (Schaefer et al., 2006; Putnam et al., 2010a; Kelley et al., 2014; Doughty et al., 2015; Schaefer et al., 2015)  

Ohau -44 170 91 (84) (Kaplan et al., 2013; Putnam et al., 2013b)  

Irishman Stream -44 170 33 (31) (Kaplan et al., 2010)  

Cascade Plateau -44 168 19 (14) (Sutherland et al., 2007)  

Boundary Stream Tarn -44 170 10 (10) (Putnam et al., 2010b)  

Total within Last Glacial Cycle 531 (482)  
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Table 2. The timing of culminations in glacial advances identified from relative cumulative 4 

probability density functions for New Zealand and Patagonia using the New Zealand 5 

production rate of Putnam et al. (2010), and using the Patagonian production rate (PPR) of 6 

Kaplan et al. (2011) for Patagonia. Values in italics indicate peaks that fail to resolve with 7 

only a small change in erosion rate. Values in bold are those quoted in our study and all 8 

other values show the effects of increasing the erosion rate or changing the production rate. 9 

Grey shading indicates the erosion rate required (to the nearest 1 mm ka-1) to create a peak 10 

in New Zealand at the same time as Patagonia (e.g. a 6 mm ka-1 erosion rate is required to 11 

result in a peak in New Zealand at 13.9 ka, the same time as a peak in Patagonia with no 12 

erosion). The difference in timing between three closely-aligned peaks in Patagonia and 13 

New Zealand is given in the bottom row. 14 

Timing of peaks 

Erosion rate Patagonia (ka) 
0 mm ka-1 11.3 13.9 16.7 18.8 26.9 - 37.8 - 56.4 - - 
0 mm ka-1 (PPR) 11.2 13.7 - 18.5 26.1 - 37.2 - 55.7 - 93.3 
1 mm ka-1 11.4 14.1 16.9 19.1 27.5 - 38.9 - 59.1 - - 

2 mm ka-1 11.5 14.2 17.1 19.4 28.1 - 40.2 - 62.2 - - 

3 mm ka-1 11.6 14.4 17.3 19.7 28.8 - 41.6 - 65.8 - - 

4 mm ka-1 11.7 14.6 17.6 20.1 29.5 - 43.1 - 70.0 - - 

5 mm ka-1 11.8 14.7 - 20.3 30.3 - 44.8 - 75.0 - - 

6 mm ka-1 11.9 14.9 - 20.7 31.1 - 46.6 - 81.1 - - 

7 mm ka-1 12.1 15.1 - 21.0 32.0 - 48.7 - 88.9 - - 

8 mm ka-1 12.2 15.3 - 21.4 32.9 - 51.0 - 99.1 - - 

9 mm ka-1 12.3 15.5 - 21.8 33.9 - 53.6 - - - - 

10 mm ka-1 12.4 15.7 - 22.3 35.0 - 56.6 - - - - 

Erosion rate New Zealand (ka) 

0 mm ka-1 - 13.0 - 18.1 26.6 32.7 - 41.3 - 65.3 89.7 
1 mm ka-1 - 13.1 - 18.4 27.2 33.6 - 42.8 - 69.0 96.9 

2 mm ka-1 - 13.2 - 18.7 27.8 34.6 - 44.4 - 73.4 105.7 

3 mm ka-1 - 13.4 - 18.9 28.4 35.6 - 46.2 - 78.7 - 

4 mm ka-1 - 13.5 - 19.2 29.0 36.7 - 48.2 - 85.1 - 

5 mm ka-1 - 13.7  19.6 29.7 37.9 - 50.5 - 93.2 - 

6 mm ka-1 - 13.9 - 19.9 30.5 39.3 - 53.3 - 103.6 - 

7 mm ka-1 - 14.0 - 20.2 - 40.7 - 56.5 - - - 

8 mm ka-1 - 14.2 - 20.6 - 42.4 - 60.1 - - - 

9 mm ka-1 - 14.4 - 21.0 - 44.2 - 64.3 - - - 

10 mm ka-1 - 14.6 - 21.4 - 46.2 - 69.3 - - - 

Difference (ka)  0.9 0.7 0.3        

 15 
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10 Figure captions 

Figure 1. Map of the Southern Hemisphere showing the modern positions of the Sub-

Tropical Front (red), Sub-Antarctic Front (green) and Polar Front (blue) based on Orsi et al. 

(1995) and Carter et al. (2008), as well as the schematic core region of the Southern 

Westerly Winds (yellow-brown; Sime et al., 2013) and the locations of ice and marine core 

records referred to in the text. Note the latitudinal difference of the oceanic frontal systems 

around Patagonia compared to New Zealand. 

Figure 2. (Left) Map of Patagonia, showing the hypothesised extent of the gLGM ice sheet 

from Coronato & Rabassa (2011) and -125 m bathymetric contour to give an impression of 

the likely drop in sea-level at the time. Glacial valleys or systems used in this study are 

labelled (A-K; corresponding to names on the right) as well as major oceanic circulations 

(blue arrows; Brown et al., 2001), Southern Westerly Wind direction (brown dashed arrows; 

Sime et al., 2013), and the Sub-Antarctic Front (green line; Orsi et al., 1995). (Right) 

Probability density functions for each glacial system consisting of all exposure ages (lighter 

shading) and with author-identified outliers removed (darker shading), normalised in both 

cases. The numbers of exposure ages relating to each system are shown without and with 

(in brackets) outliers removed. 

Figure 3. (Left) Map of South Island, New Zealand, showing the hypothesised extent of the 

gLGM icefield from Barrell (2011) and -125 m bathymetric contour to give an impression of 

the likely drop in sea-level at the time. Glacial valleys or systems used in this study are 

labelled (A-K; corresponding to names on the right) as well as major oceanic circulations 

(blue arrows; Brown et al., 2001), Southern Westerly Wind direction (brown dashed arrows; 

Sime et al., 2013), and the Sub-Tropical Front (red line; Orsi et al., 1995). (Right) Probability 

density functions for each glacial system consisting of all exposure ages (lighter shading) 

and with author-identified outliers removed (darker shading), normalised in both cases. The 

numbers of exposure ages relating to each system are shown without and with (in brackets) 

outliers removed. 

Figure 4. The compilation of 10Be exposure ages from Patagonia and New Zealand used in 

this study (see Table 1), shown against the Marine Isotope Stages from Lisiecki & Raymo 

(2005) and the gLGM from Clark et al. (2009). (A and C) For Patagonia and New Zealand, 

respectively: all 10Be exposure ages within 110-10 ka, including author-identified outliers, as 

mean ages with standard errors recalculated using the Putnam et al. (2010b) production 

rate, with no erosion rate applied. The exposure ages are colour-coded according to the 

glacial system from which they are derived, and associated references can be found in Table 

1. (B and D) For Patagonia and New Zealand, respectively: normalised cumulative relative 

probability density function curves, calculated from all of the exposure ages shown in (A and 

C). 
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Figure 5. Examining the effects of calculation parameters on the overall spread of ages in 

our compilation. (A, B and C) Normalised probability density functions from Figure 4 without 

and with author-identified outliers removed. There is little resulting difference in the timing of 

peaks. (B) The effect of calculating all exposure ages from Patagonia with the Patagonian 

production rate of Kaplan et al. (2011). (D and E) The effect on the resulting normalised 

probability density functions of incrementally increasing the erosion rate by 1 mm ka-1 during 

the calculation of all ages in Patagonia and New Zealand. The timing of peaks can be found 

in Table 2. (F and G) The effect of altering the scaling scheme used. The scaling schemes 

are: the time-independent Lal (1991) and Stone (2000; St); Desilets et al. (2006; De); Dunai 

(2001; Du); Lifton et al. (2005; Li); and time-dependent Lal (1991) and Stone (2000; Lm). In 

(D, E, F and G), all author-identified outliers have been removed, the New Zealand 

production rate is used and, where relevant, no erosion rate is applied. 

Figure 6. (A and B) Binned results from an analysis of skewness of probability density 

functions from individual moraine age populations in Patagonia and New Zealand as a crude 

proxy for differential inheritance signatures. The data suggest that inheritance cannot fully 

explain the consistent offset between Patagonia and New Zealand. (C and D) Skewness 

results against the number of exposure ages per moraine and age, respectively, 

demonstrating that these variables do not influence skewness (i.e. inheritance) in Patagonia 

more or less than New Zealand. (D) Younger moraines in both regions show greater 

skewness, indicating greater inheritance. See main text for discussion. 

Figure 7. Orbital insolation parameters relevant to this study, from Berger & Loutre (1991). 

(A) LR04 benthic foraminiferal δ18O stack (Lisiecki & Raymo, 2005), which shows a 

combined signature of global temperature and ice volume, (B) CO2 record from EPICA 

Dome C (Lüthi et al., 2008), and (C) Northern Hemisphere summer (June) insolation 

intensity at 60°N. These three proxies show that global temperatures and Northern 

Hemisphere ice sheets followed Northern Hemisphere insolation during the last glacial cycle. 

(C) also shows Southern Hemisphere winter duration, given that decreasing northern 

summer insolation co-varies with increasing southern winter length (Huybers & Denton, 

2008). (D) Southern Hemisphere summer (December) insolation intensity and (E) Southern 

Hemisphere seasonality at 60°S, 50°S, 40°S and 30°S. Seasonality values are calculated for 

each latitude by subtracting the June (winter) insolation from the December (summer) 

insolation at a given time, such that decreasing seasonality indicates cooler summers and 

warmer winters. These values are then normalised against the mean seasonality at each 

latitude for 110-10 ka. (F, G, H and I) Illustrations of decreasing CO2 levels (F); Northern 

Hemisphere summer insolation intensity minima (G); Southern Hemisphere summer 

insolation intensity minima (H); and the broad overlap between the insolation minima in the 

Northern and Southern Hemispheres (I). The insolation intensity thresholds for these 

illustrations are entirely arbitrary: below 500 W m-2 for the Northern Hemisphere and below 

490 W m-2 for the Southern Hemisphere (60˚S, except for the prolonged decreases at 93-85 

ka and 47-34 ka, where threshold is raised). (J and K) The timing of peaks in our compilation 

for Patagonia and New Zealand, respectively, from Table 2. (L) Our 10Be compilation from 

Patagonia and New Zealand with outliers removed. 
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Figure 8. A comparison of the timing of glacial advance culminations in the southern mid-

latitudes during 110-10 ka with a range of other palaeoclimatic proxies. (A) The LR04 

benthic foraminiferal stack (Lisiecki & Raymo, 2005). (B) The East Dronning Maud Land 

(EDML) ice core δ18O record (EPICA, 2006); (D) the EPICA Dome C (EDC) ice core δD 

record (EPICA, 2006); and (E) the Byrd ice core δ18O record (Blunier & Brook, 2001) as 

proxies for Antarctic temperature changes from different parts of the ice sheet. The EDML 

and EDC records are shown on the AICC2012 common timescale (Veres et al., 2013), 

whereas the Byrd ice core is plotted on its own timescale. (E) Faunal-based Sea Surface 

Temperature (SST) record from core SO136-GC3 as a proxy for regional temperature 

changes west of New Zealand (Barrows et al., 2007a). (F and G) Alkenone-derived SST 

reconstructions for ODP-1233 off the western coast of northern Patagonia (Kaiser et al., 

2005) and for MD07-3128 off the western coast of southern Patagonia (Caniupán et al., 

2011), both plotted on the same scale. (H and I) Records of opal flux from cores TN057-13 

and -14 in the South Atlantic, south of the Polar Front, as a proxy for wind-driven upwelling 

(Anderson et al., 2009). Note that the scales are different.  (J) Diatom-based reconstruction 

of sea ice extent from south of the Sub-Antarctic Front (Crosta et al., 2004), measured as 

the number of months per year that sea ice covered site SO136-111. (K) Ca2+ flux as 

recorded in the EDC ice core as a proxy for dust deposition over Antarctica, sourced 

predominantly from Patagonia (Fischer et al., 2007). (L) A record of Ice-Rafted Debris (IRD) 

from core MD07-3128 (Caniupán et al., 2011). (M and N) Culminations in the timing of 

glacial advances from Table 2. (O) Overlap between Northern Hemisphere and Southern 

Hemisphere summer insolation intensity from Figure 7. (P and Q) Our 10Be compilation from 

Patagonia and New Zealand with outliers removed. 
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11 Supplementary material 

 

11.1 Supplementary figure 

 

 
 
Supplementary figure. A comparison of the exposure ages produced by two different studies on the same 

moraines in the Rakaia Valley system (see Putnam et al. (2013a) for detailed discussion). Shulmeister et al. 

(2010) prepared samples at the University of Canterbury and conducted AMS isotopic analysis at the Australian 

Nuclear Science and Technology Organisation. Putnam et al. (2013a) prepared samples at the Lamont-Doherty 

Earth Observatory Cosmogenic Nuclide Laboratory and conducted AMS analysis at the Lawrence-Livermore 

National Laboratory Centre for Accelerator Mass Spectrometry. In all cases, dashed lines show where ages were 

rejected as outliers in the original studies. The upper horizontal lines are 2σ external uncertainties for ages 

calculated using the time-dependent scaling scheme (Lm) of Lal (1991) and Stone (2000), with vertical ticks 

showing 1σ internal uncertainties. The lower curves show Probability Density Functions (PDFs) for the moraine 

populations from each study, with and without outliers removed. The timing of peaks in these PDFs is shown next 

to the ages, with numbers in brackets indicating populations with outliers removed.  

 

11.2 Supplementary data tables 

Supplementary data tables can be found in the online version of this paper. 

 


