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Abstract 

BACKGROUND: Aethina tumida is a serious pest of the European honey bee (Apis 

mellifera) in North America and Australia. Here we investigate whether Laccase 2, 

phenoloxidase gene essential for cuticle sclerotization and pigmentation in many insects, and 

vacuolar-ATPase V-type subunit A, vital for the generation of proton gradients used to drive a 

range of transport processes, could be potential targets for RNAi-mediated control of A. 

tumida. 

RESULTS: Injection of V-ATPase subunit A (5 ng) and Laccase 2 (12.5 ng) dsRNAs resulted 

in 100 % larval mortality, qPCR confirmed significant decreases and enhanced suppression 

of transcript levels over time. Oral delivery of V-ATPase subunit A dsRNA in solutions 

resulted in 50 % mortality, however gene suppression could not be verified. We suggest that 

the inconsistent RNAi effect was a consequence of dsRNA degradation within the gut due to 
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the presence of extracellular nucleases. Target specificity was confirmed by a lack of effect 

on survival or gene expression in honey bees injected with A. tumida dsRNAs.  

CONCLUSIONS: This is the first study to show evidence for systemic RNAi in A. tumida in 

response to injected dsRNA but further research is required to develop methods to induce 

RNAi effects via ingestion. 

 

Key words: systemic RNAi, small hive beetle (Aethina tumida), Laccase 2, V-ATPase 

subunit A, European honey bee (Apis mellifera) 

 

1. INTRODUCTION 

The European honey bee (Apis mellifera) provides essential pollination services to field, 

horticultural and vegetable crops,1 as well as hive products like honey, wax, pollen and 

propolis. Globally, 35 % of crops at an estimated value of €153 billion depend on animal 

pollinators.2,3 The health and vigour of honey bee colonies are threatened by numerous 

parasites and pathogens.4 Aethina tumida is a coleopteran parasite that has become a major 

problem through extension of its geographical range. In its native range of sub-Saharan 

Africa A. tumida is considered an occasional parasite and scavenger of colonies of African 

honey bee, A. mellifera scutellata5-7 and the Cape honey bee, A. mellifera capensis.8 Growth 

in the international trade of honey bees and hive products over the past 20 years has enabled 

the spread of A. tumida into several countries, and establishment in North America and 

Australia has resulted in severe economic damage to the apiculture industry.9,10 Aethina 

tumida have also been detected in Egypt (2002), Canada (2002 and 2006), Mexico (2007), 

Sudan (2007) and Hawaii (2010).11-13 Aethina tumida is a notifiable pest in the UK and 
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Europe and to-date has not been detected in the UK.14 This was also the case in Europe until 

2014 when A. tumida was detected in south west Italy.15 Since 2011, there have been 

substantial numbers of bee and queen imports from Italy into the UK, raising potential for an 

A. tumida outbreak. Furthermore, the climate and soils (in many areas) of the UK meet the 

developmental needs of A. tumida and thus there is potential for rapid establishment.16 

Current measures used against A. tumida in the USA are often inadequate suffering 

variability in levels of pest control. The in-hive organophosphate, CheckMite + StripsTM (10 

% w/w Coumaphos) designed to control the adult stage are routinely used in conjunction with 

GardStar7 (40 % permethrin), a soil treatment product aimed to control this pest as 

“wandering” larvae (i.e. in search of a suitable site for pupation) leave the hive and enter the 

soil to complete their life-cycle.17,18 Organophosphates are highly toxic to bees, wildlife and 

humans,19 and hence all hive honey combs have to be removed prior to treatment. 

Additionally, the continued use of pyrethroids such as permethrin can give rise to resistance, 

and upon contact, is deleterious to honey bees.20 Given these issues alternative control 

strategies are urgently required.  

RNA interference (RNAi) has been widely used as a means to elucidate gene function 

and is increasingly being recognised as having potential application for the control of insect 

pests, as high sequence specificity predicts negligible effects on non-target organisms.21-23 

This highly conserved eukaryotic post-transcriptional gene silencing mechanism is thought to 

have evolved as a defence against viruses and transposable elements, and as a means of 

regulating endogenous gene expression.24,25 Environmental RNAi can be induced by 

introducing double-stranded RNA (dsRNA) into an insect via microinjection, ingestion or 

soaking, leading to down-regulation of the transcript levels of the targeted gene. The RNA 

pathway is initiated by the cleavage of dsRNA into short interfering RNA (siRNA) by the 

nuclease Dicer.26 The siRNA then binds to the RNA induced silencing protein complex in 
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conjunction with the Argonaute protein, which leads to the specific suppression and 

degradation of targeted mRNA.25  

Whilst the core RNAi machinery appears to be conserved amongst insects, sensitivity to 

environmental RNAi is highly variable between insect species, developmental stages, tissues 

and target genes.22 Three processes are thought to facilitate an RNAi effect: cellular uptake of 

dsRNA, production of secondary dsRNAs in the cell and the transfer of these molecules to 

other cells. If the RNAi signal spreads to other cells the RNAi effect is considered to be 

systemic. The precise mechanisms responsible for the cellular uptake of exogenous dsRNA 

and/or spreading of the silencing signal, both likely to play a key role in determining levels of 

gene silencing, remain undefined in insects. 

RNAi efficiency is also influenced by the mode of delivery, with microinjection allowing 

known doses of dsRNA to be delivered directly into the haemocoel, enabling access to 

haemocytes, fat bodies, epidermal cells and the basal gut epithelial membrane, providing the 

most consistent results. Oral delivery via incorporation into diet or in planta expression has 

proved more challenging and most reported studies have used dsRNAs targeting genes 

expressed in gut cells, thus avoiding reliance upon the transfer of the silencing signal to 

distant tissues for gene suppression. Nevertheless, orally induced RNAi has been achieved in 

Coleoptera,27 Lepidoptera27,28 and Hemiptera.29,30 Oral delivery of dsRNA to dipteran species 

has proved more challenging than microinjection, and certain lepidopteran species require 

high oral doses of dsRNA to trigger an RNAi effect.31 Recent studies suggest that variability 

in RNAi effects may also be influenced by stability of dsRNA to degradation by extracellular 

nucleases (reviewed by Gu and Knipple22, Scott et al.23). 

Evidence for systemic RNAi in Tribolium castaneum and successful RNAi studies in 

other coleopteran insect pests32,27 formed the rationale for our investigations into the potential 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
use of RNAi as a target specific control strategy for A. tumida. The phenoloxidase gene 

Laccase 2 which plays an essential role in cuticle sclerotization and pigmentation in many 

insects, and vacuolar-ATPase V-type subunit A, a component of an enzyme complex vital for 

the generation of proton gradients used to drive a range of transport processes, were selected 

as target genes on the basis of previous RNAi studies.27, 32-35 To our knowledge this is the 

first study to provide evidence for target specific systemic RNAi in A. tumida. 

 

2. EXPERIMENTAL METHODS 

2.1 Insects 

Aethina tumida cultures were maintained in the Quarantine Entomology Unit (Fera 

Science Ltd.) and were originally established from wandering larvae imported under three 

levels of containment supplied by the Plant Protection Research Institute, South Africa. 

Cultures were maintained at 20°C, 65 % RH, under darkness. 

Apis mellifera adults and pupae were supplied from the Fera Home Apiary and were 

maintained at 34°C, 65 % RH, under darkness during bioassays. 

 

2.2 Molecular cloning of Laccase 2 and V-ATPase subunit A 

Total RNA was isolated from 3 week old pupae (Laccase 2) and wandering A. tumida 

larvae (V-ATPase subunit A), respectively, using SV Total RNA Isolation System (Promega) 

according to manufacturer's instructions. First-strand cDNA was synthesised from 1 µg total 

RNA in a 20 µl reaction using Superscript III reverse transcriptase (Invitrogen, Carlsbad, CA, 

USA) with 500 ng oligo(dT)18 primer, according to manufacturer’s guidelines. Degenerate 
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primers were designed to amplify PCR products of 629 base pair (bp), 618 bp and 547 bp for 

Laccase 2, V-ATPase subunit A and GAPDH, respectively (Table 1). Laccase 2 degenerate 

primers were designed based on conserved regions in T. castaneum (GenBank accession no. 

AY884061.2), Monochamus alternatus (accession no. EU093075.1) and Bombyx mori 

BmLac2 (accession AB379590.1). V-ATPase subunit A degenerate primers were designed 

based on conserved regions in T. castaneum, (accession no. XM_971095.2), Musca 

domestica (accession no. XM_005179917.1) and Ceratitis capitata (accession no. 

XM_004533325.1). PCR reactions were performed using Taq DNA Polymerase (Fermentas, 

Life Technologies) under standard conditions. Amplified products were cloned into pJET1.2 

(CloneJET PCR Cloning kit, Thermo Scientific Life Technologies) as described in the 

manufacturer's protocol. Purified plasmids were sequenced by Eurofins MWG (Ebersberg, 

Germany). Genbank accession numbers for cloned partial Laccase 2, V-ATPase subunit A 

and GAPDH sequences are KU696310, KU696311 and KU696309, respectively. 

 

2.3 Production of dsRNA  

Target templates for in vitro transcription were generated using gene specific primers 

based on cloned A. tumida sequences (Table 1). PCR was conducted using Phusion® High-

Fidelity DNA Polymerase (Fermentas, Life Technologies) under standard conditions. 

Products of 301 bp (Laccase 2) and 305 bp (V-ATPase sub-unit A) were restricted with XhoI 

and XbaI, ligated into plasmid Litmus28i (New England BioLabs) and purified plasmids were 

verified by DNA sequencing. Laccase 2 and V-ATPase subunit A dsRNAs were prepared 

using Megascript T7 transcription kit (Ambion), according to the manufacturer’s instructions. 

For control treatments dsRNA was prepared corresponding to a region of a bacterial nptII 

resistance gene (nptII). T7-RNA polymerase was used in transcription reactions, with target 
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template linearized with XhoI and XbaI to generate single-stranded RNA (ssRNA). Each 

ssRNA was precipitated by adding equal amounts of lithium chloride and nuclease-free water 

and re-suspended in Ringers solution (125 mM NaCl, 1.5 mM CaCl2, 5 mM KCl pH 7.31). 

Finally, equal amounts of ssRNA were added together and annealed by heating the reaction 

to 80°C and allowing it to cool to room temperature overnight.  

 

2.4 Analysis of gene expression by quantitative PCR 

Quantitative PCR (qPCR) was performed on A. tumida and A. mellifera cDNA and 

relative expression of Laccase 2 and V-ATPase subunit A was determined using ViiA™ 7 

Real-Time PCR System (Life Technologies) with ΔΔCT methodology. In all cases, except 

for endogenous gene expression experiments, 3 biological replicates containing 5 pooled 

insects for each target gene and time point were analysed. qPCR primers were designed using 

Primer express software for real-time PCR v 2 (Applied Biosystems) (Table 1). Reaction 

mixtures (20 μl) contained 1x SYBR® Green JumpStart™ Taq ReadyMix™(Sigma Aldrich), 

ROX as a reference dye, 10 μM qPCR primers and 200 ng of cDNA or water as a negative 

control. Reactions were run in triplicate. Analysis of amplification profiles was performed 

using ViiA™M 7 software (Life Technologies), according to the manufacturer’s guidelines. 

qPCR experiments were performed according to the MIQE guidelines outlined by Bustin et 

al. 36 Expression of A. tumida Laccase 2 and V-ATPase subunit A was normalized to GAPDH, 

whereas A. mellifera expression was normalized to Elongation factor-1 (EF-1).37 

 

2.5 Expression of Laccase 2 and V-ATPase subunit A during the life-cycle of Aethina 

tumida 

Total RNA was isolated at different developmental stages (eggs, larvae, wandering 

larvae, prepupae, pupae, non-emerged adult and emerged adult) and first-strand cDNA was 
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synthesised as stated in section 2.2. In this case a single biological replicate containing 5 

pooled insects or 50 mg wet weight of eggs were analysed in triplicate. Relative expression of 

targeted genes during the life-cycle of A. tumida was analysed using qPCR. 

 

2.6 RNAi experiments 

2.6.1. Aethina tumida injection bioassays 

Wandering or 7 day old A. tumida larvae were injected using a Hamilton micro-syringe 

fitted with a 26 gauge needle (Essex Scientific Laboratory Supplies Ltd) with doses ranging 

from 2-500 ng of Laccase 2 or V-ATPase subunit A dsRNAs; nptII dsRNA or Ringers 

solution served as negative controls. A. tumida larvae were anesthetised using CO² and 

injected with 1 μl (wandering larvae) or 0.5 μl (7 day old larvae) of dsRNAs or Ringers 

solution. Larvae were injected in the 3rd dorsal segment and needles were left in the larvae for 

30 s prior to withdrawal, to reduce the expulsion of fluid from the wound. Larvae were placed 

in a petri dish after injection to allow the wound to seal. Thereafter, wandering larvae were 

placed in tubs of sand and monitored for phenotype and/or emergence over a period of 35 

days (n=10 per treatment) or removed after 48 hr, 1 week (V-ATPase subunit A) or 3 weeks 

(Laccase 2) (n=15 per treatment) for qPCR analysis. Seven day old larvae were treated in the 

same manner, although after injection they were returned to sandwich boxes containing brood 

food and left to feed until they entered the wandering stage. Time points for qPCR analysis 

were selected based on preliminary assays which indicated that insects injected with dsRNAs 

were still alive at the time of sampling.  
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2.6.2 Aethina tumida feeding bioassays 

Egg slides from A. tumida were placed onto artificial diet containing 50 % (v/w) aqueous 

honey solution (1 ml) and 2.5 g of crushed bee pollen. Larvae were allowed to feed for 7 days 

before being transferred to artificial diets containing Laccase 2, V-ATPase subunit A, control 

nptII dsRNA or Ringers solution. Thirty larvae per treatment were placed onto 900 mg of diet 

containing 30 µg of dsRNA (33 ng/mg), and fresh diet was provided after three days. After 6 

days of feeding the wandering larvae were placed in tubs of sand and monitored for 

phenotype and/or emergence over a period of 35 days. For qPCR analysis 15 larvae (per 

treatment and time point) were treated as stated above. Samples were taken 48 hr after 

feeding on dsRNA or removed after 1 week (V-ATPase subunit A) or 3 weeks (Laccase 2) 

after the wandering stage had commenced.  

In a second feeding bioassay 7 day old larvae (n=20) were transferred into sterile falcon 

tubes containing 300 μl of 50 % (w/v) sterile sucrose solution (prepared with Ringers 

solution) containing 30 µg of each dsRNA or sucrose solution serving as a negative control. 

After 24 hr the larvae were transferred to artificial diet to feed until wandering, thereafter the 

larvae were placed in tubs of sand and monitored for phenotype and/or emergence. qPCR 

analysis was conducted only for V-ATPase subunit A dsRNA treated larvae (n=15 per 

treatment) with samples being removed after 1 week. 

 

2.6.3 Apis mellifera injections bioassays 

Newly emerged A. mellifera workers were anesthetized by cooling on ice and 

subsequently injected under the 5th abdominal segment with 2 μl containing 50 ng of A. 

tumida Laccase 2, V-ATPase subunit A, control nptII dsRNAs or Ringers solution. Injections 

were conducted using a Hamilton micro-syringe fitted with a 33 gauge custom fine needle 
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(Essex Scientific Laboratory Supplies Ltd). Following injection, worker bees were grouped in 

cohorts of 10 or 15 individuals, supplied with 50 % (w/v) sucrose solution and placed in an 

environmental chamber (night cycle, 34°C, and with 60 % R.H). Thereafter, worker bees 

were monitored for phenotype (n=20 per treatment) for 10 days or removed after 48 hr and 1 

week (n=15 per treatment) post-injection for qPCR analysis. Additionally qPCR analysis was 

carried out on 2 day old pharate adults (part of the pupal stage) injected with Laccase 2 

dsRNA as, according to Elias-Neto et al.38 this gene is significantly up-regulated at this stage 

in the life-cycle. Pharate adults were injected as previously described and after injection 

individuals (n=15 per treatment) were carefully positioned in a well of a microtiter plate 

(Thermo Scientific) and removed from the environmental chamber after 48 hr for qPCR 

analysis. All samples for qPCR analysis were snap frozen in liquid nitrogen and stored at -

80°C until use. 

 

2.7 dsRNA stability assays  

2.7.1 Persistence of dsRNA in sucrose solutions containing Aethina tumida larvae 

The stability of dsRNA in sucrose solution was evaluated by incubating 1 μg of V-

ATPase subunit A dsRNA in 10 μl of 50 % (w/v) sucrose solution at 20°C for 22 hr. 

Following confirmation that dsRNA was stable under these conditions two 7 day old larvae 

were incubated in 100 μl of 50 % sucrose solution containing 10 μg of V-ATPase subunit A 

dsRNA, with 10 μl aliquots taken at the following time points: 0, 1, 2, 4, 6, 8, 18 and 22 hr. 

The integrity of the dsRNA was analysed by separation on 1.2 % (w/v) agarose gels and 

bands were visualised by ethidium bromide staining under UV. 

 

To determine whether A. tumida larvae produced extracellular ribonucleases, 7 day old 

(i.e. feeding stage) larvae were incubated for 12 hr in sucrose solution as described above. 
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Thereafter the larvae were removed, 10 μg of V-ATPase subunit A dsRNA was added and 

incubated for 8 hr at 20°C. A second assay was carried out to identify the possible source of 

ribonuclease activity. Wandering larvae (i.e. non-feeding, cleared guts) and frass were 

separately incubated for 8 hr, as described previously, in the presence of 10 μg of V-ATPase 

subunit A dsRNA. The integrity of the dsRNA was analysed by agarose gel electrophoresis. 

 

2.7.2 In vitro stability of dsRNA in larval gut extracts 

Gut samples dissected from 10 feeding stage larvae were re-suspended in 100 μl Ringers 

solution and homogenised using a sterile pestle. Protein content was estimated using 

Coomassie Plus (Bradford) Assay Kit (Thermo Scientific) using Bovine serum albumin as 

standards. The samples were centrifuged for 5 min at 13 000 rpm and the resulting 

supernatant was used in the assay. Gut extract samples (10 μg total protein in 20 μl; 

equivalent to approx. 1/10 of a larval gut) were incubated with 500 ng of V-ATPase subunit A 

dsRNA at room temperature for 5, 15, 30 and 60 min. The integrity of the dsRNA was 

analysed by agarose gel electrophoresis. 

 

2.8 Statistical analysis  

Mortality data from the bioassays were analysed using GenStat version 16.1. Where 

possible 95 % confidence intervals (C.I) and LD₅₀ values were determined using probit 

generalized linear regression adjusted for natural mortality. The qPCR results are presented 

as the mean ±SD of three independent biological replicates and the relative levels of mRNA 

expression was analysed by One-way ANOVA followed by Tukey test for significant 

differences between mean values, using GraphPad Prism version 6.00 for windows. P < 0.05 

was taken as the level of statistical significance.  
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2.9 CLUSTALW analysis of dsRNA sequences 

Aethina tumida dsRNA sequences were compared with A. mellifera Laccase 2 (Genbank: 

FJ470292) and V-ATPase subunit A (GenBank: XM 006567414) using CLUSTALW.  

 

3 RESULTS 

3.1 Expression of Laccase 2 and V-ATPase subunit A during development of Aethina 

tumida 

As shown in Fig. 1A Laccase 2 transcripts were detected at significantly higher levels 

during the three week pupal phase compared to levels at all other developmental stages, 

although the mRNA was detectable throughout the insect life-cycle. The peak in Laccase 2 

mRNA levels during the third week of the pupal stage coincides with the onset of cuticle 

tanning, and subsequently declines to a level close to the detection limit in the emerged adult. 

By contrast, V-ATPase subunit A transcripts were readily detectable during all developmental 

stages (Fig. 1B). Transcript levels were generally higher in the later stages of development 

(i.e. late larval through pupal stage to adult) with the highest levels detected in wandering 

larvae and 3 week old pupae.   

 

3.2 Injection of dsRNA to assess phenotype in wandering Aethina tumida larvae 

The phenotypes observed in wandering A. tumida following injections with 500 ng target 

dsRNAs are shown in Figs. 2A & 2C. All insects injected with Laccase 2 dsRNA died and 

were albino-like in appearance, exhibiting a distinct lack of melanisation in comparison to 

control treatments where tanning was evident 3 weeks after injection (Fig. 2B). Whilst a 
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phenotype (i.e. lack of melanisation) was evident 3 weeks after injection of Laccase 2 dsRNA 

mortality did not occur until 4-5 weeks post-injection and was recorded as failure to emerge 

from sand as adults at approx. 35 days post-injection. The injection of V-ATPase subunit A 

dsRNA also resulted in a lethal phenotype with treated larvae failing to develop into normal 

pupae (Fig. 2D). A failure to develop from the wandering to pupal stage was observed 

approx. 2 weeks after injection of V-ATPase subunit A at which point mortality was not 

always evident; as for Laccase 2 treated insects mortality was recorded when the controls 

emerged as adults. 

Reducing the dose of Laccase 2 dsRNA from 500 ng to 12.5 ng did not reduce lethality 

in wandering stage larvae with 100 % of the adults failing to emerge. A further reduction in 

injection doses to 10 ng, 5 ng and 2 ng Laccase 2 dsRNA did provide a dose response, with a 

respective 90 %, 20 % and 10 % of the adults failing to emerge. Aethina tumida injected with 

V-ATPase subunit A dsRNA at concentrations of 12.5 ng, 10 ng and 5 ng resulted in 100 % 

mortality, with 90 % mortality observed in the 2 ng treatment, assessed as a failure to emerge 

as adults. Control mortality was 10 % in either Ringers solution or nptII dsRNA treatments 

and 100 % survival was recorded in the non-injected control group (Table. 2). LD₅₀ of 7.49 

ng (95 % C.I 2.35-9.35 ng) could only be determined for Laccase 2 due to the high level of 

mortality recorded in the V-ATPase subunit A treatment.   

 

3.3 Effect of injected dsRNA on gene expression in wandering Aethina tumida larvae 

To confirm that lethality was a result of a reduction in mRNA levels the expression of 

target genes in injected insects was assessed by qPCR. For Laccase 2, expression levels were 

analysed for wandering larvae 48 hr and 3 weeks after the injection of 10 ng dsRNA (Fig. 

3A). Larvae injected with Laccase 2 dsRNA exhibited a significant 25-45 % decrease in 
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Laccase 2 mRNA levels 48 hr post-injection relative to the control groups (P < 0.01, One-

way ANOVA followed by Tukey test). Analysis of larvae 3 weeks after injection also 

showed a significant reduction in Laccase 2 transcript levels (by approx. 70 to 87 %) as 

compared to the control treatments (P < 0.0001, One-way ANOVA followed by Tukey test). 

Furthermore mean mRNA levels in Laccase 2 treated insects were significantly lower 3 

weeks post-injection as compared to 48 hr post-injection (P < 0.01, One-way ANOVA 

followed by Tukey test). Transcript levels in wandering larvae injected with 2 ng of V-

ATPase subunit dsRNA were analysed in samples extracted 48 hr and 1 week post-injection 

(Fig. 3B). A significant 31-54 % decrease in relative levels of V-ATPase subunit A mRNA 

was observed 48 hr post-injection relative to the control groups (P < 0.001, One-way 

ANOVA followed by Tukey test) increasing to 67-85 % in samples taken 1 week after 

injection (P < 0.0001, One-way ANOVA followed by Tukey test). Additionally mean mRNA 

levels in V-ATPase subunit A injected insects were significantly lower 1 week post-injection 

as compared to 48 hr post-injection (P < 0.01, One-way ANOVA followed by Tukey test). 

 

3.4 Injection of dsRNA to assess phenotype and effect on gene expression in 7 day old 

Aethina tumida larvae 

Larvae were initially injected in the wandering non-feeding phase as this was an 

appropriate stage for administering dsRNAs, given endogenous expression of the target 

genes, and it was also a convenient developmental stage for injection. It has previously been 

reported that RNAi efficiency can be affected by the developmental stage of an insect.39 To 

verify persistent and systemic RNAi (prior to oral delivery bioassays) within actively feeding 

insects, 7 day old larvae were injected with 50 ng of Laccase 2 and V-ATPase subunit A 

dsRNA. As for wandering larvae, mortality was not evident for Laccase 2 treated insects until 
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4-5 weeks post-injection and 2 weeks after injection of V-ATPase subunit A dsRNA; and in 

both cases was recorded as a failure to emerge as adults 35 days post-injection. Control 

survival ranged from 90-100 % whereas 80 % and 100 % mortality was recorded for Laccase 

2 and V-ATPase subunit A treated insects, respectively (Table 2). For insects injected with 

Laccase 2 dsRNA tanning was delayed and adults that emerged exhibited developmental 

abnormalities (Fig. 2B). The transcript levels of Laccase 2 (assessed 3 weeks after injection 

of 7 day old larvae with 50 ng dsRNA) were a significant 68-78 % lower than controls (Fig. 

3C; P < 0.0001, One-way ANOVA followed by Tukey test). For 7 day old larvae injected 

with 50 ng of V-ATPase subunit A dsRNA mRNA levels were significantly reduced (by 72-

92 % and 55-90 %, respectively) in samples taken 48 h and 1 week post-injection (Fig. 3D; P 

< 0.0001 and 0.01, One-way ANOVA followed by Tukey test). As observed in insects 

injected in the wandering phase, development was arrested at the larval stage (Fig. 2D). It is 

clear from these data that the RNAi effect was persistent and systemic regardless of life stage. 

 

3.5 Oral delivery of dsRNA in artificial diet 

To determine if mRNA levels could be down-regulated via oral delivery of dsRNA, 7 

day old A. tumida larvae (n=30) were fed on artificial diet containing target or control 

dsRNAs (or Ringers solution as a negative control) for 6 days. Adult emergence was 

monitored after approx. 35 days; Ringers control emergence was 100 %, whereas 93 % 

emergence was observed in both nptII and Laccase 2 dsRNA treatments and 73 % emergence 

was recorded in the V-ATPase subunit A dsRNA treatment. 

The expression of V-ATPase subunit A mRNA in treated insects was assessed by qPCR 

analysis of larvae collected 48 hr and 1 week after feeding on artificial diets containing 

dsRNA. Whilst larvae fed on V-ATPase subunit A dsRNA exhibited a slight relative decrease 
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in transcript levels (2-22 %) 48 hr after feeding on dsRNA, no reduction in mRNA levels 

were observed in samples taken after a feeding period of 1 week (results not shown).  

 

3.6 Stability and oral delivery of dsRNA in sucrose solution 

Feeding dsRNA in artificial diets did not trigger RNAi effects and analysis of the 

stability of dsRNA in the diet proved problematic as separation of the pollen and honey from 

dsRNA by centrifugation was incomplete and hence it was unclear if the dsRNA remained 

intact or was degraded over time (results not shown).  

Prior to conducting soaking bioassays the stability of dsRNA in the presence of A. 

tumida larvae was assessed by taking samples over a period of 0 to 22 hr. As shown in Fig. 4 

the dsRNA remained mostly intact for a period of 1 hr, showing a reduction in size indicative 

of exonuclease activity. After 2 hr there is approximately half the amount of dsRNA, as 

compared to time 0, present in the sucrose solution and after 8 hr the dsRNA is completely 

degraded.  

Subsequently a second feeding assay whereby 7 day old larvae (n=20) were soaked for 

24 hr (with the solution being renewed at 8 hr intervals) in sucrose solutions containing 100 

ng/µl of target or control dsRNA, was conducted. Adult emergence was monitored after 

approx. 35 days; sucrose and nptII dsRNA control emergence was 80 % (n=20) and 82 % 

(n=17) respectively, whereas 100 % (n=16) emergence was observed in Laccase 2 dsRNA 

treatments (Table 3). For V-ATPase subunit A dsRNA treatment 50 % (n=18) emergence was 

recorded, with 17 % of the emerged adults exhibiting morphological deformities (Fig. 5A). 

However, when this experiment was repeated, qPCR analysis of samples extracted 1 week 

after feeding on V-ATPase subunit A dsRNA showed that transcript levels were significantly 
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increased rather than decreased in comparison to the control groups (Fig. 5B; P < 0.05, One-

way ANOVA followed by Tukey test). 

 

3.7 In vitro stability of dsRNA in the presence Aethina tumida larvae and frass 

The secretion of extracellular ribonucleases by larvae was investigated by the addition of 

dsRNA to a solution after the removal of feeding larvae that had been immersed in sterile 

water for period of 8 hr. Fig. 6 shows that complete degradation of the dsRNA under these 

conditions occurs and this is also observed when frass was added to dsRNA containing 

solutions. By contrast, dsRNA remained intact when wandering (non-feeding) larvae were 

incubated in dsRNA solutions. These results indicate that extracellular nucleases are secreted 

as part of the digestive process in the guts of feeding larvae.  

 

3.8 In vitro stability of dsRNA in gut extracts 

The stability of dsRNA was assessed in vitro by incubating dsRNA in gut extracts for 0 

to 60 min. Analysis of these samples showed that dsRNA degradation commenced within an 

incubation period of 5 min and degradation of the dsRNA was complete after 60 min (Fig. 7).  

 

3.9 CLUSTALW analysis of Aethina tumida and Apis mellifera Laccase 2 and V-ATPase 

subunit A mRNA 

Partial sequences of A. tumida and A. mellifera Laccase 2 (Genbank: FJ470292) and V-

ATPase subunit A (GenBank: XM 006567414) were aligned to assess potential for cross-

species RNAi effects. Comparisons of A. tumida and A. mellifera Laccase 2 and V-ATPase 
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subunit A mRNAs revealed the presence of conserved regions, however coverage was limited 

to, at most, a 15 bp region (data not shown). The likelihood of introduced A. tumida dsRNA 

eliciting an RNAi response within the honey bee A. mellifera is low given the absence of 20-

25 nt stretches of homology.                                          

3.10 Effect of injected Aethina tumida dsRNA on phenotype and gene expression in Apis 

mellifera  

To investigate whether A. tumida target dsRNAs caused mortality and/or down-

regulation of A. mellifera Laccase 2 and V-ATPase subunit A mRNAs, adult honey bees were 

injected with 50 ng of target dsRNAs. Survival for both controls and dsRNA treated A. 

mellifera was 100 % after 10 days. As shown in Fig. 8, qPCR analysis confirmed that mRNA 

levels were not down-regulated in either Laccase 2 injected pharate adults or V-ATPase 

subunit A injected adult honey bees, as compared to controls. Considerable variation in 

expression levels across different replicates was notable in these experiments and may, in 

part, be attributable to slight differences in the developmental stage of the bees that were used 

in the assays.  

                         

4. DISCUSSION  

The small hive beetle (A. tumida), a scavenger and predator of the European honey bee, 

has already spread from Africa to countries including the US, Australia, Canada and Mexico 

and has potential to establish in Europe and the UK. Current pest control measures are 

challenged by the need for target specificity and high efficacy. RNAi, able to cause the 

destruction of target specific mRNAs, offers possibilities for the development of a new 
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approach to combat this economically significant pest without jeopardising the health of 

honey bee populations.  

Here we report significant dose-dependent mortality of A. tumida following the 

injections of 2-12.5 ng doses of dsRNAs targeting Laccase 2 and V-ATPase subunit A 

mRNAs. Analysis of relative mRNA levels by qPCR confirmed target gene knock-down and 

significantly enhanced levels of gene suppression over time demonstrated that the RNAi 

effect was persistent and systemic.  

Laccases are a group of multi-copper enzymes present in plants, fungi, bacteria and 

insects.39 In many insects, two types of laccase genes have been identified, namely Laccase 1 

and Laccase 2.33,34 Laccase 2, a phenoloxidase gene, is expressed in the insect epidermis and 

has been shown, using RNAi, to be essential for normal beetle cuticle tanning.33 Injections of 

dsRNA encoding Laccase 2 into prepupal T. castaneum resulted in dose and time-dependant 

mortality. Delivery of 200 ng of dsRNA per prepupa inhibited tanning in adults, and resulted 

in severe developmental abnormalities and mortality. When the dose was reduced to 2 ng per 

prepupa, this resulted in more normal looking adults, although a degree of malformation was 

observed and the tanning process was delayed by several days. This is comparable to the 

results presented in this study where A. tumida injected with 500 ng of Laccase 2 dsRNA 

showed an albino type appearance, a distinct lack of melanisation and failure to emerge. A 

further reduction in dose to 12.5 ng and 10 ng, resulted in a similar phenotype and the adult 

that emerged was distinctly malformed, struggled to walk and died in a premature manner. 

The observed phenotype was confirmed to be a consequence of down-regulation of Laccase 2 

and, in addition qPCR analysis provided evidence for an increase in levels of gene 

suppression with time, indicative of transmission and persistence of the silencing signal. 

V-type ATPases are highly conserved membrane bound proton pumps responsible for 

multiple processes including the acidification of organelles (eg. secretory vesicles, 
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lysosomes) and the maintenance of membrane potential. This enzyme is present in almost all 

epithelial tissues of insects and plays a vital role in nutrient uptake and ion balance in the 

insect digestive tract40,41 making it an ideal target for RNAi. V-type ATPases are 

heteromultimeric proteins comprised of a membrane bound protein conducting complex and 

a peripheral catalytic domain; sub-unit A is one of 8 peripheral domain sub-units that are 

located on the apical membrane surface. V-ATPase subunit A was used as a target gene in the 

breakthrough RNAi study where it was shown that orally delivered dsRNAs were highly 

efficacious towards larvae of Western (Diabrotica virgifera) and Southern (D. 

undecimpunctata howardi) corn rootworm and Colorado potato beetle (Leptinotarsa 

decemlineata) larvae.27 Here we show that A. tumida larvae have a strong RNAi response to 

V-ATPase subunit A, as delivery of as little as 2 ng of V-ATPase subunit A dsRNA elicited a 

lethal phenotype. This phenotype was observed several days prior to pupal metamorphism 

when V-ATPase subunit A transcript levels are at their highest during the life-cycle of A. 

tumida. Gene expression analysis revealed that larvae injected with V-ATPase subunit A 

dsRNA exhibited significantly enhanced levels of gene suppression from 48 hr to 1 week 

post-injection. These data, as for Laccase 2, indicated that the silencing signal was amplified 

in A. tumida after injection with dsRNA.  

Attempts to induce RNAi effects via oral delivery produced highly variable results. A 

factor that may influence RNAi efficiency is the development stage at which the insect is fed 

dsRNA.39 Araujo et al.43 reported that transcript levels of nitrophorin 2 from the saliva glands 

in Rhodnius prolixus were down-regulated in the 2nd instar relative to controls, however no 

effect was observed in 4th instar larvae after feeding on artificial diets containing dsRNA. Our 

results show that injections of V-ATPase subunit A dsRNAs resulted in mortality and target 

gene suppression in both feeding and wandering stage larvae suggesting that life stage is not 

a limiting factor in eliciting an RNAi response within A. tumida. 
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It is clear that A. tumida are highly susceptible to dsRNA delivered via injection, but 

larvae fed on diets or “soaked” in solutions containing dsRNA showed no consistent evidence 

for RNAi effects. The complete lack of phenotype or gene suppression observed for feeding 

experiments with Laccase 2 dsRNA were not unsurprising given the requirement for an 

RNAi effect upon delivery of the silencing signal from the gut to the epidermal tissue, where 

this gene is expressed. By contrast, 50 % mortality and deformities in surviving adults that 

had been soaked as feeding stage larvae in V-ATPase subunit A dsRNA containing solutions 

was indicative of an RNAi effect. Nonetheless these results could not be validated by qPCR 

analysis in a repeat experiment. This is in contrast to Baum et al.27 who reported that coating 

synthetic diets with target specific V-ATPase subunit A dsRNAs provided respective LD₅₀’s 

of 1.82 and 5.2 ng/cm2 for D. virgifera and L. decemlimeata larvae. However, even in this 

study no effects on survival or growth were observed when larvae of the cotton boll weevil 

(Anthonomus grandis) were fed on diets coated with dsRNA, leading the authors to suggest 

that not all coleopteran larvae may be sensitive to orally delivered dsRNA. As for A. tumida, 

the desert locust (Schistocerca gregaria) and the migratory locust (Locusta migratoria) have 

been shown to be highly sensitive to dsRNA when delivered via injection, but oral delivery of 

dsRNA has proved unsuccessful.44,45  

We speculated that the lack of consistent effects for A. tumida larvae fed on dsRNAs 

may be a consequence of dsRNA degradation within the gut of A. tumida preventing 

sufficient uptake of dsRNAs by epithelial cells to induce an RNAi response. Initial 

experiments showing increased dsRNA degradation with time when feeding larvae were 

soaked in sucrose solutions was indicative of ribonuclease activity, either in the gut or larval 

regurgitant. In vitro studies also provided evidence that dsRNA was prone to degradation 

with complete digestion occurring within an hour of incubation with gut tissue, although it is 

noted that these homogenised extracts would contain intracellular and extracellular 
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ribonucleases. Degradation of dsRNAs by extracellular ribonucleases was illustrated by the 

instability of dsRNA that had been added to solutions in which larvae had been soaked, and 

by degradation following the addition of frass to dsRNA containing solutions. By contrast, no 

degradation was observed when wandering (i.e. not feeding) stage larvae were incubated in 

dsRNA solutions providing further evidence that extracellular ribonucleases are secreted 

during digestion in the larval gut. Similarly Allen and Walker 46 who found that RNAi could 

be induced by injection but not feeding in the hemipteran plant bug (Lygus lineolaris) 

hypothesised that dsRNA degradation prevented uptake of dsRNA into cells and 

demonstrated that saliva rapidly digested dsRNA. There is also direct evidence for the 

expression of dsRNA-degrading enzymes in the digestive juice of larvae of the lepidopteran 

Bombyx mori.47 More recently Wynant et al.45 identified four candidate double stranded 

ribonucleases (dsRNase) that are expressed in the gut of the locust Schistocerca gregaria and 

subsequently provided evidence for the involvement of Sg-dsRNAses 2 in the degradation of 

dsRNA. We provide further evidence here to illustrate that the protection of dsRNA from 

degradation by RNAses plays a key role in determining the successful application of RNAi 

for insect pest control.  

The exploitation of RNAi as a strategy for the control of insect pests requires careful 

selection of target genes in order to achieve specific and effective silencing. Generally a 

specific segment of mRNA not shared amongst insects is targeted to elicit the RNAi effect in 

the selected pest. When dsRNAs are introduced into a cell they are cleaved into short 

fragments of approximately 20-25 nt in length and bind with high specificity to endogenous 

mRNA, disrupting the expression of the targeted protein product. Baum et al.27 reported that 

D. virgifera V-ATPase subunit A dsRNAs produced an effective oral RNAi effect in D. 

virgifera larvae but also (when fed at higher concentrations) in L. decemlineata. The 

nucleotide sequence identities between D. virgifera and L. decemlineata were 83 % for V-
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ATPase subunit A and 3 identical regions of 20-29 nucleotides can be identified in the 

published sequence alignment providing an explanation for non-target effects. In this study 

the alignment of A. mellifera and A. tumida Laccase 2 and V-ATPase subunit A mRNAs 

indicated at most conserved regions of 15 bp and sequence identities were 74 % and 68 %, 

respectively. Honey bees are known to be highly susceptible to RNAi.48,49 We hypothesised 

that the absence of identical regions of more than 20 nucleotides in A. mellifera and A. tumida 

Laccase 2 and V-ATPase subunit A sequences would ensure that RNAi effects would be 

specific to A. tumida. In agreement we demonstrated that injections of 50 ng of dsRNAs into 

honey bees had no effect on survival and did not induce suppression of either of the target 

genes.   

Our work has shown that the small hive beetle has a robust and systemic RNAi response 

to injected, but not ingested dsRNAs, targeting the genes Laccase 2 and V-ATPase subunit A. 

An absence of effects on survival and gene expression in honey bees injected with A. tumida 

dsRNAs was consistent with target specificity predicted on the basis of sequence alignments 

of orthologous genes. Whilst oral delivery of V-ATPase subunit A dsRNA resulted in 

increased A. tumida larval mortality and malformed survivors, these results could not be 

verified by qPCR analysis. Evidence for degradation of ingested dsRNAs by extracellular 

ribonucleases in the guts of feeding larvae is thought to explain, at least in part, the lack of 

consistency in feeding experiments. The development and implementation of RNAi based 

pesticides holds great potential for new target specific and environmentally benign 

applications. However, to translate this approach into a viable control strategy for target 

specific control of A. tumida in apiculture a further research to develop a suitable method to 

induce an oral RNAi response is required. 
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Table 1. Sequence of forward (F)/reverse (R) primers used for both Laccase 2 and V-ATPase 

subunit A cDNA subcloning, dsRNA synthesis and qPCR analysis 

 

Primer                           Sequence 5’-3’ 

 

PCR for cDNA sequencing  

Lac F1                 GACGTVGAGAACCAYATSGAAGG 

Lac R1                 CGTATCKTTCMCCWGARAACG 

VTE F2       GKGARATYATYCGTYTGGARGGYGAHATG       

VTE R1     GMYTGYGAGATKACRGTYTTRCCRCA 

 

PCR for dsRNA synthesis 

Lac (RS) F                 TATCTCGACGTGGAACCCAATATTACGA           

Lac (RS) R    ATATCTAGAGACCGGTGTTTACAGCCAAT 

VTE (RS) F    TATCTCGAGGGTGTAACAGTTGGTGATC 

VTE (RS) R    ATATCTAGACCCTTGGCTTTAGGTGGCA 

 

Quantitative PCR (qPCR) 

A. tumida Lac F   CCCATTGGAAGTGTTCACCAT 

A. tumida Lac R   GAAGCGAAGGAGTTGATGATACG 

A. tumida VTE F   TGTGGCCTGTACGTCAACCA 

A. tumida VTE R   TCCGGTGAGAAGAGGATGATTC 

A. tumida GAPDH F   TTCGAGATCGTGGAAGGTTTG 

A. tumida GAPDH R   CAGAGGGACCGTCGACAGTT 

A. mellifera Lac F   CGTGAGCCAATTGAAGAATG 

A. mellifera Lac R   GCCTGTAGAAGAGGAAACGG 

A. mellifera VTE F   GACATCGACTTTCTCACCGA 

A. mellifera VTE R   AGTAAGCCTTGGCTCGTCAT 

A. mellifera EF-1 F                          CTGGTACCTCTCAGGCTGATTGT 

A. mellifera EF-1 R            GCATGCTCACGAGTTTGTCCATTCT 
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 Table 2. Survival of Aethina tumida wandering and feeding stage larvae (n=10 per 

treatment) injected with different doses of Laccase 2 or V-ATPase subunit A dsRNAs, 

controls were injected with nptII dsRNA or Ringers solution. 

 % Both of the emerged adults had deformities, but were included in the survival ٭

 

  

 

 

 

 

 

Treatment  Dose (ng)     Survival (%)    95 % C.I (ng)
Wandering stage           
Non-injected - 100 - 
Ringers Control - 90 - 
nptII   12.5 90 - 
    
Laccase 2 12.5 0 2.35-9.35 
 10.0 10 - 
 5.0 80 - 
 2.0 90 - 
    
V-ATPase subunit A 12.5 0 - 
 10.0 0 - 
 5.0 0 - 
 2.0 10 - 
  95 % C.I survival (%)
Feeding stage larvae   
Non-injected  - 100 74 – 100 
Ringers Control - 100 74 – 100 
nptII   50 90 62 - 99 
Laccase 250 - 4 20 50 ٭ 
V-ATPase subunit A 50 0 0 - 26 
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Table 3. Survival of Aethina tumida soaked in 50 % sucrose solutions containing 10 µg of 

Laccase 2, V-ATPase subunit A or nptII dsRNA and sucrose solution served as an additional 

control. 

 

Treatment    Survival (%) Sample No. 95% C.I survival (%)
Sucrose Control         80      20 59 - 92 
nptII           82       17 60 - 95 
Laccase 2       100       16  83 - 100 
V-ATPase subunit         50       18 28 - 72 
  of the emerged adults had deformities, but were included in the survival 3 ٭
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Figure 3. Relative expression of: (A) Laccase 2 mRNA in Aethina tumida wandering larvae 48 hr and 3 weeks 

after injection of 10 ng Laccase 2 dsRNA (Lac 2); (B) V-ATPase subunit A mRNA in wandering larvae 48 hr 

and 1 week after injection of 2 ng V-ATPase subunit A dsRNA (VTE); (C) Laccase 2 mRNA in feeding stage (7 

day old) larvae 3 weeks after injection of 50 ng Laccase 2 dsRNA; (D) V-ATPase subunit A mRNA in 7 day old 

larvae 48 hr and 1 week after injection of 50 ng V-ATPase subunit A dsRNA. Controls are non-injected (NI); 

Ringers (Ring Con) and nptII dsRNA injected. Expression levels are normalised to GAPDH mRNA. RQ set to 1 

for NI. All error bars represent the ±SD of the mean, as determined from three independent replicates (n=5 

insects per replicate), each with three technical replicates. Bars topped with the same letter are not statistically 

different at P < 0.05. 
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Figure 8. Relative expression of: (A) Laccase 2 mRNA in 2 day old A. mellifera pharate adults 48 hr after 

injection with 50 ng of A. tumida Laccase 2 dsRNA (Lac 2); (B) V-ATPase subunit A mRNA in A. mellifera 48 

hr and 1 week post-injection with 50 ng of A. tumida V-ATPase subunit A dsRNA (VTE). Expression levels are 

normalised to Elongation factor-1 (EF-1) mRNA. Controls are non-injected (NI); Ringers (Ring Con) and nptII 

dsRNA injected. Expression levels are normalised to GAPDH mRNA. RQ set to 1 for NI. All error bars 
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with three technical replicates. Bars topped with the same letter are not statistically different at P < 0.05. 
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