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We investigate Born-Oppenheimer breakdown (BOB) effects (beyond the usual mass scaling) for the
electronic ground states of a series of homonuclear and heteronuclear alkali-metal diatoms, together
with the Sr2 and Yb2 diatomics. Several widely available electronic structure software packages are used
to calculate the leading contributions to the total isotope shift for commonly occurring isotopologs of
each species. Computed quantities include diagonal Born-Oppenheimer corrections (mass shifts) and iso-
topic field shifts. Mass shifts dominate for light nuclei up to and including K, but field shifts contribute
significantly for Rb and Sr and are dominant for Yb. We compare the ab initio mass-shift functions for
Li2, LiK and LiRb with spectroscopically derived ground-state BOB functions from the literature. We find
good agreement in the values of the functions for LiK and LiRb at their equilibrium geometries, but
significant disagreement with the shapes of the functions for all 3 systems. The differences may be
due to contributions of nonadiabatic terms to the empirical BOB functions. We present a semiclassical
model for the effect of BOB corrections on the binding energies of near-threshold states and the positions
of zero-energy Feshbach resonances.
� 2016 The Authors. Published by Elsevier Inc. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

The Born-Oppenheimer approximation (BOA) lies at the heart of
chemical and molecular physics. It underpins the concepts of
potential energy curves and surfaces that are universally used to
understand and interpret molecular structure and dynamics. For
many purposes, the BOA is adequate and it is not necessary to go
beyond it. However, for light nuclei and high-precision work, devi-
ations from the BOA are important. Quantitative investigations of
such deviations go back at least to the theoretical work of Kołos
and Wolniewicz on H2 [1,2], which stimulated reinterpretation of
the experimental spectrum by Herzberg [3]. They are also impor-
tant for Hþ3 [4], and they have been characterized spectroscopically
for hydrides such as HeH+ [5], BeH+ [6], HF [7–9], HCl [9,10], HBr
and HI [9], AgH [11,12], LiH [13], BeH [14] and MgH [15] and for
CO [16], Li2 [17–19], LiK [20], and LiRb [21]. For molecules without
such light nuclei, the deviations have been hard to detect [22–24],
although indications of them have been seen in K2 [25], Rb2

[22,26], and I2 [27,28].
Recent developments in the field of ultracold atoms and
molecules offer a new stimulus to understand deviations from
the BOA. Key quantities in this field are the binding energies of
levels very close to dissociation and the positions of zero-energy
Feshbach resonances as a function of magnetic field [29]. The latter
are essentially the fields at which the energies of bound molecular
states exactly equal those of free atoms. For pairs of heavy atoms,
potential curves derived from one isotopolog have been very suc-
cessfully used to predict resonance positions for another by simply
rerunning the scattering calculations with a different reduced mass
(and different atomic properties such as nuclear spins and hyper-
fine splittings) [30–32]. However, Julienne and Hutson [33] have
recently shown that deviations from the BOA are responsible for
4 G of the shift in resonance position between 6Li+6Li and 7Li+7Li,
and have obtained potential curves that include the necessary
corrections for both the singlet and triplet states.

Breakdown of the BOA is also crucial for attempts to use the
spectroscopy of ultracold molecules to explore fundamental phy-
sics. For example, Kitagawa et al. [34] have measured the binding
energies of near-dissociation states of several isotopologs of Yb2

and similar experiments are underway for Sr2 [35–39]. For Yb2,
binding energies are generally in good agreement with the predic-
tions of Born-Oppenheimer mass scaling. However, there are
proposals to use the small deviations from such scaling to place

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jms.2016.08.007&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.jms.2016.08.007
http://creativecommons.org/licenses/by/4.0/
mailto:jesse.lutz.ctr@afit.edu
http://dx.doi.org/10.1016/j.jms.2016.08.007
http://www.sciencedirect.com/science/journal/00222852
http://www.elsevier.com/locate/jms


44 J.J. Lutz, J.M. Hutson / Journal of Molecular Spectroscopy 330 (2016) 43–56
limits on the magnitude of a ‘‘fifth force” that may exist in addition
to the familiar electromagnetic, gravitational and strong and weak
nuclear forces (see, e.g., Refs. [40–42]). Before any such effects can
be ascribed to novel physics, it is crucial first to consider deviations
from mass scaling that arise from conventional physics.

The purpose of the present paper is to explore the capabilities of
current theoretical methods for calculating deviations from the
BOA, and to investigate their magnitude for species of importance
in the study of ultracold molecules. These include both homonu-
clear and heteronuclear alkali-metal diatomics and molecules such
as Sr2 and Yb2. For the heavier molecules, almost nothing is known
about the corrections needed, and even order-of-magnitude esti-
mates are valuable. We consider effects due to both finite nuclear
mass (isotopic mass shifts) and finite nuclear volume (isotopic field
shifts).

The structure of this paper is as follows. Section 2 describes the
theory underlying isotope shifts and outlines previous work.
Section 3 describes the software packages and approximations
used in our work and presents and discusses the results of our elec-
tronic structure calculations. Section 4 compares our results with
empirical Born-Oppenheimer correction functions, and Section 5
considers the role of isotope shifts in ultracold molecular physics.
Section 6 summarizes our conclusions.

2. Theory

Electronic structure theory provides a framework for computing
isotope shifts. Atomic and molecular calculations are usually
performed assuming a priori that the nuclei are both infinitely
heavy and infinitely tiny, i.e., they are treated as point charges.
The former approximation is commonly called the BOA, although
it resembles the treatment of Born and Huang [43] more than it
does the original proposition of Born and Oppenheimer [44].

For atomic systems, the theory of isotopic shifts has been rigor-
ously developed within a relativistic formalism [45] and dedicated
programs are widely available for their ab initio calculation
(see, e.g., Refs. [46,47]). Meanwhile, in molecular systems,
bonding-induced isotopic shifts produce relatively small effects
in spectroscopic results. To help diagnose whether isotopic mass
shifts are important in a given application, Born and Huang derived
a first-order perturbative correction to the BOA energy [43], which
can take the form

DVad
a;kðRnÞ ¼

X
A

hWkðr;RnÞjT̂AjWkðr;RnÞi; ð1Þ

where a indicates the isotopolog, T̂A ¼ � �h2

2MA
r̂2

A is the kinetic energy

operator for nucleus A and Wkðr;RnÞ is the normalized electronic
wavefunction for state k obtained within the BOA, with explicit
dependence on electronic positions r and parametric dependence

on nuclear positions Rn. The quantities DVad
a;kðRnÞ are known as

adiabatic corrections or diagonal Born-Oppenheimer corrections
(DBOCs).

The approach embodied by Eq. (1) appears to be problematic
from a formal perspective, because the equations involve manipu-
lating continuum functions as if they were normalizable. Fortu-
nately, as was later shown by Kutzelnigg [48], this form of the
adiabatic correction is correct and, in fact, can be derived rigor-
ously by avoiding the actual specification of relative coordinates
in the center-of-mass separation.

The equations of the pragmatic ansatz of Eq. (1) were first
solved using Hartree-Fock (HF) wavefunctions by Sellers and Pulay
[49], and later by Handy et al. [50]. The expressions are evaluated
by holding all but one nucleus fixed and calculating analytic
derivatives of the wavefunction with respect to the coordinates
of the remaining nuclei. The significance of the correction was
established by early investigations of its effect on molecular bond
lengths and vibrational frequencies [51,52], thermochemical
reaction barrier heights [53,54] and the singlet-triplet gap in
methylene [55]. Adiabatic corrections for water were a critical
component of models that demonstrated the existence of water
on the sun [56–59]. Computing adiabatic corrections at the HF
level has by now become so routine that they are included in
standard composite methods for high-accuracy thermochemical
calculations [60–63].

Valeev and Sherrill showed that the inclusion of electron corre-
lation via configuration interaction in the wavefunction can lead to
changes in the absolute DBOC of a few percent for some systems,
with the most pronounced effects occurring in hydrides [64,65].
When changes with respect to geometry are considered instead,
correlation effects can contribute much more significantly [66],
in the same way as correlation can contribute more significantly
to relative than to total energies. The CFour package [67] has made
available codes for the analytic evaluation of adiabatic corrections
using wavefunctions from coupled-cluster (CC) calculations [68]
and Möller-Plesset perturbation theory [69]. Schwenke also evalu-
ated adiabatic and non-adiabatic corrections [70] using internally
contracted multireference CI wavefunctions [71,72], but unfortu-
nately his program was not widely distributed. It is reported [73]
that the next release of the GAMESS software package will have
the capability to compute DBOCs based on scalar-relativistic
Hamiltonians.

Nonadiabatic corrections, originating from the off-diagonal
matrix elements of the nuclear kinetic energy operator, can be
essential for understanding molecular dynamics when different
electronic states come close together [74]. Even for nondegenerate
electronic states, they can make significant contributions to
spectroscopic line positions, as discussed below. Nevertheless, an
adiabatic representation is convenient because it retains the con-
cept of a potential energy surface [75,76] and can be obtained
using standard analytic derivative techniques [50,68]. For these
reasons, we focus here on obtaining adiabatic corrections, though
we note that good progress has recently been made for obtaining
highly accurate nonadiabatic corrections by Pachucki and Komasa
[77,78].

There is a fundamental difference between the interpretations
of the Born-Oppenheimer approximation in common use among
spectroscopists and electronic structure theorists. These are most
easily illustrated by considering the two different treatments of a
diatomic molecule.

Electronic structure theorists normally consider nuclei moving
on the potential energy curves or surfaces. For a diatomic molecule,
the internuclear distance is Rn and the reduced mass for nuclear
motion is ln ¼ M1M2=ðM1 þM2Þ, where M1 and M2 are nuclear
masses. This separation gives the form of the Born-Oppenheimer
approximation described above. However, it has the disadvantage
that the nonadiabatic corrections are nonzero even as Rn !1,
and this presents problems for scattering theory because the
asymptotic wavefunctions are not simple products of the wave
functions of the separated atoms.

In spectroscopy and scattering theory, by contrast, it is common
to consider atoms moving on effective potential energy curves.
Electrons are considered to be parts of the atoms and to move with
them. This makes good physical sense, at least for core electrons,
which are tightly bound to the nuclei. For a diatomic molecule,
the reduced mass for atomic motion is la ¼ M1aM2a=ðM1a þM2aÞ,
where M1a and M2a are atomic masses.

The formal justification of this approach is based on work by
Bunker and Moss [79] and Watson [80]. Bunker and Moss derived
an effective Hamiltonian for a single electronic state of a diatomic
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molecule, taking nonadiabatic couplings into account by means of
a contact transformation. Their treatment introduces nonadiabatic
corrections through both an effective potential term DWðRÞ (which
scales as l�2) and separate R-dependent reduced masses lvibðRÞ
and lrotðRÞ for the vibrational and rotational motion, which differ
from ln by terms that scale as l�1. In subsequent work, Bunker
et al. [81] showed that, if the R-dependence is neglected, the value
of lvib that gives an optimum fit to the full nonadiabatic energies of
H2 is closer to la than to ln. Watson [80] showed that the effective
Hamiltonian of Ref. [79] may be rearranged to a form containing
the ‘‘charge-modified reduced mass” lC ¼ M1aM2a=ðM1aþ
M2a �meQÞ, where Q is the molecular charge; lC reduces to la

for a neutral molecule. The replacement of ln with la substantially
reduces the remaining nonadiabatic corrections if the electrons
move with their respective nuclei; that is, lvibðRÞ and lrotðRÞ are
much closer to la than to ln. It essentially corresponds to a change
of viewpoint: if la is used as the reduced mass, then the nonadia-
batic terms account for the extent to which the electrons fail to
move with their ‘‘parent” atom, whereas if ln is used then the
nonadiabatic terms need to account for the extent to which the
electrons move with the nuclei at all.

Watson [80] showed that it is not possible to determine both the
adiabatic correction to the potential and thenonadiabatic correction
terms in lvib simultaneously from transition frequencies alone, and
gave an expression for an effective adiabatic correction that absorbs
the nonadiabatic corrections in lvib (but not those in lrot).

Watson’s nonadiabatic corrections become asymptotically zero
when the electrons of each atom move with it and the atomic
reduced mass is used. However, his effective adiabatic corrections
are not necessarily asymptotically zero. Nevertheless, we are free
to choose the zero of energy for each isotopolog, and it is conve-
nient to choose it as the energy of the free atoms at the threshold
of greatest interest (which is the ground-state dissociation energy
in the present work). With this choice, the value of DVad

a;0 at infinity
for each isotopolog is absorbed into the definition of the origin, and
only DVad

a;0ðRÞ � DVad
a;0ð1Þ is explicitly included as an adiabatic

correction. Pachucki and Komasa [77,78] give a perturbative treat-
ment of nonadiabatic effects that reaches the same conclusion.
Non-zero adiabatic corrections at infinity are still required for
any electronic states that dissociate to different limits.

In the context of electronic structure theory, Handy and Lee [52]
recommended that atomic masses be used rather than nuclear
masses when computing adiabatic corrections. Kutzelnigg [82] also
discussed this question in detail, and concluded that at least
inner-shell electrons should be considered to move with the nuclei.
Nevertheless, the usual convention in electronic structure theory is
to use nuclear masses [66], and we follow that convention for the
electronic structure calculations in this paper.

For atomic systems, the quantity that corresponds to the molec-
ular adiabatic correction is the nuclear mass shift. Traditionally,
the total atomic mass shift was separated into a normal mass shift
and a specific mass shift [83]. The normal mass shift is obtained sim-
ply by replacing all electron masses with reduced masses
le ¼ memn=ðme þmnÞ in the calculation, and results in a simple
scaling of all atomic state energies (and transition frequencies)
by a factor le=me. The specific mass shift, however, varies from
state to state and its calculation involves mass polarization terms
written in terms of products of momentum operators on pairs of
electrons. More recently, it has been recognized that this approach
can be unreliable, and that a more complete result may be
obtained in terms of the relativistic nuclear recoil operator [84].
At least in the nonrelativistic case, the adiabatic correction as
evaluated by electronic structure programs such as CFour is
asymptotically equivalent to the sum of the total mass shifts of
the constituent atoms.
For heavy atoms, isotope shifts are usually dominated by the
nuclear field shift, which results from the finite volume of the
nucleus, rather than by the mass shift. In quantum mechanics,
electrons can penetrate nuclei, and the electric potential they
experience inside the nucleus is less negative than �Ze=ð4p�0rÞ.
Consequently, the energies of penetrating orbitals are shifted
upwards due to the finite size of the nucleus. The magnitude of this
effect depends on the structure of the nucleus involved, but can be
shown to a rough approximation [85] to scale with the atomic
number Z and mass number A as

dEAA0
FS /

Z2ffiffiffi
A3
p : ð2Þ

In atomic spectroscopy the interplay between mass and field shifts
has been studied extensively and a crossover point is estimated to
occur at Z � 38 [86].

The theory of isotopic field shifts was first formulated for
atomic systems by Rosenthal and Breit [87] and by Racah [88] in
1932. Assuming a spherical nuclear charge distribution and per-
forming a power expansion of the electron density within the
nucleus, the conventional model gives the first-order perturbative
correction to the energy shift of level i in going from isotope A to A0

for an atom as

dEð1ÞA;A
0

i ¼ 2p
3

Z
e2

4p�0

� �
jWð0Þj2i kA;A

0
: ð3Þ

Here jWð0Þj2i is the density at the nucleus, often known as the con-
tact density, and to a first approximation the so-called ‘‘nuclear

parameter”, kA;A
0
, is

kA;A
0 ¼ dhr2iA;A0 ¼ hr2iA0 � hr2iA; ð4Þ

where dhr2iA;A0 is the difference in nuclear rms charge radii between
isotopes A and A0, sometimes indicated by the notation A0  A. A
tabulation of nuclear mean-square charge radii is available [89],
but the results are not to very high precision.

The quantity hr2iA usually shows an odd-even staggering (a
‘‘saw-tooth” pattern), with exceptionally small values occurring
for compact nuclei with neutron magic numbers 20, 28, 50, 82,
and 126 [90]. It is for this reason that magic-number isotopes such
as 39K, 87Rb, and 88Sr are often chosen as reference isotopes when

tabulating values of dhr2iA;A0 [91]. However, we do not uniformly
follow this convention here. In order to maintain consistency with
work performed by other authors, we deviate from it for Li and Rb,
where 7Li and 85Rb are chosen as reference isotopes.

Tiemann et al. [92] investigated non-Born-Oppenheimer effects
in the rotational spectra of group III/VII and IV/VI diatomic mole-
cules. They found good agreement with Watson’s expressions,
but with anomalously large corrections for heavy atoms (Tl, Pb).
Schlembach and Tiemann [93] subsequently showed that the
anomalous values can be attributed to nuclear field shifts, and that
these are the dominant isotope-dependent effect for these species.
For the vibronic spectra of PbS, Knöckel and Tiemann [94] found
that the field shift by itself could explain the isotope dependence
and terms due to mass shifts were negligible. In a subsequent ree-
valuation of the experimental results, Knöckel et al. [95] revised
the magnitude of the field shift downwards substantially, but
retained the overall conclusion that field shifts dominate adiabatic
corrections in the rotational spectra of heavy-atom systems.

In the molecular case, the field shift for the free atoms can again
be absorbed into the zero of energy for each isotopolog, but its
R-dependence contributes to molecular binding energies and level
spacings. For rotational spectra, the key quantity is the derivative
of the contact density with respect to R, evaluated near the
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equilibrium geometry. Cooke et al. have determined Dunham-type
parameters from the rotational spectra of a wide variety of
diatomic molecules containing heavy elements, and identified
large Born-Oppenheimer breakdown effects that they interpreted
as isotopic field shifts [96–105]. For a subset of these studies they
used density-functional theory with scalar relativistic corrections
to calculate contact density derivatives, and found reasonable
agreement with the experiments. However, Knecht and Saue
[106] have carried out 4-component relativistic calculations on
the TlI, PbTe, and PbS systems; they obtained substantial disagree-
ment with both the results of Cooke et al. and the experiments, and
questioned whether Cooke et al. had actually included relativistic
corrections in Refs. [97,98,100].

Expectation value and derivative approaches for obtaining
approximate contact densities are currently under development
within the vibrational and Mössbauer spectroscopy communities
[107–118]. Within the context of such calculations it has been
shown that use of a relativistic Hamiltonian is essential for obtain-
ing accurate contact densities and their geometry dependence for
heavy nuclei [106,108,110,119,120]. Incorporating relativity
directly into the electronic Hamiltonian can be done in various
ways (see, e.g., Refs. [121–125] for recent reviews and perspective
articles).

When working within a fully relativistic framework, the use of
finite-size nuclear models is necessary to avoid singularities in the
wavefunction. Finite-size nuclear models may seem at first
problematic since the perturbation theory approach for obtaining
contact densities outlined above assumes the point-nucleus
approximation as a zeroth-order starting point. A more accurate
method for obtaining field shifts involves integration of the elec-
tron density over the nuclear volume. It has been shown in Refs.
[106,119] that the error introduced by replacing such integration
by the finite-nucleus contact density is on the order of 10% for
absolute contact densities, with smaller errors for changes with
respect to geometry.

Many additional aspects of the computational methods for
contact densities have been considered in Refs. [119,126,127].
The importance of electron correlation has been examined in Ref.
[119], where it was shown for mercury fluoride systems that cor-
relation effects at the CCSD level contribute as much as �20% to
bonding-induced changes in contact densities. However, the
resulting bonding-induced changes were no more accurate than
those calculated at the HF level. Including a perturbative correction
for triple excitations was found to affect the bonding-induced
changes by �5%. Inclusion of core-valence correlation was also
shown to be important, contributing at the same level as the
perturbative triples correction. When instead density-functional
theory (DFT) methods were considered, multiple studies concluded
that DFT contact densities are of comparable accuracy to HF
[109,119,127], though hybrid functionals with HF exchange were
shown to give better results than pure functionals [109]. It was also
shown in Ref. [127] that much more accurate results were pro-
duced by using basis sets in their fully uncontracted forms.
3. Results and discussion

3.1. Benchmarking computed isotopic mass shifts

There are not many molecular electronic structure packages
that currently have the capability to calculate mass shifts (i.e. adi-
abatic or diagonal Born-Oppenheimer corrections) at the coupled-
cluster level. In the present work we compute isotopic mass shifts
for atomic and molecular species using the DBOC facility in the
CFour package [67]. Core orbitals are correlated in all calculations,
since core-valence correlation has been shown to contribute
significantly to DBOCs [68]. Parallelized analytic derivative codes
are used.

For all atoms except H, DBOC calculations were initially
performed using small basis sets, in particular DZP for the alkali
metals and Sr [128–131] and the WTBS basis set for Yb
[132,133]. The larger ANO-RCC basis sets [134,135] were also
employed in some cases. The ANO-RCC basis sets have previously
been shown to provide excellent dissociation energies, geometrical
parameters, and electric properties for systems involving heavy
elements, as demonstrated, for example, in a recent study on LiCs
[136]. While these basis sets are generally recommended only for
relativistic calculations, the derivative programs required for the
evaluation of DBOCs within a relativistic framework are not
available in the current public release of CFour. Employing basis
sets designed for relativistic calculations in non-relativistic work
is somewhat questionable. However, relativistic effects are signifi-
cant only for heavier elements, where DBOCs are expected to
become small compared to the field shift. Our overall conclusions
regarding DBOCs are thus unlikely to be affected by the errors
due to basis-set incompleteness and neglect of relativity.

CFour allows the use of both spin-restricted HF (RHF) and spin-
unrestricted HF (UHF) references. Unrestricted methods seem at
first sight an appealing choice, as they offer a better description
of the highly stretched molecule near dissociation and are directly
applicable to individual doublet atomic species at dissociation.
However, they may find wavefunctions that have a lower symme-
try than the nuclear framework, and such symmetry-broken solu-
tions are also often spin-contaminated to some degree [137–140].
This may cause additional complications in the evaluation of prop-
erties such as DBOCs. We explore such phenomena in detail in the
following section. Where UHF methods were employed, the
lowest-energy UHF eigenstate was located within a reduced com-
putational symmetry (Cs) by following the appropriate eigenvalue
of the orbital rotation Hessian matrix from the totally symmetric
RHF solution to the symmetry-broken solution.

Before computing the molecular (bonding-induced) isotopic
mass shifts of interest in this work, we first consider whether
molecular calculations with CFour can yield accurate absolute val-
ues of atomic mass shifts. Here spin-restricted calculations were
performed on the corresponding homonuclear diatomic system
at large values of the internuclear distance. For the 6Li 7Li mass
shift, DBOCs were computed at the RHF-CCSD/ANO-RCC and UHF-
CCSD/ANO-RCC levels, resulting in values (per atom) of
�22.23 cm�1 and �22.25 cm�1, respectively. These compare favor-
ably with the atomic physics literature value of �21.36 cm�1,
obtained by applying the appropriate Rydberg factors (see, e.g.,
King’s description in Ref. [141]) to the near-exact total energy of
Li calculated by Puchalski and Pachucki [142].

Next we investigate the reliability of restricted and unrestricted
references for the computation of molecular DBOCs. We first con-
sider H2, for which the nearly exact energies and adiabatic correc-
tions of Kołos and coworkers are available for comparison
[1,2,143]. Various approximate potential energy curves and abso-
lute DBOC functions for 1H1H are shown in Fig. 1. All potential
energies are shown with respect to the exact asymptotic value,
0.5 Hartree, and the DBOC values are shown relative to an asymp-
totic value obtained from a molecular calculation at large R. The
behavior of the H2 potential curves as described by the RHF, UHF,
RHF-CCSD, and UHF-CCSD methods is discussed in elementary
textbooks and we include them in Fig. 1(a) only to contrast their
characteristics with the corresponding DBOC functions.

The computed DBOC functions DVadðRÞ for 1H1H are shown in
Fig. 1(b). The UHF function is qualitatively wrong, exhibiting an
unphysical pole-like feature near 2.2 bohr, which we discuss in
detail below. The RHF function is smooth, but in poor quantitative



Fig. 1. (a) Potential curves for H2, computed using the ANO-RCC basis set with various electronic structure methods. (b) The corresponding DBOC functions DVadðRÞ for 1H1H.
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agreement with the results of Kołos and Rychlewski [143]. How-
ever, the RHF-CCSD and UHF-CCSD methods are exact for this sys-
tem, except for basis-set incompleteness, and exhibit errors in
DBOCs no larger than 1%.

Fig. 2(a) shows the sensitivity of the computed CCSD DBOC
function to the quality of the basis set. Vertical lines mark the
radial position of key points on the potential curve. These include
the inner turning point at dissociation R0 (so that VðR0Þ ¼ 0), the
distance Re at the potential minimum, and the point R1=2 where
the energy is half way between the minimum and dissociation
(VðR1=2Þ ¼ 1

2VðReÞ). On the scale of the plot, the ANO-RCC and
aug-cc-pVQZ basis set curves lie directly on top of the results of
Kołos and Rychlewski [143]. Even the much smaller and more
affordable DZP basis set gives results that are accurate within
�10%. Because of this reasonable accuracy and its availability for
most elements across the periodic table, the DZP basis set will be
heavily utilized in this work for exploring trends in isotope shifts
with atomic number.

To demonstrate the level of accuracy possible for DBOCs
obtained with large basis sets, Fig. 2(b) shows the errors in the
computed DBOC functions with respect to the results of Kołos
and Rychlewski [143]. The ANO-RCC basis set gives errors that
do not exceed 0.13 cm�1 at distances larger than the inner turn-
ing point (R > 0:8 bohr). The ANO-RCC basis set is known to per-
form similarly to the aug-cc-pVQZ basis set, so we also
computed DBOC functions with the aug-cc-pV5Z and aug-cc-
pV6Z basis sets, where maximum errors were found to drop to
0.042 and 0.025 cm�1, respectively. The addition of midbond
functions (designated in the figure legend as ‘‘+mb”) was also
investigated and they were found to reduce errors greatly for
R > 2:0 bohr, while increasing errors somewhat for R < 2:0 bohr.
The performance of all basis sets tested here degrades rapidly in
the region R < 1:0 bohr, probably because modern basis sets are
tuned for optimum performance near the equilibrium bond
length (Re ¼ 1:4 bohr).

The unphysical pole-like feature in the UHF function in Fig. 1(b)
is analogous to singularities that have been studied in the context
of other properties including quadratic force constants [144] and
indirect nuclear spin-spin coupling constants [145]. Such poles
arise because the second derivatives of the correlated energies
depend upon the orbital rotation parameters, which themselves
are not continuously differentiable through the region of the tran-
sition from a symmetry-conserved to a symmetry-broken wave-
function. This phenomenon is sometimes referred to as an orbital
instability envelope [144].
UHF-CCSD may also produce orbital instability envelope arti-
facts in molecules with more than 2 electrons. This is demon-
strated in Fig. 3, which shows Li2 potential energy curves and
DBOCs computed using RHF-CCSD and UHF-CCSD with the DZP
and aug-cc-pVDZ basis sets. While the RHF-CCSD and UHF-CCSD
potentials are virtually identical for each basis set, the correspond-
ing DBOC functions are not. For both basis sets, the UHF-CCSD
results exhibit an unphysical peak in a region where the DBOC
radial function should asymptotically approach zero. For this
reason we choose to use RHF-CCSD calculations in preference to
UHF-CCSD calculations of DBOCs in the following sections.

3.2. Isotopic mass shifts for diatomic molecules topical in ultracold
physics

Radial isotopic mass-shift functions, obtained from DBOCs com-
puted at the RHF-CCSD/DZP level of theory, are shown in Fig. 4 for
the ground states of all the alkali-metal dimers and the molecules
Sr2 and Yb2. These are all molecules of interest in the field of ultra-
cold molecules. The mass shifts are defined as differences

dVad
b aðRÞ ¼ DVad

b � DVad
a ð5Þ

between the adiabatic corrections for isotopologs b and a. The radial
positions Re of the corresponding potential minima are indicated by
labeled and color-coded vertical lines [146–148]. The qualitative
shape of the curves in Fig. 4(a) and (d) is inverted compared to those
in Fig. 4(b) and (c), but this is simply because for Li, Sr and Yb the
reference isotope is the heaviest, while for K and Rb it is the lightest.

We first consider 6Li 7Li mass shifts in alkali-metal diatomics
containing Li, which are shown in Fig. 4(a). The functions for Li2
and LiNa have the same general shape as for H2, with a negative
segment at long range and a positive segment at short range. The
zero-crossing is close to Re for Li2 and LiNa, but moves outwards
faster than Re for the heavier alkali metals, and for LiCs the function
does not cross zero until about 14 bohr. This may well be due to the
increasing contribution of charge transfer to the bonding in LiK,
LiRb and LiCs, even at 10 to 15 bohr, as evidenced by their
dipole-moment functions [149]. In Section 4 we will investigate
further whether these mass-shift functions are in agreement with
spectroscopically derived isotope shifts. It is worth noting that
some mass-shift functions cross zero so close to their respective
potential minima that reporting mass shifts at Re or at any other
single point on the curve can be uninformative.

Isotopic mass shifts from DBOC calculations at the RHF-CCSD/
DZP level are shown for isotopologs of alkali-metal diatomics



Fig. 3. (a) Potential curves for Li2 from RHF-CCSD and UHF-CCSD calculations using the DZP and aug-cc-pVDZ basis sets. (b) The corresponding DBOC functions DVadðRÞ for
7Li7Li.

Fig. 2. (a) DBOC functions DVadðRÞ for 1H1H, computed at the CCSD level with various basis sets. (b) Errors in DBOC functions computed with CCSD and various basis sets
taken with respect to the near-exact values of Kołos and Rychlewski [143].
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involving K (with 39K as reference) in Fig. 4(b) and for those involv-
ing Rb (with 85Rb as reference) in Fig. 4(c). As expected, the mass
shifts for 41K are about twice those for 40K, with the exact ratio
determined by the changes in the isotopic mass. KCs curves are
omitted from Fig. 4(b) because many of the corresponding RHF
calculations did not converge. The overall magnitude of the mass

shift for the substitution 85Rb85Rb 85Rb87Rb, dVadðReÞ � �30 MHz,
is consistent with the order-of-magnitude absolute-value estimate
suggested in Ref. [26] for the correction due to Born-Oppenheimer
breakdown.

Fig. 4(d) shows mass shifts from DBOC calculations at the RHF-
CCSD/DZP and RHF-CCSD/WTBS levels for homonuclear Sr2 and Yb2

diatomics, respectively, with 88Sr and 176Yb as reference isotopes.
Both Sr2 and Yb2 have mass shifts that are positive at short range
(but well outside the inner turning points, which are both between
7 and 7.5 bohr [148,150]). The mass shifts for Sr2 have a significant
negative component at long range, which dominates near Re. Yb2,
by contrast, has very weak mass shifts at long range, and the
absolute values are at least an order of magnitude smaller at the
equilibrium bond length than those for Sr2 or any of the other sys-
tems shown in Fig. 4. However, it should be noted that the minimal
WTBS basis set used for Yb is considerably less flexible than the
DZP basis set used for Sr, and is expected to produce too soft a
short-range repulsive interaction and provide a poorer description
of long-range forces [151]. These features are reflected in Fig. 4(d).
Unfortunately, DBOC calculations with the larger basis sets that are
currently available for Yb would be computationally very expen-
sive. For now, computations at this level of theory must suffice;
they demonstrate that DBOCs of Sr2 and Yb2 have similar qualita-
tive features, with those for Yb2 being much smaller in magnitude.
3.3. Isotopic field shifts for diatomic molecules topical in ultracold
physics

Field shifts can also contribute significantly to total isotope
shifts. The field shift is approximately proportional to the contact
density (Eq. (3)), so this is the key quantity to compute using elec-
tronic structure theory. We have carried out extensive benchmark
calculations on LiRb to compare the results of different approaches
using the DIRAC, MOLCAS and ADF packages, which are described
in the Supplementary Material. The packages all use different
treatments of relativity, and offer different options for including
electron correlation, either at the coupled-cluster level (DIRAC
only) or using density-functional theory (all three programs).



Fig. 4. Bonding-induced changes in mass shifts dVadðRÞ (a) Li in alkali-metal dimers; (b) K in alkali-metal dimers; (c) Rb in alkali-metal dimers; (d) homonuclear isotopologs
of Sr2 and Yb2.
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Unfortunately the different treatments offer less consistent results
than we would have wished, and it is clear that further work on the
methods is needed to develop quantitatively accurate procedures.

For the alkali-metal dimers and Sr2 we have chosen to proceed
with a consistent set of full 4-component calculations of contact
densities, using DFT calculations with the B3LYP functional
[152,153], which has a good track record for calculating changes
in contact densities due to chemical bonding [109]. These were
performed with the DIRAC package [154], since it is the only
program used in this work which can offer a potentially exact
treatment of relativity. The DIRAC calculations employed the
aug-cc-pVTZ-DK basis set for Li [155] and the v3z basis sets of
Dyall [156] for other elements. The basic Gaussian finite nuclear
charge distribution model, which has been shown to be sufficiently
reliable to yield bond-induced changes in contact densities [126],
was used with parameters given by Visscher and Dyall [157]. Con-
tact densities were obtained by evaluating the expectation value
h0jdðr � RÞj0i. An ultrafine grid was employed to ensure converged
results in the exchange-correlation evaluation.

For the Yb2 system DIRAC failed to converge and ADF [158,159]
was used instead to evaluate qð0Þ. In this case scalar relativistic
effects (which are the equivalent of Darwin andmass-velocity terms
in the Breit-Pauli Hamiltonian) were included via the zero-order
regular approximation (ZORA) [160–163]. The ZORA/QZ4P basis
set [164], which is an all-electron basis sets of Slater-type orbitals
(STO), was used in conjunction with a point-charge nuclear model.
ADFparameterswere chosen to allowuseof the true (exact) electron
density in the exchange-correlation potential. As shown in the Sup-
plementary Material, bonding-induced changes in field shifts
obtained by this method cannot be regarded as quantitative, and
might indeed be only order-of-magnitude estimates, but even this
is valuable in understanding which effects are dominant for Yb2.

The radial functions for bonding-induced changes in contact
densities are shown in Fig. 5 for the alkali-metal dimers. The field
shifts for 6Li 7Li, 41K 39K and 87Rb 85Rb are shown explicitly
on the right-hand axes. Note that the changes in the nuclear charge
radius are positive for 6Li 7Li (dhr2i ¼ 0:731 fm2) and 41K 39K
(dhr2i ¼ 0:117 fm2), but negative for 87Rb 85Rb
(dhr2i ¼ �0:0362 fm2).

The overall magnitude of the bonding-induced changes in
contact densities increases substantially from Li to K to Rb. This
arises mostly because the non-relativistic contact density for an



Fig. 5. Bonding-induced changes in contact densities and isotopic field shifts in
alkali-metal dimers. Changes in contact densities (left-hand axes) are independent
of isotopolog, while isotopic field shifts (right-hand axes) are given for the specific
isotopologs indicated in the legend. (a) Li nuclei; (b) K nuclei; (c) Rb nuclei.
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ns electron is given approximately by the Goudsmit-Fermi-Segré
(GFS) approximation [165,166],

jWð0Þj2 ¼ pa�30 ZZ2
a 1� dr

dn

� ��
n�3: ð6Þ

where Za is the outer charge (which is 1 for Group I atoms),
n� ¼ n� r is the effective quantum number and r is the quantum
defect. The effective quantum number for the valence s electron
increases only slowly down Group I, taking values of 1.588, 1.626,
1.771 and 1.805 for Li, Na, K and Rb, respectively [167], while
dr=dn is small. This gives an overall contact density approximately
proportional to Z. When electrons are treated relativistically, heavy
atoms accumulate an additional Z scaling when the factor aZ
becomes non-negligible [86,168,169].

The overall shapes of the curves in Fig. 5(a)–(c) can be explained
in terms of simple bonding ideas. For the homonuclear alkali-metal
dimers, the contact density changes are negative at larger dis-
tances, but positive at short range. This is qualitatively the same
as the behavior for H2 [170]. The negative values at longer range
occur partly because covalent bonding results in sp hybridisation,
reducing the population in the ns orbital and thus reducing the
contact density. This effect is partly counteracted by contraction
of the core in response to the reduced screening of the nucleus
by p electrons. At short range, by contrast, the two atoms interpen-
etrate one another sufficiently to increase the density at both
nuclei. For all the alkali-metal dimers, the overall contact density
change is positive at the equilibrium distance, but with a substan-
tial negative gradient.

For the heteronuclear dimers, there are additional effects from
charge transfer, which reduce the density on the electropositive
atom and increase the density on the electronegative one. These
charge-transfer effects counteract the covalent reduction slightly
for Li in LiNa and overwhelm it for Li in the very polar molecules
LiK, LiRb and LiCs. They also reinforce the covalent reduction
slightly for Rb in KRb and substantially for K and Rb in LiK, LiRb,
NaK and NaRb, and counteract it for K in KRb and KCs and for Rb
in RbCs. All these charge-transfer effects correlate reasonably well
with the corresponding dipole moment functions [149].

The situation is different for Sr2, shown in Fig. 6(a). Here the
contact density change due to bonding is positive at long range,
but becomes negative around Re, where there is weak chemical
bonding. The 4-component DFT/B3LYP/v3z calculations with
DIRAC failed to converge at internuclear distances less than 8.7
bohr, so we supplemented them with ZORA/B3LYP/QZ4P calcula-
tions using ADF, shown in blue in Fig. 6(a). These show a weaker
negative feature, probably because they underestimate attractive
forces, giving a well depth of only �400 cm�1 compared to the
experimental value of 1081 cm�1, though also perhaps because of
the incomplete treatment of relativity in ADF. At short range, the
ADF contact densities turn upwards, due to interpenetration of
the atomic densities. Similar short-range behavior has been seen
theoretically in He2 [170], Ne2 and Ar2 [171].

For Yb2, 4-component DFT/B3LYP/v3z calculations with DIRAC
failed to converge entirely, so we used ZORA/B3LYP/QZ4P calcula-
tions with ADF instead. The resulting bonding-induced contact
density changes are shown in Fig. 6(b). They are positive across
the whole range of R, without a negative region near Re. This
may be simply because Yb2 shows weaker covalent bonding than
Sr2. It may be noted that Yb shows much stronger relativistic
effects than Sr, and the contact density change for the lowest
1S0!1P1 transition from multiconfiguration Dirac-Fock calcula-
tions [172] is a factor of 5.3 larger. This is reflected in the overall
magnitude of the bonding-induced changes to contact densities,
which are much larger for Yb2 than for Sr2.

The increase in the bonding contributions to field shifts in mov-
ing from Li to Yb is important, particularly when contrasted with
the decrease in the mass shifts through the same series. The effect
of bonding on Li field shifts is a few hundred kHz, while the mass
shifts for the same systems are on the order of GHz. However, the
effects of bonding on field shifts for K and Rb are a few MHz, while
the mass shifts are on the order of tens of MHz. Thus, molecules
formed from heavier alkali metals may have comparable bonding
contributions to both field shifts and mass shifts, and studies of



Fig. 6. Bonding-induced changes in contact densities and isotopic field shifts in (a)
Sr2, as computed with 4-component DFT/B3LYP/v3z (maroon) and with ZORA/
B3LYP/QZ4P (blue); (b) Yb2, with ZORA/B3LYP/QZ4P. The contact density axis
corresponds to the field-shift function for the largest isotopic transition in each
frame. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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isotope shifts for these systems should consider both effects. The
same comments apply to Sr2. Continuing the trend, the effects of
bonding on field shifts for Yb2 are computed to be at least two orders
of magnitude larger than the corresponding mass shifts. The bond-
ing changes in field shifts for this system are on the order of tens
of MHz.

The functions shown in Figs. 4 and 5 indicate that there is
indeed a crossover point in atomic mass where the effect of bond-
ing on the field shift becomes larger than on the mass shift. This is
analogous to the crossover between field and mass shifts for atoms
[86], and should be considered in studies that consider molecular
isotope shifts beyond the usual mass scaling.
4. Comparison with empirical isotope shifts

When characterizing a particular electronic state spectroscopi-
cally, it is sometimes possible to isolate small mass-dependent
effects not accounted for by rudimentary mass-scaling. Such
Born-Oppenheimer breakdown functions have been derived
empirically for a number of relatively light diatomic molecules
by least-squares fitting of measured line positions for a pair or ser-
ies of isotopologs [5–21]. The purpose of this section is to compare
examples of Born-Oppenheimer breakdown functions from the lit-
erature with the results obtained using ab initio techniques. In par-
ticular, we will describe results for the Li2, LiK, and LiRb systems,
since these are the only alkali-metal diatomics for which we could
find Born-Oppenheimer breakdown functions in the spectroscopic
literature. Since in Section 3.3 the effects of chemical bonding on
isotopic field shifts were found to be on the order of kHz for the
substitution 6Li 7Li, we include only mass shifts in this section.

For the A1Rþu and X1Rþg states of Li2, extensive sets of high-
quality line positions have been measured for the 7Li7Li, 6Li7Li,
and 6Li6Li isotopologs, and have been used in several studies to
derive correction functions for Born-Oppenheimer breakdown.
Since 7Li is the most abundant isotope, it is used in the spectro-
scopic literature as the reference isotope. The 7Li7Li isotopolog is
the one for which the most line positions have been measured,
so has the best-determined potential curve. In the following, the
correction functions are given for the substitution 6Li7Li 7Li7Li.

Fig. 7 compares our mass-shift function dVad
b aðRÞ, computed at

the RHF-CCSD/ANO-RCC level of theory, with the empirical Born-
Oppenheimer breakdown corrections developed by Coxon and
Melville [18] and by Le Roy et al. [19]. All three functions are neg-
ative in the long-range region, with the function asymptotically
approaching zero from below. However, the ab initio function
changes sign near the potential minimum and is positive at short
range, rising steeply between the potential minimum and the inner
turning point at the dissociation energy. The empirical functions,
by contrast, remain negative at short range.

In comparing the ab initio and empirical correction functions, it
is important to appreciate that the ab initio function represents a
true adiabatic correction, whereas the empirical functions in
Fig. 7 are effective adiabatic corrections that contain contributions
from both adiabatic and nonadiabatic terms. Watson [80] showed
that it is not possible to separate the adiabatic and nonadiabatic
contributions on the basis of line positions alone. However, an
alternative formulation of the Hamiltonian by Herman and Ogilvie
[173] does allow the contributions to be separated, using con-
straints from the molecular dipole moment function or rotational
g-factor. This approach has not yet been applied to alkali-metal
dimers, but Coxon and Hajigeorgiou have shown that, for HCl
[10] and CO [16], the empirical true and effective adiabatic correc-
tions have similar values near Re but very different gradients (actu-
ally of opposite sign for HCl). This may be the origin of the
qualitative differences in shape in Fig. 7.

We next consider LiK and LiRb, for which extensive spectra
were measured in Refs. [20,21] using high-resolution fluorescence
spectroscopy. The spectra were used to obtain ground-state poten-
tial energy curves and Born-Oppenheimer breakdown functions by
least-squares techniques. Fig. 8 compares the empirically deter-
mined Born-Oppenheimer breakdown functions with our ab initio
mass shift functions, computed at the RHF-CCSD/ANO-RCC level
of theory, with the 7Li isotopolog taken as the reference species
in each case. The ab initio functions for LiK and LiRb have qualita-
tively similar features to that for Li2, which in turn is qualitatively
similar to that for H2. For both systems, the ab initio and empirical
functions have similar values at the equilibrium distance Re, but
different gradients and different overall shapes. Tiemann et al.
[20] comment that the adiabatic correction near Re for LiK is about
5 times larger than the typical uncertainty in line positions at low
v, so is statistically well determined. As for Li2, the difference in
gradient between the ab initio and empirical functions around Re

may plausibly be attributed to the fact that the empirical functions
represent effective adiabatic corrections that include contributions
from nonadiabatic effects.

At very long range, outside the Le Roy radius RLR [174], the
potential VðRÞ between atoms in S states dies off as �C6R

�6. The



Fig. 7. Comparison of 6Li7Li 7Li7Li ab initio mass-shift functions dVadðRÞ as
computed at the RHF-CCSD/ANO-RCC level of theory with empirical BOB functions
obtained in Refs. [18,19].

Fig. 9. Comparison of the semiclassical integrand of Eq. (10) for 6Li7Li 7Li7Li
(solid lines) and its cumulative integral (dashed lines) obtained from ab initio theory
(blue) with the semiempirical functions of Ref. [18] (red) and Ref. [19] (green). (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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dispersion coefficient C6 is slightly different for different atomic

isotopes, so dVadðRÞ should also be proportional to R�6 [175]. For
alkali-metal atoms the difference between the C6 coefficients is
determined mostly by the valence s electron, whose wavefunction
dies off at long range as expð�Z�r=aMÞ. Here Z� is the effective

nuclear charge and aM ¼ 4p�0�h2
=ðlMe

2Þ is an effective Bohr radius
for an electron with reduced mass lM ¼ meM=ðme þMÞ, whereM is
the nuclear mass. An atom with a finite-mass nucleus has a larger
aM , larger polarizability and larger (more attractive) C6 coefficients
that an atom with an infinite-mass nucleus. This corresponds to

dVadðRÞ being negative at long range. The nonadiabatic contribu-
tions to the effective adiabatic correction are proportional to
dV=dR, so die off as R�7 and should not affect the long-range sign.

All the ab initio mass-shift functions are negative at very long
range, but the empirical functions for LiK [20] and LiRb [21] are

positive. In addition, dVadðRÞ=VðRÞ should approach a constant out-
side RLR. However, Fig. 4 of Ref. [20] shows that the empirical

dVadðRÞ=VðRÞ for LiK increases nearly linearly between R ¼ 15 and
23 bohr, with little sign of levelling off. It has reached only about
20% of its asymptotic value at 23 bohr, which is well outside the
Fig. 8. Comparison of ab initio 6Li 7Li mass-shift functions dVadðRÞ as computed at the
and (b) Li85Rb [21].
Le Roy radius. We therefore conclude that the long-range behavior
of the functional form used for the ground- and excited-state Born-
Oppenheimer breakdown (BOB) functions should be revisited in
future interpretations of the spectra.
5. Isotope shifts in ultracold molecular physics

The quantities that are usually measured in ultracold molecular
physics are the binding energies of levels very close to dissociation,
often as a function of magnetic field, and the positions of zero-
energy Feshbach resonances as a function of magnetic field. The
levels of interest are often bound by only a few MHz, which is less
than 1 part in 107 of the well depth for the alkali-metal dimers.
Because of this, they are very strongly dominated by long-range
effects, and are insensitive to the shape of the short-range poten-
tial. Nevertheless, the binding energies of these levels depend sen-
sitively on the fractional part of the non-integer quantum number
at dissociation vD [176].
RHF-CCSD/ANO-RCC level of theory with empirical BOB functions for (a) Li39K [20]



Fig. 10. Comparison of the semiclassical integrand of Eq. (10) (solid lines) and its cumulative integral (dashed lines) for 6Li39K 7Li39K (panel a) and 6Li85Rb 7Li85Rb (panel
b) obtained from ab initio theory (blue) with the semiempirical functions (green) of Refs. [20,21], respectively. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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Considerable insight into the effects of small potential shifts
may be gained by writing the quantum number at dissociation
semiclassically in terms of a WKB phase integral,

pðvD þ xÞ ¼ U; ð7Þ
where

U ¼
Z 1

R0

�2lVðRÞ
�h2

� �1
2

dR; ð8Þ

VðRÞ is the internuclear potential for a reference isotopolog and R0 is
the inner turning point at the dissociation energy. The usual WKB
fraction x ¼ 1=2 is replaced by x ¼ 5=8 at dissociation if VðRÞ is
asymptotically �C6R

�6 [177]. The scattering length a for a single
potential curve is related to the phase integral by

a ¼ �a 1� tan U� p
8

� �h i
¼ �a 1� tan p vD þ 1

2

� �� 	
 �
; ð9Þ

where �a is the mean scattering length of Gribakin and Flambaum
[177], which depends only on C6 and the reduced mass l. The pres-
ence of l in the integrand of Eq. (8) produces the normal Born-
Oppenheimer mass scaling. If a mass-dependent perturbation
dVðRÞ � VðRÞ is now introduced, vD changes by an additional
amount

dvD ¼
Z 1

R0

� 1
2p

2ljVðRÞj
�h2

� �1
2 dVðRÞ � dVð1Þ

jVðRÞj
� �

dR; ð10Þ

This integral is formally problematic because VðR0Þ ¼ 0 so the
condition dVðRÞ � VðRÞ is not satisfied very close to the turning
point for the reference isotope, where jVðRÞj is comparable to
dVðRÞ. In principle this should be handled by a shift of R0, but in
practice this region makes little contribution to the integral and
can be neglected.

Fig. 9 compares the integrand of Eq. (10) for our mass-shift

function dVad
b aðRÞ for 6Li7Li 7Li7Li, together with its cumulative

integral, with the corresponding quantities for the empirical func-
tions of Coxon and Melville [18] and Le Roy et al. [19]. It may be
seen that all three give contributions to dvD that are positive for
this substitution, but that the two empirical functions give consid-
erably larger values than the ab initio function. For comparison, the
analysis of Julienne and Hutson [33] gave dvD ¼ þ9:4� 10�4 for
6Li2 7Li2 and would thus give dvD ¼ þ4:7� 10�4 for
6Li7Li 7Li7Li. The ab initio function underestimates this by a
factor of about 5, but this might be because it neglects nonadia-
batic terms that contribute to the full effective adiabatic correction.
In addition, it should be noted that the value of the integral is a del-
icate balance between short-range and long-range contributions.

Fig. 10 shows similar plots for the semiclassical integrands and
cumulative integrals in LiK and LiRb, comparing the ab initio mass-
shift functions with the empirical ones of Refs. [20,21]. Outside the

Le Roy radius, dVadðRÞ=VðRÞ should approach a constant, as
described above, so that the semiclassical integrand should die
off as k / R�3. The integrands for the ab initio functions do show
this behavior, but those for the empirical functions remain nearly
constant, so that the corresponding phase integrals show no sign

of converging by R ¼ 20 bohr. This is because dVadðRÞ=VðRÞ for
the empirical functions increases nearly linearly in this region,
and does not approach its asymptotic value until much larger
distances.

It would be very valuable to obtain spectra of near-threshold
levels or Feshbach resonance positions for LiK and LiRb for both
6Li and 7Li, in order to find values of dvD that can be used, with
the constraints on the long-range functions established here, to
determine improved adiabatic correction functions.
6. Conclusions

We have investigated electronic structure calculations of bond-
ing contributions to breakdown of the Born-Oppenheimer approx-
imation for a range of molecules important in ultracold physics.
These include the homonuclear and heteronuclear alkali-metal
dimers and the Sr2 and Yb2 molecules. We have considered both
isotopic mass shifts (also known as diagonal Born-Oppenheimer
corrections, DBOCs, or adiabatic corrections) and isotopic field
shifts (nuclear volume effects).

In a first step, we explored the performance of different elec-
tronic structure methods for the elementary systems H2 and Li2.
For these systems, it is well known that potential curves from
restricted Hartree-Fock (RHF) calculations have incorrect dissocia-
tion behavior, whereas those based on unrestricted Hartree-Fock
(UHF) reference calculations can have the correct behavior.
However, for mass shifts we demonstrated inherent problems with
methods based on UHF references. We suggest that, when comput-
ing mass shifts for systems that dissociate to open-shell mono-
mers, unrestricted methods should be avoided whenever
possible. When there is no alternative to unrestricted methods,
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care must be taken to avoid the occurrence of orbital instability
envelopes.

For all our target molecules, we computed isotopic mass shifts
at the CCSD level and field shifts from electron densities at the
nucleus (contact densities) obtained with relativistic DFT methods.
For many of the alkali-metal dimers, the mass-shift functions
change sign in the vicinity of the equilibrium distance, as a result
of competing physical effects dominating in the short- and long-
range regions. It is thus difficult to identify periodic trends in the
magnitude of the values near equilibrium. For the contact densi-
ties, the bonding changes are consistently positive at short range,
but at longer range result from a combination of covalent effects
(which are always negative) and charge-transfer effects, which
are positive for the more electronegative atom in a molecule but
negative for its partner.

The magnitudes of the mass shifts decrease with increasing
atomic number, while the opposite is true for the field shifts. For
Li, Na and K, mass shifts are strongly dominant. For Rb and Sr, mass
shifts are still generally larger than field shifts, but the latter are
not insignificant. For Yb, however, the field shifts are dominant.

For the light molecules Li2, LiK, and LiRb, we have compared our
ab initio mass-shift functions with Born-Oppenheimer breakdown
functions fitted to electronic spectra. For LiK and LiRb the ab initio
functions have similar values to the empirical functions at the
equilibrium distance, where the empirical functions are most reli-
ably determined. However, in all three cases the ab initio functions
have qualitatively different shapes from the empirical functions
away from equilibrium. This may be because the empirical func-
tions are effective adiabatic corrections that include contributions
from nonadiabatic terms.

The ab initio functions are slightly more attractive at long range
for 6Li than for 7Li, as expected from the larger polarizability of 6Li.
The empirical functions for LiK and LiRb have the opposite sign to
the ab initio functions at long range. The results presented here
should help inform the qualitative shape of the functional form
used in future analyses of electronic spectra to model Born-
Oppenheimer breakdown functions.

We also considered the effect of Born-Oppenheimer corrections
on quantities of interest in ultracold physics. Scattering lengths
and the positions of near-threshold levels may be related to the
non-integer quantum number at dissociation. We developed a the-
ory based on semiclassical phase integrals to give insight into how
small perturbations affect this quantity. For Li2, LiK and LiRb, the
overall effect arises from a subtle balance of short-range and
long-range effects. Neither the ab initio function nor the empirical
functions for Li2 are in quantitative agreement with the overall
mass shift obtained from studies of Feshbach resonances and
near-threshold bound states. A simultaneous treatment of both
types of experiment, incorporating insights from the ab initio stud-
ies, is needed to resolve the remaining discrepancies.

For molecules such as Sr2 and Yb2, there are proposals to use
deviations from Born-Oppenheimer mass scaling to probe a possi-
ble ‘‘fifth force” that may exist in addition to the familiar electro-
magnetic, gravitational and strong and weak nuclear forces. One
possible force is a ‘‘short-range gravity”, proportional to the pro-
duct of the nuclear masses in the molecule. However, before
attributing any deviations from Born-Oppenheimer mass scaling
to such forces, it is crucial to consider effects due to conventional
isotopic mass shifts and field shifts. These have mass dependences
different from short-range gravity but are likely to be difficult to
distinguish in experiments. Nevertheless, if their effects can be cal-
culated reliably, they can be taken into account, providing greater
sensitivity to a fifth force (or allowing a tighter bound to be placed
upon it). This work has provided an initial attempt to investigate
the magnitude of mass and field shifts in Sr2 and Yb2.
Data underlying this article are available at http://dx.doi.org/10.
15128/r2vd66vz89r.
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