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Accuracy Guarantees for Phylogeny
Reconstruction Algorithms Based on

Balanced Minimum Evolution
Magnus Bordewich and Radu Mihaescu

Abstract—Distance based phylogenetic methods attempt to
reconstruct an accurate phylogenetic tree from an estimated
matrix of pair-wise distances between taxa. This paper ex-
amines two distance based algorithms (GREEDYBME and
FASTME) which are based on the principle of minimising
the balanced minimum evolution score of the output tree in
relation to the given estimated distance matrix. This is also the
principle that underlies the Neighbour-Joining (NJ) algorithm.
We show that GREEDYBME and FASTME both reconstruct
the entire correct tree if the input data is quartet consistent,
and also that if the maximum error of any distance estimate is
ε, then both algorithms output trees containing all sufficiently
long edges of the true tree: those having length at least 3ε.
That is to say, the algorithms have edge safety radius 1/3. In
contrast, quartet consistency of the data is not sufficient to
guarantee the NJ algorithm reconstructs the correct tree and,
moreover, the NJ algorithm has edge safety radius of 1/4: only
edges of the true tree of length at least 4ε can be guaranteed
to appear in the output. These results give further theoretical
support to the experimental evidence suggesting FastME is a
more suitable distance based phylogeny reconstruction method
than the NJ algorithm.

Index Terms—Phylogenetics, Minimum Evolution, Safety
radius, FASTME

I. INTRODUCTION

A central problem in molecular phylogenetics is to re-
construct an accurate hierarchy of the evolutionary

relationships between present day species, or taxa, based
upon molecular sequence data. A phylogenetic tree is a
formal representation of such a hierarchy of the evolution-
ary relationships, in which the leaves of the tree represent
the sampled taxa and the internal nodes represent ancestral
taxa. To be precise: a phylogenetic tree is a tree whose
leaves are bijectively labelled by the elements of some finite
set X . A binary phylogenetic tree is a phylogenetic tree in
which every internal node has degree exactly three. The set
X usually denotes a set of species or taxa, and the tree T
represents the evolutionary relationships between them. In
this paper we investigate two distance-based methods for
reconstructing phylogenetic trees. A distance-based method
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is one in which the only input used in reconstruction is a
matrix δ = [δij ] whose entries are estimates of the evo-
lutionary distance between each pair of sampled taxa. We
analyse two algorithms for inferring binary phylogenetic
trees from distance matrices, both based on the Balanced
Minimum Evolution (BME) principle [5]. In each case the
optimality criterion used is to minimize Pauplin’s tree-
length estimate [15] relative to the given distance matrix.
For a binary phylogenetic tree T , given two distinct nodes
i, j of T , we define pTij to be the number of internal nodes
of T which lie on the simple (closed) path between i and
j in T . In particular, if i or j are internal, then they also
contribute to pTij . The Balanced Minimum Evolution score
(BME score) of T relative to δ is the quantity

BME(δ, T ) =
∑
i,j∈X

2−p
T
ijδij .

The minimization problem with objective function given by
the BME score relative to a given estimated distance matrix
is known as the Balanced Minimum Evolution Problem
(BMEP) [4].

The algorithms we consider are GREEDYBME and
FASTME. GREEDYBME is a constructive heuristic that
greedily minimizes the objective function of the BMEP by
adding at each iteration of the algorithm a taxon on a partial
binary phylogenetic tree: we start with three (arbitrary) ele-
ments of X arranged in a star tree topology and iteratively
add each remaining element of X , attaching each as a leaf
pendant at the location on the current partial phylogenetic
tree that minimises the BME score of the resulting tree
(restricted to the elements of X inserted so far). It is
interesting to note that Gascuel and Steel, in an excellent
review [9], have shown that the Neighbor-Joining algorithm
(NJ) of Saitou and Nei [16] is also a greedy heuristic for
the BMEP, to be precise a hierarchical clustering heuristic:
the NJ algorithm starts with a star topology on all taxa and
iteratively chooses two nodes adjacent to the central high-
degree node and agglomerates them (effectively regrafts the
two nodes as a sibling pair attached to the central high
degree node), where the two nodes are chosen to minimise
the BME score of the resulting tree (see [9] for further
details).

FASTME is a hill-climbing heuristic for minimizing
the objective function of the BMEP. FASTME starts with
a binary phylogenetic tree on X , typically the output
of GREEDYBME, and iteratively searches through local
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topologies (those trees differing from the current tree by one
topological rearrangement operation) and moves to the local
topology that minimises the BME score. This approach is
implemented in a software called FastME [5]. The two
topological rearrangement operations available in the latest
release of FastME are: the Balanced Subtree Prune and
Regraft (BSPR) algorithm [10] and the Balanced Nearest
Neighbor Interchange (BNNI) algorithm [5]. FastME has
been shown experimentally by Desper and Gascuel [5],
[6] to be a fast and accurate method for tree inference,
compared to other popular distance-based methods such as
NJ, BIONJ [8], FITCH [7] or WEIGHBOR [3]. The results
in this paper provide further theoretical support for using
this approach.

Atteson studied the NJ algorithm and gave a condition,
the safety radius of the algorithm, for accurate recon-
struction of the true tree [1]. Atteson showed that the NJ
algorithm has safety radius of 1/2, i.e. if the maximum
error in the estimated distance matrix is at most half the
minimum edge length in the true tree, then the NJ algo-
rithm will correctly reconstruct the entire tree. Moreover,
no distance based method can have safety radius greater
than 1/2. More recently Bordewich et al. [2] analysed
FASTME and showed that it has safety radius at least 1/3
(when using BSPR) and Shigezumi [18] has shown that
GREEDYBME has safety radius 1/2. Note that FASTME
and GREEDYBME are heuristics for finding a tree that
minimises BME score. Pardi et al. [14] have shown that
the BME principle itself, or equivalently any algorithm
returning the optimal solution to the BMEP, has safety
radius 1/2.

The results described above relate the minimum edge
length in the entire tree to the maximum allowed error in
the estimated distance matrix. Thus a single short edge in
the true tree can greatly affect the permitted error across all
estimated distances for the guarantee of correct reconstruc-
tion to hold. In contrast, in this paper we consider the edge
safety radius, which guarantees that all sufficiently long
edges, relative to the error, will be correctly reconstructed
even if other edges of the true tree are very short. An algo-
rithm that is guaranteed to output a tree topology containing
all those edges of the true tree that have length at least l,
whenever the the maximum error in the estimated distance
matrix is less than rl, is said to have edge safety radius
r. Atteson conjectured that the NJ algorithm has an edge
safety radius of 1/4, which has recently been proved [12].
The main result of this paper is to show that GREEDYBME
and FASTME each have edge safety radius 1/3. We also
show that under a weaker condition than safety radius 1/2,
namely quartet consistency (which we will define below),
GREEDYBME and FASTME will correctly reconstruct the
true tree. Note that having maximum error at most 1/2 the
minimum edge length guarantees quartet consistency, but a
distance matrix may be quartet consistent with the true tree
while not satisfying the safety radius condition. In related
work, it has been shown that the solution to the BMEP is
guaranteed to be the true tree on quartet consistent inputs,
but that an exact algorithm for the BMEP is strictly weaker

than the two heuristic versions (GREEDYBME and NJ) in
edge safety radius, having an asymptotic edge safety radius
of 1/(2n) on n taxa [11].

Our results show a strict theoretical superiority of
GREEDYBME over the NJ algorithm in two ways. It has
been shown that quartet consistency is not a sufficient con-
dition for the NJ algorithm to correctly reconstruct the true
tree [12]. Thus GREEDYBME will correctly reconstruct the
whole true tree under a weaker condition than NJ. Also,
even when this condition does not hold GREEDYBME will
correctly reconstruct all edges of the true tree having length
at least 3 times the maximum error in the input matrix,
whereas the NJ algorithm sometimes fails to reconstruct
edges up to 4 times the maximum error [1]. It is intriguing
to note that in the simulated tests of Desper and Gascuel [5]
the NJ algorithm marginally outperformed GREEDYBME,
particularly on small trees, and in turn FASTME (using
BNNI) significantly outperformed the NJ algorithm.

II. BASICS, DEFINITIONS AND NOTATION

The notation and terminology largely follows Semple and
Steel [17]. Throughout we consider phylogenetic trees as
unweighted, i.e. they do not have intrinsic edge lengths,
with the exception of the true tree T ∗ which does have
edge lengths (or weights). Furthermore, capital letters will
be used in all figures to represent subtrees.

A matrix of pair-wise distances δ∗ = [δ∗ij ] is a tree-metric
if there is a unique phylogenetic tree T ∗ with positive edge
lengths le so that, for each x, y ∈ X , the distance δ∗xy is the
sum of the lengths of edges on the path between x and y in
T ∗. The input to our algorithms is an estimated pair-wise
distance matrix δ = [δij ], and the error ε of δ with respect
to δ∗ is maxx,y∈X(|δxy − δ∗xy|).

A split S = {A,B} on a taxa set X is a bipartition
of X into two non-empty disjoint subsets A,B ⊆ X
whose union is X . For ease of notation, we will write A|B
or, equivalently B|A for the split {A,B}. In general, a
collection of splits of X is called a split system of X .

Suppose that T is a phylogenetic tree on X . Each edge
e of T corresponds to a split of A|B of X , which may
be obtained by deleting e and letting A be the leaf-label
set of one of the resulting connected components and B
be the leaf-label set of the other. We write e = A|B to
denote the edge and its corresponding split. The set of splits
corresponding to edges of T are said to be the splits of T .
A clade of T is any subset C ⊂ X such that C|X − C
is a split of T . The clade is said to be rooted at the node
c in T which is the end of the edge e which induces split
C|X − C closer to the leaves in C.

A quartet of T is a partial split {a, b}|{c, d}, where
a, b, c, d ∈ X and there is a split A|D of T such that
a, b ∈ A and c, d ∈ D. For simplicity the quartet
{a, b}|{c, d} will be denoted by ab|cd. We say that an
estimated distance matrix δ is consistent with a quartet
ab|cd if δab + δcd < δac + δbd, δad + δbc. We say that δ
is consistent with an edge e = A|D of T , if δ is consistent
with all quartets ab|cd of T such that a, b ∈ A and c, d ∈ D.
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We say that δ is quartet consistent with a phylogenetic tree
T if δ is consistent with all the quartets of T .

Given an estimated distance matrix δ and two disjoint
clades A,B of a binary phylogenetic tree T , rooted at
nodes a, b respectively, we define the balanced average
clade distance, or clade distance for short, as follows. First,
if A and B only contain a single taxa a and b, respectively,
then δAB equals the estimated distance δab between a and b.
Now, if one of A and B, say B, is of the form B = B1∪B2

for disjoint subtrees B1, B2 of T , the roots of which are
both children of b in the rooted subtree B, then

δAB =
1

2
(δAB1

+ δAB2
). (1)

The definition is extended recursively (see for exam-
ple [13]) to yield:

δAB =
∑

i∈A,j∈B
δij2

−(pT
ia+pT

jb).

Note that the clade distance thus only depends on the
topologies of the rooted subtrees A and B and not on the
entire topology T .

III. RESULTS

We now formally state the main results of this paper. The
first result concerns the algorithm GREEDYBME, and gives
sufficient conditions for accurate reconstruction of edges of
the true tree.

Theorem 3.1: Let T ∗ be a binary phylogenetic tree with
induced distance matrix δ∗. Let input matrix δ have error ε
with respect to δ∗. Then the algorithm GREEDYBME will
return a binary phylogenetic tree T such that

1) T contains an edge with split A|B for all edges
e = A|B in T ∗ with le > 3ε, i.e. GREEDYBME
has edge-safety radius 1/3. Furthermore, this bound
is asymptotically tight.

2) if δ is quartet consistent with T ∗ then T = T ∗.
The second of our results concerns the local topology

search phase of FASTME. We show that if a local search is
conducted from a tree T that already contains certain edges
from the true tree T ∗, then the end result is guaranteed
to also contain these edges of T ∗. The two forms of
local topology search considered are those which search
over local topologies within one NNI and within one SPR
operation of the current tree; for details of the definitions
of NNI and SPR operations as used in FASTME see, for
example, [2].

Theorem 3.2: Let T ∗ be a binary phylogenetic tree with
induced distance matrix δ∗. Let input matrix δ have error
ε with respect to δ∗. Let T be a binary phylogenetic tree
and let e = A|B be an edge common to T and T ∗. Then

1) if le > 2ε then for any T ′ that may be obtained in
one NNI operation from T such that BME(δ, T ′) <
BME(δ, T ), e must be an edge of T ′;

2) if le > 3ε and T ′ is the tree at most one SPR
operation from T which minimises BME(δ, T ′) then
e must be an edge of T ′; and

3) if δ is consistent with e then for any T ′ that may
be obtained in one NNI operation from T such that
BME(δ, T ′) < BME(δ, T ), e must be an edge of
T ′.

Combining the above two theorems we obtain the fol-
lowing immediate corollary.

Corollary 3.3: FASTME using an initial tree generated
by GREEDYBME and a local search based on NNI or SPR
operations has edge safety radius 1/3.

Proof: Let T ∗ be a phylogenetic tree on X . Let δ
be a matrix of pairwise distances that has error at most ε
with respect to T ∗. By Theorem 3.1, GREEDYBME will
return a tree containing all edges of T ∗ which have length
greater than 3ε. By Theorem 3.2 the local topology phase
of FASTME, using NNI or SPR, will not destroy any of
these edges, hence they are still present in the final output.
Thus FASTME has edge safety radius 1/3.

Note that in the local topology search using NNI op-
erations, it would not matter if the algorithm jumped
immediately to the first tree found with lower BME score
than the current tree or completed the search of all neigh-
bouring trees and moved to the one with lowest BME
score. However for a local topology search using SPR
operations we have the restriction that all neighbouring
trees are checked, and the best of those (the one with lowest
BME score) is selected for the next iteration.

IV. PROOFS

A. GREEDYBME: proof of Theorem 3.1.

Theorem 3.1 gives a condition under which the
GREEDYBME algorithm will correctly reconstruct edges of
the true tree, namely that the maximum error in the distance
matrix is less than 1

3 of the edge length, and claims that this
condition is tight. It also gives a second condition, quartet
consistency, under which GREEDYBME reconstructs the
entire correct tree topology. In the proof of this theorem we
shall make use of the following two lemmas. The first is
Lemma 5.1 of [2], which gives a formula for the difference
in BME score between two trees of certain structure. The
second lemma gives a five point condition on the distance
matrix δ, which is extended to clades.

Lemma 4.1 (Lemma 5.1 of [2]): Let TA and TB be the
trees given in Fig. 1. Let

∆i =
1

2t−i+1
(δBiBt

− δBiXk
)− 1

2i+1
(δA′Bi

− δBiXk
).

Then BME(δ, TA)−BME(δ, TB) =(
1

2
− 1

2t

)
(δA′Xk

− δXkBt) +

t−1∑
i=1

∆i.

For any clades A,B,C,D,E, including single leaf
clades, let us write ∆

(∗)
A,B,C,D,E for

(δ
(∗)
AB + δ

(∗)
AC − δ

(∗)
BC)− (δ

(∗)
AD + δ

(∗)
AE − δ

(∗)
DE).

Lemma 4.2: Let T ∗ be a phylogenetic tree on X and
let T ∗ have a split e = A|B of length le. Let δ be a
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Fig. 1. Two binary phylognetic trees that differ only in the location of
a single clade Xk .
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Fig. 2. Possible true topologies relating the leaves a0, a1, bi, bj , bk .

matrix of pairwise distances that has error at most ε < le/3.
Then for A0, A1 disjoint subsets of A, and Bi, Bj , Bk

disjoint subsets of B, and for any tree T with clades
A0, A1, Bi, Bj , Bk we have:

∆A0A1BiBjBk
< 0.

Proof: Let a0, a1, bi, bj , bk be leaves in clades
A0, A1, Bi, Bj , Bk respectively. The true topology T ∗ re-
stricted to these five leaves must be one of the three
topologies shown in Fig. 2, where the edge e′ depicted
represents a path in T ∗ that contains edge e.

In each case the true distances satisfy

∆∗a0,a1,bi,bj ,bk
= −2δ∗xy

≤ −2le,

where x and y are the corresponding internal nodes of T ∗.
Since each entry in the estimated distance matrix has an
error of at most ε, we have

∆a0,a1,bi,bj ,bk ≤ −2le + 6ε

< 0.

Note that for any clade C with root rc we have∑
c∈C 2−p

T
crc = 1. So we may sum all terms over the leaves

in all clades. Thus,

∆A0,A1,Bi,Bj ,Bk
=∑

pTa0r0p
T
a1r1p

T
birip

T
bjrjp

T
bkrk

[∆a0,a1,bi,bj ,bk ] < 0

where the summation is over all leaves a0, a1, bi, bj , bk in
A0, A1, Bi, Bj and Bk respectively, and r0, r1, ri, rj , rk
are the roots of the clades A0, A1, Bi, Bj and Bk in T
respectively.

We now present the proof of Theorem 3.1, restated
below.

Theorem 4.3 (Restatement of Theorem 3.1): Let T ∗ be
a binary phylogenetic tree with induced distance matrix δ∗.
Let input matrix δ have error ε with respect to δ∗. Then the
algorithm GREEDYBME will return a binary phylogenetic
tree T such that

1) T contains an edge with split A|B for all edges
e = A|B in T ∗ with le > 3ε, i.e. GREEDYBME
has edge-safety radius 1/3. Furthermore, this bound
is asymptotically tight.

2) if δ is quartet consistent with T ∗ then T = T ∗.
Proof: First we prove that the edge safety radius of

the algorithm GREEDYBME is at least 1/3, giving the first
part of item 1. Let T ∗ be the true tree, and let δ be an
estimated pairwise distance matrix with maximum error at
most ε. Let e = A|B be a split in T ∗ of length le > 3ε.
The proof is by induction on the size of X . If |X| = 3,
then trivially GREEDYBME will return the true tree, since
there is only one tree topology on three taxa.

Suppose now that the theorem holds for all trees on taxa
sets of size at most k − 1, and let |X| = k. Let xk be
the last taxa added by GREEDYBME, and consider the
tree T ′∗ obtained from T ∗ by removing xk and its pendent
edge. Note that δ′ obtained from δ by removing the row
and column corresponding to xk gives a pairwise distance
matrix for T ′∗ with maximum error at most ε. Without
loss of generality we assume xk ∈ A. If A = {xk}, then
trivially GREEDYBME will construct a tree containing the
split A|B. Now we assume A′ = A − {xk} 6= ∅. Then
T ′∗ has split e′ = A′|B and the length of e′ is at least le.
By the inductive hypothesis GREEDYBME applied to δ′

will construct a tree containing the split e′ = A′|B. Thus
GREEDYBME applied to δ will also construct a tree T ′ on
X −{xk} containing the split e′ = A′|B after k− 1 steps.

We must now show that after the addition of xk in
the final step of the algorithm the split A|B is present
in the resulting tree T . GREEDYBME will position xk
at the point which minimises BME(δ, T ). Suppose for
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contradiction that there is some position in clade B of
T ′ which minimises this, as depicted in Fig. 1(b), where
B = B1 ∪B2 ∪ . . . ∪Bt and Xk = {xk}, resulting in tree
TB . We will show that tree TA obtained by attaching xk
between the clades A′ and B, as depicted in Fig. 1(a),
must obtain a smaller BME score, giving the required
contradiction.

By Lemma 4.1, we can express the difference in BME
score between TA and TB as follows:

BME(δ, TA)−BME(δ, TB) =(
1

2
− 1

2t

)
(δA′xk

− δxkBt
) +

t−1∑
i=1

∆i

=

t−1∑
i=1

1

2i+1
∆xk,A′,Bi,Bt−i,Bt

. (2)

We may now apply Lemma 4.2 to each term in the sum-
mation (setting A0 = {xk}, A1 = A′, Bi = Bi, Bj = Bt−i
and Bk = Bt) to see that each term is less than zero,
and hence BME(δ, TA) < BME(δ, TB). This contradicts
the assumption that xk will be inserted in clade B, and
completes the inductive step.

We now show that the edge safety radius of
GREEDYBME is no more than 1/3, giving the second part
of item 1. For contradiction assume the edge safety radius
is r > 1/3. Consider a caterpillar tree T ∗ in which a′, xk
is a cherry (a pair of sibling leaves) separated from the rest
of the tree by an edge of length l, as depicted in TA of
Fig. 1(a), taking the clades A′, Xk, Bi, . . . , Bt to be single
leaves a′, xk, b1, . . . , bt, and taking t to be odd. Let ε = rl.
We will assume the sum of all other edge lengths in the tree
is at most ν for some very small ν > 0. Define δ = [δxy]
as follows:

• for i, j ∈ [1, . . . , t− 1], δbibj = δ∗bibj ;
• δa′bt = δ∗a′bt ;
• for i = 1 to t− 1, δa′bi = δ∗a′bi − ε;
• for i = 1 to t− 1, δbibt = δ∗bibt + ε;
• δa′xk

= δ∗a′xk
+ ε;

• for i = 1 to (t− 1)/2, δxkbi = δ∗xkbi
+ ε;

• and for i = (t− 1)/2 + 1 to t, δxkbi = δ∗xkbi
− ε;

Note that if we remove xk then δ gives a tree metric for
the tree T ′ with topology T ∗ − xk, and in which the edge
adjacent to a′ has shrunk by ε and the edge adjacent to bt
has grown by ε, all other edge lengths remain the same.
If, as assumed, GREEDYBME has edge-safety radius r,
then given any ordering of the taxa, GREEDYBME should
reconstruct a tree featuring the split a′xk|b1 . . . bt. We fix
the ordering of the taxa to be any ordering in which xk is
the final element. Since δ restricted to X − {xk} is a tree
metric, GREEDYBME will correctly construct the topology
T ∗−xk when given δ and the leaves a′, b1, . . . , bt in some
order. From this position in the GREEDYBME algorithm,
we show that xk can be inserted to form a cherry with bt at
lower BME score than in position forming a cherry with a′.
This configuration is exactly as shown in TB of Fig. 1(b),

so again Lemma 4.1 gives

BME(δ, TA)−BME(δ, TB) =(
1

2
− 1

2t

)
(δa′xk

− δxkbt)

+

t−1∑
i=1

[
1

2t−i+1
(δbibt − δbixk

)− 1

2i+1
(δa′bi − δbixk

)

]
.

We evaluate this ignoring all quantities less than ν, which
we can set as small as we like. Observing that(

1

2
− 1

2t

)
(δa′xk

− δxkbt) =

(
1

2
− 1

2t

)
(ε− l + ε)

and
t−1∑
i=1

[
1

2t−i+1
δbibt −

1

2i+1
δa′bi

]
=

(
1

2
− 1

2t

)
2ε− l

we obtain BME(δ, TA)−BME(δ, TB) =(
1

2
− 1

2t

)
(4ε− 2l) +

t−1∑
i=1

[
(

1

2i+1
− 1

2t−i+1
)δbixk

]
.

We now split the sum depending whether we over- or
underestimated δbixk

:

t−1∑
i=1

[
(

1

2i+1
− 1

2t−i+1
)δbixk

]

=

(t−1)/2∑
i=1

[
(

1

2i+1
− 1

2t−i+1
)(l + ε)

]

+

t−1∑
i=(t−1)/2+1

[
(

1

2i+1
− 1

2t−i+1
)(l − ε)

]

= 2

(t−1)/2∑
i=1

[
1

2i+1
ε

]
+ 2

t−1∑
i=(t−1)/2+1

[
1

2i+1
(−ε)

]

= 2

(
1

2
− 1

2(t−1)/2

(
1− 1

2(t+1)/2

))
ε.

Reinserting this into the main calculation gives
BME(δ, TA)−BME(δ, TB) =

(6ε− 2l)

2
− (4ε− 2l)

2t
− 2

2(t−1)/2

(
1− 1

2(t+1)/2

)
ε

= (3r − 1)l − 1

2t
(4ε− 2l)− 1

2(t+1)/2

(
1− 1

2(t+1)/2

)
ε.

For any r > 1/3 we can choose t large enough (and
ν small enough) that this is strictly positive, and hence
BME(δ, TA) > BME(δ, TB). Thus GREEDYBME will
insert xk in the wrong position and so fail to reconstruct
a tree with the required split corresponding to the long
edge separating a′ and xk from the rest of the tree. This
concludes the proof of part 1 of the theorem.

We now prove item 2 of the theorem: that if T is quartet
consistent with T ∗ then GREEDYBME returns the tree
topology of T ∗. Let T be a binary phylogenetic tree and let
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δ be an estimated pairwise distance matrix which is quartet
consistent with T . The proof is similar to that of item 1,
and is again by induction on the size of X . If |X| = 4,
then it is easy to check that GREEDYBME will return the
true tree.

Suppose now that the theorem holds for all trees on taxa
sets of size at most k − 1, and let |X| = k. Let xk be
the last taxa added by GREEDYBME, and consider the
tree T ′ obtained from T by removing xk and its pendent
edge. Note that δ′ obtained from δ by removing the row
and column corresponding to xk, gives a pairwise distance
matrix which is quartet consistent with the topology T ′.
Without loss of generality we assume the correct position
for xk to be inserted is as a pendent leaf regrafted to
some edge e = A′|B in T ′. By the inductive hypothesis
GREEDYBME applied to δ′ will construct T ′ correctly.
Thus GREEDYBME applied to δ will also construct T ′ on
X − {xk} after k − 1 steps.

GREEDYBME will position xk at the point which min-
imises the score BME(δ, T ). Suppose for contradiction
that there is some position other than as a pendent leaf
grafted to e which minimises BME score. Without loss of
generality we may assume that the position is in clade B
of T ′, as depicted in Fig. 1(b), where Xk = {xk} and
B = B1 ∪ B2 ∪ . . . ∪ Bt, resulting in tree TB . We will
show that tree T , as depicted in Fig. 1(a), must obtain a
smaller BME score, giving the required contradiction.

We will first assume that t is odd: a small adjustment
will be needed if t is even. Using (2), we may express
the difference in BME score between TA and TB as
BME(δ, TA)−BME(δ, TB) =

(t−1)/2∑
i=1

∆xk,A′,Bi,Bt−i,Bt

2i+1
+

∆xk,A′,Bt−i,Bi,Bt

2t−i+1
(3)

Note that in contrast to the proof of Theorem 3.1 part 1, in
this case we know that the internal topology of the clade
B is the same in T ′ as in T . For each set of leaves a ∈
A′, bi ∈ Bi, bt−i ∈ Bt−i and bt ∈ Bt (i ≤ (t − 1)/2), we
define

f(a, bi, bt−i, bt) =
∆xk,a,bi,bt−i,bt

2i+1
+

∆xk,a,bt−i,bi,bt

2t−i+1
.

Since i < t− i, by quartet consistency we have

δbt−ixk
+ δabi > δaxk

+ δbibt−i

and

δxkbt + δbibt−i > δbixk
+ δbt−ibt .

Combining these conditions gives

(δaxk
+ δbixk

− δabi)− (δxkbt + δbt−ixk
− δbt−ibt) < 0.

I.e. ∆xk,a,bi,bt−i,bt < 0. If in addition ∆xk,a,bt−1,bi,bt <
0 then f(a, bi, bt−i, bt) < 0. On the other hand, if

∆xk,a,bt−1,bi,bt ≥ 0 then f(a, bi, bt−i, bt) is less than

1

2i+1
∆xk,a,bi,bt−i,bt +

1

2i+1
∆xk,a,bt−i,bi,bt

=
1

2i+1
(2δaxk

+ δbibt + δbt−ibt − 2δxkbt − δabi − δabt−i)

< 0,

where the final inequality comes from the quartet conditions

δabi + δxkbt > δaxk
+ δbibt

and
δabt−i

+ δxkbt > δaxk
+ δbt−ibt .

In either case f(a, bi, bt−i, bt) < 0, hence (by summing
over the leaves in each clade) we see that each term of the
main summation (3) above is less than zero.

If t is even, then we need to adjust (3) as follows.
BME(δ, TA)−BME(δ, TB) =

t/2−1∑
i=1

[
∆xk,A′,Bi,Bt−i,Bt

2i+1
+

∆xk,A′,Bt−i,Bi,Bt

2t−i+1

]
+

∆xk,A′,Bi,Bt/2,Bt/2

2t/2+1

The proof as for t odd shows that the summation is less
than zero. The term ∆xk,A′,Bi,Bt/2,Bt/2

is easily seen to
be less than zero by quartet consistency, and so again
BME(δ, TA)−BME(δ, TB) < 0

Thus BME(δ, TA) < BME(δ, TB) which contradicts
the placement of xk in clade B. This completes the proof
of Theorem 3.1.

B. Local Topology Search: proof of Theorem 3.2

Theorem 3.2 gave conditions under which a local topol-
ogy search based upon NNI or SPR moves would preserve
edges of the true tree. In particular, for any edge e common
to the tree T and the true tree T ∗, any NNI move taken
from T will not remove the edge e if the estimated distance
matrix δ is consistent with e or if the maximum error in
δ is less than le/2, and the best available SPR move from
T will not remove the edge e if the maximum error in δ
is less than le/3. We restate, and then prove, the theorem
below.

Theorem 4.4 (Restatement of Theorem 3.2): Let T ∗ be
a binary phylogenetic tree with induced distance matrix δ∗.
Let input matrix δ have error ε with respect to δ∗. Let T
be a binary phylogenetic tree and let e = A|B be an edge
common to T and T ∗. Then

1) if le > 2ε then for any T ′ that may be obtained in
one NNI operation from T such that BME(δ, T ′) <
BME(δ, T ), e must be an edge of T ′;

2) if le > 3ε and T ′ is the tree at most one SPR
operation from T which minimises BME(δ, T ′) then
e must be an edge of T ′; and

3) if δ is consistent with e then for any T ′ that may
be obtained in one NNI operation from T such that
BME(δ, T ′) < BME(δ, T ), e must be an edge of
T ′.
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Fig. 3. An NNI operation that breaks split e = A1 ∪A2|B1 ∪B2.

Proof: We first prove item 3: that an NNI based local
topology search will never remove an edge e with which
δ is consistent. From item 3 we will then obtain item 1 of
the theorem, before proving item 2. Let T, T ∗ be binary
phylogenetic trees with some common edge e = A|B. Let
δ be a distance matrix consistent with e. If either A or
B is a singleton (leaf), then every phylogenetic tree will
contain the edge e and there is nothing to prove. Now
assume A and B are not singletons. Consider an NNI move
that could destroy the split A|B. Let A1, A2, B1 and B2 be
the subclades of A and B obtained by dividing A and B at
the point of attachment of e, as in Fig. 3. The only way e
can be destroyed by an NNI is, without loss of generality,
by swapping clades A2 and B2, as shown by T ′ in Fig. 3.
By Lemma 4.1

BME(δ, T )−BME(δ, T ′) =

1

4
[(δA1A2

+ δB1B2
)− (δA1B2

+ δB1A2
)].

For any leaves a1, a2, b1, b2 in A1, A2, B1, B2 we have

(δa1a2 + δb1b2)− (δa1b2 + δb1a2) < 0.

by the consistency of δ with any quartet spanning A|B.
Summing over all leaves in A1, A2, B1, B2 we see that
BME(δ, T ) − BME(δ, T ′) < 0. Thus any NNI which
removes e leads to an increase in BME score and will not
be accepted. This gives item 3.

Now we may easily deduce that an NNI based local
topology search will never remove an edge e which has
length at least twice the maximum error, giving item 1 of
the theorem. Let T, T ∗ be binary phylogenetic trees with
some common edge e. Let δ have maximum error ε < le/2
relative to δ∗. Let A|D be the split corresponding to edge
e. For any quartet ab|cd such that a, b ∈ A and c, d ∈ D

we have:

δab + δcd ≤ δ∗ab + δ∗cd + 2ε

≤ δ∗ac + δ∗bd − 2le + 2ε

≤ δac + δbd − 2le + 4ε

< δac + δbd,

and similarly δab + δcd < δad + δbc. Hence δ is consistent
with the edge e and by item 3 of this theorem, already
proven, an NNI based local topology search will never
remove the edge e.

Finally we prove item 2: we show that as long as we
check all trees within one SPR operation of the current tree,
and choose the best of these, we will never destroy an edge
e which has length at least 3 times the maximum error. Let
T, T ∗ be binary phylogenetic trees with some common edge
e. Let δ have maximum error ε < le/3 relative to δ∗. Let
the split corresponding to e be A|B. For a SPR operation to
break the edge e it would need to choose a subtree A0 ⊆ A
(without loss of generality), and regraft it within the clade
B. Let the position within clade B that minimises BME
score be as depicted in Fig. 1(b) taking Xk = A0. We
will show that regrafting A0 to the edge e, as depicted in
Fig. 1(a) (taking A′ = A − A0 and Xk = A0) gives a
smaller BME score. Essentially this is same situation as in
the proof that GREEDYBME has safety radius 1/3, except
A0 is now a clade rather than the single taxon xk. However
since Lemma 4.2 holds for clades, the proof goes through
unchanged. Thus we conclude that regrafting A0 to e gives
a lower BME score than regrafting it inside B.

This completes the proof of Theorem 3.2

V. CONCLUSION

In this work we have shown that the algorithms
GREEDYBME and FASTME are more robust methods
of inferring a phylogeny than the Neighbor-Joining algo-
rithm in two rigorous senses. Firstly, GREEDYBME and
FASTME have edge safety radius of 1/3 and, secondly,
GREEDYBME will correctly reconstruct the true tree given
a distance matrix that is quartet consistent with the true
tree. Both conditions are strict improvements over the
Neighbor-Joining algorithm. Experimental evidence has
already demonstrated that FASTME performs well com-
pared to other distance based phylogenetic reconstruction
algorithms [5]. The results in this paper provide further
theoretical justification for using this approach.

The significance of proving bounds on the edge safety
radius is that any sufficiently long edge is correctly recon-
structed from the distance matrix (edges longer than three
times the maximum error), even in the presence of very
short edges elsewhere in the tree. In contrast, results on
safety radius can only guarantee that the whole tree is
correctly reconstructed if all edges are sufficiently long,
otherwise it cannot guarantee anything.

Minimum Evolution, and in particular Balanced Mini-
mum Evolution, has been proposed by several authors as a
guiding principle for inferring phylogenies (for references
and discussion see [5]). Moreover the underlying reason for
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the accuracy of certain phylogenetic algorithms, including
the Neighbor-Joining algorithm, has been attributed to their
relationship to the Balanced Minimum Evolution princi-
ple [9], [12]. It is therefore counterintuitive that a heuristic
for minimising BME score, GREEDYBME, has an edge
safety radius of 1/3, when the underlying principle (i.e.
any algorithm that selects the tree of globally minimum
BME score) has a weaker edge safety radius, which even
approaches zero for large trees [11]. Further work on
understanding this issue, as well as extending the robustness
guarantees to more reasonable models of error in distance
matrices, will help improve distance based phylogenetic
inference in the future.
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