Partial Structural Break Identification*

Chulwoo Han[†] Durham University Business School Abderrahim Taamouti[‡] Durham University Business School

July 2, 2016

ABSTRACT

We propose an extension of the existing information criterion-based structural break identification approaches. The extended approach helps identify both *pure structural change (break) and partial structural change (break)*. A pure structural change refers to the case when breaks occur simultaneously in all parameters of regression equation, whereas a partial structural change happens when breaks occur in some parameters only. Our approach consistently outperforms other well known approaches. We also extend the simulation studies of Bai and Perron (2006) and Hall et al. (2013) by including more general cases. This provides more comprehensive results and reveals the cases where the existing identification approaches lose power, which should be kept in mind when applying them.

Keywords: Identification of structural breaks, partial structural change, pure structural change, information criterion, Monte Carlo simulation.

Journal of Economic Literature classification: C01, C1, C51, C52.

^{*}The authors thank the anonymous referee and the Editor Prof. Anindya Banerjee for several useful comments.

[†]Durham University Business School. Address: Mill Hill Lane, Durham, DH1 3LB, UK. TEL: +44 1913345892 E-mail: chulwoo.han@durham.ac.uk.

[†]Durham University Business School. Address: Mill Hill Lane, Durham, DH1 3LB, UK. TEL: +44 1913345423 E-mail: abderrahim.taamouti@durham.ac.uk.

Partial Structural Break Identification

ABSTRACT

We propose an extension of the existing information criterion-based structural break identification approaches. The extended approach helps identify both *pure structural change (break) and partial structural change (break)*. A pure structural change refers to the case when breaks occur simultaneously in all parameters of regression equation, whereas a partial structural change happens when breaks occur in some parameters only. Our approach consistently outperforms other well known approaches. We also extend the simulation studies of Bai and Perron (2006) and Hall et al. (2013) by including more general cases. This provides more comprehensive results and reveals the cases where the existing identification approaches lose power, which should be kept in mind when applying them.

Keywords: Identification of structural breaks, partial structural change, pure structural change, information criterion, Monte Carlo simulation.

Journal of Economic Literature classification: C01, C1, C51, C52.

1 Introduction

Structural breaks have been observed in many economic and financial time series, see Stock and Watson (1996) among others. It is well established that ignoring these breaks has undesirable consequences on time series analysis. In particular, authors such as Clements and Hendry (1998, 1999) consider the ignorance of structural breaks as a main reason of forecast failure. Hence the importance of providing robust statistical procedure for detecting and estimating the number of breaks cannot be overemphasized.

Several approaches have been proposed to detect structural breaks in economic and financial time series. Andrews (1993) and Bai and Perron (1998) introduced statistical testing procedures to investigate the presence and timing of change when one or more breaks occur within the available time series data. Perron and Qu (2006) extended these results to the case where arbitrary linear restrictions on the coefficients are available a priori. Another class of approaches are based on information criteria. Yao (1988), Liu et al. (1997), and Zhang and Siegmund (2007) considered Bayesian information criterion (BIC) of Schwarz (1978), whereas Ninomiya (2005) used Akaike's information criterion (AIC) of Akaike (1973). In addition, Bai (2000) established conditions under which an information criterion is consistent for estimation of the number of breaks in vector autoregressions with martingale difference sequence errors. Finally, recently Chen, Gerlach, and Liu (2011) have used a Bayesian computational method to identify the locations of structural breaks in the context of time-varying regression model and in the presence of heteroskedasticity and autocorrelation.

In this paper, we extend the existing information criterion-based approaches to identify both pure and partial structural changes. A pure structural change refers to the case when breaks occur simultaneously in all parameters of regression equation, whereas a partial structural change refers to the case when breaks occur in some parameters only. One drawback of the existing approaches is that they assume pure (simultaneous) structural breaks only, although this may not be the case in reality. For example, if a monetary policy measure is included as one of the regressors and one wants to examine the effect of changes in this measure on a dependent macro variable, there is no reason to assume that other regressors will also experience a structural break at the same time. If breaks occur only in some of the regressors, as explained in Section 3, the existing information criterion-based approaches will underestimate the number of breaks. Our extension aims to address this problem of the existing approaches and detect partial structural breaks as well as pure structural breaks.

Another contribution of this paper is that we provide a Monte Carlo simulation study which compares the performance of our approach with the exiting ones for a large set of data-generating processes that represent different contexts encountered in practice. We extend the simulation studies of Bai and Perron (2006) and Hall et al. (2013) by including more general cases, especially the cases where break detection becomes difficult. This provides more comprehensive results and reveals the potential areas where the existing methods lose their power. Simulation results show that our approach consistently outperforms other well known approaches such as the ones introduced by Yao (1988) and Bai and Perron (1998).

The rest of the paper is organized as follows. The framework that defines the regression model with multiple breaks and a general procedure that identifies these breaks is introduced in Section 2. Section 3 provides a brief summary of the existing information criterion-based approaches and discusses our approach for detecting partial breaks. In Section 4, we use Monte Carlo simulations to investigate the performance of our approach by comparing it with the existing ones. Section 5 concludes.

2 Framework

We consider the following N-variable linear system with K breaks

$$y_t = X_t \beta_k + e_t, \text{ for } \tau_{k-1} \le t < \tau_k, \text{ with } k = 1, \cdots, K+1,$$
(1)

where $X_t = [1 \ x_{1t} \ \cdots \ x_{Nt}]$ is a vector of covariates, $\beta_k = [\beta_{0k} \ \cdots \ \beta_{Nk}]'$ is a vector of parameters of interest that are subject to multiple structural breaks, and e_t is an error term. K breaks means that we are in presence of K + 1 regimes that are defined by the time set $\{\tau_0 = 1, ..., \tau_{K+1} = T\}$ within the whole sample of size T. The problem now is to identify the number (K) and timing (τ_k) of the breaks. A general procedure for this consists of the following two steps:

Identification of the timing of breaks: The first step is to find τ_k , for $k = 1, \dots, K$, that minimize the residual sum of squares (RSS). Formally, we select τ_1, \dots, τ_K that minimize the RSS:

$$\{\hat{\tau}_1, \cdots, \hat{\tau}_K\} = \underset{\tau_1, \cdots, \tau_K}{\operatorname{argmin}} \left\{ RSS_K = \sum_{k=1}^{K+1} RSS_k \right\},$$
(2)

where

$$RSS_k = \sum_{t=\tau_{k-1}+1}^{\tau_k} (y_t - X_t \hat{\beta}_k)^2, \text{ for } k = 1, \cdots, K+1.$$
(3)

This is repeated for $K = 0, \dots, K_{max}$, a pre-specified maximum number of breaks. As noted by Bai and Perron (2006), there are T(T-1)/2 possible regimes within the sample.¹ Therefore, the global minimum of the problem in (2) can be found efficiently as follows: 1) calculate RSS_k for all the possible regimes; 2) for a given set of τ_1, \dots, τ_K , choose the corresponding RSS_k 's and simply add them up to obtain RSS.

Determination of the number of breaks: The second step is to determine the number of breaks by comparing the global minima for $K = 1, \dots, K_{max}$. This normally consists of using a statistical test-based procedure such as the one in Bai and Perron (1998, 2003, 2006) and Perron and Qu (2006) or an information criterion-based approach as in Yao (1988), among others.

¹For a start time $t = 1, \dots, T-1$, there are T-t ending times, which gives total T(T-1)/2 regimes.

3 Information criterion-based approaches

3.1 Brief summary of the existing approaches

Several information criterion-based identification methods have been proposed to determine the number of breaks. The first and well known approach was introduced by Yao (1988). He shows that when the residuals e_t in (1) are i.i.d. normal, breaks in mean can be identified using the Bayesian information criteria (BIC) of the form:

$$BIC(K) = T \log \frac{RSS_K}{T} + ((N+1)(K+1) + K) \log T,$$
(4)

where RSS_K is the residual sum of squares at its minimum as defined in (2), N is the number of covariates in the regression equation (1), K is the number of breaks, and T is the sample size. Yao (1988) suggests to choose the number of breaks K that has the minimum BIC, i.e.,

$$\hat{K} = \underset{K}{\operatorname{argmin}} BIC(K).$$
(5)

Liu, Wu and Zidek (1997) have also used a BIC for the identification of number of breaks. Their approach, however, appears to underperform in the simulation analyses reported in Bai and Perron (2006) and Hall et al. (2013), and will not be considered further in this paper.

More recently, Hall et al. (2013) proposed an alternative approach where the penalty for the breaks is 3K instead of K. Their information criteria has the form:

$$BIC(K) = T\log\frac{RSS_K}{T} + ((N+1)(K+1) + 3K)\log T.$$
(6)

With the penalty term 3K, their approach is more conservative and is likely to underestimate the number of breaks compared to Yao (1988) approach.

Finally, Bai and Perron (1998, 2003, 2006) proposed sequential statistical procedures to determine the number of breaks. Perron and Qu (2006) have extended these results to the case where arbitrary linear restrictions on the coefficients are available a priori. For more details about these statistical procedures, the reader is referred to Bai and Perron (1998, 2003, 2006) and Perron and Qu (2006) or Hall et al. (2013) for a summary.

3.2 Extended approach

One drawback of Yao (1988) and other existing approaches is that they assume pure structural changes in all the regressors. However, this is not necessarily the case in many circumstances. For example, if a monetary policy measure is included as one of the regressors and we want to examine the effect of changes in this measure on a dependent variable, there is no reason to assume that other regressors will experience structural breaks at the same time. If a break occurs only in some of the regressors, as illustrated in the following example, the term (K + 1)(N + 1) in (4) and (6) will impose too severe penalty, and therefore it will result in underestimation of the number of breaks in finite samples.

Our extension of the existing approaches aims to address this issue by taking partial breaks into account. Note that the BIC formula in (4) can be viewed as the BIC of a dummy variable regression equation with unknown K breaks. For example, consider a bivariate system with one break at time τ_1 . A corresponding dummy variable regression equation will have the form

$$\begin{bmatrix} y_1 \\ \vdots \\ y_{\tau_1} \\ y_{\tau_1+1} \\ \vdots \\ y_T \end{bmatrix} = \begin{bmatrix} 1 & x_1 & 1 & x_1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_{\tau_1} & 1 & x_{\tau_1} \\ 1 & x_{\tau_1+1} & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_T & 0 & 0 \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \end{bmatrix} + \begin{bmatrix} e_1 \\ \vdots \\ e_{\tau_1} \\ e_{\tau_1+1} \\ \vdots \\ e_T \end{bmatrix}$$

The BIC of this regression is the same as the one in (4). Now, if the break occurs only in x, a corresponding dummy variable regression equation will have the form

$$\begin{bmatrix} y_1 \\ \vdots \\ y_{\tau_1} \\ y_{\tau_1+1} \\ \vdots \\ y_T \end{bmatrix} = \begin{bmatrix} 1 & x_1 & x_1 \\ \vdots & \vdots & \vdots \\ 1 & x_{\tau_1} & x_{\tau_1} \\ 1 & x_{\tau_1+1} & 0 \\ \vdots & \vdots & \vdots \\ 1 & x_T & 0 \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix} + \begin{bmatrix} e_1 \\ \vdots \\ e_{\tau_1} \\ e_{\tau_1+1} \\ \vdots \\ e_T \end{bmatrix}$$

In this case, the correct BIC is given by:

$$BIC(K) = T \log \frac{RSS_K}{T} + (N + 1 + NK + K) \log T,$$

where RSS_K is the residual sum of squares from the above dummy variable regression equation. Similarly, we can construct a dummy variable regression for a break in the intercept only and obtain the corresponding BIC. In general, for a system of N + 1 regressors including constant, there are C_j^{N+1} possible combinations of partial breaks in j regressors out of N + 1 regressors. Therefore, the total number of potential partial breaks becomes²

$$D = \mathcal{C}_1^{N+1} + \dots + \mathcal{C}_{N+1}^{N+1}.$$

The BIC of case $d, d = 1, \dots, D$, can be calculated using the following formula

$$BIC(K,d) = T \log \frac{RSS_K(d)}{T} + (N+1+nK+K) \log T$$
(7)

²When there are more than one break, we assume that all breaks occur in the same regressors.

where n and $RSS_K(d)$ are respectively the number of regressors experiencing breaks and the residual sum of squares of the corresponding dummy variable regression in case d.³ The number of breaks is determined by choosing K that minimizes the BIC in all cases. That is:

$$\hat{K} = \underset{K}{\operatorname{argmin}} BIC(K, d), \text{ for } d = 1, \cdots, D.$$
(8)

When only n < N regressors experience breaks, it is sensible to adjust the penalty term proportionately to the ratio n/N. In this case, Equation (7) needs to be modified as follows:

$$BIC(K,d) = T\log\frac{RSS_K(d)}{T} + \left(N + 1 + nK + \frac{n}{N}K\right)\log T.$$
(9)

The following proposition establishes the consistency of the estimation of the number of breaks K based on the minimization problem defined in (8), where BIC(K, d) is given by (7) or (9). The assumptions needed to derive Proposition (1) are similar to the ones considered in Yao (1988) and Liu, Wu and Zidek (1997); see for example Assumptions 4.1-4.1' in Liu, Wu and Zidek (1997).

Proposition 1 Assume that $K^0 \leq K_{max}$, $\beta_k^0 \neq \beta_{k+1}^0$ for $1 \leq k \leq K^0$, with superscript 0 denoting the true parameters, and τ_k/T for $1 \leq k \leq K^0$ converges to λ_k as $T \to \infty$ for some $0 < \lambda_1 < \cdots < \lambda_{K^0} < 1$. Then,

$$\Pr\left(\hat{K} = K^0\right) \to 1 \quad as \ T \to \infty.$$

See Appendix A for proof. Proposition 1 is valid for both the BIC in Equation (7) or its modified version in Equation (9).

We also consider Hannan & Quinn criterion (HQC) of the form

$$HQC(K) = T\log\frac{RSS_K}{T} + 2((N+1)(K+1) + K)\log(\log T),$$
(10)

and its extensions.⁴ As $2\log(\log T) < \log T$ for T > 2, HQC based approaches are expected to overfit compared to BIC based approaches.

Through various simulations, we observe that information criterion-based methods often select zero break when the true number of breaks is greater than zero. Furthermore, in many cases, we find that the BIC of the true number of breaks, K, is often a local minimum, i.e.,

$$BIC(K) < \min(BIC(K+1), BIC(K-1)).$$

Based on this observation, we further improve our approach by adding the following procedure (henceforth, referred to as the *modification*):

³Equation (7) is an extension of Yao's (1988) model. Hall et al. (2013) model can also be extended in the same manner by replacing K in the last term of equation (7) with 3K.

⁴We thank the anonymous referee for suggesting this.

1. Find K's such that

$$BIC(K) < \min(BIC(K+1), BIC(K-1)), \quad K > 0.$$

- 2. If there exist at least one K that satisfy the above condition, choose K that has the minimum BIC as the number of breaks.
- 3. Otherwise, set the number of breaks to zero.

4 Monte Carlo simulation

In this section, we use Monte Carlo simulation to compare the performance of our approaches and the existing ones for various data generating processes (DGPs) that represent different contexts encountered in practice. Our DGPs are based on those of Hall et al. (2013) and Bai and Perron (2006), but we consider additional DGPs that extend the previous ones to highlight more general cases where identification approaches could lose power. We compare 12 approaches: 8 extensions and 4 existing models, as listed in Table 1. 10% trimming value is used in all models, and 10% statistical significance level is applied for Bai and Perron (2006) approaches.

Table 1:	Com	parison	Models
----------	-----	---------	--------

Model	Description
B1	Yao (1988)
B1A	Extension of Yao (1998): Partial breaks (BIC defined in (7))
B1B	B1A with the modification
B1C	Extension of Yao (1998): Partial breaks and fractional penalty (BIC
	defined in (9))
B1D	B1C with the modification
B3	Hall et al. (2013)
B3A	Extension of Hall et al. (2013): Partial breaks
HQ	HQC defined in (10)
HQA	Extension of HQC: Partial breaks
HQB	HQA with modification
BP	Bai and Perron (2006) without correction for heteroscedasticity and
	serial correlation
BPH	Bai and Perron (2006) with correction for heteroscedasticity and serial
	correlation using HAC estimator

We use two sample sizes T = 120 and 240 as in Bai and Perron (2006). However, for the sake of saving space, we only report the results for T = 120. The results for T = 240 are qualitatively similar to those obtained for T = 120 and are available upon request. We consider the cases of K = 0, 1, and 2, and assumethat the breaks occur at same intervals, *i.e.*, t = 60 for K = 1 and $t = \{40, 80\}$ for K = 2. For the number of regressors, we use one or two independent variables. We have considered up to three breaks and four independent variables, but decided to exclude them from the paper as the results for those cases can be generally extrapolated from the results reported here. We run 1,000 simulations to evaluate the performances of different approaches. The performance is measured by the probability of capturing the true number of breaks. The rest of the section describes the DGPs considered in our analysis.

4.1 Data generating processes

4.1.1 No Breaks

For the cases of no break, we employ the same data generating processes as in Hall et al. (2013) with minor modifications. These DGPs are described below:

where y_t is the dependent variable that we generate from e_t and x_{it} , for i = 1, 2, with $e_t \sim N(0, 1)$ and $x_{it} \sim N(1, 1)$. For more details about these DGPs, the reader is referred to Hall et al. (2013).

4.1.2 Multiple Breaks

We now consider DGPs with multiple breaks. These DGPs basically have either of the two forms:

$$y_t = X_t \beta_k + e_t$$
, with e_t i.i.d (hereafter MA(0)) (11)

$$y_t = X_t \beta_k + u_t$$
, with $u_t \sim MA(1)$: $u_t = 0.5u_{t-1} + e_t$, (12)

where X_t is a vector of covariates. In (11), the residual is assumed to be serially uncorrelated, whereas it is serially correlated in (12). For each case, twenty one DGPs are considered as summarized in Table 2.

Both Bai and Perron (2006) and Hall et al. (2013) assume that $e_t \sim N(0, 1)$ and $x_{it} \sim N(1, 1)$. However, break detection becomes more challenging when the expected value of x_{it} is zero. This is because when the expected value is zero, a break in x_{it} does not automatically induce a break in the constant term. Another case where the detection is likely to fail is when the variance of the residual is larger than the variance of the regressors, i.e., when the regression has a low goodness of fit. We consider these cases in our simulation analysis by assuming four cases for each DGP:

> CASE I: $x_{it} \sim N(1,1), e_t \sim N(0,1)$ CASE II: $x_{it} \sim N(0,1), e_t \sim N(0,1)$ CASE III: $x_{it} \sim N(1,1), e_t \sim N(0,2)$ CASE IV: $x_{it} \sim N(0,1), e_t \sim N(0,2).$

Therefore, we have a total of 200 DGPs (50 DGPs \times 4 cases) in the simulation analysis.

4.2 Simulation results

The results of the Monte Carlo simulation study can be found in Tables 3 to 7. Tables 3 to 6 report the probability of correct identification for each DGP in CASE I - IV, respectively, and Table 7 provides the average probabilities across DGPs in each case. Our discussion will be mainly based on CASE I.

The first thing to note is that both extensions B1A and B3A significantly improve the performances of their counterparts B1 and B3. On average, B1A identifies breaks correctly with a probability of 57% for CASE I, 6% higher than B1. B3A also improves the performance of B3 by 6% (44% vs 38%). Furthermore, note that the existing approaches perform very poorly when the breaks occur only in some parameters. This is clear if we compare DGPs 9 and 10 with 11, or DGPs 15, 16, and 17 with 18. Break detection becomes challenging when x_{it} have zero mean and it becomes more so if the constant term remains the same. However, when partial breaks are accounted for, the performance improves significantly and the detection probability remains relatively high even when x_{it} have zero mean. For example, if we compare DGP 18 of CASE I with that of CASE II, the correct detection probability of B1 drops from 98% to 74%, and for DGP 17 in which the constant remains the same, it is only 69% for CASE I and 50% for CASE II. On the contrary, the corresponding values of B1A and B1C are respectively 95%, 82%, 96%, and 71%, and 88%, 81%, 91%, and 79%.

For most DGPs, accounting for partial breaks turns out to improve break detection. Some of the exceptions where the performance deteriorates are found in DGPs 8, 14, and 22. These DGPs all have serially correlated error terms. In general, the extended approaches are less effective when the error term is serially correlated. Still, this can be largely avoided by employing the modification as can be seen from the results of B1B. Overall, B1B improves over B1A.

The approaches B1C and B1D that use fractional penalty term as in Equation (9) tend to slightly overestimate the number of breaks compared to their counterparts B1A and B1C. This results in much improved performance when there exist breaks at the cost of underperformance when there is no break

	One Break and One Independent Variable													
$e_t \sim MA(0)$	$u_t \sim MA(1)$	\sim MA(1) Regime 1 Regime 2 Regime 3												
		Const.	2	X	Const.	2	X	Const.	∡	X				
DGP9	DGP12	1		1	1.5		1	-		_				
DGP10	DGP13	1		1	1	1	.5	-		-				
DGP11	DGP14	1		1	1.5	1	.5	-		-				
	One B	One Break and Two Independent Variables												
		Const. X_1 X_2 Const. X_1 X_2												
DGP15	DGP20	1	1	1	1.5	1	1	-	-	-				
DGP16	DGP21	1	1	1	1	1.5	1	-	-	-				
DGP17	DGP22	1	1	1	1	1.5	1.5	-	-	-				
DGP18	DGP23	1	1	1	1.5	1.5	1.5	-	-	-				
DGP19	DGP24	1	1	1	1	1.5	0.5	-	-	-				
Two Breaks and One Independent Variable														
		Y	Const.	∡	X									
DGP25	DGP30	1 1			1.5	•	1	1		1				
DGP26	DGP31	1		1	1	1	.5	1		1				
DGP27	DGP32	1		1	1	1	.5	1		2				
DGP28	DGP33	1		1	1.5	1	.5	1		1				
DGP29	DGP34	1		1	1.5	1	.5	2		2				
	Two B	reaks an	d Tw	o Inc	lepender	nt Va	riable	es						
		Const.	X_1	X_2	Const.	X_1	X_2	Const.	X_1	X_2				
DGP35	DGP43	1	1	1	1.5	1	1	1	1	1				
DGP36	DGP44	1	1	1	1	1.5	1	1	1	1				
DGP37	DGP45	1	1	1	1	1.5	1	1	2	1				
DGP38	DGP46	1	1	1	1	1.5	1.5	1	1	1				
DGP39	DGP47	1	1	1	1	1.5	1.5	1	2	2				
DGP40	DGP48	1	1	1	1.5	1.5	1.5	1	1	1				
DGP41	DGP49	1	1	1	1.5	1.5	1.5	2	2	2				
DGP42	DGP50	1	1	1	1	1.5	0.5	1	1	1				

Table 2: Data-generating processes

Note: This table summarizes the values of the coefficients (including the constant) of the data generating processes (DGPs) that we consider in the simulation study to compare different structural break identification approaches. We consider up to two breaks and two independent variables. " $e_t \sim MA(0)$ " indicates that the error term in the regression is an MA(0) or without correlation, and " $u_t \sim MA(1)$ " indicates that the error term is an MA(1).

(DGPs 1 to 8). Nevertheless, the overall performance improvement is significant and B1D turns out to perform best among the models in our experiment.

As expected, the HQC based approaches over-fit compared to the BIC based approaches, resulting in underperformance for no break DGPs and outperformance for DGPs with breaks. On average, HQ outperforms B1, while HQA and HQB perform similar to B1A and B1B. We also considered HQC based approaches with fractional penalty. But the results were not promising and are not reported in this paper.

It is important to note that, in some circumstances, the detection methods have practically no power. For instance, for DGPs 25, 35, and 42, both B1 and B3 have almost zero probability of correct identification, less than 10% for BP, and around 15% for BPH. B1A and B1B do improve the performance of B1 for these DGPs, but the performance is still weak. As shown in the second column ($\Delta \tau$) of the tables, which is the average of $|\tau_k - \hat{\tau}_k|$, low detection power is generally associated with a large estimation error of τ_k .⁵ This means that even if the number of breaks are correctly identified, the timing of the break is likely to be incorrect. Recall that τ_k are determined in the first step of identification by minimizing RSS. Since this step is common to all methods, any improvement in the number of breaks determination methods has a certain limit. Therefore, when the estimation error of τ_k is large, a more fundamental change is required to improve break identification. For example, a different estimator other than OLS could be considered for the estimation of β_k in (1). We leave this topic for future research.

Break detection also becomes difficult when the R^2 of the regression is small. This can be seen by comparing CASE I with CASE III and CASE II with CASE IV. Overall, if R^2 is small, none of the tested approaches are reliable.

Other observations include the followings: Hall et al. (2013) approach seems to be too conservative, therefore works well when there is no break but underestimates the number of breaks when K > 0. BPH does not perform better than BP for MA(1) DGPs and indeed the results are often contrary.

Finally, we should mention that the values reported in the above discussed tables correspond to the probabilities of correctly identifying the number of breaks in the models and cases discussed in Section 4.1. In the presence of partial break models, our statistical procedure does search over all possible locations (intercept and slopes) of the breaks. For example, in the case of a model with an intercept, single regressor, and one break, our procedure does calculate and compare the information criteria from pure structural change; partial structural change in the intercept; and partial structural change in the slope. However, one may ask if the proposed procedure also detects the correct model that corresponds to the correct location of the break(s). To answer this question, we ran additional simulations where we look at the probability of identifying the correct models.⁶ These new simulations are added in Table 8 which reports the probability

 $^{{}^{5}\}Delta\tau$ is determined by Equation (2) of the break timing identification step, and therefore is the same for all the approaches.

⁶We thank very much an anonymous referee for his/her remark which led to these additional simulations.

of correctly specifying the true partial break model, for some of the models and cases discussed in Section 4.1. That is, the probability that our procedure correctly identifies the covariates (including intercept) that are subject to breaks when the number of breaks has been correctly identified. As it can be seen in Table 8, the probability of correctly identifying the covariates that experience breaks is high in all models under consideration, especially when the probability of correct identification of the number of breaks is high. However, for those DGPs for which the number of breaks is difficult to identify, the probability of correctly identifying the true partial break model is low.

5 Conclusion

We have proposed extensions of the existing information criterion-based structural break identification approaches that allow us to identify both pure and partial structural breaks. We provide a correct BIC formula for partial breaks and consider all the possible partial breaks when determining the number of breaks. We also introduce a modified method to further improve the break identification. A Monte Carlo simulation study with a large set of DGPs shows that the extended approaches consistently outperform other well known approaches such as the ones introduced by Yao (1988), Bai and Perron (1998), and Perron and Qu (2006). Overall, the extension of Yao (1988) model with fractional penalty term and the modification performs best among the models tested in our study. We also find that when the goodness of fit of the regression is low, all the approaches tested in this paper become unreliable. Thus, we suggest to reconsider using a break detection method when the R^2 of a regression is low.

References

- Akaike, H. (1973). "Information theory and an extension of the maximum likelihood principle," in B. N. Petrov and F. Csaki (eds), Second International Symposium on Information Theory, Budapest, Hungary, Akademia Kiado, pp. 267-281.
- [2] Andrews, D. W. K. (1993). "Tests for parameter instability and structural change with unknown change point," *Econometrica*, 61, pp. 821-856.
- [3] Bai, J. (2000). "Vector autoregressive models with structural changes in regression coefficients and in variance–covariance matrices," Annals of Economics and Finance, 1, pp. 303-339.
- [4] Bai, J., and Perron, P. (1998). "Estimating and testing linear models with multiple structural changes," *Econometrica*, 66, pp. 47-78.

- [5] Bai, J. and Perron, P. (2003). "Computation and analysis of multiple structural change models," *Journal of Applied Econometrics*, 18, pp. 1-22.
- [6] Bai, J., and Perron, P. (2006). "Multiple structural change models: A simulation analysis," in D. Corbae,
 S. N. Durlauf, and B. E. Hansen (eds.), Econometric Theory and Practice: Frontiers of Analysis and
 Applied Research, pp. 212-237. Cambridge University Press, New York.
- [7] Chen, C.W.S, Gerlach, R. and Liu, F.C. (2011). "Detection of structural breaks in a time-varying heteroskedastic regression model," *Journal of Statistical Planning and Inference*, 141, PP. 3367-3381.
- [8] Clements, M.P. and Hendry, D.F. (1998). "Forecasting economic time series," Cambridge University Press.
- [9] Clements, M.P. and Hendry, D.F. (1999). "Forecasting non-stationary economic time series," MIT Press.
- [10] Hall, A. R., Osborn, D. R., and Sakkas, N. (2013). "Inference on structural breaks using information criteria," *The Manchester School*, 81.S3, pp. 54-81.
- [11] Liu, J., Wu, S. and Zidek, J. V. (1997). "On segmented multivariate regression," Statistica Sinica, 7, pp. 497-525.
- [12] Ninomiya, Y. (2005). "Information criterion for Gaussian change-point model," Statistics and Probability Letters, 72, pp. 237-247.
- [13] Perron, P. and Qu, Z. (2006). "Estimating restricted structural change models," Journal of Econometrics, 134(2), pp.373-399.
- [14] Stock, J. H., and Watson, M. W. (1996). "Evidence on structural instability in macroeconomic time series relations," *Journal of Business and Economic Statistics*, 14, pp. 11-30.
- [15] Schwarz, G. E. (1978). "Estimating the dimension of a model," Annals of Statistics, 6, pp. 461-464.
- [16] Yao, Y. C. (1988). "Estimating the number of change-points via Schwarz' criterion," Statistics & Probability Letters, 6, pp. 181-9.
- [17] Zhang, N. R. and Siegmund, D. O. (2007). "A modified Bayes information criterion with applications to the analysis of the comparative genomic hybridization data," *Biometrics*, 63, pp. 22-33.

A Proof of Proposition 1

Proof. Our approach is similar to those that appear in Yao (1988) and Liu et al. (1997), with the exception that, in our case, we need to select K across different values of d or the combinations of regressors

experiencing breaks; please see Section 3.2 for more details. The total number of combinations is equal to $D = \mathcal{C}_1^{N+1} + \cdots + \mathcal{C}_{N+1}^{N+1}$, where N + 1 is the number of regressors including the constant.

Pointwise consistency or the consistency of our approach for a given d can be proven using almost the same arguments made in the proof of Yao's (1988) Proposition in page 182 or those in the proof of Theorem 4.1 of Liu et al. (1997). Thereafter, the uniform consistency or the consistency across different d can be deduced from the pointwise consistency.

We first start with the pointwise consistency. Consider similar assumptions to those in Yao (1988) and Liu et al. (1997) (see, for example, Assumptions 4.1-4.1' in Liu, Wu and Zidek (1997)) and assume that $\beta_k^0(d) \neq \beta_{k+1}^0(d)$ for $1 \leq k \leq K^0(d) \leq K_{max}$ with superscript 0 denoting the true parameters of the *d*-th case, and $\tau_k(d)/T$ for $1 \leq k \leq K^0(d)$ converges to $\lambda_k(d)$ as $T \to \infty$ for some $0 < \lambda_1(d) < \cdots < \lambda_{K^0}(d) < 1$. Here, we implicitly assume that for each *d* there is a true number of breaks that we denote by $K^0(d)$, but we assume the same upper bound for *K* across different *d*, which we denote by K_{max} . Under the above assumptions, the pointwise consistency can be obtained in two steps. In the first step, we show that

$$\Pr\left(\hat{K}(d) \ge K^0(d)\right) \to 1, \text{ as } T \to \infty,$$

where $\hat{K}(d)$ is the estimated number of breaks obtained by minimizing BIC for a given d, i.e.,

$$\hat{K}(d) = \underset{K}{\operatorname{argmin}} BIC(K, d).$$

In the second step, we show that, for $K^0(d) < K \leq K_{max}$,

$$\Pr\left(BIC(K,d) - BIC(K^0(d),d) > 0\right) \to 1, \text{ as } T \to \infty.$$

Hence,

$$\Pr\left(\hat{K}(d) = K^0(d)\right) \to 1, \text{ as } T \to \infty.$$

Now, to show $\Pr\left(\hat{K}(d) \ge K^0(d)\right) \to 1$ as $T \to \infty$, we use the results in Lemma 2 and 3 of Yao (1988); see also Lemma 5.4 of Liu et al. (1997). Proofs of Lemma 2 and 3 of Yao (1988) in our context can be obtained using similar arguments to the ones used in Yao (1988), hence they are omitted. The following can be immediately implied from Lemma 2 of Yao (1988): as $T \to \infty$,

$$0 \le \frac{1}{T} \sum_{t=1}^{T} e_t^2(d) - \hat{\sigma}_{K^0}^2(d) = O_p\left(T^{-1}\log T\right),$$

where $e_t(d)$ is the error term in the dummy variable regression of the case d, and

$$\hat{\sigma}_{K^0}^2(d) = \frac{RSS_{K_0}(d)}{T} = \sum_{k=1}^{K^0(d)+1} \sum_{t=\tau_{k-1}(d)+1}^{\tau_k(d)} (y_t - X_t \hat{\beta}_k(d))^2.$$

From Lemma 3 of Yao (1988), for $K < K^0(d)$, there exists $\epsilon > 0$ such that

$$\Pr\left(\hat{\sigma}_{K}^{2}(d) > \sigma_{0}^{2}(d) + \epsilon\right) \to 1, \text{ as } T \to \infty,$$

where $\sigma_0^2(d)$ is the true variance of the error term $e_t(d)$. Thus, using the results of Lemma 2 and 3 and the Schwartz's criterion, we get

$$\Pr\left(\hat{K}(d) \ge K^0(d)\right) \to 1, \text{ as } T \to \infty.$$
(13)

To show the final result, $\Pr\left(\hat{K}(d) = K^0(d)\right) \to 1$, as $T \to \infty$, we need Lemma 5 of Yao (1988). Again, proof of Lemma 5 of Yao (1988) in our context can be obtained using similar arguments to the ones used in Yao (1988), hence it is omitted. Lemma 5 states that for every K, $K^0(d) < K \leq K_{max}$, and for any $\epsilon > 0$, with probability approaching 1,

$$0 \le \sum_{t=1}^{T} e_t^2(d) - T\hat{\sigma}_K^2(d) \le \left\{ \epsilon + 2\left(K - K^0(d) - 1\right)(1+\epsilon) \right\} \sigma_0^2(d) \log T,$$

where

$$\hat{\sigma}_K^2(d) = \frac{RSS_K(d)}{T} = \sum_{k=1}^{K(d)+1} \sum_{t=\tau_{k-1}(d)+1}^{\tau_k(d)} (y_t - X_t \hat{\beta}_k(d))^2.$$

From the result of Lemma 5, for the modified Schwartz's criterion defined in Equation (7),

$$2 \left\{ BIC(K,d) - BIC(K^{0}(d),d) \right\}$$

$$\geq T \log \frac{RSS_{K}(d)}{T} - T \log \frac{\sum_{t=1}^{T} e_{t}^{2}(d)}{T} + 2 \left\{ nK + K - nK^{0}(d) - K^{0}(d) \right\} \log T$$

$$= T \log \left\{ 1 - \frac{\left\{ \sum_{t=1}^{T} e_{t}^{2}(d) - T \hat{\sigma}_{K}^{2}(d) \right\}}{\sum_{t=1}^{T} e_{t}^{2}(d)} \right\} + 2 \left\{ nK(d) + K(d) - nK^{0}(d) - K^{0}(d) \right\} \log T$$

$$\geq T \log \left\{ 1 - \left\{ \epsilon + 2 \left(K - K^{0}(d) - 1 \right) (1 + \epsilon) \right\} \sigma_{0}^{2}(d) \log T / \left\{ T \left(\sigma_{0}^{2}(d) - \epsilon \right) \right\} \right\} + 2 \left\{ nK + K - nK^{0}(d) - K^{0}(d) \right\} \log T,$$

which, using $\log (1 - x) > (1 + \epsilon) (-x)$ for small x, is greater than

$$-(1+\epsilon)\left\{\epsilon + 2\left(K - K^{0}(d) - 1\right)(1+\epsilon)\right\}\sigma_{0}^{2}(d)\log T / \left\{T\left(\sigma_{0}^{2}(d) - \epsilon\right)\right\}$$
(14)
+2\left\{nK + K - nK^{0}(d) - K^{0}(d)\right\}\log T, for large T.

Since the term (14) is positive for sufficiently small $\epsilon > 0$, we have $\Pr(BIC(K, d) - BIC(K^0(d), d) > 0) \to 1$. Hence the pointwise consistency,

$$\Pr\left(\hat{K}(d) = K^0(d)\right) \to 1, \text{ as } T \to \infty.$$

The argument above also holds using Equation (9) instead of (7).

Now, because the inequality $BIC(K, d) > BIC(K^0(d), d)$ holds for all d, we have

$$\min \{BIC(K,d), \text{ for } d = 1, \cdots, D\} > \min \{BIC(K^0(d), d), \text{ for } d = 1, \cdots, D\}.$$

Thus, if we assume that the global minimum of BIC, min $\{BIC(K,d), \text{ for } d = 1, \dots, D\}$, corresponds to a combination d^0 (in this paper, d is not considered as random and the focus is only on the selection of K), then

$$BIC(K, d^0) > BIC(K^0(d^0), d^0)$$
 for $K^0(d^0) < K \le K_{max}$

In addition, because the result in (13) holds for all d, it also holds for $d = d^0$. Hence,

$$\Pr\left(\hat{K}\left(d^{0}\right) = K^{0}\left(d^{0}\right)\right) \to 1 \text{ as } T \to \infty,$$

which completes the proof of Proposition 1. \blacksquare

B Empirical Results

Δr Bi		CASE I: $X_t \sim N(1,1), e_t \sim N(0,1)$												
DGP1 0.0 95 95 93 95 93 95 93 100 100 88 86 74 94 94 DGP2 0.0 98 94 93 78 77 100 100 88 66 58 90 81 DGP4 0.0 24 24 15 26 86 86 8 8 40 87 DGP5 0.0 71 59 98 98 28 22 27 75 DGP6 0.0 100 100 100 100 100 87 76 66 62 5 15 51 55 57 74 44 00 35 56 83 36 6 62 38 57 62 38 57 62 38 57 76 239 35 57 57 57 57 57 57 57 57 57 <th></th> <th>$\Delta \tau$</th> <th>B1</th> <th>B1A</th> <th>B1B</th> <th>B1C</th> <th>B1D</th> <th>$\mathbf{B3}$</th> <th>B3A</th> <th>\mathbf{HQ}</th> <th>HQA</th> <th>HQB</th> <th>\mathbf{BP}</th> <th>\mathbf{BPH}</th>		$\Delta \tau$	B1	B1A	B1B	B1C	B1D	$\mathbf{B3}$	B3A	\mathbf{HQ}	HQA	HQB	\mathbf{BP}	\mathbf{BPH}
DGP2 0.0 97 93 93 83 83 100 100 88 72 65 95 74 DGP4 0.0 24 24 15 24 15 86 86 8 8 4 40 87 DGP6 0.0 71 71 50 97 98 98 28 28 28 25 72 95 DGP6 0.0 100<	DGP1	0.0	95	95	93	95	93	100	100	86	86	74	94	94
DGP3 0.0 98 94 93 78 77 100 100 83 66 58 90 81 DGP4 0.0 100 <	DGP2	0.0	97	93	93	83	83	100	100	88	72	65	95	74
DGP4 0.0 24 24 15 86 86 8 8 4 40 87 DGP5 0.0 71 759 78 76 98 28 28 25 72 95 DGP6 0.0 100	DGP3	0.0	98	94	93	78	77	100	100	83	66	58	90	81
DGP5 0.0 71 71 59 98 98 28 28 28 25 72 95 DGP6 0.0 100 <	DGP4	0.0	24	24	15	24	15	86	86	8	8	4	40	87
DGP6 0.0 100 <th>DGP5</th> <th>0.0</th> <th>71</th> <th>71</th> <th>59</th> <th>71</th> <th>59</th> <th>98</th> <th>98</th> <th>28</th> <th>28</th> <th>25</th> <th>72</th> <th>95</th>	DGP5	0.0	71	71	59	71	59	98	98	28	28	25	72	95
DGP7 0.0 100 87 83 50 86 355 DGP8 0.0 80 31 31 8 8 95 86 333 6 6 62 38 DGP9 15.9 33 52 54 56 62 5 15 51 55 57 44 40 DGP11 3.5 96 96 90 90 69 90 90 77 84 88 93 65 DGP12 22.2 24 23 27 21 31 10 17 16 13 20 27 28 DGP13 15.9 21 45 46 61 64 29 39 57 62 39 35 57 DGP15 15.9 91 81 87 85 87 52 DGP13 150 93 30 02 04 33 30 <t< th=""><th>DGP6</th><th>0.0</th><th>100</th><th>100</th><th>100</th><th>100</th><th>100</th><th>100</th><th>100</th><th>100</th><th>100</th><th>100</th><th>100</th><th>100</th></t<>	DGP6	0.0	100	100	100	100	100	100	100	100	100	100	100	100
DGP8 0.0 80 31 31 8 8 95 86 33 6 6 62 33 DGP9 15.9 33 52 54 56 66 62 5 15 51 55 57 44 40 DGP11 3.5 96 96 90 96 94 99 77 84 88 93 65 DGP12 22.2 24 23 27 21 31 10 17 16 13 20 27 28 DGP14 8.9 61 54 66 61 64 61 64 77 88 89 35 DGP16 8.1 57 81 82 85 89 100 100 84 77 88 89 50 DGP18 7.5 88 90 50 33 30 27 40 55 28 DGP20 9.0 30 42 16 33 30 27 40 55	DGP7	0.0	100	87	87	69	69	100	100	87	53	50	86	55
DGP9 15.9 33 52 54 56 62 5 15 51 55 57 44 40 DGP11 3.5 96 96 96 90 90 77 84 88 93 65 DGP12 22.2 24 23 27 21 31 10 17 16 13 20 27 28 DGP14 8.9 61 54 66 36 62 63 69 32 29 37 57 57 DGP15 15.9 21 45 46 61 64 2 9 39 35 39 35 DGP15 15.9 89 95 99 88 90 100 84 77 88 90 50 DGP16 16.2 49 56 63 35 71 83 33 30 27 40 55 28 DGP16 16.2 49 56 63 35 71 83 33	DGP8	0.0	80	31	31	8	8	95	86	33	6	6	62	38
DGP10 9.7 69 85 85 88 91 24 43 70 82 84 77 69 DGP11 3.5 96 96 90 96 94 99 77 84 88 93 65 DGP13 14.0 42 40 43 31 42 26 31 21 28 32 46 477 28 DGP14 8.9 61 54 66 66 62 63 69 32 29 37 57 57 DGP15 15.9 21 45 46 61 64 2 9 39 57 62 39 35 DGP15 16.9 81 70 71 77 80 13 23 66 70 74 69 33 30 28 14 34 13 63 26 33 30 28 14 34 13 65 28 28 26 23 34 41 29 26 </th <th>DGP9</th> <th>15.9</th> <th>33</th> <th>52</th> <th>54</th> <th>56</th> <th>62</th> <th>5</th> <th>15</th> <th>51</th> <th>55</th> <th>57</th> <th>44</th> <th>40</th>	DGP9	15.9	33	52	54	56	62	5	15	51	55	57	44	40
DGP11 3.5 96 96 90 96 94 99 77 84 88 93 65 DGP12 22.2 24 23 27 21 31 10 17 16 13 20 27 28 DGP14 8.9 61 54 66 36 62 63 69 32 29 37 57 57 DGP15 15.9 21 45 46 61 64 2 9 39 57 62 39 35 DGP15 15.9 21 45 46 61 64 2 9 39 57 78 85 87 52 DGP15 15.9 21 45 70 71 77 80 13 23 66 70 74 69 33 DGP10 7.8 51 70 71 77 80 34 26 43 35 131 31 30 27 40 55 28 DGP23 <	DGP10	9.7	69	85	85	88	91	24	43	70	82	84	77	69
DGP12 22.2 24 23 27 21 31 10 17 16 13 20 27 28 DGP13 14.0 42 40 43 31 42 26 31 21 28 32 46 47 DGP15 15.9 21 45 46 61 64 2 9 39 57 62 39 35 DGP16 81. 57 81 82 85 89 15 46 69 79 81 70 38 DGP16 8.1 57 81 82 85 89 100 100 84 77 88 90 50 DGP13 7.8 51 70 71 77 80 13 30 28 14 34 51 36 52 DGP13 16.2 49 56 63 35 71 17 80 33 30 22 40 55 28 42 34 43 41 <	DGP11	3.5	96	96	96	90	96	94	99	77	84	88	93	65
DGP13 14.0 42 40 43 31 42 26 31 21 28 32 46 47 DGP14 8.9 61 54 66 36 62 63 69 32 29 37 57 57 DGP16 8.1 57 81 82 85 89 15 46 69 78 78 85 87 52 DGP18 1.5 98 96 98 91 98 96 98 78 78 85 87 52 DGP19 7.8 51 70 71 77 80 13 20 28 14 34 51 36 DGP10 7.8 51 70 71 77 80 31 30 27 40 55 22 DGP23 5.1 74 60 77 39 76 89 89 42 34 41 29 DGP24 15.5 41 50 53 36	DGP12	22.2	24	23	27	21	31	10	17	16	13	20	27	28
DGP14 8.9 61 54 66 36 62 63 32 29 37 57 57 DGP15 15.9 21 45 46 61 64 2 9 39 57 62 39 35 DGP16 8.1 57 81 82 85 89 10 100 84 77 88 90 50 DGP18 1.5 98 95 99 88 98 100 100 84 77 88 90 50 DGP19 7.8 51 70 71 77 80 13 23 66 70 74 69 33 DGP20 20.9 30 30 42 16 38 13 30 28 14 34 51 36 DGP22 8.2 71 58 74 39 71 71 80 34 26 47 63 35 DGP23 5.1 74 60 77 39	DGP13	14.0	42	40	43	31	42	26	31	21	28	32	46	47
DGP15 15 15 14 45 46 61 64 2 9 39 57 62 39 35 DGP16 8.1 57 81 82 85 89 15 46 69 79 81 70 38 DGP17 3.6 98 96 98 96 98 78 78 85 85 55 DGP18 1.5 98 95 99 88 98 100 100 84 77 88 90 50 DGP19 7.8 51 70 71 77 80 13 23 66 70 74 69 33 DGP21 16.2 49 56 63 35 57 18 33 30 22 47 63 35 13 10 DGP24 15.5 41 50 53 36 51 18 28 26 23 34 41 29 DGP26 9.4 42 36 41 55 <	DGP14	8.9	61	54	66	36	62	63	69	32	29	37	57	57
DGP16 8.1 57 81 82 85 89 15 46 66 79 81 70 38 DGP18 1.5 98 96 98 96 98 78 78 85 87 52 DGP19 7.8 51 70 71 77 80 13 23 66 70 74 69 33 DGP19 7.8 51 70 71 77 80 13 23 66 70 74 69 33 DGP10 16.2 49 56 63 35 57 18 33 30 28 14 34 51 36 DGP21 16.2 49 56 63 35 0 1 80 34 26 47 63 35 51 11 12 13 13 14 14 14 12 13 13 14 12 13 13 14 12 13 13 13 13 13 13 <th>DGP15</th> <th>15.9</th> <th>21</th> <th>45</th> <th>46</th> <th>61</th> <th>64</th> <th>2</th> <th>9</th> <th>39</th> <th>57</th> <th>62</th> <th>39</th> <th>35</th>	DGP15	15.9	21	45	46	61	64	2	9	39	57	62	39	35
DGP17 3.6 98 96 98 91 98 96 98 78 78 78 85 87 52 DGP18 1.5 98 95 99 88 98 100 100 84 77 88 90 50 DGP19 7.8 51 70 71 77 80 13 23 66 70 74 69 33 DGP20 20.9 30 30 42 16 38 13 30 28 14 34 51 36 DGP22 8.2 71 58 74 39 76 89 89 42 34 53 51 31 DGP24 15.5 41 50 53 36 51 18 28 26 23 34 41 29 DGP25 14.4 4 16 16 35 59 62 11 <	DGP16	8.1	57	81	82	85	89	15	46	69	79	81	70	38
DGP18 1.5 98 95 99 88 98 100 100 84 77 88 90 50 DGP19 7.8 51 70 71 77 80 13 23 66 70 74 69 33 DGP20 20.9 30 30 42 16 38 13 30 28 14 34 51 36 DGP21 16.2 49 56 63 35 57 18 33 30 27 40 55 28 DGP23 5.1 74 60 77 39 76 89 94 23 43 41 29 DGP24 15.5 41 50 53 36 51 18 28 26 23 34 41 29 DGP26 9.4 22 36 41 55 58 0 1 50 59 <t< th=""><th>DGP17</th><th>3.6</th><th>98</th><th>96</th><th>98</th><th>91</th><th>98</th><th>96</th><th>98</th><th>78</th><th>78</th><th>85</th><th>87</th><th>52</th></t<>	DGP17	3.6	98	96	98	91	98	96	98	78	78	85	87	52
DGP19 7.8 51 70 71 77 80 13 23 66 70 74 69 33 DGP20 20.9 30 30 42 16 38 13 30 28 14 34 51 36 DGP21 16.2 49 56 63 35 57 18 33 30 27 40 55 28 DGP23 5.1 74 60 77 39 76 89 89 42 34 53 51 31 DGP24 15.5 41 50 53 36 51 18 28 26 23 34 41 29 DGP24 15.5 41 50 53 36 51 18 28 26 23 34 44 46 4 9 DGP26 9.4 22 36 81 77 82 74 28 29 80 79 74 53 DGP23 17.4 24 37	DGP18	1.5	98	95	99	88	98	100	100	84	77	88	90	50
DGP20 20.9 30 30 42 16 38 13 30 28 14 34 51 36 DGP21 16.2 49 56 63 35 57 18 33 30 27 40 55 28 DGP23 5.1 74 60 77 39 76 89 89 42 34 53 51 31 DGP26 14.4 4 16 16 36 35 0 0 23 43 46 4 9 DGP26 9.4 22 36 41 55 58 0 1 50 59 62 11 19 DGP27 9.7 12 25 12 40 10 0 1 42 45 36 20 38 DGP30 17.4 24 37 40 30 45 3 9 34 27	DGP19	7.8	51	70	71	77	80	13	23	66	70	74	69	33
DGP21 16.2 49 56 63 35 57 18 33 30 27 40 55 28 DGP22 8.2 71 58 74 39 71 71 80 34 26 47 63 35 DGP23 5.1 74 60 77 39 76 89 89 42 34 46 4 29 DGP24 15.5 41 50 53 36 51 18 28 26 23 34 41 29 DGP27 9.4 22 36 41 55 58 0 1 42 45 36 20 38 DGP27 9.7 12 25 12 40 0 0 1 42 45 36 20 38 DGP30 17.4 24 37 78 84 37 39 34 27 40 18 12 DGP31 15.3 27 28 27 22 <t< th=""><th>DGP20</th><th>20.9</th><th>30</th><th>30</th><th>42</th><th>16</th><th>38</th><th>13</th><th>30</th><th>28</th><th>14</th><th>34</th><th>51</th><th>36</th></t<>	DGP20	20.9	30	30	42	16	38	13	30	28	14	34	51	36
DGP22 8.2 71 58 74 39 71 71 80 34 26 47 63 35 DGP23 5.1 74 60 77 39 76 89 89 42 34 53 51 31 DGP24 15.5 41 50 53 36 51 18 28 26 23 34 41 29 DGP26 9.4 22 36 41 55 58 0 1 50 59 62 11 19 DGP27 9.7 12 25 12 40 10 0 1 42 45 36 20 38 DGP28 3.3 78 86 89 85 91 21 32 75 78 84 55 39 DGP30 17.4 24 37 40 30 45 3 9 34 27 <th>DGP21</th> <th>16.2</th> <th>49</th> <th>56</th> <th>63</th> <th>35</th> <th>57</th> <th>18</th> <th>33</th> <th>30</th> <th>27</th> <th>40</th> <th>55</th> <th>28</th>	DGP21	16.2	49	56	63	35	57	18	33	30	27	40	55	28
DGP23 5.1 74 60 77 39 76 89 89 42 34 53 51 31 DGP24 15.5 41 50 53 36 51 18 28 26 23 34 41 29 DGP25 14.4 4 16 16 36 35 0 0 23 43 46 4 9 DGP26 9.4 22 36 41 55 58 0 1 50 59 62 11 19 DGP26 9.7 12 25 12 40 10 0 1 42 45 36 20 38 DGP30 17.4 24 37 40 30 45 3 9 34 27 40 18 12 DGP31 15.3 27 38 42 39 46 4 12 28 33 35 26 28 DGP34 11.1 31 31 29 29<	DGP22	8.2	71	58	74	39	71	71	80	34	26	47	63	35
DGP24 15.5 41 50 53 36 51 18 28 26 23 34 41 29 DGP25 14.4 4 16 16 36 35 0 0 23 43 46 4 9 DGP26 9.4 22 36 41 55 58 0 1 50 59 62 11 19 DGP27 9.7 12 25 12 40 10 0 1 42 45 36 20 38 DGP30 17.4 24 37 40 30 45 3 9 34 27 40 18 12 DGP31 15.3 27 38 42 39 46 4 12 28 33 35 26 28 DGP33 8.9 56 58 70 38 62 30 36 31 30 38 46 27 DGP33 8.9 56 58 70 38 </th <th>DGP23</th> <th>5.1</th> <th>74</th> <th>60</th> <th>77</th> <th>39</th> <th>76</th> <th>89</th> <th>89</th> <th>42</th> <th>34</th> <th>53</th> <th>51</th> <th>31</th>	DGP23	5.1	74	60	77	39	76	89	89	42	34	53	51	31
DGP25 14.4 4 16 16 36 35 0 0 23 43 46 4 9 DGP26 9.4 22 36 41 55 58 0 1 50 59 62 11 19 DGP27 9.7 12 25 12 40 10 0 1 42 45 36 20 38 DGP28 3.3 78 86 89 85 91 21 32 75 78 84 55 39 DGP30 17.4 24 37 40 30 45 3 9 34 27 40 18 12 DGP31 15.3 27 38 42 39 46 4 12 28 33 35 26 28 DGP33 8.9 56 58 70 38 62 30 36 31 30 38 46 27 DGP34 11.1 31 31 29 29 </th <th>DGP24</th> <th>15.5</th> <th>41</th> <th>50</th> <th>53</th> <th>36</th> <th>51</th> <th>18</th> <th>28</th> <th>26</th> <th>23</th> <th>34</th> <th>41</th> <th>29</th>	DGP24	15.5	41	50	53	36	51	18	28	26	23	34	41	29
DGP26 9.4 22 36 41 55 58 0 1 50 59 62 11 19 DGP27 9.7 12 25 12 40 10 0 1 42 45 36 20 38 DGP28 3.3 78 86 89 85 91 21 32 75 78 84 55 39 DGP29 2.7 79 81 77 82 74 28 29 80 79 79 74 53 DGP30 17.4 24 37 40 30 45 3 9 34 27 40 18 12 DGP31 15.3 27 38 42 39 46 4 12 28 33 35 26 28 DGP33 15.6 25 27 22 33 18 3 3 20 26 21 36 DGP34 11.1 31 31 29 29 2	DGP25	14.4	4	16	16	36	35	0	0	23	43	46	4	9
DGP27 9.7 12 25 12 40 10 0 1 42 45 36 20 38 DGP28 3.3 78 86 89 85 91 21 32 75 78 84 55 39 DGP29 2.7 79 81 77 82 74 28 29 80 79 79 74 53 DGP30 17.4 24 37 40 30 45 3 9 34 27 40 18 12 DGP31 15.3 27 38 42 39 46 4 12 28 33 35 26 28 DGP33 8.9 56 58 70 38 62 30 36 31 30 38 46 27 DGP34 11.1 31 31 29 29 25 19 19 20 19 18 44 46 DGP35 13.7 0 20 21 <th< th=""><th>DGP26</th><th>9.4</th><th>22</th><th>36</th><th>41</th><th>55</th><th>58</th><th>0</th><th>1</th><th>50</th><th>59</th><th>62</th><th>11</th><th>19</th></th<>	DGP26	9.4	22	36	41	55	58	0	1	50	59	62	11	19
DGP28 3.3 78 86 89 85 91 21 32 75 78 84 55 39 DGP29 2.7 79 81 77 82 74 28 29 80 79 79 74 53 DGP30 17.4 24 37 40 30 45 3 9 34 27 40 18 12 DGP31 15.3 27 38 42 39 46 4 12 28 33 35 26 28 DGP32 15.6 25 27 22 33 18 3 3 20 26 26 24 36 27 DGP33 8.9 56 58 70 38 62 30 36 31 30 38 46 27 DGP34 11.1 31 29 29 25 19 19 20 19 18 44 46 DGP36 10.1 5 42 41 <	DGP27	9.7	12	25	12	40	10	0	1	42	45	36	20	38
DGP29 2.7 79 81 77 82 74 28 29 80 79 79 74 53 DGP30 17.4 24 37 40 30 45 3 9 34 27 40 18 12 DGP31 15.3 27 38 42 39 46 4 12 28 33 35 26 28 DGP32 15.6 25 27 22 33 18 3 3 20 26 26 26 24 36 DGP33 8.9 56 58 70 38 62 30 36 31 30 38 46 27 DGP34 11.1 31 31 29 29 25 19 19 20 19 18 44 46 DGP35 13.7 0 20 20 41 41 0 0 17 44 45 3 10 DGP36 10.1 5 42	DGP28	3.3	78	86	89	85	91	21	32	75	78	84	55	39
DGP30 17.4 24 37 40 30 45 3 9 34 27 40 18 12 DGP31 15.3 27 38 42 39 46 4 12 28 33 35 26 28 DGP31 15.3 27 22 33 18 3 3 20 26 26 26 24 36 DGP33 8.9 56 58 70 38 62 30 36 31 30 38 46 27 DGP34 11.1 31 31 29 29 25 19 19 20 19 18 44 46 DGP35 13.7 0 20 20 41 41 0 0 17 44 45 3 10 DGP36 10.1 5 42 41 70 70 0 1 38 74 70 11 14 DGP37 11.4 3 24 39 3<	DGP29	2.7	79	81	77	82	74	28	29	80	79	79	74	53
DGP31 15.3 27 38 42 39 46 4 12 28 33 35 26 28 DGP32 15.6 25 27 22 33 18 3 3 20 26 26 24 36 DGP33 8.9 56 58 70 38 62 30 36 31 30 38 46 27 DGP34 11.1 31 29 29 25 19 19 20 19 18 44 46 DGP35 13.7 0 20 20 41 41 0 0 17 44 45 3 10 DGP36 10.1 5 42 41 70 70 0 1 38 74 70 11 14 DGP37 11.4 3 24 3 39 3 0 0 27 42 24 15 36 DGP38 3.4 62 90 93 82 91 <th>DGP30</th> <th>17.4</th> <th>24</th> <th>37</th> <th>40</th> <th>30</th> <th>45</th> <th>3</th> <th>9</th> <th>34</th> <th>27</th> <th>40</th> <th>18</th> <th>12</th>	DGP30	17.4	24	37	40	30	45	3	9	34	27	40	18	12
DGP32 15.6 25 27 22 33 18 3 3 20 26 26 24 36 DGP33 8.9 56 58 70 38 62 30 36 31 30 38 46 27 DGP34 11.1 31 31 29 29 25 19 19 20 19 18 44 46 DGP35 13.7 0 20 20 41 41 0 0 17 44 45 3 10 DGP36 10.1 5 42 41 70 70 0 1 38 74 70 11 14 DGP37 11.4 3 24 3 39 3 0 0 27 42 24 15 36 DGP38 3.4 62 90 93 82 91 13 38 78 69 85 55 33 DGP40 1.2 98 96 98 86 <th>DGP31</th> <th>15.3</th> <th>27</th> <th>38</th> <th>42</th> <th>39</th> <th>46</th> <th>4</th> <th>12</th> <th>28</th> <th>33</th> <th>35</th> <th>26</th> <th>28</th>	DGP31	15.3	27	38	42	39	46	4	12	28	33	35	26	28
DGP33 8.9 56 58 70 38 62 30 36 31 30 38 46 27 DGP34 11.1 31 31 29 29 25 19 19 20 19 18 44 46 DGP35 13.7 0 20 20 41 41 0 0 17 44 45 3 10 DGP36 10.1 5 42 41 70 70 0 1 38 74 70 11 14 DGP36 10.1 5 42 41 70 70 0 1 38 74 70 11 14 DGP36 3.4 62 90 93 82 91 13 38 78 69 85 55 33 DGP39 2.9 76 88 75 90 74 29 45 81 87 87 81 42 DGP40 1.2 98 96 98 86	DGP32	15.6	25	27	22	33	18	3	3	20	26	26	24	36
DGP34 11.1 31 31 29 29 25 19 19 20 19 18 44 46 DGP35 13.7 0 20 20 41 41 0 0 17 44 45 3 10 DGP36 10.1 5 42 41 70 70 0 1 38 74 70 11 14 DGP36 10.1 5 42 41 70 70 0 1 38 74 70 11 14 DGP37 11.4 3 24 3 39 3 0 0 27 42 24 15 36 DGP38 3.4 62 90 93 82 91 13 38 78 69 85 55 33 DGP40 1.2 98 96 98 86 98 72 91 84 72 87 81 42 DGP41 1.3 97 95 95 94 <th>DGP33</th> <th>8.9</th> <th>56</th> <th>58</th> <th>70</th> <th>38</th> <th>62</th> <th>30</th> <th>36</th> <th>31</th> <th>30</th> <th>38</th> <th>46</th> <th>27</th>	DGP33	8.9	56	58	70	38	62	30	36	31	30	38	46	27
DGP35 13.7 0 20 20 41 41 0 0 17 44 45 3 10 DGP36 10.1 5 42 41 70 70 0 1 38 74 70 11 14 DGP37 11.4 3 24 3 39 3 0 0 27 42 24 15 36 DGP38 3.4 62 90 93 82 91 13 38 78 69 85 55 33 DGP39 2.9 76 88 75 90 74 29 45 81 87 87 81 42 DGP40 1.2 98 96 98 86 98 72 91 84 72 87 81 42 DGP41 1.3 97 95 95 94 94 92 96 78 78 80 81 38 DGP41 1.3 97 95 94 94 <th>DGP34</th> <th>11.1</th> <th>31</th> <th>31</th> <th>29</th> <th>29</th> <th>25</th> <th>19</th> <th>19</th> <th>20</th> <th>19</th> <th>18</th> <th>44</th> <th>46</th>	DGP34	11.1	31	31	29	29	25	19	19	20	19	18	44	46
DGP36 10.1 5 42 41 70 70 0 1 38 74 70 11 14 DGP37 11.4 3 24 3 39 3 0 0 27 42 24 15 36 DGP38 3.4 62 90 93 82 91 13 38 78 69 85 55 33 DGP39 2.9 76 88 75 90 74 29 45 81 87 87 81 42 DGP40 1.2 98 96 98 86 98 72 91 84 72 87 81 42 DGP41 1.3 97 95 95 94 94 92 96 78 78 80 81 38 DGP41 1.3 97 95 95 94 94 92 96 78 78 80 81 38 DGP43 17.5 14 31 36 2	DGP35	13.7	0	20	20	41	41	0	1	11	44	45	3 11	10
DGP37 11.4 3 24 3 39 3 0 0 27 42 24 15 36 DGP38 3.4 62 90 93 82 91 13 38 78 69 85 55 33 DGP39 2.9 76 88 75 90 74 29 45 81 87 87 81 42 DGP40 1.2 98 96 98 86 98 72 91 84 72 87 81 42 DGP41 1.3 97 95 95 94 94 92 96 78 78 80 81 38 DGP42 9.8 3 21 23 37 39 0 0 34 47 51 10 13 DGP43 17.5 14 31 36 27 39 1 8 25 27 35 19 17 DGP44 14.8 14 41 45 34<	DGP36	10.1	5	42	41	70	70	0	1	38	(4	70	11	14
DGP38 3.4 62 90 93 82 91 13 38 78 69 85 55 33 DGP39 2.9 76 88 75 90 74 29 45 81 87 87 81 42 DGP40 1.2 98 96 98 86 98 72 91 84 72 87 81 42 DGP40 1.2 98 96 98 86 98 72 91 84 72 87 81 42 DGP41 1.3 97 95 95 94 94 92 96 78 78 80 81 38 DGP42 9.8 3 21 23 37 39 0 0 34 47 51 10 13 DGP43 17.5 14 31 36 27 39 1 8 25 27 35 19 17 DGP44 14.8 14 41 45 <th< th=""><th>DGP37</th><th>11.4</th><th>3</th><th>24</th><th>3</th><th>39</th><th>3</th><th>19</th><th>0</th><th>27</th><th>42</th><th>24</th><th>15</th><th>30</th></th<>	DGP37	11.4	3	24	3	39	3	19	0	27	42	24	15	30
DGP39 2.9 70 88 73 90 74 29 43 81 87 81 42 DGP40 1.2 98 96 98 86 98 72 91 84 72 87 87 41 DGP41 1.3 97 95 95 94 94 92 96 78 78 80 81 38 DGP42 9.8 3 21 23 37 39 0 0 34 47 51 10 13 DGP43 17.5 14 31 36 27 39 1 8 25 27 35 19 17 DGP44 14.8 14 41 45 34 44 3 7 26 27 33 17 25 DGP445 16.9 9 22 13 22 12 1 2 24 23 18 33 33 DGP46 7.3 55 59 72 44 69	DGP38	3.4	62 70	90	93	82	91	13	38	(8	69 87	85	55	33 49
DGP40 1.2 98 90 98 80 98 72 91 84 72 87 87 41 DGP41 1.3 97 95 95 94 94 92 96 78 78 80 81 38 DGP42 9.8 3 21 23 37 39 0 0 34 47 51 10 13 DGP43 17.5 14 31 36 27 39 1 8 25 27 35 19 17 DGP44 14.8 14 41 45 34 44 3 7 26 27 33 17 25 DGP45 16.9 9 22 13 22 12 1 2 24 23 18 33 33 DGP46 7.3 55 59 72 44 69 19 40 45 37 54 42 18 DGP47 6.8 49 57 47 58<	DGP39	2.9	10	88	(5)	90	(4	29 79	45	81	81	81	81	42
DGP41 1.3 97 95 95 94 94 92 96 78 78 80 81 38 DGP42 9.8 3 21 23 37 39 0 0 34 47 51 10 13 DGP43 17.5 14 31 36 27 39 1 8 25 27 35 19 17 DGP44 14.8 14 41 45 34 44 3 7 26 27 33 17 25 DGP45 16.9 9 22 13 22 12 1 2 24 23 18 33 33 DGP46 7.3 55 59 72 44 69 19 40 45 37 54 42 18 DGP47 6.8 49 57 47 58 41 16 22 26 39 36 50 34 DGP48 5.7 68 53 73 34<	DGP40	1.2	98	90	98	80	98	12	91	84 79	12	81	87	41
DGP42 9.8 3 21 23 37 39 0 0 34 47 31 10 13 DGP43 17.5 14 31 36 27 39 1 8 25 27 35 19 17 DGP44 14.8 14 41 45 34 44 3 7 26 27 33 17 25 DGP45 16.9 9 22 13 22 12 1 2 24 23 18 33 33 DGP46 7.3 55 59 72 44 69 19 40 45 37 54 42 18 DGP47 6.8 49 57 47 58 41 16 22 26 39 36 50 34 DGP48 5.7 68 53 73 34 74 53 76 36 31 48 48 20 DGP49 3.5 73 70 68 57<	DGP41	1.3	97	90 91	90	94 97	94 20	92	90	18	18	80 E 1	81 10	38 19
DGP43 11.3 14 31 30 27 39 1 8 23 27 33 19 17 DGP44 14.8 14 41 45 34 44 3 7 26 27 33 17 25 DGP45 16.9 9 22 13 22 12 1 2 24 23 18 33 33 DGP46 7.3 55 59 72 44 69 19 40 45 37 54 42 18 DGP47 6.8 49 57 47 58 41 16 22 26 39 36 50 34 DGP48 5.7 68 53 73 34 74 53 76 36 31 48 48 20 DGP49 3.5 73 70 68 57 58 62 66 37 43 43 56 20 DGP49 15.6 10 34 36 <td< th=""><th>DGP42</th><th>9.0 17 5</th><th>3 14</th><th>21 21</th><th>20 26</th><th>37 97</th><th>39 20</th><th>1</th><th>0</th><th>34 95</th><th>47</th><th>01 95</th><th>10</th><th>15 17</th></td<>	DGP42	9.0 17 5	3 14	21 21	20 26	37 97	39 20	1	0	34 95	47	01 95	10	15 17
DGI 44 14.6 14 41 40 54 44 5 7 20 27 53 17 23 DGP45 16.9 9 22 13 22 12 1 2 24 23 18 33 33 DGP46 7.3 55 59 72 44 69 19 40 45 37 54 42 18 DGP46 7.3 55 59 72 44 69 19 40 45 37 54 42 18 DGP47 6.8 49 57 47 58 41 16 22 26 39 36 50 34 DGP48 5.7 68 53 73 34 74 53 76 36 31 48 48 20 DGP49 3.5 73 70 68 57 58 62 66 37 43 43 56 20 DGP50 15.6 10 34 36 <		1/.0 1/ 9	14 17	31 /1	30 45	21 24	39 44	2 1	0 7	20 96	21 97	22 20	19 17	17 95
DGI 45 10.5 9 22 15 22 12 1 2 24 25 18 55 59 72 44 69 19 40 45 37 54 42 18 DGP46 7.3 55 59 72 44 69 19 40 45 37 54 42 18 DGP47 6.8 49 57 47 58 41 16 22 26 39 36 50 34 DGP48 5.7 68 53 73 34 74 53 76 36 31 48 48 20 DGP49 3.5 73 70 68 57 58 62 66 37 43 43 56 20 DGP50 15.6 10 34 36 41 42 0 6 30 35 38 13 19		14.0	14	41 99	40 19	04 00	44 19	ა 1	ו ס	20 94	∠1 93	มม 1 จ	22 11	20 22
DGI 40 7.5 55 55 72 44 65 19 40 45 57 54 42 18 DGP47 6.8 49 57 47 58 41 16 22 26 39 36 50 34 DGP48 5.7 68 53 73 34 74 53 76 36 31 48 48 20 DGP49 3.5 73 70 68 57 58 62 66 37 43 43 56 20 DGP50 15.6 10 34 36 41 42 0 6 30 35 38 13 19		7 2	9 55	22 50	10 70	22 11	14 60	10	2 40	24 45	40 27	54		55 19
DGP48 5.7 68 53 73 34 74 53 76 36 31 48 48 20 DGP49 3.5 73 70 68 57 58 62 66 37 43 43 56 20 DGP49 1.5 10 34 36 41 42 0 6 30 35 38 13 19	DGF 40 DCP 47	1.3 6.8	00 /0	59 57	14 17	44 58	09 /1	19 16	40 99	40 96	31 20	94 26	42 50	10 24
DGP49 3.5 73 70 68 57 58 62 66 37 43 43 56 20 DGP49 3.5 73 70 68 57 58 62 66 37 43 43 56 20 DGP50 15.6 10 34 36 41 42 0 6 30 35 38 13 19	DGP/8	57	49 68	51 52	41 79	30 34	41 74	10 53	44 76	20 36	39 31		/8	94 90
DGP50 15.6 10 34 36 41 42 0 6 30 35 38 13 19	DGP40	3.5	73	70 70	68	57	58	62	66	30	/12	40	-10 56	20
	DGP50	15.6	10	34	36	41	42	0	6	30	35	38	13	19

Table 3: Performance of structural break identification approaches: CASE I

Note: This table summarizes the performance of the structural break identification approaches for CASE I. The approaches are described at the beginning of Section 4, and the DGPs and the distribution assumption of CASE I are described in Section 4.1. The figures in columns 3 to 9 are the probability of correct detection in percentage. " $\Delta \tau$ " is the average distance between the true break dates and the estimated break dates.

CASE II: $X_t \sim N(0,1)$, $e_t \sim N(0,1)$													
	$\Delta \tau$	B1	B1A	B1B	B1C	B1D	$\mathbf{B3}$	B3A	$\mathbf{H}\mathbf{Q}$	HQA	HQB	\mathbf{BP}	\mathbf{BPH}
DGP1	0.0	99	99	95	99	95	100	100	78	78	68	94	89
DGP2	0.0	99	92	92	78	78	100	99	84	63	60	89	77
DGP3	0.0	97	87	86	68	68	100	100	79	59	51	89	72
DGP4	0.0	30	30	19	30	19	80	80	9	9	5	44	80
DGP5	0.0	65	65	53	65	53	99	99	34	34	21	73	94
DGP6	0.0	100	100	100	100	100	100	100	100	100	100	100	98
DGP7	0.0	99	92	92	70	70	100	100	90	59	57	88	63
DGP8	0.0	77	32	31	12	12	99	84	32	10	10	53	68
DGP9	13.1	33	56	55	68	67	5	11	60	69	69	46	41
DGP10	11.4	28	55	55	67	67	4	5	53	74	66	47	44
DGP11	9.6	63	69	69	71	74	12	15	67	67	72	76	62
DGP12	20.9	38	28	43	18	42	24	32	18	17	27	47	23
DGP13	21.1	26	37	34	33	33	10	14	20	19	21	37	36
DGP14	20.2	44	46	48	39	49	33	35	25	25	37	49	41
DGP15	15.2	12	45	45	58	59	0	7	41	62	63	34	28
DGP16	14.8	10	44	44	58	59	1	5	45	59	64	37	45
DGP17	10.5	50	71	71	79	80	15	29	65	72	68	71	50
DGP18	6.7	74	82	83	81	89	34	38	76	77	83	87	67
DGP19	7.6	47	70	70	74	78	14	23	66	68	74	71	56
DGP20	20.4	33	31	42	20	41	10	24	26	17	29	43	19
DGP21	22.0	28	39	44	33	43	5	12	32	26	40	44	34
DGP22	14.6	31	47	45	44	50	10	13	29	30	39	44	48
DGP23	14.4	50	50	57	32	54	34	42	30	23	34	54	41
DGP24	14.0	36	45	44	40	45	21	31	27	25	33	45	42
DGP25	12.9	1	14	16	32	33	0	0	23	43	42	1	5
DGP26	17.4	4	11	11	25	24	1	1	14	27	30	3	7
DGP27	17.1	2	5	1	9	1	0	0	15	16	9	7	18
DGP28	10.3	13	26	33	47	48	0	0	40	54	55	9	13
DGP29	10.5	6	7	6	8	6	0	0	36	33	33	13	26
DGP30	18.9	28	38	40	39	45	8	11	38	32	43	20	7
DGP31	17.5	17	24	25	29	32	1	2	17	23	25	15	10
DGP32	17.5	30	22	29	14	23	2	2	26	24	27	27	22
DGP33	14.5	23	31	37	29	42	5	5	20	25	27	18	6
DGP34	16.4	29	26	28	25	26	4	4	27	26	25	32	20
DGP35	14.9	0	13	16	29	31	0	0	20	28	31	3	13
DGP36	15.4	2	13	13	32	31	0	0	16	34	36	6	10
DGP37	14.6	1	6	1	18	3	0	0	15	24	14	6	20
DGP38	9.5	7	25	28	38	40	1	2	39	49	54	9	12
DGP39	10.6	5	12	5	22	5	0	1	30	31	22	16	31
DGP40	6.5	14	33	41	56	58	0	0	52	62	68	18	17
DGP41	6.8	17	18	17	20	16	4	3	45	34	32	29	42
DGP42	9.9	7	22	24	45	45	0	0	36	51	54	13	15
DGP43	17.9	15	34	38	27	39	3	11	29	25	40	21	8
DGP44	19.0	10	29	28	32	33	0	2	28	32	36	16	7
DGP45	20.0	15	24	23	22	23	2	2	31	27	33	27	23
DGP46	15.2	11	34	36	37	42	1	2	25	35	40	15	13
DGP47	13.9	12	18	11	22	10	0	0	27	26	24	35	38
DGP48	13.2	26	36	39	38	47	4	10	35	35	44	30	21
DGP49	12.9	27	29	25	28	22	4	4	41	29	31	40	40
DGP50	13.5	12	25	28	30	33	1	4	24	24	29	13	16

Table 4: Performance of structural break identification approaches: CASE II

Note: This table summarizes the performance of the structural break identification approaches for CASE II. The approaches are described at the beginning of Section 4, and the DGPs and the distribution assumption of CASE II are described in Section 4.1. The figures in columns 3 to 9 are the probability of correct detection in percentage. " $\Delta \tau$ " is the average distance between the true break dates and the estimated break dates.

CASE III: $X_t \sim N(1,1), e_t \sim N(0,2)$													
	$\Delta \tau$	B 1	B1A	B1B	B1C	B1D	B3	B3A	\mathbf{HQ}	HQA	HQB	\mathbf{BP}	BPH
DGP1	0.0	94	94	92	94	92	100	100	74	74	61	93	90
DGP2	0.0	100	93	93	80	80	100	100	80	72	65	94	71
DGP3	0.0	95	86	86	72	72	100	100	74	62	57	86	73
DGP4	0.0	34	34	24	34	24	91	91	8	8	3	43	85
$\mathbf{DGP5}$	0.0	74	74	59	74	59	95	95	30	30	19	73	92
DGP6	0.0	100	100	100	100	100	100	100	100	100	100	99	98
DGP7	0.0	100	86	86	59	59	100	100	89	54	53	89	60
DGP8	0.0	74	30	29	7	7	97	84	32	5	5	53	37
DGP9	25.7	0	17	17	29	29	0	0	22	33	31	15	24
DGP10	18.8	15	31	32	45	47	0	2	32	51	49	28	31
DGP11	13.2	37	59	61	78	81	6	16	61	77	80	52	51
DGP12	27.0	22	29	30	21	29	10	13	23	14	25	40	25
DGP13	26.6	24	21	25	15	29	7	20	12	10	25	33	36
DGP14	19.3	40	37	43	25	42	14	23	22	16	29	44	33
DGP15	21.8	6	15	15	32	33	0	1	17	36	37	19	30
DGP16	20.5	4	27	27	43	43	0	1	28	47	47	23	23
DGP17	11.2	39	76	76	80	82	9	18	62	69	76	64	46
DGP18	6.3	77	90	92	79	91	35	66	78	72	82	89	42
DGP19	20.8	2	26	26	39	39	0	0	24	52	52	20	19
DGP20	26.7	21	22	31	20	34	6	13	23	17	32	32	18
DGP21	24.6	28	34	41	24	36	5	20	23	21	29	39	27
DGP22	15.2	36	39	45	24	42	22	37	31	21	36	45	38
DGP23	15.7	60	50	67	29	63	31	52	41	22	46	58	30
DGP24	22.6	15	35	39	25	31	3	10	20	23	26	27	19
DGP25	19.0	0	2	3	14	15	0	0	7	17	23	1	8
DGP26	17.2	0	6	7	18	17	0	0	10	24	24	0	11
DGP27	18.7	2	2	2	7	5	0	0	11	20	11	2	22
DGP28	12.4	6	17	19	38	38	0	0	27	47	44	2	18
DGP29	13.1	6	13	5	18	5	0	0	16	25	13	10	27
DGP30	19.6	17	27	31	30	36	5	5	25	28	34	16	11
DGP31	19.5	16	25	28	30	37	1	6	27	28	33	14	13
DGP32	17.8	21	26	23	22	23	1	2	28	25	27	21	20
DGP33	16.0	25	41	41	39	49	2	10	33	31	38	22	19
DGP34	19.2	16	23	16	29	15	5	5	29	24	23	22	32
DGP35	20.5	1	4	4	18	18	0	0	4	19	26	0	13
DGP36	18.0	1	5	5	16	16	0	1	9	21	26	1	15
DGP37	18.1	0	1	1	11	8	0	0	6	15	12	4	18
DGP38	11.7	1	21	21	36	36	0	0	22	39	42	6	22
DGP39	12.8	1	8	3	26	4	1	0	20	30	15	8	31
DGP40	7.3	15	56	57	75	79	0	2	50	76	75	17	25
DGP41	7.9	8	29	8	48	8	0	2	50	56	40	25	39
DGP42	19.0	0	5	5	17	17	0	0	6	23	25	1	12
DGP43	18.7	4	28	34	35	37	0	2	30	33	40	6	14
DGP44	18.8	4	27	28	32	34	0	0	25	29	37	8	20
DGP45	21.1	14	24	27	21	28	0	3	26	23	29	22	16
DGP46	15.4	16	38	41	32	45	1	6	33	33	40	21	23
DGP47	16.0	16	25	20	21	17	4	6	26	27	26	21	24
DGP48	12.7	35	42	50	29	50	5	19	38	25	44	25	19
DGP49	13.3	15	21	8	23	8	3	6	28	26	22	28	33
$\mathbf{DGP50}$	19.5	9	23	32	29	40	0	3	22	28	35	13	15

Table 5: Performance of structural break identification approaches: CASE III

Note: This table summarizes the performance of the structural break identification approaches for CASE III. The approaches are described at the beginning of Section 4, and the DGPs and the distribution assumption of CASE III are described in Section 4.1. The figures in columns 3 to 9 are the probability of correct detection in percentage. " $\Delta \tau$ " is the average distance between the true break dates and the estimated break dates.

CASE IV: $X_t \sim N(0,1), e_t \sim N(0,2)$													
	$\Delta \tau$	$\mathbf{B1}$	B1A	B1B	B1C	B1D	$\mathbf{B3}$	B3A	$\mathbf{H}\mathbf{Q}$	HQA	HQB	\mathbf{BP}	\mathbf{BPH}
DGP1	0.0	98	98	96	98	96	100	100	81	81	68	97	88
DGP2	0.0	100	95	95	77	77	100	100	84	65	56	96	81
DGP3	0.0	99	94	90	68	65	100	100	77	55	47	92	85
DGP4	0.0	36	36	27	36	27	87	87	6	6	4	45	84
DGP5	0.0	69	69	55	69	55	99	99	35	35	21	70	94
DGP6	0.0	100	100	100	100	100	100	100	100	100	100	100	99
DGP7	0.0	100	93	92	63	63	100	100	91	56	51	84	64
DGP8	0.0	79	36	34	9	9	98	87	32	8	6	52	78
DGP9	26.9	4	9	9	24	24	0	0	18	27	27	15	17
DGP10	24.5	8	16	16	30	31	0	0	22	32	33	19	30
DGP11	21.5	13	25	24	43	42	1	1	34	46	45	28	33
DGP12	27.4	24	27	30	20	29	11	18	13	16	18	35	20
DGP13	26.4	24	26	29	27	34	5	7	21	23	26	35	23
DGP14	25.3	26	29	33	26	35	10	15	22	18	24	36	24
DGP15	28.0	2	17	16	38	37	0	1	16	38	38	15	32
DGP16	25.9	2	24	24	49	50	0	1	19	44	42	19	39
DGP17	22.7	8	25	25	39	39	0	0	22	44	36	24	30
DGP18	17.0	13	34	34	51	52	0	1	35	55	56	36	42
DGP19	21.8	10	28	28	51	51	0	1	31	46	47	29	32
DGP20	25.4	19	26	29	20	28	6	12	20	16	26	32	20
DGP21	27.1	18	23	31	18	29	4	13	20	15	24	24	25
DGP22	25.1	16	30	30	30	35	3	10	19	22	27	31	35
DGP23	21.4	28	29	38	30	43	9	13	25	26	35	41	25
DGP24	24.7	22	26	28	18	27	6	17	23	21	33	35	26
DGP25	19.5	1	4	7	16	16	0	0	8	20	21	0	4
DGP26	18.4	1	0	3	5	7	0	0	10	11	13	2	3
DGP27	18.9	0	0	2	8	8	0	0	7	9	15	0	3
DGP28	16.8	0	4	4	14	14	0	0	13	28	31	1	6
DGP29	19.0	1	1	1	5	4	0	0	8	10	14	3	14
DGP30	20.2	10	24	28	25	33	2	3	27	24	34	15	4
DGP31	21.7	1	17	19	20	24	1	1	18	20	26	11	5
DGP32	18.9	24	29	29	23	32	3	5	22	26	29	24	8
DGP33	19.8	23	29	30	29	34	3	4	25	27	32	22	5
DGP34	19.5	19	27	26	32	33	0	2	23	28	31	15	5
DGP35	20.0	0	4	4	13	13	0	0	6	10	21	1	4 7
DGP30	19.5	0	1	0	10	10	0	0	4	19	24	1	10
DGP37	19.0	0	1	2	9 17	9 17	0	0		12	14	1	12
DGP38	10.4	0	3	4	11	17	0	0	0 10	21 14	19	2	0 20
DGP 39	14.0	0	5	0 7	0 90	1 20	0	0	10	14 25	12	4	20 6
DGF 40 DCD 41	14.9	0	0	1	20	29	0	0	10		- 50 E	0 6	16
DGF41 DCP49	10.0	1	5	5	ี อา	2 91	0	0	57	9 20	0 99	0	10
	10.0	1	- U - N2	ີ ເ	21 99	21 21	0	0 2	1 99	30 20	აა იջ	10	1
	19.5	9 7	20 28	20	22	34	0	3 2	24	20	20 36	10	3
DGP45	10.0	8	20	23 93			0	5 9	24	36	42	16	11
	18.0	Q Q	20 97	20 20	2∩ 20	23 27	0	2 1	24 92	33 20	44	19	11
DGP40	10.9 10.3	11	21 99	23 94		26	1	2 -1	20 99	00 95		10 91	-+
DGP48	20.0	8	22 26	24 25	24 28	20 31	1	5 4	17	20 23	20 32	$\frac{21}{17}$	22
DGP49	19.9	11	20	18	13	18	0	т 4	26	20 19	23	22	15
DGP50	20.3	6	20	22	29	33	1	3	$\frac{-0}{16}$	25	<u>-</u> 9 31	<u></u> 16	7

Table 6: Performance of structural break identification approaches: CASE IV

Note: This table summarizes the performance of the structural break identification approaches for CASE IV. The approaches are described at the beginning of Section 4, and the DGPs and the distribution assumption of CASE IV are described in Section 4.1. The figures in columns 3 to 9 are the probability of correct detection in percentage. " $\Delta \tau$ " is the average distance between the true break dates and the estimated break dates.

	B 1	B1A	B1B	B1C	B1D	B3	B3A	$\mathbf{H}\mathbf{Q}$	HQA	HQB	\mathbf{BP}	BPH
				$\mathbf{C}_{\mathbf{A}}$	ASE I:	$X_t \sim I$	N(1, 1),	$e_t \sim \Lambda$	V(0, 1)			
$K=1, N=1, e_t \sim MA(0)$	66	78	78	78	83	41	52	66	74	76	71	58
$K=1, N=1, u_t \sim MA(1)$	42	39	45	29	45	33	39	23	23	30	43	44
$K=1, N=2, e_t \sim MA(0$	65	77	79	80	86	45	55	67	72	78	71	42
$K=1, N=2, u_t \sim MA(1)$	53	51	62	33	59	42	52	32	25	42	52	32
$K=2, N=1, e_t \sim MA(0)$	39	49	47	60	54	10	13	54	61	61	33	32
$K=2, N=1, u_t \sim MA(1)$	33	38	41	34	39	12	16	27	27	31	32	30
$K=2, N=2, e_t \sim MA(0)$	43	60	56	67	64	26	34	55	64	66	43	28
$K=2, N=2, u_t \sim MA(1)$	37	46	49	40	47	19	28	31	33	38	35	23
All DGPs except $K=0$	45	54	56	53	59	27	35	44	47	53	45	33
All DGPs	51	57	58	55	59	38	44	47	48	52	51	40
				CA	SE II:	$X_t \sim$	N(0, 1),	$e_t \sim l$	$\mathrm{V}(0,1)$			
$K=1, N=1, e_t \sim MA(0)$	41	60	60	69	69	7	10	60	70	69	56	49
$K=1, N=1, u_t \sim MA(1)$	36	37	42	30	41	22	27	21	20	28	44	33
$K=1, N=2, e_t \sim MA(0$	39	62	63	70	73	13	20	59	68	70	60	49
$K=1, N=2, u_t \sim MA(1)$	36	42	46	34	47	16	24	29	24	35	46	37
$K=2, N=1, e_t \sim MA(0)$	5	13	13	24	22	0	0	26	35	34	7	14
$K=2, N=1, u_t \sim MA(1)$	25	28	32	27	34	4	5	26	26	29	22	13
$K=2, N=2, e_t \sim MA(0)$	7	18	18	33	29	1	1	32	39	39	13	20
$K=2, N=2, u_t \sim MA(1)$	16	29	29	30	31	2	4	30	29	35	25	21
All DGPs except $K=0$	22	33	34	37	40	7	10	34	38	41	30	27
All DGPs	32	40	40	42	44	21	23	39	40	42	38	36
				$\mathbf{C}\mathbf{A}$	SE III:	$X_t \sim$	N(1, 1),	$e_t \sim 1$	N(0,2)			
K=1, N=1, $e_t \sim MA(0)$	41	60	60	69	69	7	10	60	70	69	32	35
$K=1, N=1, u_t \sim MA(1)$	36	37	42	30	41	22	27	21	20	28	39	31
$K=1, N=2, e_t \sim MA(0$	39	62	63	70	73	13	20	59	68	70	43	32
$K=1, N=2, u_t \sim MA(1)$	36	42	46	34	47	16	24	29	24	35	40	26
$K=2, N=1, e_t \sim MA(0)$	5	13	13	24	22	0	0	26	35	34	3	17
$K=2, N=1, u_t \sim MA(1)$	25	28	32	27	34	4	5	26	26	29	19	19
$K=2, N=2, e_t \sim MA(0)$	7	18	18	33	29	1	1	32	39	39	8	22
$K=2, N=2, u_t \sim MA(1)$	16	29	29	30	31	2	4	30	29	35	18	21
All DGPs except $K=0$	22	33	34	37	40	7	10	34	38	41	22	24
All DGPs	32	40	40	42	44	21	23	39	40	42	31	32
				CA	SE IV:	$X_t \sim$	N(0, 1),	$e_t \sim 1$	N(0,2)			
K=1, N=1, $e_t \sim MA(0)$	8	17	16	32	32	0	0	25	35	35	21	27
$K=1, N=1, u_t \sim MA(1)$	25	27	31	24	33	9	13	19	19	23	35	22
$K=1, N=2, e_t \sim MA(0$	7	26	25	46	46	0	1	25	45	44	25	35
$K=1, N=2, u_t \sim MA(1)$	21	27	31	23	32	6	13	21	20	29	33	26
$K=2, N=1, e_t \sim MA(0)$	1	2	3	10	10	0	0	9	16	19	1	6
K=2, N=1, $u_t \sim MA(1)$	17	25	26	26	31	2	3	23	25	30	17	5
K=2, N=2, $e_t \sim MA(0)$	0	2	3	14	14	0	0	7	20	21	3	10
$K=2, N=2, u_t \sim MA(1)$	9	24	25	25	30	0	3	22	27	32	16	10
All DGPs except K=0 $$	9	18	19	24	27	2	4	18	25	29	17	16
All DGPs	21	27	28	31	33	17	18	25	29	31	27	27

Table 7: Mean probability of correct identification of breaks

Note: This table provides the mean probability of correct identification for the sub-samples defined in the first column. For example, "K=1, N=1, $e_t \sim MA(0)$ " means the DGPs with one break, one covariate, and uncorrelated error terms.

	BI	REA	\mathbf{KS}		CASE I CASE IV				E IV		
	C	X_1	X_2	B1A	B1C	B3A	HQA	B1A	B1C	B3A	HQA
DGP9	1	0		77	79	87	80	78	75	NA	62
DGP10	0	1		88	88	88	88	81	73	NA	68
DGP11	1	1		81	77	81	79	64	51	00	45
DGP12	1	0		87	81	76	85	89	80	89	75
DGP13	0	1		70	68	77	59	27	30	14	37
DGP14	1	1		67	67	62	76	28	27	27	33
DGP15	1	0	0	73	74	78	50	59	55	100	36
DGP16	0	1	0	89	92	100	93	79	63	100	57
DGP17	0	1	1	77	66	79	82	20	13	NA	20
DGP18	1	1	1	63	63	64	66	18	6	100	18
DGP19	0	1	1	79	68	87	76	36	14	0	18
DGP20	1	0	0	67	63	77	50	62	65	67	45
DGP21	0	1	0	66	80	58	67	22	22	15	33
DGP22	0	1	1	40	23	48	54	10	10	10	14
DGP23	1	1	1	37	38	42	35	14	7	0	22
DGP24	0	1	1	46	42	39	57	8	0	6	17
DGP25	1	0		88	75	NA	67	100	94	NA	65
DGP26	0	1		75	82	100	83	NA	60	NA	63
DGP27	0	1		100	100	100	100	NA	50	NA	43
DGP28	1	1		64	60	84	62	50	36	NA	44
DGP29	1	1		91	84	93	91	00	40	NA	45
DGP30	1	0		97	93	78	96	100	100	100	96
DGP31	0	1		42	51	42	53	18	5	100	23
DGP32	0	1		89	85	67	88	17	13	40	29
DGP33	1	1		48	50	36	53	7	3	0	7
DGP34	1	1		84	76	89	89	37	22	0	21
DGP35	1	0	0	65	71	NA	57	75	69	NA	39
DGP36	0	1	0	74	80	100	77	NA	69	NA	55
DGP37	0	1	0	96	97	NA	93	100	44	NA	33
DGP38	0	1	1	23	11	47	54	33	0	NA	23
DGP39	0	1	1	98	93	96	95	NA	0	NA	40
DGP40	1	1	1	41	28	40	53	0	0	NA	7
DGP41	1	1	1	81	77	81	69	NA	33	NA	33
DGP42	0	1	1	71	49	NA	70	20	5	NA	17
DGP43	1	0	0	97	85	100	79	91	95	100	75
DGP44	0	1	0	39	50	43	48	14	10	0	12
DGP45	0	1	0	73	77	100	87	20	19	0	38
DGP46	0	1	1	20	14	28	32	0	0	0	0
DGP47	0	1	1	82	64	86	79	5	0	0	4
DGP48	1	1	1	25^{-1}	6	22	26	Õ	Õ	Õ	4
DGP49	1	1	1	81	74	79	77	5	Õ	Õ	0
DGP50	0	1	1	15	12	0	22	0	0	0	7

Table 8: Probability of correct identification of partial breaks

Note: This table provides the probability of correct partial break identification for some selected models and cases. The columns under "BREAKS" indicate the variables subject to breaks (denoted by 1). The figures under a model are the probability that the model correctly identifies the variables subject to breaks when the number of breaks has been correctly identified. Breaks in constant are ignored in determining correct identification: *e.g.*, for DGP11 (where both the constant and X_1 are subject to breaks), the case when the constant and X_1 are identified to experience breaks are both considered to be correct identification.