
THE RECOGNITION OF SIMPLE-TRIANGLE GRAPHS

AND OF LINEAR-INTERVAL ORDERS IS POLYNOMIAL∗

GEORGE B. MERTZIOS†

Abstract. Intersection graphs of geometric objects have been extensively studied, both due
to their interesting structure and their numerous applications; prominent examples include interval
graphs and permutation graphs. In this paper we study a natural graph class that generalizes both
interval and permutation graphs, namely simple-triangle graphs. Simple-triangle graphs – also
known as PI graphs (for Point-Interval) – are the intersection graphs of triangles that are defined by
a point on a line L1 and an interval on a parallel line L2. They lie naturally between permutation
and trapezoid graphs, which are the intersection graphs of line segments between L1 and L2 and of
trapezoids between L1 and L2, respectively. Although various efficient recognition algorithms for
permutation and trapezoid graphs are well known to exist, the recognition of simple-triangle graphs
has remained an open problem since their introduction by Corneil and Kamula three decades ago.
In this paper we resolve this problem by proving that simple-triangle graphs can be recognized in
polynomial time. Given a graph G with n vertices, such that its complement G has m edges, our
algorithm runs in O(n2m) time. As a consequence, our algorithm also solves a longstanding open
problem in the area of partial orders, namely the recognition of linear-interval orders, i.e. of partial
orders P = P1 ∩ P2, where P1 is a linear order and P2 is an interval order. This is one of the first
results on recognizing partial orders P that are the intersection of orders from two different classes
P1 and P2. In complete contrast to this, partial orders P which are the intersection of orders from
the same class P have been extensively investigated, and in most cases the complexity status of
these recognition problems has been already established.

Keywords: Intersection graph, PI graph, recognition problem, partial order, polynomial algorithm.

AMS subject classification (2010). Primary 05C85; Secondary 06A07, 05C62, 68R10.

1. Introduction. A graph G is the intersection graph of a family F of sets
if we can bijectively assign sets of F to vertices of G such that two vertices of G
are adjacent if and only if the corresponding sets have a non-empty intersection.
It turns out that many graph classes with important applications can be described
as intersection graphs of set families that are derived from some kind of geometric
configuration. One of the most prominent examples is that of interval graphs, i.e. the
intersection graphs of intervals on the real line, which have natural applications in
several fields, including bioinformatics and involving the physical mapping of DNA
and the genome reconstruction1 [4, 9, 10].

Generalizing the intersections on the real line, consider two parallel horizontal
lines on the plane, L1 (the upper line) and L2 (the lower line). A graph G is a simple-
triangle graph if it is the intersection graph of triangles that have one endpoint on
L1 and the other two on L2. Furthermore, G is a triangle graph if it is the intersec-
tion graph of triangles with endpoints on L1 and L2, but now there is no restriction
on which line contains one endpoint of every triangle and which contains the other
two. Simple-triangle and triangle graphs are also known as PI and PI∗ graphs, re-
spectively [3, 6, 22], where PI stands for “Point-Interval” . Such representations of
simple-triangle and of triangle graphs are called simple-triangle (or PI) and triangle

∗This work was partially supported by the EPSRC Grant EP/K022660/1. A preliminary confer-
ence version of this work appeared in the Proceedings of the 21st European Symposium on Algorithms
(ESA), Sophia Antipolis, France, pages 719–730, 2013.

†School of Engineering and Computing Sciences, Durham University, United Kingdom.
Email: george.mertzios@durham.ac.uk

1Benzer [1] earned the prestigious Lasker Award (1971) and Crafoord Prize (1993) partly for
showing that the set of intersections of a large number of fragments of genetic material in a virus
form an interval graph.

1

mailto:george.mertzios@durham.ac.uk

(or PI ∗) representations, respectively. Simple-triangle and triangle graphs lie natu-
rally between permutation graphs (i.e. the intersection graphs of line segments with
one endpoint on L1 and one on L2) and trapezoid graphs (i.e. the intersection graphs
of trapezoids with one interval on L1 and the opposite interval on L2) [3, 22]. Note
that, using the notation PI for simple-triangle graphs, permutation graphs are PP
(for “Point-Point”) graphs, while trapezoid graphs are II (for “Interval-Interval”)
graphs [6].

A partial order is a pair P = (U,R), where U is a finite set and R is an irreflexive
transitive binary relation on U . Whenever (x, y) ∈ R for two elements x, y ∈ U , we
write x <P y. If x <P y or y <P x, then x and y are comparable, otherwise they
are incomparable. P is a linear order if every pair of elements in U are comparable.
Furthermore, P is an interval order if each element x ∈ U is assigned to an interval Ix
on the real line such that x <P y if and only if Ix lies completely to the left of Iy. One
of the most fundamental notions on partial orders is dimension. For any partial order
P and any class P of partial orders (e.g. linear order, interval order, semiorder, etc.),
the P-dimension of P is the smallest k such that P is the intersection of k orders from
P . In particular, when P is the class of linear orders, the P-dimension of P is known
as the dimension of P . Although in most cases we can efficiently recognize whether a
partial order belongs to a class P , this is not the case for higher dimensions. Due to a
classical result of Yannakakis [23], it is NP-complete to decide whether the dimension,
or the interval dimension, of a partial order is at most k, where k ≥ 3.

There is a natural correspondence between graphs and partial orders. For a par-
tial order P = (U,R), the comparability (resp. incomparability) graph G(P) of P has
elements of U as vertices and an edge between every pair of comparable (resp. incom-
parable) elements. A graphG is a (co)comparability graph if G is the (in)comparability
graph of a partial order P . There has been a long line of research in order to establish
the complexity of recognizing partial orders of P-dimension at most 2 (e.g. where P is
linear orders [22] or interval orders [15]). In particular, since permutation (resp. trape-
zoid) graphs are the incomparability graphs of partial orders with dimension (resp. in-
terval dimension) at most 2 [7, 22], permutation and trapezoid graphs can be recog-
nized efficiently by the corresponding partial order algorithms [15, 22].

In contrast, not much is known so far for the recognition of partial orders P that
are the intersection of orders from different classes P1 and P2. One of the longstanding
open problems in this area is the recognition of linear-interval orders P , i.e. of partial
orders P = P1 ∩P2, where P1 is a linear order and P2 is an interval order. In terms of
graphs, this problem is equivalent to the recognition of simple-triangle (i.e. PI) graphs,
since PI graphs are the incomparability graphs of linear-interval orders; this problem
is well known and remains open since the introduction of PI graphs in 1987 [6] (cf. for
instance the books [3, 22]).

Our contribution. In this article we establish the complexity of recognizing simple-
triangle (PI) graphs, and therefore also the complexity of recognizing linear-interval
orders. Given a graph G with n vertices, such that its complement G has m edges,
we provide an algorithm with running time O(n2m) that either computes a PI rep-
resentation of G, or it announces that G is not a PI graph. Equivalently, given a
partial order P = (U,R) with |U | = n and |R| = m, our algorithm either computes
in O(n2m) time a linear order P1 and an interval order P2 such that P = P1 ∩ P2, or
it announces that such orders P1, P2 do not exist. Surprisingly, it turns out that the
seemingly small difference in the definition of simple-triangle (PI) graphs and triangle
(PI∗) graphs results in a very different behavior of their recognition problems; only

2

recently it has been proved that the recognition of triangle graphs is NP-complete [17].
In addition, our polynomial time algorithm is in contrast to the recognition problems
for the related classes of bounded tolerance (i.e. parallelogram) graphs [19] and of
max-tolerance graphs [14], which have already been proved to be NP-complete.

As the main tool for our algorithm we introduce the notion of a linear-interval
cover of bipartite graphs. As a second tool we identify a new tractable sub-
class of 3SAT, called gradually mixed formulas, for which we provide a linear time
algorithm. The class of gradually mixed formulas is hybrid, i.e. it is characterized by
both relational and structural restrictions on the clauses. Then, using the notion of a
linear-interval cover, we are able to reduce our problem to the satisfiability problem
of gradually mixed formulas.

Our algorithm proceeds as follows. First, it computes from the given graph G a
bipartite graph G̃, such that G is a PI graph if and only if G̃ has a linear-interval
cover. Second, it computes a gradually mixed Boolean formula φ such that φ is
satisfiable if and only if G̃ has a linear-interval cover. This formula φ can be written
as φ = φ1 ∧ φ2, where every clause of φ1 has 3 literals and every clause of φ2 has 2
literals. The construction of φ1 and φ2 is based on the fact that a necessary condition
for G̃ to admit a linear-interval cover is that its edges can be colored with two different
colors (according to some restrictions). Then the edges of G̃ correspond to literals of
φ, while the two edge colors encode the truth value of the corresponding variables.
Furthermore every clause of φ1 corresponds to the edges of an alternating cycle in
G̃ (i.e. a closed walk that alternately visits edges and non-edges) of length 6, while

the clauses of φ2 correspond to specific pairs of edges of G̃ that are not allowed to
receive the same color. Finally, the equivalence between the existence of a linear-
interval cover of G̃ and a satisfying truth assignment for φ allows us to use our linear
algorithm to solve satisfiability on gradually mixed formulas in order to complete our
recognition algorithm.

Organization of the paper. We present in Section 2 the class of gradually mixed
formulas and a linear time algorithm to solve satisfiability on this class. In Section 3
we provide the necessary notation and preliminaries on threshold graphs and alter-
nating cycles. Then in Section 4 we introduce the notion of a linear-interval cover of
bipartite graphs to characterize PI graphs, and in Section 5 we translate the linear-
interval cover problem to the satisfiability problem on a gradually mixed formula.
Finally, in Section 6 we present our PI graph recognition algorithm.

2. A tractable subclass of 3SAT. In this section we introduce the class of
gradually mixed formulas and we provide a linear time algorithm for solving satisfi-
ability on this class. Any gradually mixed formula φ is a mix of binary and ternary
clauses. That is, there exist a 3-CNF formula φ1 (i.e. a formula in conjunctive normal
form with at most 3 literals per clause) and a 2-CNF formula φ2 (i.e. with at most 2
literals per clause) such that φ = φ1 ∧φ2, while φ satisfies some constraints among its
clauses. Before we define gradually mixed formulas (cf. Definition 2.2), we first define
dual clauses.

Definition 2.1. Let φ1 be a 3-CNF formula. If α = (ℓ1 ∨ ℓ2 ∨ ℓ3) is a clause
of φ1, then α = (ℓ1 ∨ ℓ2 ∨ ℓ3) is the dual clause of α.

Note by Definition 2.1 that, whenever α is a clause of a formula φ1, the dual
clause α of α may belong, or may not belong, to φ1.

Definition 2.2. Let φ1 and φ2 be CNF formulas with 3 literals and 2 literals in
each clause, respectively. The mixed formula φ = φ1 ∧ φ2 is gradually mixed if the
next two conditions are satisfied:

3

1. Let α and β be two clauses of φ1. Then α does not share exactly one literal
with either the clause β or the clause β.

2. If α = (ℓ1 ∨ ℓ2 ∨ ℓ3) is a clause of φ1 and (ℓ0 ∨ ℓ1) is a clause of φ2, then φ2

contains also (at least) one of the clauses {(ℓ0 ∨ ℓ2), (ℓ0 ∨ ℓ3)}.

As an example of a gradually mixed formula, consider the formula φ = φ1 ∧ φ2,
where φ1 = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x5 ∨ x6 ∨ x7) and φ2 = (x8∨x3)∧ (x8 ∨
x1) ∧ (x8 ∨ x4) ∧ (x8 ∨ x9) ∧ (x5 ∨ x10) ∧ (x6 ∨ x10).

Note by Definition 2.2 that the class of gradually mixed formulas contains 2SAT as
a proper subclass, since every 2-CNF formula φ2 can be written as a gradually mixed
formula φ = φ1∧φ2 where φ1 = ∅. Furthermore the class of gradually mixed formulas
φ is a hybrid class, since the conditions of Definition 2.2 concern simultaneously
relational restrictions (i.e. where the clauses are restricted to be of certain types) and
structural restrictions (i.e. where there are restrictions on how different clauses interact
with each other). The intuition for the term gradually mixed in Definition 2.2 is that,
whenever the sub-formulas φ1 and φ2 share more variables, the number of clauses of
φ2 that are imposed by condition 2 of Definition 2.2 increases. In the next theorem
we use resolution to prove that satisfiability can be solved in linear time on gradually
mixed formulas.

Theorem 2.3. There exists a linear time algorithm which decides whether a given
gradually mixed formula φ is satisfiable and computes a satisfying truth assignment
of φ, if one exists.

Proof. Let φ = φ1 ∧φ2, where φ1 is a 3-CNF formula and φ2 is a 2-CNF formula.
We first scan through all clauses of φ to remove all tautologies, i.e. all clauses which
contain both a literal and its negation, since such clauses are always satisfiable. Fur-
thermore we eliminate all double literal occurrences in every clause. In the remainder
of the proof we denote by φ the resulting formula after the removal of tautologies and
the elimination of double literal occurrences in the clauses. Note that, during this
elimination procedure, some clauses of φ1 may become 2-CNF clauses. In the result-
ing formula we denote by φ′

1 the conjunction of the clauses that have 3 literals each,
and by φ′′

1 the conjunction of the clauses of φ1 that remain with 1 or 2 literals each.
In particular, since also in every clause of φ1 no literal is the negation of another one
(as we removed from φ all tautologies), the literals of every clause in φ′

1 correspond
to three distinct variables.

Then we compute a 2-CNF formula φ0 (in time linear to the size of φ) as follows.
Initially φ0 is empty. First we mark all literals ℓ for which the 2-CNF formula φ′′

1 ∧φ2

includes the clause (ℓ). Then we scan through all clauses of the 3-CNF formula φ′

1.
For every clause (ℓ1 ∨ ℓ2 ∨ ℓ3) of φ

′

1, such that the literal ℓ1 (resp. ℓ2 or ℓ3) has been
marked, we add to φ0 the clause (ℓ2 ∨ ℓ3) (resp. the clause (ℓ1 ∨ ℓ3) or (ℓ1 ∨ ℓ2)).

If φ ∧ φ0 is satisfiable then clearly φ is also satisfiable as a sub-formula of φ ∧ φ0.
Conversely, suppose that φ is satisfied by the truth assignment τ . Let γ = (ℓ1 ∨ ℓ2)
be an arbitrary clause of φ0. The existence of γ in φ0 implies the existence of some
clauses α = (ℓ3) and β = (ℓ1 ∨ ℓ2 ∨ ℓ3) in φ. Therefore, since α = β = 1 in τ by
assumption, it follows that ℓ3 = 0 in τ . Thus the clause β equals (ℓ1 ∨ ℓ2) in τ , and
therefore γ = 1 in τ . That is, τ satisfies also φ0. Therefore φ is satisfiable if and only
if φ ∧ φ0 is satisfiable.

In the remainder of the proof, we prove that φ ∧ φ0 is satisfiable if and only if
the 2-CNF formula φ′′

1 ∧ φ2 ∧ φ0 is satisfiable. The one direction is immediate, i.e. if
φ ∧ φ0 is satisfiable then φ′′

1 ∧ φ2 ∧ φ0 is also satisfiable as a sub-formula of φ ∧ φ0.
Conversely, suppose that φ′′

1 ∧ φ2 ∧ φ0 is satisfiable and let τ be a satisfying truth

4

assignment of this formula. If τ satisfies all clauses of φ′

1, then clearly τ is also a
satisfying truth assignment of φ ∧ φ0. Otherwise let α = (ℓ1 ∨ ℓ2 ∨ ℓ3) be a clause of
φ′

1 that is not satisfied by τ . Then ℓ1 = ℓ2 = ℓ3 = 0 in τ . In this case, we construct
the truth assignment τ ′ from τ by flipping the value of one (arbitrary) literal of
{ℓ1, ℓ2, ℓ3} in τ . Assume without loss of generality that the value of ℓ1 flips from τ to
τ ′, while the values of all other variables remain the same in both τ and τ ′. Recall
that the literals {ℓ1, ℓ2, ℓ3} correspond to three distinct variables, since we eliminated
all double occurrences of literals in all clauses in φ1. Therefore ℓ1 = ℓ2 = ℓ3 = 1 in
τ ′, and thus α = 1 in τ ′.

Suppose that there exists a clause β = (ℓ4 ∨ ℓ5 ∨ ℓ6) of φ′

1 where β = 1 in τ
and β = 0 in τ ′. Then clearly one of the literals of β equals ℓ1, since ℓ1 is the only
literal whose value changes in τ ′ from 1 to 0. Assume without loss of generality
that ℓ4 = ℓ1, i.e. α shares at least one literal with β = (ℓ4 ∨ ℓ5 ∨ ℓ6). Therefore,
since φ is a gradually mixed formula by assumption, it follows by Definition 2.2 that
α shares at least one more literal with β. Assume without loss of generality that
ℓ5 = ℓ2. Then, since by assumption ℓ2 = 0 in both τ and τ ′, it follows that the clause
β = (ℓ4 ∨ ℓ5 ∨ ℓ6) = (ℓ1 ∨ ℓ2 ∨ ℓ6) is satisfied in τ ′, which is a contradiction to our
assumption. Therefore for every clause β of φ′

1, if β = 1 in τ then also β = 1 in τ ′.

We now prove that all clauses of the 2-CNF formula φ′′

1∧φ2∧φ0 remain satisfied in
τ ′. First consider an arbitrary clause γ of φ0 that contains one of the literals {ℓ1, ℓ1}.
If γ contains the literal ℓ1 then γ = 1 in τ ′, since ℓ1 = 1 in τ ′. Let γ contain the literal
ℓ1, and let γ = (ℓ1 ∨ ℓ4). Then it follows by the construction of the formula φ0 that
there exists a literal ℓ5, such that (ℓ1 ∨ ℓ4 ∨ ℓ5) is a clause of φ′

1 and (ℓ5) is a clause of
φ′′

1 ∧ φ2. Note that (ℓ1 ∨ ℓ4 ∨ ℓ5) = 1 in τ , since ℓ1 = 0 in τ by assumption. Therefore
also (ℓ1 ∨ ℓ4 ∨ ℓ5) = 1 in τ ′ by the previous paragraph. Thus, since ℓ1 = 0 in τ ′, it
follows that (ℓ4 ∨ ℓ5) = 1 in τ ′. Furthermore, since τ satisfies φ′′

1 ∧ φ2 by assumption,
it follows that (ℓ5) = 1 in τ , and thus ℓ5 = 0 in both τ and τ ′. Therefore ℓ4 = 1 in
τ ′, since (ℓ4 ∨ ℓ5) = 1 in τ ′, and thus γ = (ℓ1 ∨ ℓ4) = 1 in τ ′. That is, all clauses γ of
φ0 remain satisfied in the assignment τ ′.

Now consider a clause γ of φ2 that contains one of the literals {ℓ1, ℓ1}. If γ
contains ℓ1 then γ = 1 in τ ′, since ℓ1 = 1 in τ ′. Let γ contain the literal ℓ1, and let
γ = (ℓ1∨ℓ4). Note that ℓ4 6= ℓ1, since we removed all tautologies from φ. Suppose that
ℓ4 = ℓ1, i.e. γ = (ℓ1). Then, since α = (ℓ1 ∨ ℓ2 ∨ ℓ3) is a clause of φ1 by assumption,
the formula φ0 contains (by construction) the clause (ℓ2 ∨ ℓ3). Thus, since τ satisfies
φ0 by assumption, it follows that ℓ2 = 1 or ℓ3 = 1 in τ . This is a contradiction, since
ℓ1 = ℓ2 = ℓ3 = 0 in τ . Therefore ℓ4 /∈ {ℓ1, ℓ1}. Thus, since φ is a gradually mixed
formula by assumption, it follows by Definition 2.2 that φ2 has also one of the clauses
{(ℓ4∨ℓ2), (ℓ4∨ℓ3)}. Assume without loss of generality that φ2 has the clause (ℓ4∨ℓ2).
Then, since τ satisfies φ2 by assumption and ℓ2 = 0 in τ , it follows that ℓ4 = 1 in τ .
Furthermore, since ℓ4 /∈ {ℓ1, ℓ1}, it remains ℓ4 = 1 in τ ′, and thus γ = (ℓ1 ∨ ℓ4) = 1
in τ ′. That is, all clauses γ of φ2 remain satisfied in the assignment τ ′.

Finally consider a clause γ of φ′′

1 that contains one of the literals {ℓ1, ℓ1}. If
γ contains ℓ1 then γ = 1 in τ ′, since ℓ1 = 1 in τ ′. Let γ contain the literal ℓ1,
and let γ = (ℓ1 ∨ ℓ4). Note that ℓ4 6= ℓ1, since we removed all tautologies from φ.
Suppose that ℓ4 = ℓ1, i.e. γ = (ℓ1). Then, since α = (ℓ1 ∨ ℓ2 ∨ ℓ3) is a clause of φ1

by assumption, the formula φ0 contains by construction the clause (ℓ2 ∨ ℓ3). Thus
ℓ2 = 1 or ℓ3 = 1 in τ , since τ satisfies φ0 by assumption. This is a contradiction,
since ℓ1 = ℓ2 = ℓ3 = 0 in τ . Therefore ℓ4 /∈ {ℓ1, ℓ1}. Recall that φ′′

1 contains exactly
those clauses of φ1 which remain with 1 or 2 literals each, after eliminating all double

5

literal occurrences in every clause of φ. That is, the clause γ was before the double
literal elimination one of the clauses (ℓ1 ∨ ℓ4 ∨ ℓ4) and (ℓ1 ∨ ℓ1 ∨ ℓ4). Furthermore
α = (ℓ1 ∨ ℓ2 ∨ ℓ3) and γ are two different clauses of φ1, since α belongs to φ′

1 and
γ belongs to φ′′

1 . Moreover α shares the literal ℓ1 with the dual clause γ of γ. If γ
was the clause (ℓ1 ∨ ℓ4 ∨ ℓ4) before the double literal elimination, then Definition 2.2
implies that ℓ4 = ℓ2 or ℓ4 = ℓ3. Therefore ℓ4 = 1 in τ ′, since ℓ2 = ℓ3 = 0 in both τ and
τ ′, and thus γ = (ℓ1∨ ℓ4) = 1 in τ ′. Otherwise, if γ was the clause (ℓ1∨ ℓ1∨ ℓ4) before
the double literal elimination, then Definition 2.2 implies that ℓ1 = ℓ2, or ℓ1 = ℓ3, or
ℓ4 = ℓ2, or ℓ4 = ℓ3. Recall that α is a clause of φ′

1 by assumption, and thus ℓ1 6= ℓ2
and ℓ1 6= ℓ3. Therefore ℓ4 = ℓ2 or ℓ4 = ℓ3, and thus ℓ4 = 1 in τ ′, since ℓ2 = ℓ3 = 0 in
both τ and τ ′. Therefore γ = (ℓ1 ∨ ℓ4) = 1 in τ ′. That is, all clauses γ of φ′′

1 remain
satisfied in the assignment τ ′.

Summarizing, all clauses of the 2-CNF formula φ′′

1 ∧ φ2 ∧ φ0 remain satisfied in
τ ′. Furthermore, α = 1 in τ ′, while for every clause β of φ′

1, if β = 1 in τ then also
β = 1 in τ ′. Thus, according to the above transition from τ to τ ′, we can modify
iteratively the truth assignment τ to a truth assignment τ ′′ that satisfies all clauses
of φ∧φ0. Therefore φ∧φ0 is satisfiable if and only if the 2-CNF formula φ′′

1 ∧φ2 ∧φ0

is satisfiable.
Since the transition from the assignment τ to the assignment τ ′ can be done in

constant time (we only need to flip locally the value of one literal ℓ1 in the clause
α = (ℓ1 ∨ ℓ2 ∨ ℓ3) of φ′

1), the computation of τ ′′ from τ can be done in time linear
to the size of φ ∧ φ0. Therefore, since a satisfying truth assignment τ of the 2-
CNF formula φ′′

1 ∧ φ2 ∧ φ0 (if one exists) can be computed in linear time using any
standard linear time algorithm for the 2-SAT problem (e.g. [8]), a satisfying truth
assignment τ ′′of φ ∧ φ0 (if one exists) can be also computed in time linear to the size
of φ ∧ φ0 (and thus also in time linear to the size of φ). This completes the proof of
the theorem.

The conditions of Definition 2.2 which guarantee the tractability of gradually
mixed formulas are minimal, in the sense that, if we remove any of these two condi-
tions, the resulting subclass of 3SAT is NP-complete.

Indeed, assume that we impose only the first condition of Definition 2.2 to the
mixed formula φ = φ1 ∧ φ2. Then we can reduce 3SAT to this subclass as follows.
Let φ0 be an instance of 3SAT. We define φ1 to be the formula obtained by φ0 if we
replace every literal ℓ of φ0 by a new variable xℓ. For every two of these new variables
xℓ and xℓ′ in φ1, we add to φ2 the clauses (xℓ ∨xℓ′)∧ (xℓ ∨xℓ′) if ℓ = ℓ′ in φ0, and we
add to φ2 the clauses (xℓ ∨ xℓ′) ∧ (xℓ ∨ xℓ′) if ℓ = ℓ′ in φ0. Then φ = φ1 ∧ φ2 satisfies
the first condition of Definition 2.2 (since no two clauses of φ1 share any variable),
while φ0 is satisfiable if and only if φ is satisfiable.

On the other hand, assume that we impose only the second condition of Defini-
tion 2.2 to the mixed formula φ = φ1 ∧ φ2. Then, by setting φ2 = ∅, we can include
in the resulting class every 3-CNF formula, and thus this class is NP-complete.

3. Preliminaries.

3.1. Notation. In the remainder of this article we consider finite, simple, and
undirected graphs. Given a graph G, we denote by V (G) and E(G) the sets of its
vertices and edges, respectively. An edge between two vertices u and v of a graph
G = (V,E) is denoted by uv, and in this case u and v are said to be adjacent. The
neighborhood of a vertex u ∈ V is the set N(u) = {v ∈ V | uv ∈ E} of its adjacent
vertices. The complement of G is denoted by G, i.e. G = (V,E), where uv ∈ E if and
only if uv /∈ E. For any subset E0 ⊆ E of the edges of G, we denote for simplicity

6

G − E0 = (V,E \ E0). A subset S ⊆ V of its vertices induces an independent set in
G if uv /∈ E for every pair of vertices u, v ∈ S. Furthermore, S induces a clique in G
if uv ∈ E for every pair u, v ∈ S. For two graphs G1 = (V,E1) and G2 = (V,E2), we
denote G1 ⊆ G2 whenever E1 ⊆ E2. Moreover, we denote for simplicity by G1 ∪G2

and G1 ∩ G2 the graphs (V,E1 ∪ E2) and (V,E1 ∩ E2), respectively. A graph G is a
split graph if its vertices can be partitioned into a clique K and an independent set I.
Furthermore, G = (V,E) is a threshold graph if we can assign to each vertex v ∈ V a
real weight av, such that uv ∈ E if and only if au + av ≥ 1.

A proper k-coloring of a graph G is an assignment of k colors to the vertices
of G, such that adjacent vertices are assigned different colors. The smallest k for
which there exists a proper k-coloring of G is the chromatic number of G, denoted
by χ(G). If χ(G) = 2 then G is a bipartite graph; in this case the vertices of G
are partitioned into two independent sets, the color classes. A bipartite graph G is
denoted by G = (U, V,E), where U and V are its color classes and E is the set of
edges between them. For a bipartite graph G = (U, V,E), its bipartite complement is

the graph Ĝ = (U, V, Ê), where for two vertices u ∈ U and v ∈ V , uv ∈ Ê if and only
if uv /∈ E. A bipartite graph G = (U, V,E) is a chain graph if the vertices of each
color class can be ordered by inclusion of their neighborhoods, i.e. N(u) ⊆ N(v) or
N(v) ⊆ N(u) for any two vertices u, v in the same color class. Note that chain graphs

are closed under bipartite complementation, i.e. G is a chain graph if and only if Ĝ is
a chain graph.

For any graph G = (V,E) and any graph class G, the G-cover number of G is the

smallest k such that E =
⋃k

i=1
Ei, where Gi = (V,Ei) ∈ G, 1 ≤ i ≤ k; in this case

the graphs {Gi}ki=1 are a G-cover of G. For several graph classes G it is NP-complete
to decide whether the G-cover number of a graph is at most k, where k ≥ 3, see
e.g. [23]. Throughout the paper, whenever a set of the chain graphs {Gi}

k
i=1 form

a chain-cover of a bipartite graph G, then all these graphs are assumed to have the
same color classes as G.

For any partial order P = (U,R), we denote by P = (U,R) the inverse partial
order of P , i.e. for any two elements u, v ∈ U , u <P v if and only if v <P u. For
any two partial orders P1 = (U,R1) and P2 = (U,R2), we denote P1 ⊆ P2 whenever
R1 ⊆ R2. Moreover, we denote for simplicity P1 ∪ P2 and P1 ∩ P2 for the partial
orders (U,R1∪R2) and (U,R1∩R2), respectively. If P2 is a linear order and P1 ⊆ P2,
then P2 is a linear extension of P1. The orders P1 and P2 contradict each other if
there exist two elements u, v ∈ U such that u <P1

v and v <P2
u. The linear-interval

dimension of a partial order P (denoted lidim(P)) is the lexicographically smallest

pair (k, ℓ) such that P =
⋂k

i=1
Pi, where {Pi}ki=1 are interval orders and exactly ℓ

among them are not linear orders. In particular, P is a linear-interval order if its
linear-interval dimension is at most (2, 1), i.e. P = P1 ∩P2, where P1 is a linear order
and P2 is an interval order.

3.2. Threshold graphs and alternating cycles. In this section we provide
preliminary definitions and known results on alternating cycles and on threshold
graphs, which will be useful for the remainder of the paper.

Definition 3.1. Let G = (V,E) be a graph, Ẽ ⊆ E be an edge subset, and k ≥ 2.
A set of 2k (not necessarily distinct) vertices v1, v2, . . . , v2k ∈ V builds an alternating

cycle AC2k in Ẽ, if vivi+1 ∈ Ẽ whenever i is even and vivi+1 /∈ E whenever i is odd
(where indices are mod 2k). Furthermore, we say that G has an alternating cycle

AC2k, whenever G has an AC2k in the edge set Ẽ = E.

7

For instance, for k = 3, there exist two different possibilities for an AC6, which
are illustrated in Figures 1(a) and 1(b). These two types of an AC6 are called an
alternating path of length 5 or of length 6, respectively (AP5 and AP6 for short,
respectively). In an AP6 on vertices v1, v2, v3, v4, v5, v6, if there exist the edges v1v3
and v2v6 (or, symmetrically, the edges v3v5 and v4v2, or the edges v5v1 and v6v4),
then this AP6 is called a double AP6, cf. Figure 1(c).

Definition 3.2. Let G = (V,E) be a graph and v1, . . . , v6 be the vertices of an
AP6. Then the non-edge v1v2 (resp. the non-edge v3v4, v5v6) is a base of the AP6

and the edge v4v5 (resp. the edge v6v1, v2v3) is the corresponding ceiling of this AP6.

v1 = v4

v2

v6

AP5

v3

v5

(a)

v1 v2

v3

v4v5

v6 AP6

(b)

double AP6

v1 v2

v3

v4v5

v6

(c)

Figure 1. All possibilities for an AC6: (a) an alternating path AP5 of length 5, (b) an alter-
nating path AP6 of length 6, and (c) a double AP6. The solid lines denote edges of the graph and
the dashed lines denote non-edges of the graph.

Furthermore, note that for k = 2, a set of four vertices v1, v2, v3, v4 ∈ V builds an
alternating cycle AC4 if v1v2, v3v4 ∈ E and v1v4, v2v3 /∈ E. There are three possible
graphs on four vertices that build an alternating cycle AC4, namely 2K2, P4, and C4,
which are illustrated in Figure 2.

v1 v3

v2 v4

(a)

v1 v3

v2 v4

(b)

v1 v3

v2 v4

(c)

Figure 2. The three possible AC4’s: (a) a 2K2, (b) a P4, and (c) a C4.

Alternating cycles can be used to characterize threshold and chain graphs. In
particular, threshold graphs are the graphs with no induced AC4, and chain graphs
are the bipartite graphs with no induced 2K2 [16]. We define now for any bipartite
graphG the associated split graph of G, which we will use extensively in the remainder
of the paper.

Definition 3.3. Let G = (U, V,E) be a bipartite graph. The associated split
graph of G is the split graph HG = (U ∪ V,E′), where E′ = E ∪ (V × V), i.e. HG is
the split graph made by G by replacing the independent set V of G by a clique.

Observation 1. Let G be a bipartite graph and HG be the associated split graph
of G. Then, G has an induced 2K2 if and only if HG has an induced AC4, and in
this case this AC4 is a P4.

The next lemma connects the chain cover number ch(G) of a bipartite graph G
with the threshold cover number t(HG) of the associated split graph HG of G. Recall
that the problem of deciding whether a graph G has threshold cover number at most

8

a given number k is NP-complete for k ≥ 3 [23], while it is polynomial for k = 2 [21].
Lemma 3.4 ([16]). Let G = (U, V,E) be a bipartite graph. Then ch(G) = t(HG).
The next two definitions of a conflict between two edges and the conflict graph

are essential for our results.
Definition 3.5. Let G = (V,E) be a graph and e1, e2 ∈ E. If the vertices of e1

and e2 build an AC4 in G, then e1 and e2 are in conflict, and in this case we denote
e1||e2 in G. Furthermore, an edge e ∈ E is committed if there exists an edge e′ ∈ E
such that e||e′; otherwise e is uncommitted.

Definition 3.6 ([21]). Let G = (V,E) be a graph. The conflict graph
G∗ = (V ∗, E∗) of G is defined by

• V ∗ = E and
• for every e1, e2 ∈ E, e1e2 ∈ E∗ if and only if e1||e2 in G.

Observation 2. Let G = (V,E) be a graph and let e ∈ E. If e is uncommitted,
then e is an isolated vertex in the conflict graph G∗ of G.

Observation 3. Let G = (V,E) be a split graph. Let K and I be a partition of
V , such that K is a clique and I is an independent set (such a partition always exists
for split graphs). Then, every edge of K is uncommitted.

Lemma 3.7. Let G be a graph and let the vertices v1, . . . , v6 of G build an AP6 (an
alternating path of length 6). Assume that among the three edges {v2v3, v4v5, v6v1}
of this AP6, no pair of edges is in conflict. Then the edges v3v6, v4v1, v5v2 exist in G
and v4v5||v3v6, v2v3||v4v1, and v6v1||v5v2.

Proof. Suppose that v3v6 is not an edge of G. Then the edges v2v3 and v6v1 are
in conflict, since v1v2 is not an edge of G (cf. Figure 1(b)), which is a contradiction
to the assumption of the lemma. Therefore v3v6 is an edge of G. By symmetry, it
follows that also v4v1 and v5v2 are edges in G. Note now that the edges v4v5||v3v6
are in conflict, since v3v4 and v5v6 are not edges of G. By symmetry, it follows that
also v2v3||v4v1, and v6v1||v5v2.

Note that the threshold cover number t(G) of a graph G = (V,E) equals the
smallest k, such that the edge set E of G can be partitioned into k sets E1, E2, . . . , Ek,
each having a threshold completion in G (that is, there exists for every i = 1, 2, . . . , k
an edge set E′

i, such that Ei ⊆ E′

i ⊆ E and (V,E′

i) is a threshold graph). The
following characterization of subgraphs that admit a threshold completion in a given
graph G has been proved in [12].

Lemma 3.8 ([12]). Let H be a subgraph of a graph G = (V,E). Then H has a
threshold completion in G if and only if G has no AC2k, k ≥ 2, on the edges of H.

If the conditions of Lemma 3.8 are satisfied, then such a threshold completion of
H in G can be computed in linear time, as the next lemma states.

Lemma 3.9 ([21]). If a subgraph H of G = (V,E) has a threshold completion in
G, then it can be computed in O(|V |+ |E|) time.

Corollary 3.10. Let G = (V,E) be a graph. Then, t(G) = 1 if and only if G
has no AC2k, k ≥ 2. Furthermore, t(G) ≤ 2 if and only if the set E of edges can be
partitioned into two sets E1 and E2, such that G has no AC2k, k ≥ 2, in each Ei,
i = 1, 2.

Proof. First note that t(G) = 1 if and only if G is a threshold graph. Therefore,
Lemma 3.8 implies that t(G) = 1 if and only if G has no AC2k, k ≥ 2.

Recall that the threshold cover number t(G) of a graph G = (V,E) equals the
smallest k, such that the edge set E of G can be partitioned into k sets E1, E2, . . . , Ek,
each having a threshold completion in G. Therefore, if t(G) ≤ 2, Lemma 3.8 implies
that E can be partitioned into two sets E1 and E2, such that G has no AC2k, k ≥ 2, in
each Ei, i = 1, 2. Note that, in the case where t(G) = 1 (i.e. G is a threshold graph),

9

we can set E1 = E and E2 = ∅. Conversely, suppose that E can be partitioned into
two such sets E1 and E2. Then Lemma 3.8 implies that both graphs G1 = (V,E1)
and G2 = (V,E2) have a threshold completion in G, where G1 ∪ G2 = G. Therefore
t(G) ≤ 2.

It can be easily proved that, for every graph G, the chromatic number χ(G∗) of
its conflict graph G∗ provides a lower bound for the threshold cover number t(G) of
G, as the next lemma states.

Lemma 3.11 ([16]). Let G be a graph. Then χ(G∗) ≤ t(G).

Lemma 3.11 immediately implies that a necessary condition for a graph G to have
threshold cover number t(G) ≤ 2 is that χ(G∗) ≤ 2, i.e. that G∗ is a bipartite graph.
The main result of [21] is the next theorem, which proves that this is also a sufficient
condition for graphs G with χ(G∗) ≤ 2.

Theorem 3.12 ([21]). If the conflict graph G∗ of a graph G = (V,E) is bipartite
(i.e. χ(G∗) ≤ 2), then t(G) ≤ 2. Moreover, E can be partitioned in O(|E|(|V |+ |E|))
time into two sets E1 and E2, such that G has no AC2k, k ≥ 2, in each Ei, i = 1, 2.

Due to the next theorem, it suffices for bipartite conflict graphs G∗ to consider
only small alternating cycles AC2k with k ≤ 3.

Theorem 3.13 ([12]). Suppose that the conflict graph G∗ of a graph G = (V,E)
is bipartite (i.e. χ(G∗) ≤ 2), with (vertex) color classes E1 and E2. If G has an AC2k

on the edges of E1 (resp. of E2), where k ≥ 3, then G has also an AC6 in E1 (resp. of
E2).

Lemma 3.14 ([13]). Let G = (V,E) be a split graph. Let K and I be a par-
tition of V such that K induces a clique and I induces an independent set in G.
Assume that the vertices v1, . . . , v6 build an AP6 in G. Then either v1, v3, v5 ∈ K and
v2, v4, v6 ∈ I, or v1, v3, v5 ∈ I and v2, v4, v6 ∈ K.

Lemma 3.15. Any split graph G does not contain any AP5 or any double AP6.

Proof. Let G = (V,E) be a split graph and let K and I be a partition of V ,
such that K induces a clique and I induces an independent set in G; such a partition
exists by the definition of split graphs. The fact that a split graph does not contain
any AP5 has been proved in [13]. However, for the sake of completeness we present
here a simple proof of this fact. Assume that G contains an AP5 on the vertices
v1, v2, v3, v4, v5, v6 where v1 = v4, cf. Figure 1(a). Suppose first that v1 = v4 ∈ K.
Then, since v2, v3 /∈ N(v1), it follows that v2, v3 ∈ I. This is a contradiction, since
v2v3 ∈ E. Suppose now that v1 = v4 ∈ I. Then, since v5, v6 ∈ N(v1), it follows that
v5, v6 ∈ K. This is a contradiction, since v5v6 /∈ E. Therefore G does not contain any
AP5.

Now assume that G contains an AP6 on the vertices v1, v2, v3, v4, v5, v6, cf. Fig-
ure 1(b). We will prove that this is not a double AP6 (cf. Figure 1(c)). Indeed,
Lemma 3.14 implies that either v1, v3, v5 ∈ K and v2, v4, v6 ∈ I, or v1, v3, v5 ∈ I
and v2, v4, v6 ∈ K. In both cases, none of the pairs of edges {v1v3, v2v6}, {v3v5, v4v2},
and {v5v1, v6v4} can exist simultaneously in G. Therefore, G has no double AP6. This
completes the proof of the lemma.

4. Linear-Interval covers of bipartite graphs. In this section we introduce
the crucial notion of a linear-interval cover of bipartite graphs (cf. Definition 4.6).
Then we use linear-interval covers to provide a new characterization of PI graphs
(cf. Theorem 4.8), which is one of the main tools for our PI graph recognition algo-
rithm. First we provide in the next theorem the characterization of PI graphs using

10

linear orders and interval orders.

Theorem 4.1. Let G = (V,E) be a cocomparability graph and P be a partial
order of G. Then G is a PI graph if and only if P = P1 ∩ P2, where P1 is a linear
order and P2 is an interval order.

Proof. For the purposes of the proof, a partial order P = (U,R) is called a PI
order [5], if there exists a PI representation (i.e. a simple-triangle representation) R,
such that for any two u, v ∈ U , u <P v if and only if the triangle associated to u lies
in R entirely to the left of the triangle associated to v.

Suppose that P = P1 ∩ P2 for two partial orders P1 and P2, where P1 is a linear
order and P2 is an interval order. Then P is a PI order [5], and thus G is a PI graph.
Conversely, suppose that G is a PI graph. Equivalently, P is a PI order, and thus
the linear-interval dimension of P is lidim(P) ≤ (2, 1) [5]. That is, P = P1 ∩ P2 for
two partial orders P1 and P2, where P1 is a linear order and P2 is an interval order.
Moreover, whenever we are given a partial order P such that P = P1∩P2, where P1 is
a linear order and P2 is an interval order, it is straightforward to compute a PI model
for P (cf. [5]). Equivalently, we can easily construct in this case a PI representation
of the incomparability graph G of P (cf. lines 13-15 of Algorithm 1 below).

For every partial order P we define now the domination bipartite graph C(P),
which has been used to characterize interval orders [15]. Here “C” stands for “Com-
parable”, since the definition of C(P) uses the comparable elements of P .

Definition 4.2 ([15]). Let P = (U,R) be a partial order, where
U = {u1, u2, . . . , un}. Furthermore let V = {v1, v2, . . . , vn}. The domination bipar-
tite graph C(P) = (U, V,E) is defined such that uivj ∈ E if and only if ui <P uj.

Lemma 4.3 ([15]). Let P = (U,R) be a partial order. Then, P is an interval
order if and only if C(P) is a chain graph.

Extending the notion of C(P), we now introduce the bipartite graph NC(P)
to characterize linear orders (cf. Lemma 4.5). Here “NC” stands for “Non-strictly
Comparable”. Namely, this graph can be obtained by adding to the graph C(P) the
perfect matching {uivi | i = 1, 2, . . . , n} on the vertices of U and V .

Definition 4.4. Let P = (U,R) be a partial order, where U = {u1, u2, . . . , un}.
Furthermore let V = {v1, v2, . . . , vn}. Then, NC(P) = (U, V,E) is the bipartite graph,
such that uivj ∈ E if and only if ui ≤P uj.

Lemma 4.5. Let P = (U,R) be a partial order. Then, P is a linear order if and
only if NC(P) is a chain graph.

Proof. Let U = {u1, u2, . . . , un}. Suppose that P is a linear order,
i.e. u1 <P u2 <P . . . <P un. Then, by Definition 4.4, the set of neighbors of a ver-
tex ui ∈ U in the graph NC(P) is N(ui) = {vi, vi+1, . . . , vn}. Therefore, N(un) ⊂
N(un−1) ⊂ . . . ⊂ N(u1), and thus NC(P) is a chain graph.

Suppose now that NC(P) is a chain graph. Then the sets of neighbors of the
vertices of U in the graph NC(P) can be linearly ordered by inclusion. Let without
loss of generality N(u1) ⊆ N(u2) ⊆ . . . ⊆ N(un). Therefore, since vi ∈ N(ui) in
NC(P) for every i = 1, 2, . . . , n, it follows that vi ∈ N(uj) in NC(P) whenever i < j.
Therefore, by Definition 4.4, uj <P ui whenever i < j. That is, un <P un−1 <P

. . . <P u1, i.e. P is a linear order.

We introduce now the notion of a linear-interval cover of a bipartite graph. This
notion is crucial for our main result of this section, cf. Theorem 4.8.

Definition 4.6. Let G = (U, V,E) be a bipartite graph, where U =
{u1, u2, . . . , un} and V = {v1, v2, . . . , vn}. Let E0 = {uivi | 1 ≤ i ≤ n} and sup-
pose that E0 ⊆ E. Then, G is linear-interval coverable if there exist two chain graphs

11

G1 = (U, V,E1) and G2 = (U, V,E2), such that G = G1 ∪G2 and E0 ⊆ E2 \ E1. In
this case, the sets {E1, E2} are a linear-interval cover of G.

Before we proceed with Theorem 4.8, we first provide the next auxiliary lemma.

Lemma 4.7. Let Q1 = (U,R1) be an interval order and Q2 = (U,R2) be a partial
order, such that Q1 and Q2 do not contradict each other. Then there exists a linear
order Q0 that is a linear extension of both Q1 and Q2.

Proof. Let U = {u1, u2, . . . , un} be the ground set of Q1 and Q2. Further-
more let C(Q1) = (U, V,E1) be the domination bipartite graph of Q1, where
V = {v1, v2, . . . , vn}, cf. Definition 4.2. Since Q1 is an interval order by assump-
tion, C(Q1) is a chain graph by Lemma 4.3, i.e. C(Q1) does not contain an induced
2K2. Consider now two edges uivj and ukvℓ of C(Q1), where {i, j}∩{k, ℓ} = ∅. Then
ui <Q1

uj and uk <Q1
uℓ by Definition 4.2. Furthermore, at least one of the edges

uivℓ and ukvj exists in C(Q1), since otherwise the edges uivj and ukvℓ induce a 2K2

in C(Q1), which is a contradiction. Therefore ui <Q1
uℓ or uk <Q1

uj.

Since Q1 and Q2 do not contradict each other by assumption, we can define the
simple directed graph G0 = (U,E), such that −−→uiuj ∈ E if and only if ui <Q1

uj or
ui <Q2

uj . We will prove that G0 is acyclic. Suppose otherwise that G0 has at least
one directed cycle, and let C be a directed cycle of G0 with the smallest possible
length. Assume first that C has length 3, and let its edges be −−→uiuj,

−−→ujuk, and
−−→ukui.

Then at least two of these edges belong to Q1 or to Q2. Let without loss of generality
−−→uiuj and −−→ujuk belong to Q1, i.e. ui <Q1

uj and uj <Q1
uk. Then also ui <Q1

uk,
since Q1 is transitive, and thus −−→uiuk ∈ E. This contradicts the assumption that −−→ukui

is an edge of C. Assume now that C has length greater than 3. Suppose that two
consecutive edges −−→uiuj and −−→ujuk of C belong to Q1, i.e. ui <Q1

uj and uj <Q1
uk.

Then also ui <Q1
uk, since Q1 is transitive, and thus −−→uiuk ∈ E. Therefore we can

replace in C the edges −−→uiuj and −−→ujuk by the edge −−→uiuk, obtaining thus a smaller
directed cycle than C, which is a contradiction by the assumption on C. Thus no two
consecutive edges of C belong to Q1. Similarly, no two consecutive edges of C belong
to Q2, and thus the edges of C belong alternately to Q1 and Q2. In particular, C has
even length.

Consider now three consecutive edges −−→uiuj ,
−−→ujuk,

−−→ukuℓ of C, where −−→uiuj and −−→ukuℓ

belong to Q1. Then ui <Q1
uj and uk <Q1

uℓ, where {i, j} ∩ {k, ℓ} = ∅, and thus
ui <Q1

uℓ or uk <Q1
uj , as we proved above. That is, −−→uiuℓ ∈ E or −−→ukuj ∈ E.

Therefore, since we assumed that −−→ujuk is an edge of C, it follows that −−→ukuj /∈ E, and
thus −−→uiuℓ ∈ E. Therefore, in particular, −−→uℓui /∈ E, and thus C does not have length
4, i.e. it has length at least 6. Thus we can replace in C the edges −−→uiuj ,

−−→ujuk,
−−→ukuℓ by

the edge −−→uiuℓ, obtaining thus a smaller directed cycle than C, which is a contradiction
by the assumption on C.

Therefore, there exists no directed cycle in G0, i.e. G0 is a directed acyclic graph.
Thus any topological ordering of G0 corresponds to a linear order Q0 = (U,R0) that
is a linear extension of both Q1 and Q2. This completes the proof of the lemma.

Theorem 4.8. Let P = (U,R) be a partial order. In the bipartite complement

Ĉ(P) of the graph C(P), denote E0 = {uivi | 1 ≤ i ≤ n}. The following statements
are equivalent:

(a) P = P1 ∩ P2, where P1 is a linear order and P2 is an interval order.

(b) Ĉ(P) = N̂C(P1) ∪ Ĉ(P2) for two partial orders P1 and P2 on V , where

N̂C(P1) and Ĉ(P2) are chain graphs.

(c) Ĉ(P) is linear-interval coverable, i.e. Ĉ(P) = G1 ∪ G2 for two chain graphs
G1 = (U, V,E1) and G2 = (U, V,E2), where E0 ⊆ E2 \ E1.

12

Proof. (a)⇒ (b). Since P1 is a linear order, it follows by Lemma 4.5 that NC(P1)
is a chain graph. Furthermore, sine P2 is an interval order, it follows by Lemma 4.3
that C(P2) is a chain graph. Therefore, since the class of chain graphs is closed under

bipartite complementation, it follows that N̂C(P1) and Ĉ(P2) are chain graphs.
Let ui, uj ∈ U such that uivj ∈ E(C(P)). Then ui <P uj by Definition 4.2.

Furthermore, since P = P1 ∩ P2 by assumption, it follows that ui <P1
uj and ui <P2

uj , and thus also uivj ∈ E(NC(P1)) and uivj ∈ E(C(P2)) by Definitions 4.2 and 4.4,
respectively. Therefore C(P) ⊆ NC(P1) ∩ C(P2).

Let now ui, uj ∈ U such that uivj ∈ E(NC(P1)) and uivj ∈ E(C(P2)). Then, it
follows in particular that ui 6= uj (since otherwise uivj /∈ E(C(P2)), a contradiction).
Thus, ui <P1

uj and ui <P2
uj by Definitions 4.2 and 4.4. Therefore, since P = P1∩P2

by assumption, it follows that ui <P uj, and thus uivj ∈ E(C(P)) by Definition 4.2.
That is, NC(P1)∩C(P2) ⊆ C(P). Summarizing, C(P) = NC(P1)∩C(P2), and thus

also Ĉ(P) = N̂C(P1) ∪ Ĉ(P2).

(b) ⇒ (a). Since Ĉ(P) = N̂C(P1) ∪ Ĉ(P2), it follows that C(P) = NC(P1) ∩
C(P2). Let ui, uj ∈ U such that ui <P uj . Then uivj ∈ E(C(P)) by Definition 4.2.
Therefore, since C(P) = NC(P1)∩C(P2), it follows that also uivj ∈ E(NC(P1)) and
uivj ∈ E(C(P2)). Thus, in particular, ui 6= uj (since otherwise uivj /∈ E(C(P2)), a
contradiction). Therefore ui <P1

uj and ui <P2
uj by Definitions 4.2 and 4.4. That

is, P ⊆ P1 ∩ P2.
Let now ui, uj ∈ U such that ui <P1

uj and ui <P2
uj. Then uivj ∈ E(NC(P1))

and uivj ∈ E(C(P2)) by Definitions 4.2 and 4.4. Therefore, since C(P) = NC(P1) ∩
C(P2), it follows that also uivj ∈ E(C(P)). Thus ui <P uj by Definition 4.2. That is,

P1 ∩P2 ⊆ P . Summarizing, P = P1 ∩P2. Furthermore, since by assumption N̂C(P1)

and Ĉ(P2) are chain graphs, it follows that also NC(P1) and C(P2) are chain graphs.
Therefore P1 is a linear order and P2 is an interval order by Lemmas 4.5 and 4.3,
respectively.

(b) ⇒ (c). Define G1 = N̂C(P1) and G2 = Ĉ(P2). Then, it follows by (b) that

G1 and G2 are chain graphs and that Ĉ(P) = G1 ∪G2. Note now by Definitions 4.2
and 4.4 that E0 ∩ E(C(P2)) = ∅ and that E0 ⊆ E(NC(P1)), respectively. Therefore

E0 ⊆ E(Ĉ(P2)) \ E(N̂C(P1)). Thus, since E2 = E(G2) = E(Ĉ(P2)) and E1 =

E(G1) = E(N̂C(P1)), it follows that E0 ⊆ E2 \ E1. That is, Ĉ(P) is linear-interval
coverable by Definition 4.6.

(c) ⇒ (b). We will construct from the edge sets E1 and E2 of G1 and G2,

respectively, a linear order P1 and an interval order P2, such that Ĉ(P) = N̂C(P1) ∪

Ĉ(P2). Denote first the bipartite complement Ĝ2 of G2 as Ĝ2 = (U, V, Ê2). Note that

Ĝ2 is a chain graph, since G2 is also a chain graph by assumption.

The interval order P2. We define P2, such that ui <P2
uj if and only if

uivj ∈ Ê2. We will now prove that P2 is a partial order. Recall that E0 ⊆ E2

by assumption, and thus E0 ∩ Ê2 = ∅. That is, uivi /∈ Ê2 for every i = 1, 2, . . . , n.
Furthermore, Ĝ2 is a chain graph, since G2 is a chain graph by assumption. Therefore,
for two distinct indices i, j, at most one of the edges uivj and ujvi belongs to Ê2, since

otherwise these two edges would induce a 2K2 in Ĝ2, which is a contradiction. Thus,
according to our definition of P2, whenever i 6= j, it follows that either ui <P2

uj ,
or uj <P2

ui, or ui and uj are incomparable in P2. Suppose that ui <P2
uj and

uj <P2
uk for three indices i, j, k. That is, uivj , ujvk ∈ Ê2 by definition of P2. Since

13

Ĝ2 = (U, V, Ê2) is a chain graph, the edges uivj and ujvk do not build a 2K2 in Ĝ2.

Therefore, since ujvj /∈ Ê2, it follows that uivk ∈ Ê2, i.e. ui <P2
uk. That is, P2

is transitive, and thus P2 is a partial order. Furthermore, note by the definition of
P2 and by Definition 4.2 that Ĝ2 = C(P2). Therefore, since Ĝ2 is a chain graph, it
follows by Lemma 4.3 that P2 is an interval order.

In order to define the linear order P1, we first define two auxiliary orders Q1 and
Q2, as follows.

The interval order Q1. We define Q1, such that ui <Q1
uj if and only if

uivj ∈ E1. We will prove that Q1 is a partial order. Recall that E0 ∩ E1 = ∅
by assumption. That is, uivi /∈ E1 for every i = 1, 2, . . . , n. Furthermore, for two
distinct indices i, j, at most one of the edges uivj and ujvi belongs to E1. Indeed,
otherwise these two edges would induce a 2K2 in G1, which is a contradiction since
G1 is a chain graph by assumption. Thus, according to our definition of Q1, whenever
i 6= j, it follows that either ui <Q1

uj, or uj <Q1
ui, or ui and uj are incomparable

in Q1. Suppose that ui <Q1
uj and uj <Q1

uk for three indices i, j, k. That is,
uivj , ujvk ∈ E1 by definition of Q1. Since G1 is a chain graph by assumption, the
edges uivj and ujvk do not build a 2K2 in G1. Therefore, since ujvj /∈ E1, it
follows that uivk ∈ E1, i.e. ui <Q1

uk. That is, Q1 is transitive, and thus Q1 is
a partial order. Furthermore, note by the definition of Q1 and by Definition 4.2 that
G1 = C(Q1). Therefore Q1 is an interval order by Lemma 4.3, since G1 is a chain
graph by assumption.

The partial order Q2. We define the partial order Q2 as the inverse partial
order P of P . That is, ui <Q2

uj if and only if uj <P ui. Note that Q2 is transitive,
since P is transitive.

Before we define the linear order P1, we first prove that the partial orders Q1 and
Q2 do not contradict each other. Suppose otherwise that ui <Q1

uj and uj <Q2
ui,

for some pair ui, uj . Then, since ui <Q1
uj , it follows that uivj ∈ E1 by definition

of Q1. Therefore uivj ∈ E(Ĉ(P)), since Ĉ(P) = G1 ∪ G2 by assumption. On the
other hand, since uj <Q2

ui, it follows that ui <P uj by definition of Q2. Therefore

uivj ∈ E(C(P)) by Definition 4.2, and thus uivj /∈ E(Ĉ(P)), which is a contradiction.
Therefore the partial orders Q1 and Q2 do not contradict each other.

The linear order P1. Since the interval order Q1 and the partial order Q2 do
not contradict each other, we can construct by Lemma 4.7 a common linear extension
Q0 of Q1 and Q2. That is, if ui <Q1

uj or ui <Q2
uj , then ui <Q0

uj . We define
now the linear order P1 as the inverse linear order Q0 of Q0. Note that P1 is also a
linear extension of P , since ui <P uj implies that uj <Q2

ui, which in turn implies
that ui <P1

uj.

Now we prove that Ĉ(P) ⊆ N̂C(P1) ∪ Ĉ(P2). Let uivj ∈ E1. Then ui <Q1
uj by

the definition of Q1, and thus uj <P1
ui by the definition of P1. Therefore ui �P1

uj ,

and thus uivj /∈ E(NC(P1)) by Definition 4.4. Therefore uivj ∈ E(N̂C(P1)). Thus

E1 ⊆ E(N̂C(P1)), i.e.G1 ⊆ N̂C(P1). Recall now that Ĉ(P) = G1∪G2 by assumption.

Furthermore recall that Ĝ2 = C(P2) as we proved above, and thus G2 = Ĉ(P2).

Therefore, since G1 ⊆ N̂C(P1), it follows that Ĉ(P) ⊆ N̂C(P1) ∪ Ĉ(P2).
Finally we prove that C(P) ⊆ NC(P1) ∩ C(P2). Consider now an edge uivj ∈

E(C(P)). Then ui <P uj by Definition 4.2, and thus uj <Q2
ui by the definition

of Q2. Furthermore ui <P1
uj by the definition of P1, and thus uivj ∈ E(NC(P1)) by

Definition 4.4. Note now that C(P) = Ĝ1∩Ĝ2, since Ĉ(P) = G1∪G2 by assumption.

14

Therefore, since uivj ∈ E(C(P)) by assumption, it follows that also uivj ∈ Ê2. That

is, if uivj ∈ E(C(P)) then uivj ∈ E(NC(P1)) and uivj ∈ Ê2. Therefore, since

Ĝ2 = C(P2), it follows that C(P) ⊆ NC(P1) ∩ C(P2).

Summarizing, since Ĉ(P) ⊆ N̂C(P1) ∪ Ĉ(P2) and C(P) ⊆ NC(P1) ∩ C(P2), it

follows that Ĉ(P) = N̂C(P1) ∪ Ĉ(P2). This completes the proof of the theorem.
The next corollary follows now easily by Theorems 4.1 and 4.8.
Corollary 4.9. Let G = (V,E) be a cocomparability graph and P be a partial

order of G. Then, G is a PI graph if and only if the bipartite graph Ĉ(P) is linear-
interval coverable.

We now present Algorithm 1, which constructs a PI representation R of
a cocomparability graph G by a linear-interval cover {E1, E2} of the bipar-

tite graph Ĉ(P) (cf. Definition 4.6). Since E0 ⊆ E2 \ E1 by Definition 4.6,
where E0 = {uivi | 1 ≤ i ≤ n} and n is the number of vertices of G, note that i 6= j
during the execution of each of the lines 6, 8, and 10 of Algorithm 1.

Algorithm 1 Construction of a PI representation, given a linear-interval cover

Input: A cocomparability graph G, a partial order P of G, the domination bipartite
graph C(P) = (U, V,E), and a linear-interval cover {E1, E2} of Ĉ(P)

Output: A PI representation R of G

1: Let U = {u1, u2, . . . , un}, V = {v1, v2, . . . , vn}
2: Q1 ← ∅; Q2 ← ∅; P2 ← ∅

3: for i = 1, 2, . . . , n do {construction of the partial orders Q1, Q2, P2}
4: for j = 1, 2, . . . , n do

5: if uivj /∈ E2 then {i 6= j}
6: ui <P2

uj

7: if uivj ∈ E1 then {i 6= j}
8: ui <Q1

uj

9: if uj <P vi then {i 6= j}
10: ui <Q2

uj

11: Compute a linear extension Q0 of Q1 ∪Q2

12: P1 ← Q0

13: Place the elements of U on a line L1 according to the linear order P1

14: Place a set of n intervals on a line L2 (parallel to L1) according to the interval
order P2

15: Build the PI representation R of G by connecting the endpoints of the intervals
on L2 with the corresponding points on L1

16: return R

Theorem 4.10. Let G be a cocomparability graph with n vertices and P be the
partial order of G. Let {E1, E2} be a linear-interval cover of Ĉ(P). Then Algorithm 1
constructs in O(n2) time a PI representation R of G.

Proof. Since Ĉ(P) admits a linear-interval cover {E1, E2}, Corollary 4.9 implies
that G is a PI graph. Furthermore, it follows by the proof of the implication ((c)
⇒ (b)) in Theorem 4.8 that the partial orders P1 and P2 that are constructed in
lines 3-12 of Algorithm 1 are a linear order and an interval order, respectively, such
that Ĉ(P) = N̂C(P1)∪ Ĉ(P2). Furthermore, it follows by the proof of the implication
((b) ⇒ (a)) in Theorem 4.8 that P = P1 ∩ P2 for these two partial orders. Once we

15

have computed in lines 3-12 the linear order P1 and the interval order P2, for which
P = P1 ∩ P2, it is now straightforward to construct a PI representation R of G as
follows (cf. also [5] and the proof of Theorem 4.1). We arrange a set of n points
(resp. n intervals) on a line L1 (resp. on a line L2, parallel to L1) according to the
linear order P1 (resp. to the interval order P2). Then we connect the endpoints of the
intervals on L2 with the corresponding points on L1. Regarding the time complexity,
each of the lines 5-10 of Algorithm 1 can be executed in constant time, and thus the
lines 3-10 can be executed in total O(n2) time. Furthermore, since the lines 11-15 can
be executed in a trivial way in at most O(n2) time each, it follows that the running
time of Algorithm 1 is O(n2).

5. Detecting linear-interval covers using Boolean satisfiability. The nat-
ural algorithmic question that arizes from the characterization of PI graphs using
linear-interval covers in Corollary 4.9, is the following: “Given a cocomparability
graph G and a partial order P of G, can we efficiently decide whether the bipartite
graph Ĉ(P) has a linear-interval cover?” We will answer this algorithmic question
in the affirmative in Section 6. In this section we translate every instance of this
decision problem (i.e. whether the bipartite graph Ĉ(P) has a linear-interval cover)
to a restricted instance of 3SAT (cf. Theorem 5.4). That is, for every such a bipartite

graph Ĉ(P), we construct a Boolean formula φ in conjunctive normal form (CNF),

with size polynomial on the size of Ĉ(P) (and thus also on G), such that Ĉ(P) has
a linear-interval cover if and only if φ is satisfiable. In particular, this formula φ can
be written as φ = φ1 ∧ φ2, where φ1 has three literals in every clause and φ2 has
two literals in every clause. Moreover, as we will prove in Section 6, the satisfiability
problem can be efficiently decided on the formula φ, by exploiting an appropriate
sub-formula of φ which is gradually mixed (cf. Definition 2.2).

In the remainder of the paper, given a cocomparability graph G and a partial
ordering P of its complement G, we denote by G̃ = Ĉ(P) the bipartite complement
of the domination bipartite graph C(P) of P . Furthermore we denote by H the

associated split graph of G̃ and by H∗ the conflict graph of H . Moreover, we assume
in the remainder of the paper without loss of generality that χ(H∗) ≤ 2, i.e. that H∗

is bipartite. Indeed, as we formally prove in Lemma 5.1, if χ(H∗) > 2 then G̃ does not
have a linear-interval cover, i.e. G is not a PI graph. Note that every proper 2-coloring
of the vertices of the conflict graph H∗ corresponds to exactly one 2-coloring of the
edges of H that includes no monochromatic AC4. We assume in the following that a
proper 2-coloring (with colors blue and red) of the vertices of H∗ is given as input;
note that χ0 can be computed in polynomial time.

Lemma 5.1. Let G be a cocomparability graph and P be a partial order of G.
Let G̃ = Ĉ(P), H be the associated split graph of G̃, and H∗ be the conflict graph of

H. If G̃ is linear-interval coverable, then χ(H∗) ≤ 2.

Proof. Suppose otherwise that χ(H∗) > 2. Then t(H) > 2, since χ(H∗) ≤ t(H)

by Lemma 3.11. Therefore, Lemma 3.4 implies that ch(G̃) > 2, and thus G is not

a trapezoid graph [15]. Therefore G is clearly not a PI graph, and thus G̃ is not
linear-interval coverable by Corollary 4.9, which is a contradiction to the assumption
of the lemma. Therefore χ(H∗) ≤ 2.

Let C1, C2, . . . , Ck be the connected components ofH∗. Some of these components
of H∗ may be isolated vertices, which correspond to uncommitted edges in H . We
assign to every component Ci, where 1 ≤ i ≤ k, the Boolean variable xi. Since H∗ is
bipartite by assumption, the vertices of each connected component Ci of H

∗ can be

16

Algorithm 2 Construction of the 3-CNF Boolean formula φ1

Input: The bipartite graph G̃ = Ĉ(P), the associated split graph H of G̃, its conflict
graph H∗, and a proper 2-coloring χ0 of the vertices of H∗

Output: The 3-CNF Boolean formula φ1

1: φ1 ← ∅

2: for all triples of edges {e, e′, e′′} ⊆ E(H), such that {e, e′, e′′} build an AC6 in
E(H) do {note that this is an AC6 in the graph H itself and not in a color
subclass of its edges}

3: if ℓe 6= ℓe′ , ℓe′ 6= ℓe′′ , and ℓe 6= ℓe′′ then

4: if φ1 does not contain (ℓe ∨ ℓe′ ∨ ℓe′′) and (ℓe ∨ ℓe′ ∨ ℓe′′) then
5: φ1 ← φ1 ∧ (ℓe ∨ ℓe′ ∨ ℓe′′) ∧ (ℓe ∨ ℓe′ ∨ ℓe′′)

6: return φ1

partitioned into two color classes Si,1 and Si,2. Without loss of generality, we assume
that Si,1 (resp. Si,2) contains the vertices of Ci that are colored red (resp. blue) in
χ0. Note that, since vertices of H∗ correspond to edges of H (cf. Definition 3.6), for
every two edges e and e′ of H that are in conflict (i.e. e||e′) there exists an index
i ∈ {1, 2, . . . , k} such that one of these edges belongs to Si,1 and the other belongs to
Si,2. We now assign a literal ℓe to every edge e of H as follows: if e ∈ Si,1 for some
i ∈ {1, 2, . . . , k}, then ℓe = xi; otherwise, if e ∈ Si,2, then ℓe = xi. Note that, by
construction, whenever two edges are in conflict in H , their assigned literals are one
the negation of the other.

Observation 4. Every truth assignment τ of the variables x1, x2, . . . , xk corre-
sponds bijectively to a proper 2-coloring χτ (with colors blue and red) of the vertices
of H∗, as follows: xi = 0 in τ (resp. xi = 1 in τ), if and only if all vertices of the
component Ci have in χτ the same color as in χ0 (resp. opposite color than in χ0).
In particular, τ = (0, 0, . . . , 0) corresponds to the coloring χ0.

We now present the construction of the Boolean formulas φ1 and φ2 from the
graphs H and H∗, cf. Algorithms 2 and 3, respectively.

Description of the 3-CNF formula φ1: Consider an AC6 in the split graphH ,
and let e, e′, e′′ be its three edges in H , such that no two literals among {ℓe, ℓe′ , ℓe′′}
are one the negation of the other. According to Algorithm 2, the Boolean formula φ1

has for this triple {e, e′, e′′} of edges exactly the two clauses α = (ℓe ∨ ℓe′ ∨ ℓe′′) and
α′ = (ℓe ∨ ℓe′ ∨ ℓe′′). It is easy to check by the assignment of literals to edges that the
clause α (resp. the clause α′) of φ1 is false in a truth assignment τ of the variables if
and only if all edges {e, e′, e′′} are colored red (resp. blue) in the 2-edge-coloring χτ

of H (cf. Observation 4), as the following observation states.

Observation 5. Let τ be any truth assignment of the variables x1, x2, . . . , xk.
Let {e1, e 2, e3} be the edges of an AC6 in H and let α = (ℓe1 ∨ ℓe2 ∨ ℓe3) and α′ =
(ℓe1 ∨ ℓe2 ∨ ℓe3) be a the corresponding clauses in φ1. This AC6 is monochromatic in
the coloring χτ if and only if α = 0 or α′ = 0 in τ .

Consider now another AC6 of H on the edges {e1, e2, e3}, in which at least one
literal among {ℓe1 , ℓe2 , ℓe3} is the negation of another literal, for example ℓe1 = ℓe2 .
Then, for any proper 2-coloring of the vertices of H∗, the edges e and e′ of H receive
different colors, and thus this AC6 is not monochromatic. Thus the next observation

17

Algorithm 3 Construction of the 2-CNF Boolean formula φ2

Input: The bipartite graph G̃ = Ĉ(P), the associated split graph H of G̃, its conflict
graph H∗, and a proper 2-coloring χ0 of the vertices of H∗

Output: The 2-CNF Boolean formula φ2

1: Let H = (U, V,EH), where U = {u1, u2, . . . , un} and V = {v1, v2, . . . , vn}
2: E0 ← {uivi | 1 ≤ i ≤ n}; E′ ← EH \ E0; H ′ ← H − E0

3: φ2 ← ∅

4: for every pair {i, j} ⊆ {1, 2, . . . , n} with uivj /∈ E′ do

5: for t = 1, 2, . . . , n do

6: if uivt, utvj ∈ E′ then {the edges uivt, utvj are in conflict in H ′ but not in
H}

7: e← uivt; e′ ← utvj ; φ2 ← φ2 ∧ (ℓe ∨ ℓe′)

8: return φ2

follows by Observation 5.
Observation 6. The formula φ1 is satisfied by a truth assignment τ if and only

if the corresponding 2-coloring χτ of the edges of H does not contain any monochro-
matic AC6.

Description of the 2-CNF formula φ2: Denote for simplicity H = (U, V,EH),
where U = {u1, u2, . . . , un} and V = {v1, v2, . . . , vn}. Furthermore denote E0 =
{uivi | 1 ≤ i ≤ n}. Let E′ = EH \E0 and H ′ = H−E0, i.e. H

′ is the split graph that
we obtain if we remove from H all edges of E0. Consider now a pair of edges e = uivt
and e′ = utvj of E′, such that uivj /∈ E′. Note that i and j may be equal. However,
since E′ ∩ E0 = ∅, it follows that i 6= t and t 6= j. Moreover, since the edge utvt
belongs to EH but not to E′, it follows that the edges e and e′ are in conflict in H ′

but not in H (for both cases where i = j and i 6= j). That is, although e and e′ are
two non-adjacent vertices in the conflict graph H∗ of H , they are adjacent vertices in
the conflict graph of H ′. For both cases where i = j and i 6= j, an example of such
a pair of edges {e, e′} is illustrated in Figure 3. According to Algorithm 3, for every
such pair {e, e′} of edges in H , the Boolean formula φ2 has the clause (ℓe ∨ ℓe′). It
is easy to check by the assignment of literals to edges of H that this clause (ℓe ∨ ℓe′)
of φ2 is false in the truth assignment τ if and only if both e and e′ are colored red in
the 2-edge coloring χτ of H .

L2

L1

ui

vt

ut

vj

e e
′

(a)

L1

ui ut

e e
′

vt vj
L2

(b)

Figure 3. Two edges e = uivt and e′ = utvj of H, for which the formula φ2 has the clause
(ℓe ∨ ℓe′), in the case where (a) i 6= j and (b) i = j.

Now we provide the main result of this section in Theorem 5.4, which relates the
existence of a linear-interval cover in G̃ = Ĉ(P) with the Boolean satisfiability of
the formula φ1 ∧ φ2. Before we present Theorem 5.4, we first provide two auxiliary

18

lemmas.
Lemma 5.2. Let G be a cocomparability graph and P be a partial order of G.

Let G̃ =Ĉ(P), H be the associated split graph of G̃, and H∗ be the conflict graph

of H. Denote G̃ = (U, V,Ẽ) and E0 = {uivi | 1 ≤ i ≤ n}. Then, every e ∈ E0 is an
isolated vertex of H∗.

Proof. Note by Definition 3.3 that H = (U ∪ V,EH), where EH = Ẽ ∪ (V × V).
Furthermore all edges of V × V in EH correspond to isolated vertices in the conflict
graph H∗ of H by Observations 2 and 3. Therefore all non-isolated vertices in H∗

correspond to edges of G̃ (i.e. they do not belong to V × V). Consider now an

edge ei = uivi ∈ E0 ⊆ Ẽ, where 1 ≤ i ≤ n. Suppose that ei is not an isolated
vertex in the conflict graph H∗. Then the edge ei of G̃ builds with another edge
e = ujvk an induced AC4 in H , i.e. ei = uivi and e = ujvk induce a 2K2 in G̃.

Therefore ujvi, uivk /∈ Ẽ, i.e. ujvi, uivk ∈ E(C(P)). Thus uj <P ui and ui <P uk

by Definition 4.2. Therefore, since P is transitive (as a partial order), it follows that

uj <P uk, and thus ujvk ∈ E(C(P)), i.e. ujvk /∈ Ẽ. This is a contradiction, since

we assumed that e = ujvk is an edge of G̃, i.e. ujvk ∈ Ẽ. Therefore, ei = uivi is an
isolated vertex of H∗.

Lemma 5.3. Let H be a split graph and H∗ be the conflict graph of H, where
H∗ is bipartite with color classes E1 and E2. Let the vertices v1, . . . , v6 of H build an
AC6 on the edges of Ei, where i ∈ {1, 2}. Then the edges v3v6, v4v1, v5v2 exist in H
and v4v5||v3v6, v2v3||v4v1, and v6v1||v5v2.

Proof. Since H is a split graph, Lemma 3.15 implies that H does not contain
any AP5 or any double AP6. Therefore, the AC6 of H is an AP6, i.e. an alternating
path of length 6, cf. Figure 1(b). Since E1 and E2 are the two color classes of H∗,
any two vertices e and e′ of H∗ in the set Ei, where i ∈ {1, 2}, are not adjacent in
H∗. Equivalently, any two edges e and e′ of H in the set Ei are not in conflict, where
i ∈ {1, 2}. Therefore, since by assumption, all edges {v2v3, v4v5, v6v1} of this AC6

belong to the same color class Ei for some i ∈ {1, 2}, it follows that no pair of these
edges is in conflict in H . Thus Lemma 3.7 implies that the edges v3v6, v4v1, v5v2 exist
in H and that v4v5||v3v6, v2v3||v4v1, and v6v1||v5v2.

We are now ready to provide Theorem 5.4.
Theorem 5.4. G̃ = Ĉ(P) is linear-interval coverable if and only if φ1 ∧ φ2 is

satisfiable. Given a satisfying assignment τ of φ1 ∧ φ2, Algorithm 4 computes a linear-
interval cover of G̃ in O(n2) time.

Proof. Denote G̃ = (U, V,Ẽ), where U = {u1, u2, . . . , un} and

V = {v1, v2, . . . , vn}. Furthermore denote H = (U, V,EH), where EH = Ẽ ∪ (V × V),

cf. Definition 3.3. Let E0 = {uivi | 1 ≤ i ≤ n}. Since G̃ =Ĉ(P), note by Definition 4.2

that E0 ⊆ Ẽ ⊆ EH . Let χ0 be the 2-coloring of the vertices of H∗ (i.e. the edges of
H) that is given as input to Algorithms 2 and 3. Moreover, let C1, C2, . . . , Ck be the
connected components of H∗.

(⇒) Suppose that G̃ is linear-interval coverable. That is, there exist by Defini-

tion 4.6 two chain graphs G1 = (U, V,E1) and G2 = (U, V,E2), such that G̃ = G1∪G2

and E0 ⊆ E2 \E1. Let H1 = (U, V,EH1
) and H2 = (U, V,EH2

) be the associated split
graphs of G1 and G2, respectively. Note that H = H1 ∪ H2 and E0 ⊆ EH2

\ EH1
.

Since G1 and G2 are chain graphs, i.e. ch(G1) = ch(G2) = 1, Lemma 3.4 implies that
t(H1) = t(H2) = 1, i.e. H1 and H2 are threshold graphs. Therefore, neither H1 nor
H2 includes an AC4.

Recall that the formulas φ1 and φ2 have one Boolean variable xi for every con-

19

nected component Ci of H∗, i = 1, 2, . . . , k. We construct a 2-coloring χH of the
edges of H as follows. For every edge e of H (i.e. a vertex of H∗), if e ∈ EH1

then
we color e red in χH ; otherwise, if e ∈ EH2

\ EH1
then we color e blue in χH . Recall

that E0 ⊆ EH2
\ EH1

, and thus all edges of E0 are colored blue in χH . Since both
H1 and H2 do not include any AC4, it follows by the definition of χH that there
exists no monochromatic AC4 in χH . Therefore, every two edges e and e′ of H ,
which correspond to adjacent vertices in H∗, have different colors in χH , and thus
χH constitutes a proper 2-coloring of the vertices of H∗. Therefore the coloring χH

of the edges of H (i.e. vertices of H∗) defines a truth assignment τ of the variables
x1, x2, . . . , xk as follows (cf. Observation 4). For every connected component Ci of
H∗, where 1 ≤ i ≤ k, we define xi = 1 (resp. xi = 0) in τ if all vertices of Ci have in
χH different (resp. the same) color as in χ0. We will now prove that τ satisfies both
formulas φ1 and φ2.

Satisfaction of the Boolean formula φ1. Let α be a clause of φ1. Recall that α
corresponds to some triple {e, e′, e′′} of edges ofH that builds an AC6 inH (cf. lines 2-
5 of Algorithm 2). In particular, either α = (ℓe∨ℓe′∨ℓe′′) or α = (ℓe∨ℓe′ ∨ℓe′′), where
ℓe, ℓe′ , ℓe′′ are the literals that have been assigned to the edges e, e′, e′′, respectively.
Then, it follows from the description of the formula φ1 (cf. also Observation 5) that
the clause (ℓe ∨ ℓe′ ∨ ℓe′′) (resp. the clause (ℓe ∨ ℓe′ ∨ ℓe′′)) is not satisfied in the truth
assignment τ if and only if the edges e, e′, e′′ of H are all red (resp. all blue) in χH .

Let α = (ℓe ∨ ℓe′ ∨ ℓe′′) (resp. α = (ℓe ∨ ℓe′ ∨ ℓe′′)). Suppose that α is not satisfied
by τ , and thus the edges e, e′, e′′ of H are all red (resp. blue) in χH . Therefore all
edges e, e′, e′′ belong to EH1

(resp. to EH2
\ EH1

, and thus to EH2
) by the definition

of χH . Thus H has an AC6 on the edges e, e′, e′′, which belong to H1 (resp. to H2).
Therefore H1 (resp. H2) does not have a threshold completion in H by Lemma 3.8.
This is a contradiction, since H1 (resp. H2) is a threshold graph. Therefore the clause
α = (ℓe∨ℓe′ ∨ℓe′′) (resp. α = (ℓe∨ℓe′ ∨ℓe′′)) of φ1 is satisfied by the truth assignment
τ , and thus τ satisfies φ1.

Satisfaction of the Boolean formula φ2. Let α = (ℓe ∨ ℓe′) be a clause of φ2.
Recall that α corresponds to some pair of edges e = uivt and e′ = utvj of EH \ E0,
such that uivj /∈ EH \E0 (cf. lines 4-7 of Algorithm 3). Therefore, since utvt ∈ E0, it
follows that the edges {e, e′} build an AC4 in H −E0 but not in H . Suppose that the
clause α = (ℓe ∨ ℓe′) of φ2 is not satisfied by the truth assignment τ , i.e. ℓe = ℓe′ = 0
in τ . Then, it follows from the description of the formula φ2 that both e and e′ are
colored red in the 2-edge coloring χH of H . Therefore both edges e and e′ belong
to H1 by the definition of χH . However, as we noticed above, the edges {e, e′} build
an AC4 in H − E0, and thus they also build an AC4 in H1 ⊆ H − E0. This is a
contradiction by Corollary 3.10, since H1 is a threshold graph. Therefore the clause
α = (ℓe ∨ ℓe′) of φ2 is satisfied by the truth assignment τ , and thus τ satisfies φ2.

(⇐) Suppose that φ1∧φ2 is satisfiable, and let τ be a satisfying truth assignment
of φ1 ∧φ2. Recall that the formulas φ1 and φ2 have one Boolean variable xi for every
connected component Ci of H

∗, i = 1, 2, . . . , k. First, given the truth assignment τ ,
we construct the 2-coloring χτ of the vertices of H∗ according to Observation 4. This
2-coloring of the vertices of H∗ defines also a corresponding 2-coloring of the edges
of H . Since φ1 is satisfied by τ , it follows by Observation 6 that, in the coloring χτ

of its edges, H does not contain any monochromatic AC6. Therefore Theorem 3.13
implies that H does not contain any monochromatic AC2k in χτ , where k ≥ 3.

The vertex coloring χ′

τ of H∗. Now we modify the coloring χτ to the coloring

20

χ′

τ , as follows. For every trivial connected component Ci of H∗ (i.e. when Ci has
exactly one vertex), we color the vertex of Ci blue in χ′

τ , regardless of the color of
Ci in χτ . On the other hand, for every non-trivial connected component Ci of H∗

(i.e. when Ci has at least two vertices), the vertices of Ci have the same color in both
χτ and χ′

τ . This new 2-coloring of the vertices of H∗ defines also a corresponding
2-coloring of the edges of H . Note in particular by Lemma 5.2 that all edges of E0

are colored blue in χ′

τ . Denote by EH1
and EH2

the sets of red and blue edges of H
in χ′

τ , respectively. Note that E0 ⊆ EH2
. Moreover note that H does not have any

AC4 on the vertices of EH1
, or on the vertices of EH2

, since χ′

τ is a proper 2-coloring
of the vertices of H∗. Define the subgraphs H1 = (U, V,EH1

) and H2 = (U, V,EH2
)

of H . Note that H = H1 ∪H2.

H2 has a threshold completion in H. Suppose now that H has an AC2k on
the edges of EH2

, for some k ≥ 3. Then Theorem 3.13 implies that H has also an
AC6 on the edges of EH2

, i.e. H has an AC6, in which all three edges are blue in χ′

τ .
Since H does not have any monochromatic AC6 in χτ , it follows that for at least one
of the edges e of the blue AC6 of H in χ′

τ , the color of e is different in χτ and in χ′

τ .
Therefore, it follows by the construction of χ′

τ from χτ that the vertex of H∗ that
corresponds to e is an isolated vertex in H∗. That is, the edge e is uncommitted in
H . This is a contradiction by Lemma 5.3, since e has been assumed to be an edge of
a monochromatic AC6 of H in χ′

τ . Therefore H does not have any AC2k on the edges
of EH2

, where k ≥ 3. Thus, since H does not have any AC4 on the vertices of EH2
, it

follows that H does not have any AC2k on the edges of EH2
, where k ≥ 2. Therefore

H2 has a threshold completion in H by Lemma 3.8.

H1 has a threshold completion in H − E0. Denote now H ′ = H − E0. We
will prove that H1 has a threshold completion in H ′. To this end, it suffices to prove
by Lemma 3.8 that H ′ does not have any AC2k on the edges of EH1

, where k ≥ 2.
For the sake of contradiction, suppose that H ′ includes an AC4 on the edges of

EH1
. That is, there exist two edges e, e′ ∈ EH1

that are in conflict in H ′. Note by
the definition of EH1

that the edges e and e′ are colored red in χ′

τ , and thus they are
also colored red in χτ . If the edges {e, e′} also build an AC4 in H (i.e. before the
removal of E0), then the vertices e and e′ of H∗ are adjacent in H∗, and thus the
edges e and e′ of H have different colors in χτ , which is a contradiction. Thus the
edges {e, e′} are in conflict in H ′ but not in H . Recall now that for every such a pair
{e, e′} of edges of H ′ there exists a clause α = (ℓe∨ℓe′) in the formula φ2 (cf. lines 4-7
of Algorithm 3). It follows from the description of the formula φ2 that the clause α
is not satisfied by the truth assignment τ if and only if both edges e, e′ in H are red
in χτ . However, since τ is a satisfying assignment of φ2, every clause of φ2 is satisfied
by τ . Therefore at least one of the edges e and e′ is colored blue in χτ , which is a
contradiction. Therefore H ′ does not include any AC4 on the edges of EH1

.
Suppose now that H ′ includes an AC2k on the edges of EH1

, where k ≥ 3.
Consider the smallest such AC2k on the edges of EH1

, i.e. an AC2k with the smallest
k ≥ 3. Let w1, w2, . . . , w2k be the vertices of H ′ that build this AC2k. Note by the
definition of EH1

that all edges of this AC2k are colored red in the coloring χ′

τ , and
thus they are also colored red in the coloring χτ . However, as we proved above, in the
coloring χτ of its edges, H does not contain any monochromatic AC2k, where k ≥ 3.
Therefore, at least one of the non-edges of the AC2k in the graph H ′ is an edge of
E0 in the graph H . Assume without loss of generality that this edge of E0 is w1w2.
That is, assume that w1w2 ∈ E0, i.e. w1w2 = uivi for some i ∈ {1, 2, . . . , n}.

Suppose that w3w2k is not an edge of H ′. Then, since w1w2 ∈ E0, there exists

21

(similarly to above) a clause α in the formula φ2 such that α is not satisfied by the
truth assignment τ if and only if both edges w2w3 and w2kw1 are colored red in χτ .
However, τ is a satisfying truth assignment of φ2 by assumption, and thus at least
one edge of w2w3 and w2kw1 is colored blue in χτ , which is a contradiction. Therefore
w3w2k is an edge of H ′. Suppose now that the edge w3w2k of H ′ is colored red in χ′

τ ,
and thus w3w2k ∈ EH1

by the definition of EH1
. Then the vertices w3, w4, . . . , w2k

build an AC2k−2 in H ′ on the edges of EH1
, which is a contradiction to the minimality

assumption of the AC2k in H ′. Therefore the edge w3w2k of H ′ is colored blue in χ′

τ ,
and thus w3w2k ∈ EH2

.
Recall now that both the edges w2w3 and w2kw1 of H ′ are red in χ′

τ . Therefore,
by the definition of the coloring χ′

τ from χτ , it follows that each of the edges w2w3

and w2kw1 participates to at least one AC4 in H (or equivalently the corresponding
vertices of w2w3 and w2kw1 in H∗ are not isolated vertices). Let the edges w2w3 and
w′

2w
′

3 form an AC4 in H , for some vertices w′

2 and w′

3, where w2w
′

2 and w3w
′

3 are not
edges in H . Similarly, let the edges w2kw1 and w′

2kw
′

1 form an AC4 in H , for some
vertices w′

2k and w′

1, where w2kw
′

2k and w1w
′

1 are not edges in H . Note that some of
the vertices {w′

2, w
′

3, w
′

2k, w
′

1}may coincide with each other, as well as with some of the
vertices {w2, w3, w2k, w1}. Recall that χ′

τ is a proper 2-coloring of the vertices of H∗.
Therefore, since w2w3 and w2kw1 are colored red in χ′

τ , it follows that w′

2w
′

3 and
w′

2kw
′

1 are colored blue in χ′

τ . Therefore the vertices w1, w2, w
′

2, w
′

3, w3, w2k, w
′

2k, w
′

1

build an AC8 in H on the edges of EH2
. This is a contradiction, since we proved

above that H does not have any AC2k on the edges of EH2
, where k ≥ 2.

Therefore, it follows that H ′ does not include any AC2k on the edges of EH1
,

where k ≥ 3. Thus, since we already proved that H ′ does not include any AC4 on
the edges of EH1

, it follows that H ′ does not include any AC2k on the edges of EH1
,

where k ≥ 2. Therefore H1 has a threshold completion in H ′ = H−E0 by Lemma 3.8.

Summarizing, H1 has a threshold completion in H ′ = H − E0, and H2 has a
threshold completion in H . Furthermore all edges of E0 belong to the graph H , and
H = H1∪H2. Let H̃1 be the threshold completion of H1 in H−E0, and let H̃2 be the
threshold completion of H2 in H . Then H̃1 and H̃2 are two threshold graphs, i.e. they
do not include any AC4. Furthermore, let G̃1 = (U, V, Ẽ1) and G̃2 = (U, V, Ẽ2) be

the bipartite graphs obtained by H̃1 and H̃2, respectively, by removing from them all
possible edges of V × V . Note that E0 ⊆ Ẽ2 \ Ẽ1, since every edge of E0 belongs to

H̃2 and not to H̃1. Furthermore, neither G̃1 nor G̃2 include any induced 2K2, since
H̃1 and H̃2 do not include any AC4. Therefore both G̃1 and G̃2 are chain graphs.
Moreover, since H = H1 ∪ H2, it follows that also H = H̃1 ∪ H̃2 and G̃ = G̃1 ∪ G̃2.
Thus, since E0 ⊆ Ẽ2\Ẽ1, it follows that G̃ is linear-interval coverable by Definition 4.6

and {Ẽ1, Ẽ2} is a linear-interval cover of G̃. This construction of {Ẽ1, Ẽ2} from the
satisfying truth assignment τ of φ1 ∧ φ2 is shown in Algorithm 4.

Running time of Algorithm 4. First note that, since |U | = |V | = n, the split
graph H has O(n2) edges. Therefore, since each edge of H is processed exactly once
in the execution of lines 3-8 in Algorithm 4, these lines are executed in O(n2) time
in total. Similarly, each of the lines 9, 10, and 13 is executed in O(n2) time. Now,
each of the lines 11 and 12 is executed by Lemma 3.9 in time linear to the size of H ,
i.e. in O(n2) time each. Therefore the total running time of Algorithm 4 is O(n2).
This completes the proof of the theorem.

6. The recognition of linear-interval orders and PI graphs. In this section
we investigate the structure of the formula φ1 ∧ φ2 that we computed in Section 5.

22

Algorithm 4 Construction of a linear-interval cover of G̃ = Ĉ(P), if φ1 ∧ φ2 is sat-
isfiable

Input: The bipartite graph G̃ = Ĉ(P), the associated split graph H of G̃, its conflict
graph H∗, a proper 2-coloring χ0 of the vertices of H∗, and a satisfying truth
assignment τ of φ1 ∧ φ2

Output: A linear-interval cover {Ẽ1, Ẽ2} of G̃

1: Let H = (U, V,EH), where U = {u1, u2, . . . , un} and V = {v1, v2, . . . , vn}
2: E0 ← {uivi | 1 ≤ i ≤ n}

3: for every connected component Ci, 1 ≤ i ≤ k, of H∗ do

4: if Ci is an isolated vertex of H∗ then

5: color the vertex of Ci blue
6: else

7: if xi = 0 in τ then color every vertex of Ci with the same color as in χ0

8: if xi = 1 in τ then color every vertex of Ci with the opposite color than in
χ0

9: EH1
← {e ∈ EH | e is red}; H1 ← (U, V,EH1

)
10: EH2

← {e ∈ EH | e is blue}; H2 ← (U, V,EH2
)

11: Compute a threshold completion H̃1 of H1 in H − E0 (by Lemma 3.9)

12: Compute a threshold completion H̃2 of H2 in H (by Lemma 3.9)

13: Ẽ1 ← E(H̃1) \ (V × V); Ẽ2 ← E(H̃2) \ (V × V)

14: return {Ẽ1, Ẽ2}

In particular, we first prove in Section 6.1 some fundamental structural properties of
φ1∧φ2, which allow us to find an appropriate sub-formula of φ1∧φ2 which is gradually
mixed (cf. Definition 2.2). Then we exploit this sub-formula of φ1 ∧ φ2 in order to
provide in Section 6.2 an algorithm that solves the satisfiability problem on φ1 ∧ φ2

in time linear to its size, cf. Theorem 6.8. Finally, using this satisfiability algorithm,
we combine our results of Sections 4 and 5 in order to recognize efficiently PI graphs
and linear-interval orders in Section 6.2.

6.1. Structural properties of the formula φ1∧φ2. The three main structural
properties of φ1 ∧ φ2 are proved in Lemmas 6.3, 6.5, and 6.6, respectively. We first
provide two auxiliary technical lemmas.

Lemma 6.1. Let α = (ℓ1 ∨ ℓ2 ∨ ℓ3) be a clause of φ1. Assume that α corresponds
to the AP6 of H on the vertices v1, . . . , v6, which has the literals ℓ1, ℓ2, ℓ3 on its edges
(in this order). Then, for every edge e of H with literal ℓe = ℓ2, there exists an AP6

in H with v1v2 as is its base and e as its ceiling, which has the literals ℓ1, ℓ2, ℓ3 on its
edges (in this order).

Proof. First note that by the construction of φ1 (cf. Section 5) no two literals
among {ℓ1, ℓ2, ℓ3} are one the negation of the other, i.e. ℓ1 6= ℓ2, ℓ1 6= ℓ3, and ℓ2 6= ℓ3.
Therefore also no pair among the edges of the AP6 on the vertices v1, . . . , v6 is in
conflict. Denote for simplicity e′ = v4v5. Since ℓe′ = ℓe = ℓ2, the edges e′ and e of
H correspond to two vertices of the conflict graph H∗ that lie in the same connected
component of H∗. Thus there exists a path between these two vertices of H∗. That
is, there exists a sequence of edges e1, e2, . . . , et in H , where e1 = e′ and et = e, such
that ei||ei+1 for every i ∈ {1, 2, . . . , t− 1}. Note that ℓei ∈ {ℓ2, ℓ2} for all these edges

23

ei. For every 1 ≤ i ≤ t denote ei = uiwi, where u1 = v4 and w1 = v5. Furthermore
let uiui+1 and wiwi+1 be the non-edges between ei and ei+1, where 1 ≤ i ≤ t−1. For
simplicity of the presentation, denote u0 = v3 and w0 = v6.

We will prove by induction that for every i ∈ {1, 2, . . . , t} there exists an
AP6 in H on the vertices v1, v2, ui−1, ui, wi, wi−1 (if i is odd), or on the vertices
v1, v2, ui, ui−1, wi−1, wi (if i is even), which has the literals ℓ1, ℓ2, ℓ3 on its edges (in
this order). The induction basis (i.e. the case where i = 1) follows immediately by
the assumption of the lemma.

For the induction step, let first i ≥ 2 be even. Then i − 1 is odd, and
thus there exists by the induction hypothesis an AP6 in H on the vertices
v1, v2, ui−2, ui−1, wi−1, wi−2 which has the literals ℓ1, ℓ2, ℓ3 on its edges (in this or-
der). That is, ℓv2ui−2

= ℓ1, ℓui−1wi−1
= ℓ2, and ℓwi−2v1 = ℓ3. Therefore, since

ℓuiwi
∈ {ℓ2, ℓ2} and uiwi||ui−1wi−1 by assumption, it follows that ℓuiwi

= ℓ2. Fur-
thermore, since no pair among the edges of the AP6 is in conflict, Lemma 3.7 implies
in particular that the edges v1ui−1 and v2wi−1 exist in H and that ℓv1ui−1

= ℓ1
and ℓv2wi−1

= ℓ3.

Claim 1. v1 6= wi and v2 6= ui.

Proof of Claim 1. Since H is a split graph, there exists a partition of its vertices
into a clique K and an independent set I. Then, since H has an AP6 on the vertices
v1, v2, ui−2, ui−1, wi−1, wi−2, Lemma 3.14 implies that either v1, ui−2, wi−1 ∈ K and
v2, ui−1, wi−2 ∈ I, or v1, ui−2, wi−1 ∈ I and v2, ui−1, wi−2 ∈ K. In the former case,
since wi−1 ∈ K and wi−1wi is not an edge in H , it follows that wi ∈ I. Thus v1 6= wi,
since v1 ∈ K. Furthermore, since wi ∈ I and uiwi is an edge in H , it follows that
ui ∈ K. Thus v2 6= ui, since v2 ∈ I. Similarly, in the latter case, since ui−1 ∈ K
and ui−1ui is not an edge in H , it follows that ui ∈ I. Thus v2 6= ui, since v2 ∈ K.
Furthermore, since ui ∈ I and uiwi is an edge in H , it follows that wi ∈ K. Thus
v1 6= wi, since v1 ∈ I. Summarizing, in both cases v1 6= wi and v2 6= ui.

Suppose that v1wi is not an edge in H . Then uiwi is in conflict with v1ui−1, since
also ui−1ui is not an edge in H . Therefore ℓuiwi

= ℓv1ui−1
. Thus, since ℓuiwi

= ℓ2
and ℓv1ui−1

= ℓ1, it follows that ℓ1 = ℓ2, which is a contradiction, since no two literals
among {ℓ1, ℓ2, ℓ3} are one the negation of the other. Therefore v1wi is an edge in H .
Furthermore ℓv1wi

= ℓ3, since ℓv2wi−1
= ℓ3 and wi−1wi, v1v2 are not edges in H . By

symmetry it follows that also v2ui is an edge in H and that ℓv2ui
= ℓ1. Thus the

vertices v1, v2, ui, ui−1, wi−1, wi build an AP6 in H , which has the literals ℓ1, ℓ2, ℓ3 on
its edges (in this order). This completes the induction step whenever i is even.

Let now i ≥ 3 be odd. Then i− 1 is even, and thus there exists by the induction
hypothesis an AP6 in H on the vertices v1, v2, ui−1, ui−2, wi−2, wi−1 which has the
literals ℓ1, ℓ2, ℓ3 on its edges (in this order). That is, ℓv2ui−1

= ℓ1, ℓui−2wi−2
= ℓ2,

and ℓwi−1v1 = ℓ3. Thus, since the edges ui−2wi−2 and ui−1wi−1 are in conflict by

assumption, it follows that ℓui−1wi−1
= ℓ2. Furthermore, since the edges ui−1wi−1

and uiwi are in conflict by assumption, it follows that ℓuiwi
= ℓ2. Thus the vertices

v1, v2, ui−1, ui, wi, wi−1 build an AP6 in H , which has the literals ℓ1, ℓ2, ℓ3 on its edges
(in this order). This completes the induction step whenever i is odd.

Summarizing, for i = t, there exists an AP6 in H on the vertices
v1, v2, ut−1, ut, wt, wt−1 (if t is odd), or on the vertices v1, v2, ut, ut−1, wt−1, wt (if t is
even), which has the literals ℓ1, ℓ2, ℓ3 on its edges (in this order). In both cases where
t is even or odd, this AP6 has the non-edge v1v2 as it base and the edge e = utwt as

24

its ceiling. This completes the proof of the lemma.
Lemma 6.2. Let α = (ℓ1 ∨ ℓ2 ∨ ℓ3) and β = (ℓ1 ∨ ℓ2 ∨ ℓ4) be two clauses of φ1

that share two literals ℓ1 and ℓ2. Then also ℓ3 = ℓ4.
Proof. By the construction of the formula φ1 (cf. Section 5), the clauses α and β

correspond to two AC6’s in H . Since H is a split graph, Lemma 3.15 implies that each
of these two AC6’s is an AP6, i.e. an alternating path of length 6 (cf. Figure 1(b)).
Let v1, v2, v3, v4, v5, v6 be the vertices of the first AP6, which has the literals ℓ1, ℓ2, ℓ3
on its edges (in this order). Note that, by the construction of φ1, no two literals
among {ℓ1, ℓ2, ℓ3} are one the negation of the other, i.e. ℓ1 6= ℓ2, ℓ1 6= ℓ3, and ℓ2 6= ℓ3.
Furthermore let w1, w2, w3, w4, w5, w6 be the vertices of the second AP6, which has
the literals ℓ1, ℓ2, ℓ4 on its edges (in this order). Since H is a split graph, there exists
a partition of its vertices into a clique K and an independent set I.

Consider now the base v5v6 and the ceiling v2v3 of the first AP6 (cf. Defini-
tion 3.2). That is, the vertices of this AP6 can be ordered as v5, v6, v1, v2, v3, v4
(where v5v6 is not an edge); then the literals on its edges are ℓ3, ℓ1, ℓ2 (in this order).
Since ℓv2v3 = ℓw2w3

= ℓ1, there exists by Lemma 6.1 an AP6 with v5v6 as its base
and w2w3 as its ceiling, which has the literals ℓ3, ℓ1, ℓ2 on its edges (in this order).
Note that the ordering of the vertices in this AP6 can be either v5, v6, a, w3, w2, b, or
v5, v6, a, w2, w3, b, for some vertices a and b of H . We distinguish now these two cases.

Case 1. The AP6 with v5v6 as its base and w2w3 as its ceiling has vertex ordering
v5, v6, a, w3, w2, b. Consider now the base aw3 and the ceiling bv5 of this AP6. That
is, its vertices can be ordered as a, w3, w2, b, v5, v6 (where aw3 is not an edge); then
the literals on its edges are ℓ1, ℓ2, ℓ3 (in this order). Since ℓbv5 = ℓw4w5

= ℓ2, there
exists by Lemma 6.1 an AP6 with aw3 as its base and w4w5 as its ceiling, which has
the literals ℓ1, ℓ2, ℓ3 on its edges (in this order). Note that the ordering of the vertices
in this AP6 can be either a, w3, c, w5, w4, d, or a, w3, c, w4, w5, d, for some vertices c
and d of H . We distinguish now these two cases.

Case 1.1. The AP6 with aw3 as its base and w4w5 as its ceiling has vertex
ordering a, w3, c, w5, w4, d. Since no two literals among {ℓ1, ℓ2, ℓ3} are one the negation
of the other, it follows that no pair among the edges of this AP6 is in conflict. Thus
Lemma 3.7 implies in particular that the edge w3w4 exists inH . This is a contradiction
to our initial assumption that the vertices w1, w2, w3, w4, w5, w6 build an AC6 (and
thus w3w4 is not an edge).

Case 1.2. The AP6 with aw3 as its base and w4w5 as its ceiling has vertex
ordering a, w3, c, w4, w5, d. Then Lemma 3.14 implies that either w3 ∈ K and w5 ∈ I,
or w3 ∈ I and w5 ∈ K. However, due to our initial assumption that the vertices
w1, w2, w3, w4, w5, w6 build an AC6, Lemma 3.14 implies that either w3, w5 ∈ K or
w3, w5 ∈ I, which is a contradiction.

Case 2. The AP6 with v5v6 as its base and w2w3 as its ceiling has vertex ordering
v5, v6, a, w2, w3, b. Consider now the base aw2 and the ceiling bv5 of this AP6. That
is, its vertices can be ordered as a, w2, w3, b, v5, v6 (where aw2 is not an edge); then
the literals on its edges are ℓ1, ℓ2, ℓ3 (in this order). Since ℓbv5 = ℓw4w5

= ℓ2, there
exists by Lemma 6.1 an AP6 with aw2 as its base and w4w5 as its ceiling, which has
the literals ℓ1, ℓ2, ℓ3 on its edges (in this order). Note that the ordering of the vertices
in this AP6 can be either a, w2, c, w5, w4, d, or a, w2, c, w4, w5, d, for some vertices c
and d of H . We distinguish now these two cases.

Case 2.1. The AP6 with aw2 as its base and w4w5 as its ceiling has vertex
ordering a, w2, c, w5, w4, d. Then Lemma 3.14 implies that either w2 ∈ K and w4 ∈ I,

25

or w2 ∈ I and w4 ∈ K. However, due to our initial assumption that the vertices
w1, w2, w3, w4, w5, w6 build an AC6, Lemma 3.14 implies that either w2, w4 ∈ K or
w2, w4 ∈ I, which is a contradiction.

Case 2.2. The AP6 with aw2 as its base and w4w5 as its ceiling has vertex
ordering a, w2, c, w4, w5, d. Since no two literals among {ℓ1, ℓ2, ℓ3} are one the negation
of the other, it follows that no pair among the edges of this AP6 is in conflict. Thus
Lemma 3.7 implies in particular that the edge w5w2 exists in H and that ad||w5w2.
Thus, since ℓad = ℓ3, it follows that ℓw5w2

= ℓ3. Recall now that we initially assumed
that the vertices w1, w2, w3, w4, w5, w6 build an AP6 in H , which has the literals
ℓ1, ℓ2, ℓ4 on its edges (in this order). Similarly, Lemma 3.7 implies for this AP6

that w6w1||w5w2. Thus, since ℓw6w1
= ℓ4, it follows that ℓw5w2

= ℓ4. That is,
ℓw5w2

= ℓ3 = ℓ4, and thus ℓ3 = ℓ4. This completes the proof of the lemma.
We are now ready to prove the three main structural properties of the formula

φ1 ∧ φ2 in Lemmas 6.3, 6.5, and 6.6, respectively. The proof of the next lemma is a
based on the results of [21].

Lemma 6.3. Let α and β be two clauses of φ1. If α and β share at least one
variable, then {α, α} = {β, β}.

Proof. In Theorem 3.2 of [21], the authors consider an arbitrary graph G and
its conflict graph G∗, which is bipartite. For every edge e of G, denote by C∗(e)
the connected component of G∗ in which the vertex e belongs. For simplicity of the
presentation, we will also refer in the following to C∗(e) as the set of the corresponding
edges in G. The authors of [21] assume an arbitrary 2-coloring of the vertices of G∗

(i.e. of the edges of G), such that there is no monochromatic double AP6, i.e. there is
no double AP6 on the edges of one edge-color class of G. Furthermore they assume
that there is a monochromatic AP6 in G on the vertices v1, . . . , v6 (which is not a
double AP6). Since this AP6 is monochromatic, it follows that no pair among its three
edges is in conflict in G (since any two edges in conflict would have different colors).
Thus the edges v3v6, v4v1, v5v2 exist in G and v4v5||v3v6, v2v3||v4v1, and v6v1||v5v2
by Lemma 3.7. The non-edge v1v2 is called the base of the AP6 (cf. Definition 3.2);
furthermore we call the edge v3v6 the front of the AP6 [21]. Note here that the choice
of the base v1v2 is arbitrary (the AP6 has three bases v1v2, v3v4, and v5v6). Then,
they prove2 in Theorem 3.2 that, if we flip the colors of all edges of C∗(v3v6) then in
the new edge coloring of G no edge of C∗(v3v6) participates in a monochromatic AP6.
Note furthermore that v4v5 ∈ C∗(v3v6), since v4v5||v3v6, and thus also the color of
v4v5 changes by flipping the colors of the edges in C∗(v3v6).

We now apply the results of [21] in our case as follows. Consider two clauses α
and β of φ1 that share at least one variable. That is, each of the dual clauses {α, α}
shares at least one literal with at least one of the dual clauses {β, β}. If β ∈ {α, α}
then clearly {α, α} = {β, β}, and thus the lemma follows.

Let now β /∈ {α, α}. Consider the AC6 of H on the vertices v1, . . . , v6 that corre-
sponds to the dual clauses {α, α}. Since H is a split graph, it follows by Lemma 3.15
that H does not contain any AP5 or any double AP6. Therefore this AC6 of H on

2In [21], the authors prove within the proof of Theorem 3.2 a more general statement (cf. equa-
tions (2) and (3) in [21]). In particular, they flip the colors of all edges xy of G, for which there
exists an AP6 in G having v1v2 as its basis and xy as its front (cf. equation (2) in [21]); note here
that all these edges, whose color is being flipped, may correspond to one or more connected compo-
nents in the conflict graph G∗. Then they prove that in the new edge coloring of G no flipped edge
participates in a monochromatic AP6 (cf. equation (3) in [21]). In their proof, which is correct and
technically involved, they actually prove that this happens also when we flip the colors of only one
connected component C∗(v3v6) of G∗, where v3v6 is the front of the initial monochromatic AP6 on
the vertices v1, . . . , v6. 26

the vertices v1, . . . , v6 is an AP6 (but not a double AP6). Let e = v2v3, e
′ = v4v5,

and e′′ = v6v1. This AP6 has the non-edge v1v2 as its base and the edge v3v6 as its
front, cf. Definition 3.2. Note that either α = (ℓe ∨ ℓe′ ∨ ℓe′′) and α = (ℓe ∨ ℓe′ ∨ ℓe′′),
or α = (ℓe ∨ ℓe′ ∨ ℓe′′) and α = (ℓe ∨ ℓe′ ∨ ℓe′′). Assume without loss of generality that
α = (ℓe∨ ℓe′ ∨ ℓe′′) and α = (ℓe∨ ℓe′ ∨ ℓe′′). Recall by our assumption that α shares at
least one literal with at least one of the dual clauses {β, β}. Assume without loss of
generality that α shares at least one literal with β (the case where α shares at least
one literal with β can be handled in exactly the same way). Furthermore, let without
loss of generality ℓe′ be the common literal of α and β, i.e. let β = (ℓe′ ∨ ℓp ∨ ℓq).

Since α is a clause of φ1, it follows by the construction of φ1 that no two literals
among {ℓe, ℓe′ , ℓe′′} are one the negation of the other (cf. lines 3-5 of Algorithm 2).
Similarly no two literals among {ℓe′ , ℓp, ℓq} are one the negation of the other, since
β is a clause of φ1. Consider now an arbitrary truth assignment τ of the variables
x1, x2, . . . , xk, such that α = 0 in τ , i.e. ℓe = ℓe′ = ℓe′′ = 0 in τ . Note that such
an assignment exists, since no two literals among {ℓe, ℓe′ , ℓe′′} are one the negation
of the other. Let χ be the 2-coloring of the vertices of H∗ (i.e. of the edges of H)
that corresponds to the truth assignment τ , cf. Observation 4. Since α = 0 in the
truth assignment τ , Observation 5 implies that the AP6 on the vertices v1, . . . , v6 is
monochromatic in the edge-coloring χ of H . Then, due to the results of [21], if we
flip in χ the colors of all edges of C∗(v3v6), in the new edge coloring χ′ of H no edge
of C∗(v3v6) participates in a monochromatic AP6.

Let τ ′ be the truth assignment that corresponds to this new coloring χ′ (cf. Obser-
vation 4). Then τ and τ ′ coincide on all variables except the variable of the component
C∗(v3v6) of H∗. Note that the color of e′ = v4v5 has been flipped in the transition
from χ′ to χ, since e′ ∈ C∗(v3v6), and thus ℓe′ = 1 in χ′. Furthermore, since no edge
of C∗(v3v6) participates in a monochromatic AP6 in χ′, it follows that both clauses
β = (ℓe′ ∨ ℓp ∨ ℓq) and β = (ℓe′ ∨ ℓp ∨ ℓq) are satisfied in τ ′, i.e. β = 1 and β = 1 in
τ ′, since both β and β include one of the literals {ℓe′ , ℓe′}. We will now prove that
{ℓp, ℓq}∩{ℓe, ℓe′′} 6= ∅. Assume otherwise that {ℓp, ℓq}∩{ℓe, ℓe′′} = ∅. We distinguish
the following three cases.

Case 1. ℓp 6= ℓe′ and ℓq 6= ℓe′ . Then, since no two literals among {ℓe′ , ℓp, ℓq} are
one the negation of the other, it follows that ℓp, ℓq /∈ {ℓe′ , ℓe′}. Therefore the values
of ℓp and ℓq remain the same in both assignments τ and τ ′. Since τ has been assumed
to be an arbitrary assignment such that ℓe = ℓe′ = ℓe′′ = 0 in τ , we can choose the
assignment τ to be such that ℓp = ℓq = 1 in τ . Since the value of ℓe′ changes to 1
in τ ′, while the values of ℓp and ℓq are the same in both τ and τ ′, it follows that
ℓe′ = ℓp = ℓq = 1 in τ ′, and thus β = 0 in τ ′, which is a contradiction.

Case 2. Exactly one of {ℓp, ℓq} is equal to ℓe′ . Let without loss of generality
ℓp = ℓe′ and ℓq 6= ℓe′ , i.e. ℓq /∈ {ℓe′ , ℓe′}. Therefore the value of ℓq remains the same in
both assignments τ and τ ′. Since τ has been assumed to be an arbitrary assignment
such that ℓe = ℓe′ = ℓe′′ = 0 in τ , we can choose the assignment τ to be such that
ℓq = 1 in τ . Since the value of ℓp = ℓe′ changes to 1 in τ ′, while the value of ℓq is the
same in both τ and τ ′, it follows that ℓe′ = ℓp = ℓq = 1 in τ ′, and thus β = 0 in τ ′,
which is a contradiction.

Case 3. ℓp = ℓq = ℓe′ . Then β = (ℓe′∨ℓp∨ℓq) = (ℓe′) and β = (ℓe′∨ℓp∨ℓq) = (ℓe′),
and thus it is not possible that both β = 1 and β = 1 in τ ′, which is again a
contradiction.

Therefore {ℓp, ℓq} ∩ {ℓe, ℓe′′} 6= ∅. Thus, since the clauses α and β share also the

27

literal ℓe′ , it follows that α and β share at least two literals. Therefore α = β by
Lemma 6.2. This is a contradiction, since we assumed that β /∈ {α, α}. Therefore
β ∈ {α, α}, and thus {α, α} = {β, β}. This completes the proof of the lemma.

Definition 6.4. The clauses of φ2 are partitioned into the sub-formulas φ′

2, φ
′′

2 ,
such that φ′

2 contains all tautologies of φ2 and all clauses of φ2 in which at least
one literal corresponds to an uncommitted edge, while φ′′

2 contains all the remaining
clauses of φ2.

Lemma 6.5. Let {e1, e2, e3} be the three edges of an AC6 in H, which has clauses
in φ1. Let e be an edge of H such that (ℓe ∨ ℓe1) is a clause in φ′′

2 . Then φ′′

2 contains
also at least one of the clauses {(ℓe ∨ ℓe2), (ℓe ∨ ℓe3)}.

Proof. Recall that H is the associated split graph of G̃, where G̃ is the bipartite
complement Ĉ(P) of the domination bipartite graph C(P) of the partial order P ,
cf. Definitions 3.3 and 4.2. For the purposes of the proof denote C(P) = (U, V,E),
where U = {u1, u2, . . . , un}, V = {v1, v2, . . . , vn}; then uivj ∈ E if and only if

ui <P uj (cf. Definition 4.2). Furthermore denote G̃ = (U, V, Ẽ) for the bipartite com-

plement G̃ = Ĉ(P) of C(P). ThenH = (U∪V,EH), where EH = Ẽ∪(V ×V) (cf. Def-

inition 3.3). Moreover let E0 = {uivi | 1 ≤ i ≤ n} and observe that E0 ⊆ Ẽ ⊆ EH .

Since edges of E correspond to non-edges of Ẽ, it follows by the definition of E that
uivj /∈ Ẽ if and only if ui <P uj . That is, the non-edges of Ẽ between vertices of U
and vertices of V follow the transitivity of the partial order P .

Since H is a split graph, Lemma 3.15 implies that the AC6 of H is an AP6, i.e. an
alternating path of length 6 (cf. Figure 1(b)). Furthermore, since V induces a clique
and U induces an independent set in H , Lemma 3.14 implies that the vertices of
the AP6 in H belong alternately to U and to V . Thus let ui, vj , u p, vq, ur, vs be the
vertices of the AP6 (where uivj /∈ EH according to our notation, cf. Definition 3.1).
Without loss of generality let e1 = u pvj , e2 = urvq, and e3 = uivs. Since the AP6 has
clauses in φ1 by assumption, note by the construction of φ1 (cf. Section 5) that no
two literals among {ℓe1 , ℓe2 , ℓe3} are one the negation of the other. Therefore no pair
among the edges {e1, e2, e3} is in conflict, and thus Lemma 3.7 implies that the edges
upvs, uivq, urvj exist in H and e2 = urvq||upvs, e1 = upvj ||uivq, and e3 = uivs||urvj .
Therefore ℓuivq = ℓe1 , ℓupvs = ℓe2 , and ℓurvj = ℓe3 .

Since e1 = u pvj and (ℓe ∨ ℓe1) is a clause of φ′′

2 (and thus also of φ2), it follows
by the construction of φ2 (cf. Section 5) that either e = uavp or e = ujva for some
index a ∈ {1, 2, . . . , n}.

Case 1. e = uavp. Denote E′

H = EH \ E0. Then it follows by the construction
of φ2 that uavj /∈ E′

H , and thus either uavj /∈ EH or uavj ∈ E0. Furthermore,
since (ℓe ∨ ℓe1) is a clause of φ′′

2 by assumption, it follows by Definition 6.4 that e
is a committed edge in H . That is, there exists an edge e′ = ubvc such that e′||e,
and thus ℓe′ = ℓe. Since e′||e, it follows that uavc, ubvp /∈ EH . Furthermore, since
ubvp, upvq /∈ EH , it follows that ub <P up and up <P uq. Therefore ub <P uq, since
P is a partial order, and thus also ubvq /∈ EH .

Note that either a = j or a 6= j (cf. Figures 3(a) and 3(b), respectively. We
distinguish now these two cases, which are illustrated in Figures 4(a) and 4(b), re-
spectively. In these figures, the edges e1, e2, e3 of the AP6, as well as the edges e
and e′, are drawn by thick lines and all other edges are drawn by thin lines, while
non-edges are illustrated with dashed lines.

Case 1.1. a = j (cf. Figure 4(a)). Suppose that uivc ∈ EH . Then uivc||uavj =

28

ujvj , since uivj , uavc /∈ EH . Thus the edge ujvj ∈ E0 is committed, which is a
contradiction by Lemma 5.2. Therefore uivc /∈ EH . Suppose now that upvc /∈ EH .
Then ubvc||upvp, since ubvp, upvc /∈ EH . Thus the edge upvp ∈ E0 is committed, which
is a contradiction by Lemma 5.2. Therefore upvc ∈ EH . Furthermore upvc||uivq, since
upvq, uivc /∈ EH , and thus ℓupvc = ℓuivq . Therefore, since ℓuivq = ℓe1 , it follows that
ℓupvc = ℓe1 .

Suppose that uavq /∈ EH , and thus ua <P uq. Then, since uivj /∈ EH , it follows
that ui <P uj. Therefore, since a = j and P is a partial order, it follows that
ui <P uq, and thus uivq /∈ EH , which is a contradiction. Therefore uavq ∈ EH .
Furthermore uavq||upvc, since uavc, upvq /∈ EH , and thus ℓuavq = ℓupvc . Therefore,

since ℓupvc = ℓe1 , it follows that ℓuavq = ℓe1 .

Since ubvq, uavc /∈ EH , it follows that e′ = ubvc||uavq, and thus ℓe′ = ℓuavq .

Therefore, since ℓuavq = ℓe1 , it follows that ℓe′ = ℓe1 . Finally, since e′||e, it follows

that ℓe = ℓe′ , and thus ℓe = ℓe1 . Therefore the clause (ℓe ∨ ℓe1) of φ
′′

2 is a tautology,
which is a contradiction by Definition 6.4.

Case 1.2. a 6= j (cf. Figure 4(b)). Then uavj /∈ E0. Thus, since uavj /∈ E′

H , it
follows that uavj /∈ EH . Suppose that uavs ∈ EH (cf. Figure 4(b)). Then uavs||urvj ,
since uavj , urvs /∈ EH , and thus ℓuavs = ℓurvj . Therefore, since ℓurvj = ℓe3 , it follows
that ℓuavs = ℓe3 . Suppose that uavq /∈ EH . Then urvq||uavs, since urvs, uavq /∈ EH .
Therefore ℓuavs = ℓe2 , since ℓurvq = ℓe2 . Thus, since ℓuavs = ℓe3 , it follows that

ℓe3 = ℓe2 . This is a contradiction, since no two literals among {ℓe1 , ℓe2 , ℓe3} are one
the negation of the other. Therefore uavq ∈ EH . Moreover, since uavj , upvq /∈ EH ,
it follows that uavq||upvj = e1, and thus ℓuavq = ℓe1 . Furthermore uavq||ubvc = e′,

since ubvq, uavc /∈ EH . Therefore ℓuavq = ℓe′ . Thus ℓuavq = ℓe, since ℓe′ = ℓe. There-

fore, since ℓuavq = ℓe1 and ℓuavq = ℓe, it follows that ℓe = ℓe1 . Therefore the clause
(ℓe ∨ ℓe1) of φ

′′

2 is a tautology, which is a contradiction by Definition 6.4.
Therefore uavs /∈ EH . Then also uavs /∈ E′

H , and thus φ2 has the clause (ℓuavp ∨

ℓupvs) = (ℓe ∨ ℓe2), since e = uavp and ℓupvs = ℓe2 . Furthermore, since both e and

upvs are committed in H (as e′||e and urvq||upvs), the clause (ℓe ∨ ℓe2) belongs to φ′′

2

by Definition 6.4.
Case 2. e = ujva. This case is exactly symmetric to Case 1. To see this, imagine

exchanging the roles of U and V , i.e. U induces now a clique (instead of an independent
set) and V induces an independent set (instead of a clique) in H . Imagine also flipping
the lines L1 and L2 in Figure 4 (i.e. L2 comes now above L1), such that the vertices of
U and V still lie on the lines L1 and L2, respectively. Similarly to Cases 1.1 and 1.2,
we distinguish the cases a = p (Case 2.1) and a 6= p (Case 2.2), respectively. Then,
Case 2.1 leads to a contradiction (similarly to Case 1.1), and Case 2.2 implies that
the clause (ℓe ∨ ℓe3) belongs to φ′′

2 (instead of the clause (ℓe ∨ ℓe2) in Case 1.2).

Summarizing, if e = uavp then φ′′

2 includes the clause (ℓe ∨ ℓe2), while if e = ujva
then φ′′

2 includes the clause (ℓe ∨ ℓe3). This completes the proof of the lemma.

Lemma 6.6. Let {e1, e2, e3} be the three edges of an AC6 in H, which has clauses
in φ1. Let e be an edge of H such that (ℓe ∨ ℓe1) is a clause in φ′′

2 . Then φ′′

2 contains
also at least one of the clauses {(ℓe ∨ ℓe2), (ℓe ∨ ℓe3)}.

Proof. Since H is a split graph, Lemma 3.15 implies that the AC6 of H is an
AP6, i.e. an alternating path of length 6 (cf. Figure 1(b)). Using the notation of
Lemma 6.5, denote by V and U the clique and the independent set of H , respectively.
Then the vertices of the AP6 in H belong alternately to U and to V by Lemma 3.14.

29

L2

L1

vj

ui up ur

vq vsvpvc

ub

e1

e2

e3

e

e
′

ua = uj

(a)

L2

L1

vj

ui up ur

vq vsvp

ua

vc

ub

e1

e2

e3

e

e
′

(b)

Figure 4. (a) The Case 1.1 and (b) the Case 1.2 in the proof of Lemma 6.5.

That is, ui, vj , u p, vq, ur, vs are the vertices of the AP6 in this order, for some vertices
ui, u p, ur ∈ U and vj , vq, vs ∈ V (where uivj , u pvq, urvs /∈ EH according to our
notation, cf. Definition 3.1). Without loss of generality let e1 = u pvj , e2 = urvq, and
e3 = uivs. Then, similarly to the preamble of the proof of Lemma 6.5, it follows that
the edges e′1 = uivq, e

′

2 = upvs, and e′3 = urvj exist in H and e1 = upvj ||uivq = e′1,
e2 = urvq||upvs = e′2, and e3 = uivs||urvj = e′3. Therefore ℓe′

1
= ℓe1 , ℓe′2 = ℓe2 ,

and ℓe′
3
= ℓe3 .

Since uivj , u pvq, urvs /∈ EH , it follows that the vertices ui, vq, up, vs, ur, vj (in
this order) build an AC6 in H , where {e′1, e

′

2, e
′

3} are its three edges. Therefore, by
applying Lemma 3.15 on this new AC6, it follows that if (ℓe ∨ ℓe′

1
) is a clause in φ′′

2 ,

then φ′′

2 contains also at least one of the clauses {(ℓe∨ ℓe′
2
), (ℓe∨ ℓe′

3
)}. This completes

the proof of the lemma, since ℓe′
1
= ℓe1 , ℓe′2 = ℓe2 , and ℓe′

3
= ℓe3 .

The next corollary, which follows easily by Definition 2.2 and by Lemmas 6.3-6.6,
allows us to use the linear time algorithm for gradually mixed formulas (cf. Theo-
rem 2.3) in order to solve the SAT problem on φ1 ∧ φ′′

2 .
Corollary 6.7. φ1 ∧ φ′′

2 is a gradually mixed formula.
Proof. First note that, by construction, every clause of φ1 has 3 literals and

every clause of φ2 has 2 literals. Furthermore, the first condition of Definition 2.2
is satisfied due to Lemma 6.3. Regarding the second condition of Definition 2.2,
consider an arbitrary AC6 in H that has clauses in φ1. Denote by {e1, e2, e3} the
three edges of this AC6. Then this AC6 contributes to the formula φ1 by the two
(dual) clauses α = (ℓe1 ∨ ℓe2 ∨ ℓe3) and α = (ℓe1 ∨ ℓe2 ∨ ℓe3), cf. the construction
of φ1 in Section 5. If (ℓe ∨ ℓe1) is a clause of φ′′

2 , then Lemma 6.5 implies that φ′′

2

includes also at least one of the clauses {(ℓe ∨ ℓe2), (ℓe ∨ ℓe3)}. Similarly, if (ℓe ∨ ℓe1)
is a clause of φ′′

2 , Lemma 6.6 implies that φ′′

2 includes also at least one of the clauses
{(ℓe∨ℓe2), (ℓe∨ℓe3)}. Therefore the second condition of Definition 2.2 is also satisfied
for the formula φ1 ∧ φ′′

2 , i.e. φ1 ∧ φ′′

2 is a gradually mixed formula.

6.2. The recognition algorithm. In this section we use Corollary 6.7 to design
an algorithm that decides satisfiability on φ1 ∧ φ2 in time linear to its size (cf. Theo-

30

rem 6.8). This will enable us to combine the results of Sections 4 and 5 to recognize
efficiently whether a given graph is a PI graph, or equivalently, due to Theorem 4.1,
whether a given partial order P is the intersection of a linear order P1 and an interval
order P2.

Theorem 6.8. φ1 ∧ φ2 is satisfiable if and only if φ1 ∧ φ
′′

2 is satisfiable. Given a
satisfying truth assignment of φ1 ∧ φ′′

2 we can compute a satisfying truth assignment
of φ1 ∧ φ2 in linear time.

Proof. If φ1 ∧ φ2 is satisfiable then φ1 ∧ φ′′

2 is also satisfiable as a sub-formula
of φ1 ∧ φ2. Conversely, suppose that φ1 ∧ φ′′

2 is satisfiable and let τ be a satisfying
assignment. Consider an arbitrary clause γ = (ℓe1∨ℓe2) of the sub-formula φ′

2 of φ2, cf.
Definition 6.4. If γ is a tautology then γ is satisfied by any truth assignment of φ, and
thus also by τ . Assume now that γ is not a tautology. Then at least one of its literals
{ℓe1 , ℓe2} corresponds to an uncommitted edge by Definition 6.4. Recall now by the
construction of φ1 (cf. Section 5) that in every clause of φ1, no literal is the negation
of another literal. Thus, for every clause of φ1, no pair among the three edges in the
corresponding AC6 is in conflict. Therefore Lemma 3.7 implies that all three edges
of such an AC6 are committed. Thus, for every literal ℓe of φ′

2, which corresponds to
an uncommitted edge e, neither ℓe nor ℓe appears in φ1. Furthermore recall that φ′′

2

does not include any literal ℓe of any uncommitted edge e of H by Definition 6.4.

Summarizing, for every literal ℓe of φ′

2, which corresponds to an uncommitted
edge e, neither ℓe nor ℓe appears in φ1∧φ′′

2 . That is, the truth assignment τ of φ1∧φ2

does not assign any value to the literal ℓe. Furthermore, since e is uncommitted, no
edge of H is assigned the literal ℓe. Therefore we can extend (in linear time) the truth
assignment τ to a truth assignment τ ′ that satisfies both φ1 ∧ φ′′

2 and φ′

2, by setting
ℓe = 1 for all uncommitted edges e of H . That is, τ ′ satisfies the formula φ1 ∧ φ2.
Therefore φ1 ∧φ2 is satisfiable if and only if φ1 ∧φ′′

2 is satisfiable. This completes the
proof of the theorem.

Now we are ready to present our recognition algorithm for PI graphs (Algo-
rithm 5). Its correctness and timing analysis is established in Theorem 6.9.

Theorem 6.9. Let G = (V,E) be a graph and G = (V,E) be its complement,
where |V | = n and |E| = m. Then Algorithm 5 constructs in O(n2m) time a PI
representation of G, or it announces that G is not a PI graph.

Proof. If the given graph G is a trapezoid graph, then Algorithm 5 computes in
line 2 a partial order P of its complement G. Otherwise, if G is not a trapezoid graph,
then clearly it is also not a PI graph, and thus the algorithm correctly announces in
line 3 that G is not a PI graph.

Let C(P) be the domination bipartite graph of the partial order P (cf. Defini-

tion 4.2), and let G̃ = Ĉ(P) be the bipartite complement of C(P), which are computed
in lines 4 and 5 of Algorithm 5, respectively. Furthermore let H be the associated split
graph of G̃ (cf. Definition 3.3) and H∗ be the conflict graph of H (cf. Definition 3.6),
which are computed in lines 6 and 7 of Algorithm 5, respectively. If H∗ is not bipar-
tite, i.e. if χ(H∗) > 2, then G̃ is not linear-interval coverable by Lemma 5.1, and thus
G is not a PI graph by Corollary 4.9. Therefore Algorithm 5 correctly announces in
line 18 that G is not a PI graph if H∗ is not bipartite.

Suppose now that H∗ is bipartite, i.e. χ(H∗) ≤ 2. Let χ0 be a 2-coloring of
the vertices of H∗, which is computed in line 9 of Algorithm 5. Furthermore let
φ1 and φ2 be the Boolean formulas that can be computed by Algorithms 2 and 3,
respectively (cf. line 10 of Algorithm 5). If the formula φ1 ∧φ2 is not satisfiable, then

G̃ is not linear-interval coverable by Theorem 5.4, and thus G is not a PI graph by

31

Algorithm 5 Recognition of PI graphs

Input: A graph G = (V,E)
Output: A PI representation R of G, or the announcement that G is not a PI graph

1: if G is a trapezoid graph then

2: Compute a partial order P of the complement G
3: else return “G is not a PI graph”

4: Compute the domination bipartite graph C(P) from P

5: G̃← Ĉ(P)

6: Compute the associated split graph H of G̃
7: Compute the conflict graph H∗ of H

8: if H∗ is bipartite then

9: Compute a 2-coloring χ0 of the vertices of H∗

10: Compute the formulas φ1 and φ2

11: if φ1 ∧ φ2 is satisfiable then

12: Compute a satisfying truth assignment τ of φ1 ∧ φ2 by Theorem 6.8
13: Compute from τ a linear-order cover of G̃ by Algorithm 4
14: Compute a PI representation R of G by Algorithm 1
15: else

16: return “G is not a PI graph”
17: else

18: return “G is not a PI graph”

19: return R

Corollary 4.9. Therefore Algorithm 5 correctly announces in line 16 that G is not a
PI graph if φ1 ∧ φ2 is not satisfiable.

Suppose now that φ1∧φ2 is satisfiable, and let τ be a satisfying truth assignment
of φ1 ∧ φ2, as it is computed in line 12 of Algorithm 5. Then G̃ is linear-interval
coverable by Theorem 5.4, and thus G is a PI graph by Corollary 4.9. Furthermore,
given τ , we can compute a linear-interval cover of G̃ using Algorithm 4 (cf. line 13

of Algorithm 5). Finally, given this linear-interval cover of G̃, we can compute a PI
representation R of G using Algorithm 1 (cf. line 14 of Algorithm 5). Thus, if φ1 ∧φ2

is satisfiable, Algorithm 5 correctly returns R in line 19.

Time complexity. First note that the complement G of G can be computed in
O(n2) time, since both G and G have n vertices. Furthermore, using the algorithm
of [15] we can decide in O(n2) time whether G is a trapezoid graph, and within the
same time bound we can compute a trapezoid representation of G, if it exists. Suppose
in the following that G is a trapezoid graph. Then we can then compute in O(n2)
time a partial order P of the complement G of G as follows: u <P v if and only if
the trapezoid for vertex u lies entirely to the left of the trapezoid for vertex v in this
trapezoid representation of G. Therefore, lines 1-3 of Algorithm 5 can be executed
in O(n2) time in total. Note that we choose to compute the partial order P using
the trapezoid graph recognition algorithm of [15], in order to achieve the O(n2) time
bound. Alternatively we could solve the transitive orientation problem on G using
the standard forcing algorithm with O(nm) running time (note that m is the number
of edges of G).

Denote G̃ = (U, V, Ẽ), where U = {u1, u2, . . . , un} and V = {v1, v2, . . . , vn}.

32

Furthermore denote E0 = {uivi | 1 ≤ i ≤ n}. Then H = (U, V,EH), where EH =

Ẽ ∪ (V × V) by Definition 3.3. Since C(P) and H have 2n vertices each, each of
the lines 4-6 of Algorithm 5 can be computed by a straightforward implementation in
O(n2) time. Note that the partial order P has m pairs of comparable elements, since
the complement G of G has m edges. Therefore the domination bipartite graph C(P)

of P has m edges (cf. Definition 4.2), and thus its bipartite complement G̃ = Ĉ(P)

has |Ẽ| = n2 −m edges.

Consider a pair {e, e′} of edges of H that are in conflict, i.e. e||e′ in H . Then
e, e′ /∈ V × V by Observation 3, since H is a split graph and V induces a clique in H .
Therefore both e and e′ are edges of G̃, i.e. e, e′ ∈ Ẽ, and thus e = uivj and e′ = upvq
for some indices i, j, p, q ∈ {1, 2, . . . , n}. Furthermore, since e and e′ are in conflict, it

follows that uivq, upvj /∈ Ẽ. That is, every pair of conflicting edges in H corresponds

to exactly one pair {uivq, upvj} of non-edges of G̃ = Ĉ(P). Equivalently, every edge
in the conflict graph H∗ of H corresponds to exactly one pair of edges of C(P). Since
C(P) has m edges, it follows that the conflict graph H∗ has at most O(m2) edges.

Furthermore note that the conflict graph H∗ has
(
n
2

)
+|Ẽ| = O(n2) vertices, since H

has
(
n

2

)
+|Ẽ| edges. Therefore the conflict graph H∗ can be computed in O(n2 +m2)

time (cf. line 7 of Algorithm 5).

Note now that in time linear to the size of H∗, we can check whether H∗ is
bipartite, and we can compute a 2-coloring χ0 of the vertices of H∗, if one exists.
Therefore lines 8-9 of Algorithm 5 can be executed in O(n2+m2) time. Furthermore,
in time linear to the size of H∗, i.e. in O(n2+m2) time, we can compute the connected
components C1, C2, . . . , Ck of H∗. Then, having already computed the 2-coloring χ0

and the connected components C1, C2, . . . , Ck of H∗, we can assign to every edge e
of H the literal ℓe ∈ {xi, xi | 1 ≤ i ≤ k} (cf. Section 5). This can be done in O(n2)

time, since H has
(
n

2

)
+|Ẽ| = O(n2) edges.

Now we bound the size of the formulas φ1 and φ2 that are computed by Algo-
rithms 2 and 3, respectively. Regarding the size of φ2, note that, by the construction
of φ2, if (ℓe ∨ ℓe′) is a clause of φ2, then e = uivt, e

′ = utvj , and uivj /∈ EH \ E0,
for some indices i, j, t ∈ {1, 2, . . . , n}. That is, for every index t ∈ {1, 2, . . . , n} and
for every pair (i, j) of indices in the set {(i, j) | i = j or uivj /∈ EH}, the formula
φ2 has at most one clause. Note that every pair (i, j) of the set {(i, j) | uivj /∈ EH}
corresponds to exactly one edge uivj of the bipartite graph C(P). Thus, since C(P)
has m edges, it follows that |{(i, j) | i = j or uivj /∈ EH}| ≤ n + m. Therefore φ2

has at most n(n+m) clauses, and thus φ2 can be computed in O(n(n+m)) time by
Algorithm 3.

Regarding the size of φ1, recall first that every connected component Ci of the
conflict graph H∗ has been assigned exactly one Boolean variable xi, where i ∈
{1, 2, . . . , k}. Furthermore recall that every edge e of H has been assigned a literal
ℓe ∈ {xi, xi | 1 ≤ i ≤ k}. Therefore, since every clause of φ1 appears only once in φ1

(cf. lines 4-5 of Algorithm 2), it follows by the construction of φ1 and by Lemma 6.3
that φ1 has at most 2k

3
clauses. Furthermore note that k = O(n2), since H∗ has

O(n2) vertices. Thus φ1 has at most O(n2) clauses.

Claim 2. The following two statements are equivalent:

(a) the formula φ1 contains the clauses α = (ℓe∨ℓe′∨ℓe′′) and α′ = (ℓe∨ℓe′∨ℓe′′),
(b) there exist four distinct vertices a, b, c, d in H, such that:

• ab /∈ EH and bc, cd, da ∈ EH ,
• either a, c ∈ U and b, d ∈ V , or a, c ∈ V and b, d ∈ U ,

33

• the edges bc, cd, da are committed in H,
• ℓbc = ℓe, ℓcd = ℓe′ , ℓda = ℓe′′ , and
• ℓe 6= ℓe′ , ℓe′ 6= ℓe′′ , ℓe 6= ℓe′′ .

Proof of Claim 2. ((a) ⇒ (b)) Consider first a pair of clauses α = (ℓe ∨ ℓe′ ∨
ℓe′′) and α′ = (ℓe ∨ ℓe′ ∨ ℓe′′) in φ1. These clauses correspond to an AC6 on the
edges {e, e′, e′′} of H by the construction of φ1. Furthermore, since H is a split
graph, Lemma 3.15 implies that this AC6 of H is an AP6, i.e. an alternating path
of length 6 (cf. Figure 1(b)). Let w1, w2, w3, w4, w5, w6 be the vertices of this AP6,
such that e = w2w3, e

′ = w4w5, and e′′ = w6w1 (note that there always exists an
enumeration of the vertices of the AP6 such that the edges e, e′, e′′ are met in this
order on the AP6). Then, since V induces a clique in H and U induces an independent
set in H , Lemma 3.14 implies that either w1, w3, w5 ∈ U and w2, w4, w6 ∈ V , or
w1, w3, w5 ∈ V and w2, w4, w6 ∈ U . Since ℓe 6= ℓe′ , ℓe′ 6= ℓe′′ , and ℓe 6= ℓe′′ (cf. line 3
of Algorithm 2), it follows that no pair among the edges {e, e′, e′′} is in conflict in
H . Therefore Lemma 3.7 implies that the edges w3w6, w4w1, w5w2 exist in H and
e′||w3w6, e||w4w1, and e′′||w5w2. Thus all six edges {e, e′, e′′, w3w6, w4w1, w5w2} are
committed. Furthermore ℓw4w1

= ℓe, ℓw3w6
= ℓe′ , and ℓw5w2

= ℓe′′ . Thus the vertices
a = w1, b = w2, c = w3, and d = w6 of H satisfy the conditions of the part (b) of the
claim.

((b)⇒ (a)) Conversely, consider four vertices a, b, c, d inH , as specified in the part
(b) of the claim. Then, since the edge cd is committed, there exists an edge pq ∈ EH

such that pc, qd /∈ EH , and thus cd||pq. Then ℓpq = ℓcd. Therefore, since ℓcd = ℓe′ ,
it follows that ℓpq = ℓe′ . Thus there exists an AC6 in H on the vertices a, b, c, p, q, d,
where ℓbc = ℓe, ℓpq = ℓe′ , and ℓda = ℓe′′ . Furthermore, since ℓe 6= ℓe′ , ℓe′ 6= ℓe′′ , and
ℓe 6= ℓe′′ by assumption, it follows by the construction of φ1 (cf. Algorithm 2) that φ1

contains the clauses α = (ℓe ∨ ℓe′ ∨ ℓe′′) and α′ = (ℓe ∨ ℓe′ ∨ ℓe′′).

Now, due to Claim 2, we can implement Algorithm 2 for the compu-
tation of φ1 in time O(n2m+m2) as follows. Recall first that C(P) has
m edges. We iterate for every edge uivj of C(P), i.e. for every non-
edge uivj /∈ EH of H . For every such uivj , we mark all vertices in the
sets A and B, where A = {v ∈ V | uiv ∈ EH and uiv is committed in H} and
B = {u ∈ U | uvj ∈ EH and uvj is committed in H}. Then we scan through the ad-
jacency lists of all vertices in A to discover a pair of vertices v ∈ A and u ∈ B such
that uv is a committed edge of H , and ℓvju 6= ℓuv, ℓuv 6= ℓvui

, and ℓvju 6= ℓvui
. Since

H has O(n2) edges, this scan through the adjacency lists of the vertices of A can be
done in O(n2) time. If we discover such an edge uv, then we add to φ1 the clauses
α = (ℓvju ∨ ℓuv ∨ ℓvui

) and α′ = (ℓvju ∨ ℓuv ∨ ℓvui
). Due to Claim 2, Algorithm 2

would add the same two clauses to φ1.

Due to Lemma 6.3, no other clause of φ1 has one of the literals
{ℓvju, ℓvju, ℓuv, ℓuv, ℓvui

, ℓvui
}. After we add the two clauses α and α′ to φ1, we visit

all edges e of H which correspond to the same connected component in H∗ with
one of the edges {vju, uv, vuj}. Note that exactly these edges e of H have a literal
ℓe ∈ {ℓvju, ℓvju, ℓuv, ℓuv, ℓvui

, ℓvui
}. We then mark all these edges e such that we avoid

visiting them again in any subsequent iteration during the construction of φ1. Thus
we ensure that each clause appears at most once φ1 (cf. lines 4-5 of Algorithm 2).
Note that we can perform all such markings of edges e (for all iterations during the
construction of φ1) in time linear to the size of H∗, i.e. in O(n2 + m2) time. Sum-
marizing, we need in total O(n2m + m2) time to compute the formula φ1. Thus,
since the formula φ2 can be computed in O(n(n+m)) time, it follows that line 10 of

34

Algorithm 5 can be executed in O(n2m+m2) time.

Now, we can test whether the formula φ1 ∧ φ2 is satisfiable in time linear to
its size by Theorem 6.8; moreover, within the same time bound we can compute a
satisfying truth assignment τ of φ1 ∧ φ2, if one exists. Thus, since φ1 has O(n2)
clauses and φ2 has O(n(n+m)) clauses, lines 11-12 of Algorithm 5 can be executed in
O(n(n+m)) time. Furthermore, line 13 of Algorithm 5 can be executed in O(n2) time
by Theorem 5.4, calling Algorithm 4 as a subroutine. Finally, line 14 of Algorithm 5
can be executed in O(n2) time by Theorem 4.10, calling Algorithm 1 as a subroutine.
Summarizing, since m = O(n2), the total running time of Algorithm 5 is O(n2m).
This completes the proof of the theorem.

Due to characterization of PI graphs in Theorem 4.1 using partial orders, the next
theorem follows now by Theorem 6.9.

Theorem 6.10. Let P = (U,R) be a partial order, where |U | = n and |R| = m.
Then we can decide in O(n2m) time whether P is a linear-interval order, and in this
case we can compute a linear order P1 and an interval order P2 such that P = P1∩P2.

7. Concluding remarks. In this article we provided the first polynomial algo-
rithm for the recognition of simple-triangle graphs, or equivalently for the recognition
of linear-interval orders, solving thus a longstanding open problem. For a graph G
with n vertices, where its complement G has m edges, our O(n2m)-time algorithm
either computes a simple-triangle representation of G, or it announces that such one
does not exist. The main tool for our recognition algorithm was a new hybrid tractable
subclass of 3SAT, called the class of gradually mixed formulas. In addition, we intro-
duced the notion of a linear-interval cover of bipartite graphs, which naturally extends
the well-known notion of the chain-cover of bipartite graphs. There are two main lines
for further research. The first one is to identify more “islands of tractability” for hy-
brid classes of SAT (and more generally of CSP), while the ultimate goal is to find a
complete characterization of the hybrid classes of CSP that are tractable. The second
line for further research is to resolve the complexity of the recognition for the related
classes with simple-triangle graphs, such as the classes of unit and proper tolerance
graphs [11] (these are subclasses of parallelogram graphs, and thus also subclasses of
trapezoid graphs), proper bitolerance graphs [2, 11] (they coincide with unit bitoler-
ance graphs [2]), and multitolerance graphs [18] (they naturally generalize trapezoid
graphs [18, 20]). On the contrary, the recognition problems for the related classes of
triangle graphs [17], tolerance and bounded tolerance (i.e. parallelogram) graphs [19],
and max-tolerance graphs [14] have been already proved to be NP-complete.

Acknowledgment. The author wishes to thank Jayme Luiz Szwarcfiter for initial
discussions on the simple-triangle recognition problem.

REFERENCES

[1] S. Benzer. On the topology of the genetic fine structure. Proc. of the National Academy of
Sciences (PNAS), 45:1607–1620, 1959.

[2] K. P. Bogart and G. Isaak. Proper and unit bitolerance orders and graphs. Discrete Mathe-
matics, 181(1-3):37–51, 1998.

[3] A. Brandstädt, V. B. Le, and J. P. Spinrad. Graph classes: a survey. Society for Industrial
and Applied Mathematics (SIAM), 1999.

[4] A. V. Carrano. Establishing the order to human chromosome-specific DNA fragments. Biotech-
nology and the Human Genome, Plenum Press:37–50, 1988.

[5] M. R. Cerioli, F. de S. Oliveira, and J. L. Szwarcfiter. Linear-interval dimension and PI orders.
Electronic Notes in Discrete Mathematics, 30:111–116, 2008.

35

[6] D. G. Corneil and P. A. Kamula. Extensions of permutation and interval graphs. In Proceedings
of the 18th Southeastern Conference on Combinatorics, Graph Theory and Computing,
pages 267–275, 1987.

[7] I. Dagan, M. C. Golumbic, and R. Y. Pinter. Trapezoid graphs and their coloring. Discrete
Applied Mathematics, 21(1):35–46, 1988.

[8] S. Even, A. Itai, and A. Shamir. On the complexity of timetable and multicommodity flow
problems. SIAM Journal on Computing, 5(4):691–703, 1976.

[9] P. W. Goldberg, M. C. Golumbic, H. Kaplan, and R. Shamir. Four strikes against physical
mapping of DNA. Journal of Computational Biology, 2(1):139–152, 1995.

[10] M. C. Golumbic. Algorithmic graph theory and perfect graphs (Annals of Discrete Mathematics,
Vol. 57). North-Holland Publishing Co., 2 edition, 2004.

[11] M. C. Golumbic and A. N. Trenk. Tolerance Graphs. Cambridge Studies in Advanced Mathe-
matics, 2004.

[12] P. L. Hammer, T. Ibaraki, and U. N. Peled. Threshold numbers and threshold completions.
Annals of Discrete Mathematics, 11:125–145, 1981.

[13] T. Ibaraki and U. N. Peled. Sufficient conditions for graphs to have threshold number 2. Annals
of Discrete Mathematics, 11:241–268, 1981.

[14] M. Kaufmann, J. Kratochvil, K. A. Lehmann, and A. R. Subramanian. Max-tolerance graphs
as intersection graphs: cliques, cycles, and recognition. In Proceedings of the 17th annual
ACM-SIAM symposium on Discrete Algorithms (SODA), pages 832–841, 2006.

[15] T.-H. Ma and J. P. Spinrad. On the 2-chain subgraph cover and related problems. Journal of
Algorithms, 17:251–268, 1994.

[16] N. Mahadev and U. N. Peled. Threshold Graphs and Related Topics (Annals of Discrete
Mathematics, Vol. 56). North-Holland Publishing Co., 1995.

[17] G. B. Mertzios. The recognition of triangle graphs. Theoretical Computer Science, 438:34–47,
2012.

[18] G. B. Mertzios. An intersection model for multitolerance graphs: Efficient algorithms and
hierarchy. Algorithmica, 69(3):540–581, 2014.

[19] G. B. Mertzios, I. Sau, and S. Zaks. The recognition of tolerance and bounded tolerance graphs.
SIAM Journal on Computing, 40(5):1234–1257, 2011.

[20] A. Parra. Triangulating multitolerance graphs. Discrete Applied Mathematics, 84(1-3):183–197,
1998.

[21] T. Raschle and K. Simon. Recognition of graphs with threshold dimension two. In Proceedings
of the 27th ACM symposium on Theory of computing (STOC), pages 650–661, 1995.

[22] J. P. Spinrad. Efficient graph representations, volume 19 of Fields Institute Monographs.
American Mathematical Society, 2003.

[23] M. Yannakakis. The complexity of the partial order dimension problem. SIAM Journal on
Algebraic and Discrete Methods, 3:351–358, 1982.

36

