THE RECOGNITION OF SIMPLE-TRIANGLE GRAPHS AND OF LINEAR-INTERVAL ORDERS IS POLYNOMIAL*

GEORGE B. MERTZIOS ${ }^{\dagger}$

Abstract

Intersection graphs of geometric objects have been extensively studied, both due to their interesting structure and their numerous applications; prominent examples include interval graphs and permutation graphs. In this paper we study a natural graph class that generalizes both interval and permutation graphs, namely simple-triangle graphs. Simple-triangle graphs - also known as PI graphs (for Point-Interval) - are the intersection graphs of triangles that are defined by a point on a line L_{1} and an interval on a parallel line L_{2}. They lie naturally between permutation and trapezoid graphs, which are the intersection graphs of line segments between L_{1} and L_{2} and of trapezoids between L_{1} and L_{2}, respectively. Although various efficient recognition algorithms for permutation and trapezoid graphs are well known to exist, the recognition of simple-triangle graphs has remained an open problem since their introduction by Corneil and Kamula three decades ago. In this paper we resolve this problem by proving that simple-triangle graphs can be recognized in polynomial time. Given a graph G with n vertices, such that its complement \bar{G} has m edges, our algorithm runs in $O\left(n^{2} m\right)$ time. As a consequence, our algorithm also solves a longstanding open problem in the area of partial orders, namely the recognition of linear-interval orders, i.e. of partial orders $P=P_{1} \cap P_{2}$, where P_{1} is a linear order and P_{2} is an interval order. This is one of the first results on recognizing partial orders P that are the intersection of orders from two different classes \mathcal{P}_{1} and \mathcal{P}_{2}. In complete contrast to this, partial orders P which are the intersection of orders from the same class \mathcal{P} have been extensively investigated, and in most cases the complexity status of these recognition problems has been already established.

Keywords: Intersection graph, PI graph, recognition problem, partial order, polynomial algorithm.
AMS subject classification (2010). Primary 05C85; Secondary 06A07, 05C62, 68R10.

1. Introduction. A graph G is the intersection graph of a family \mathcal{F} of sets if we can bijectively assign sets of \mathcal{F} to vertices of G such that two vertices of G are adjacent if and only if the corresponding sets have a non-empty intersection. It turns out that many graph classes with important applications can be described as intersection graphs of set families that are derived from some kind of geometric configuration. One of the most prominent examples is that of interval graphs, i.e. the intersection graphs of intervals on the real line, which have natural applications in several fields, including bioinformatics and involving the physical mapping of DNA and the genome reconstruction ${ }^{1}$ [4, 9,10$]$.

Generalizing the intersections on the real line, consider two parallel horizontal lines on the plane, L_{1} (the upper line) and L_{2} (the lower line). A graph G is a simpletriangle graph if it is the intersection graph of triangles that have one endpoint on L_{1} and the other two on L_{2}. Furthermore, G is a triangle graph if it is the intersection graph of triangles with endpoints on L_{1} and L_{2}, but now there is no restriction on which line contains one endpoint of every triangle and which contains the other two. Simple-triangle and triangle graphs are also known as $P I$ and $P I^{*}$ graphs, respectively $[3,6,22]$, where PI stands for "Point-Interval" . Such representations of simple-triangle and of triangle graphs are called simple-triangle (or PI) and triangle

[^0](or $P I^{*}$) representations, respectively. Simple-triangle and triangle graphs lie naturally between permutation graphs (i.e. the intersection graphs of line segments with one endpoint on L_{1} and one on L_{2}) and trapezoid graphs (i.e. the intersection graphs of trapezoids with one interval on L_{1} and the opposite interval on L_{2}) [3, 22]. Note that, using the notation $P I$ for simple-triangle graphs, permutation graphs are $P P$ (for "Point-Point") graphs, while trapezoid graphs are II (for "Interval-Interval") graphs [6].

A partial order is a pair $P=(U, R)$, where U is a finite set and R is an irreflexive transitive binary relation on U. Whenever $(x, y) \in R$ for two elements $x, y \in U$, we write $x<_{P} y$. If $x<_{P} y$ or $y<_{P} x$, then x and y are comparable, otherwise they are incomparable. P is a linear order if every pair of elements in U are comparable. Furthermore, P is an interval order if each element $x \in U$ is assigned to an interval I_{x} on the real line such that $x<_{P} y$ if and only if I_{x} lies completely to the left of I_{y}. One of the most fundamental notions on partial orders is dimension. For any partial order P and any class \mathcal{P} of partial orders (e.g. linear order, interval order, semiorder, etc.), the \mathcal{P}-dimension of P is the smallest k such that P is the intersection of k orders from \mathcal{P}. In particular, when \mathcal{P} is the class of linear orders, the \mathcal{P}-dimension of P is known as the dimension of P. Although in most cases we can efficiently recognize whether a partial order belongs to a class \mathcal{P}, this is not the case for higher dimensions. Due to a classical result of Yannakakis [23], it is NP-complete to decide whether the dimension, or the interval dimension, of a partial order is at most k, where $k \geq 3$.

There is a natural correspondence between graphs and partial orders. For a partial order $P=(U, R)$, the comparability (resp. incomparability) graph $G(P)$ of P has elements of U as vertices and an edge between every pair of comparable (resp. incomparable) elements. A graph G is a (co)comparability graph if G is the (in)comparability graph of a partial order P. There has been a long line of research in order to establish the complexity of recognizing partial orders of \mathcal{P}-dimension at most 2 (e.g. where \mathcal{P} is linear orders [22] or interval orders [15]). In particular, since permutation (resp. trapezoid) graphs are the incomparability graphs of partial orders with dimension (resp. interval dimension) at most $2[7,22]$, permutation and trapezoid graphs can be recognized efficiently by the corresponding partial order algorithms [15, 22].

In contrast, not much is known so far for the recognition of partial orders P that are the intersection of orders from different classes \mathcal{P}_{1} and \mathcal{P}_{2}. One of the longstanding open problems in this area is the recognition of linear-interval orders P, i.e. of partial orders $P=P_{1} \cap P_{2}$, where P_{1} is a linear order and P_{2} is an interval order. In terms of graphs, this problem is equivalent to the recognition of simple-triangle (i.e. PI) graphs, since PI graphs are the incomparability graphs of linear-interval orders; this problem is well known and remains open since the introduction of PI graphs in 1987 [6] (cf. for instance the books $[3,22]$).

Our contribution. In this article we establish the complexity of recognizing simpletriangle (PI) graphs, and therefore also the complexity of recognizing linear-interval orders. Given a graph G with n vertices, such that its complement \bar{G} has m edges, we provide an algorithm with running time $O\left(n^{2} m\right)$ that either computes a PI representation of G, or it announces that G is not a PI graph. Equivalently, given a partial order $P=(U, R)$ with $|U|=n$ and $|R|=m$, our algorithm either computes in $O\left(n^{2} m\right)$ time a linear order P_{1} and an interval order P_{2} such that $P=P_{1} \cap P_{2}$, or it announces that such orders P_{1}, P_{2} do not exist. Surprisingly, it turns out that the seemingly small difference in the definition of simple-triangle (PI) graphs and triangle $\left(\mathrm{PI}^{*}\right)$ graphs results in a very different behavior of their recognition problems; only
recently it has been proved that the recognition of triangle graphs is NP-complete [17]. In addition, our polynomial time algorithm is in contrast to the recognition problems for the related classes of bounded tolerance (i.e. parallelogram) graphs [19] and of max-tolerance graphs [14], which have already been proved to be NP-complete.

As the main tool for our algorithm we introduce the notion of a linear-interval cover of bipartite graphs. As a second tool we identify a new tractable subclass of 3SAT, called gradually mixed formulas, for which we provide a linear time algorithm. The class of gradually mixed formulas is hybrid, i.e. it is characterized by both relational and structural restrictions on the clauses. Then, using the notion of a linear-interval cover, we are able to reduce our problem to the satisfiability problem of gradually mixed formulas.

Our algorithm proceeds as follows. First, it computes from the given graph G a bipartite graph \widetilde{G}, such that G is a PI graph if and only if \widetilde{G} has a linear-interval cover. Second, it computes a gradually mixed Boolean formula ϕ such that ϕ is satisfiable if and only if \widetilde{G} has a linear-interval cover. This formula ϕ can be written as $\phi=\phi_{1} \wedge \phi_{2}$, where every clause of ϕ_{1} has 3 literals and every clause of ϕ_{2} has 2 literals. The construction of ϕ_{1} and ϕ_{2} is based on the fact that a necessary condition for \widetilde{G} to admit a linear-interval cover is that its edges can be colored with two different colors (according to some restrictions). Then the edges of \widetilde{G} correspond to literals of ϕ, while the two edge colors encode the truth value of the corresponding variables. Furthermore every clause of ϕ_{1} corresponds to the edges of an alternating cycle in \widetilde{G} (i.e. a closed walk that alternately visits edges and non-edges) of length 6 , while the clauses of ϕ_{2} correspond to specific pairs of edges of \widetilde{G} that are not allowed to receive the same color. Finally, the equivalence between the existence of a linearinterval cover of \widetilde{G} and a satisfying truth assignment for ϕ allows us to use our linear algorithm to solve satisfiability on gradually mixed formulas in order to complete our recognition algorithm.
Organization of the paper. We present in Section 2 the class of gradually mixed formulas and a linear time algorithm to solve satisfiability on this class. In Section 3 we provide the necessary notation and preliminaries on threshold graphs and alternating cycles. Then in Section 4 we introduce the notion of a linear-interval cover of bipartite graphs to characterize PI graphs, and in Section 5 we translate the linearinterval cover problem to the satisfiability problem on a gradually mixed formula. Finally, in Section 6 we present our PI graph recognition algorithm.
2. A tractable subclass of 3 SAT. In this section we introduce the class of gradually mixed formulas and we provide a linear time algorithm for solving satisfiability on this class. Any gradually mixed formula ϕ is a mix of binary and ternary clauses. That is, there exist a $3-\mathrm{CNF}$ formula ϕ_{1} (i.e. a formula in conjunctive normal form with at most 3 literals per clause) and a 2 -CNF formula ϕ_{2} (i.e. with at most 2 literals per clause) such that $\phi=\phi_{1} \wedge \phi_{2}$, while ϕ satisfies some constraints among its clauses. Before we define gradually mixed formulas (cf. Definition 2.2), we first define dual clauses.

DEFINITION 2.1. Let ϕ_{1} be a 3-CNF formula. If $\alpha=\left(\ell_{1} \vee \ell_{2} \vee \ell_{3}\right)$ is a clause of ϕ_{1}, then $\bar{\alpha}=\left(\overline{\ell_{1}} \vee \overline{\ell_{2}} \vee \overline{\ell_{3}}\right)$ is the dual clause of α.

Note by Definition 2.1 that, whenever α is a clause of a formula ϕ_{1}, the dual clause $\bar{\alpha}$ of α may belong, or may not belong, to ϕ_{1}.

Definition 2.2. Let ϕ_{1} and ϕ_{2} be CNF formulas with 3 literals and 2 literals in each clause, respectively. The mixed formula $\phi=\phi_{1} \wedge \phi_{2}$ is gradually mixed if the next two conditions are satisfied:

1. Let α and β be two clauses of ϕ_{1}. Then α does not share exactly one literal with either the clause β or the clause $\bar{\beta}$.
2. If $\alpha=\left(\ell_{1} \vee \ell_{2} \vee \ell_{3}\right)$ is a clause of ϕ_{1} and $\left(\ell_{0} \vee \overline{\ell_{1}}\right)$ is a clause of ϕ_{2}, then ϕ_{2} contains also (at least) one of the clauses $\left\{\left(\ell_{0} \vee \ell_{2}\right),\left(\ell_{0} \vee \ell_{3}\right)\right\}$.
As an example of a gradually mixed formula, consider the formula $\phi=\phi_{1} \wedge \phi_{2}$, where $\phi_{1}=\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{4}\right) \wedge\left(x_{5} \vee x_{6} \vee \overline{x_{7}}\right)$ and $\phi_{2}=\left(x_{8} \vee \overline{x_{3}}\right) \wedge\left(x_{8} \vee\right.$ $\left.x_{1}\right) \wedge\left(x_{8} \vee x_{4}\right) \wedge\left(\overline{x_{8}} \vee x_{9}\right) \wedge\left(x_{5} \vee x_{10}\right) \wedge\left(\overline{x_{6}} \vee x_{10}\right)$.

Note by Definition 2.2 that the class of gradually mixed formulas contains 2SAT as a proper subclass, since every 2 -CNF formula ϕ_{2} can be written as a gradually mixed formula $\phi=\phi_{1} \wedge \phi_{2}$ where $\phi_{1}=\emptyset$. Furthermore the class of gradually mixed formulas ϕ is a hybrid class, since the conditions of Definition 2.2 concern simultaneously relational restrictions (i.e. where the clauses are restricted to be of certain types) and structural restrictions (i.e. where there are restrictions on how different clauses interact with each other). The intuition for the term gradually mixed in Definition 2.2 is that, whenever the sub-formulas ϕ_{1} and ϕ_{2} share more variables, the number of clauses of ϕ_{2} that are imposed by condition 2 of Definition 2.2 increases. In the next theorem we use resolution to prove that satisfiability can be solved in linear time on gradually mixed formulas.

Theorem 2.3. There exists a linear time algorithm which decides whether a given gradually mixed formula ϕ is satisfiable and computes a satisfying truth assignment of ϕ, if one exists.

Proof. Let $\phi=\phi_{1} \wedge \phi_{2}$, where ϕ_{1} is a 3-CNF formula and ϕ_{2} is a 2-CNF formula. We first scan through all clauses of ϕ to remove all tautologies, i.e. all clauses which contain both a literal and its negation, since such clauses are always satisfiable. Furthermore we eliminate all double literal occurrences in every clause. In the remainder of the proof we denote by ϕ the resulting formula after the removal of tautologies and the elimination of double literal occurrences in the clauses. Note that, during this elimination procedure, some clauses of ϕ_{1} may become 2-CNF clauses. In the resulting formula we denote by ϕ_{1}^{\prime} the conjunction of the clauses that have 3 literals each, and by $\phi_{1}^{\prime \prime}$ the conjunction of the clauses of ϕ_{1} that remain with 1 or 2 literals each. In particular, since also in every clause of ϕ_{1} no literal is the negation of another one (as we removed from ϕ all tautologies), the literals of every clause in ϕ_{1}^{\prime} correspond to three distinct variables.

Then we compute a 2 -CNF formula ϕ_{0} (in time linear to the size of ϕ) as follows. Initially ϕ_{0} is empty. First we mark all literals ℓ for which the 2-CNF formula $\phi_{1}^{\prime \prime} \wedge \phi_{2}$ includes the clause (ℓ). Then we scan through all clauses of the 3-CNF formula ϕ_{1}^{\prime}. For every clause $\left(\ell_{1} \vee \ell_{2} \vee \ell_{3}\right)$ of ϕ_{1}^{\prime}, such that the literal $\overline{\ell_{1}}$ (resp. $\overline{\ell_{2}}$ or $\overline{\ell_{3}}$) has been marked, we add to ϕ_{0} the clause $\left(\ell_{2} \vee \ell_{3}\right)$ (resp. the clause $\left(\ell_{1} \vee \ell_{3}\right)$ or $\left(\ell_{1} \vee \ell_{2}\right)$).

If $\phi \wedge \phi_{0}$ is satisfiable then clearly ϕ is also satisfiable as a sub-formula of $\phi \wedge \phi_{0}$. Conversely, suppose that ϕ is satisfied by the truth assignment τ. Let $\gamma=\left(\ell_{1} \vee \ell_{2}\right)$ be an arbitrary clause of ϕ_{0}. The existence of γ in ϕ_{0} implies the existence of some clauses $\alpha=\left(\overline{\ell_{3}}\right)$ and $\beta=\left(\ell_{1} \vee \ell_{2} \vee \ell_{3}\right)$ in ϕ. Therefore, since $\alpha=\beta=1$ in τ by assumption, it follows that $\ell_{3}=0$ in τ. Thus the clause β equals $\left(\ell_{1} \vee \ell_{2}\right)$ in τ, and therefore $\gamma=1$ in τ. That is, τ satisfies also ϕ_{0}. Therefore ϕ is satisfiable if and only if $\phi \wedge \phi_{0}$ is satisfiable.

In the remainder of the proof, we prove that $\phi \wedge \phi_{0}$ is satisfiable if and only if the 2-CNF formula $\phi_{1}^{\prime \prime} \wedge \phi_{2} \wedge \phi_{0}$ is satisfiable. The one direction is immediate, i.e. if $\phi \wedge \phi_{0}$ is satisfiable then $\phi_{1}^{\prime \prime} \wedge \phi_{2} \wedge \phi_{0}$ is also satisfiable as a sub-formula of $\phi \wedge \phi_{0}$. Conversely, suppose that $\phi_{1}^{\prime \prime} \wedge \phi_{2} \wedge \phi_{0}$ is satisfiable and let τ be a satisfying truth
assignment of this formula. If τ satisfies all clauses of ϕ_{1}^{\prime}, then clearly τ is also a satisfying truth assignment of $\phi \wedge \phi_{0}$. Otherwise let $\alpha=\left(\ell_{1} \vee \ell_{2} \vee \ell_{3}\right)$ be a clause of ϕ_{1}^{\prime} that is not satisfied by τ. Then $\ell_{1}=\ell_{2}=\ell_{3}=0$ in τ. In this case, we construct the truth assignment τ^{\prime} from τ by flipping the value of one (arbitrary) literal of $\left\{\ell_{1}, \ell_{2}, \ell_{3}\right\}$ in τ. Assume without loss of generality that the value of ℓ_{1} flips from τ to τ^{\prime}, while the values of all other variables remain the same in both τ and τ^{\prime}. Recall that the literals $\left\{\ell_{1}, \ell_{2}, \ell_{3}\right\}$ correspond to three distinct variables, since we eliminated all double occurrences of literals in all clauses in ϕ_{1}. Therefore $\ell_{1}=\overline{\ell_{2}}=\overline{\ell_{3}}=1 \mathrm{in}$ τ^{\prime}, and thus $\alpha=1$ in τ^{\prime}.

Suppose that there exists a clause $\beta=\left(\ell_{4} \vee \ell_{5} \vee \ell_{6}\right)$ of ϕ_{1}^{\prime} where $\beta=1$ in τ and $\beta=0$ in τ^{\prime}. Then clearly one of the literals of β equals $\overline{\ell_{1}}$, since $\overline{\ell_{1}}$ is the only literal whose value changes in τ^{\prime} from 1 to 0 . Assume without loss of generality that $\ell_{4}=\overline{\ell_{1}}$, i.e. α shares at least one literal with $\bar{\beta}=\left(\overline{\ell_{4}} \vee \overline{\ell_{5}} \vee \overline{\ell_{6}}\right)$. Therefore, since ϕ is a gradually mixed formula by assumption, it follows by Definition 2.2 that α shares at least one more literal with $\bar{\beta}$. Assume without loss of generality that $\ell_{5}=\overline{\ell_{2}}$. Then, since by assumption $\ell_{2}=0$ in both τ and τ^{\prime}, it follows that the clause $\beta=\left(\ell_{4} \vee \ell_{5} \vee \ell_{6}\right)=\left(\overline{\ell_{1}} \vee \overline{\ell_{2}} \vee \ell_{6}\right)$ is satisfied in τ^{\prime}, which is a contradiction to our assumption. Therefore for every clause β of ϕ_{1}^{\prime}, if $\beta=1$ in τ then also $\beta=1$ in τ^{\prime}.

We now prove that all clauses of the 2-CNF formula $\phi_{1}^{\prime \prime} \wedge \phi_{2} \wedge \phi_{0}$ remain satisfied in τ^{\prime}. First consider an arbitrary clause γ of ϕ_{0} that contains one of the literals $\left\{\ell_{1}, \overline{\ell_{1}}\right\}$. If γ contains the literal ℓ_{1} then $\gamma=1$ in τ^{\prime}, since $\ell_{1}=1$ in τ^{\prime}. Let γ contain the literal $\overline{\ell_{1}}$, and let $\gamma=\left(\overline{\ell_{1}} \vee \ell_{4}\right)$. Then it follows by the construction of the formula ϕ_{0} that there exists a literal ℓ_{5}, such that $\left(\overline{\ell_{1}} \vee \ell_{4} \vee \ell_{5}\right)$ is a clause of ϕ_{1}^{\prime} and $\left(\overline{\ell_{5}}\right)$ is a clause of $\phi_{1}^{\prime \prime} \wedge \phi_{2}$. Note that $\left(\overline{\ell_{1}} \vee \ell_{4} \vee \ell_{5}\right)=1$ in τ, since $\ell_{1}=0$ in τ by assumption. Therefore also $\left(\overline{\ell_{1}} \vee \ell_{4} \vee \ell_{5}\right)=1$ in τ^{\prime} by the previous paragraph. Thus, since $\overline{\ell_{1}}=0$ in τ^{\prime}, it follows that $\left(\ell_{4} \vee \ell_{5}\right)=1$ in τ^{\prime}. Furthermore, since τ satisfies $\phi_{1}^{\prime \prime} \wedge \phi_{2}$ by assumption, it follows that $\left(\overline{\ell_{5}}\right)=1$ in τ, and thus $\ell_{5}=0$ in both τ and τ^{\prime}. Therefore $\ell_{4}=1$ in τ^{\prime}, since $\left(\ell_{4} \vee \ell_{5}\right)=1$ in τ^{\prime}, and thus $\gamma=\left(\overline{\ell_{1}} \vee \ell_{4}\right)=1$ in τ^{\prime}. That is, all clauses γ of ϕ_{0} remain satisfied in the assignment τ^{\prime}.

Now consider a clause γ of ϕ_{2} that contains one of the literals $\left\{\ell_{1}, \overline{\ell_{1}}\right\}$. If γ contains ℓ_{1} then $\gamma=1$ in τ^{\prime}, since $\ell_{1}=1$ in τ^{\prime}. Let γ contain the literal $\overline{\ell_{1}}$, and let $\gamma=\left(\overline{\ell_{1}} \vee \ell_{4}\right)$. Note that $\ell_{4} \neq \ell_{1}$, since we removed all tautologies from ϕ. Suppose that $\ell_{4}=\overline{\ell_{1}}$, i.e. $\gamma=\left(\overline{\ell_{1}}\right)$. Then, since $\alpha=\left(\ell_{1} \vee \ell_{2} \vee \ell_{3}\right)$ is a clause of ϕ_{1} by assumption, the formula ϕ_{0} contains (by construction) the clause ($\ell_{2} \vee \ell_{3}$). Thus, since τ satisfies ϕ_{0} by assumption, it follows that $\ell_{2}=1$ or $\ell_{3}=1$ in τ. This is a contradiction, since $\ell_{1}=\ell_{2}=\ell_{3}=0$ in τ. Therefore $\ell_{4} \notin\left\{\ell_{1}, \overline{\ell_{1}}\right\}$. Thus, since ϕ is a gradually mixed formula by assumption, it follows by Definition 2.2 that ϕ_{2} has also one of the clauses $\left\{\left(\ell_{4} \vee \ell_{2}\right),\left(\ell_{4} \vee \ell_{3}\right)\right\}$. Assume without loss of generality that ϕ_{2} has the clause $\left(\ell_{4} \vee \ell_{2}\right)$. Then, since τ satisfies ϕ_{2} by assumption and $\ell_{2}=0$ in τ, it follows that $\ell_{4}=1$ in τ. Furthermore, since $\ell_{4} \notin\left\{\ell_{1}, \overline{\ell_{1}}\right\}$, it remains $\ell_{4}=1$ in τ^{\prime}, and thus $\gamma=\left(\overline{\ell_{1}} \vee \ell_{4}\right)=1$ in τ^{\prime}. That is, all clauses γ of ϕ_{2} remain satisfied in the assignment τ^{\prime}.

Finally consider a clause γ of $\phi_{1}^{\prime \prime}$ that contains one of the literals $\left\{\ell_{1}, \overline{\ell_{1}}\right\}$. If γ contains ℓ_{1} then $\gamma=1$ in τ^{\prime}, since $\ell_{1}=1$ in τ^{\prime}. Let γ contain the literal $\overline{\ell_{1}}$, and let $\gamma=\left(\overline{\ell_{1}} \vee \ell_{4}\right)$. Note that $\ell_{4} \neq \ell_{1}$, since we removed all tautologies from ϕ. Suppose that $\ell_{4}=\overline{\ell_{1}}$, i.e. $\gamma=\left(\overline{\ell_{1}}\right)$. Then, since $\alpha=\left(\ell_{1} \vee \ell_{2} \vee \ell_{3}\right)$ is a clause of ϕ_{1} by assumption, the formula ϕ_{0} contains by construction the clause $\left(\ell_{2} \vee \ell_{3}\right)$. Thus $\ell_{2}=1$ or $\ell_{3}=1$ in τ, since τ satisfies ϕ_{0} by assumption. This is a contradiction, since $\ell_{1}=\ell_{2}=\ell_{3}=0$ in τ. Therefore $\ell_{4} \notin\left\{\ell_{1}, \overline{\ell_{1}}\right\}$. Recall that $\phi_{1}^{\prime \prime}$ contains exactly those clauses of ϕ_{1} which remain with 1 or 2 literals each, after eliminating all double
literal occurrences in every clause of ϕ. That is, the clause γ was before the double literal elimination one of the clauses $\left(\overline{\ell_{1}} \vee \ell_{4} \vee \ell_{4}\right)$ and $\left(\overline{\ell_{1}} \vee \overline{\ell_{1}} \vee \ell_{4}\right)$. Furthermore $\alpha=\left(\ell_{1} \vee \ell_{2} \vee \ell_{3}\right)$ and γ are two different clauses of ϕ_{1}, since α belongs to ϕ_{1}^{\prime} and γ belongs to $\phi_{1}^{\prime \prime}$. Moreover α shares the literal ℓ_{1} with the dual clause $\bar{\gamma}$ of γ. If γ was the clause $\left(\overline{\ell_{1}} \vee \ell_{4} \vee \ell_{4}\right)$ before the double literal elimination, then Definition 2.2 implies that $\ell_{4}=\overline{\ell_{2}}$ or $\ell_{4}=\overline{\ell_{3}}$. Therefore $\ell_{4}=1$ in τ^{\prime}, since $\ell_{2}=\ell_{3}=0$ in both τ and τ^{\prime}, and thus $\gamma=\left(\overline{\ell_{1}} \vee \ell_{4}\right)=1$ in τ^{\prime}. Otherwise, if γ was the clause $\left(\overline{\ell_{1}} \vee \overline{\ell_{1}} \vee \ell_{4}\right)$ before the double literal elimination, then Definition 2.2 implies that $\ell_{1}=\ell_{2}$, or $\ell_{1}=\ell_{3}$, or $\ell_{4}=\overline{\ell_{2}}$, or $\ell_{4}=\overline{\ell_{3}}$. Recall that α is a clause of ϕ_{1}^{\prime} by assumption, and thus $\ell_{1} \neq \ell_{2}$ and $\ell_{1} \neq \ell_{3}$. Therefore $\ell_{4}=\overline{\ell_{2}}$ or $\ell_{4}=\overline{\ell_{3}}$, and thus $\ell_{4}=1$ in τ^{\prime}, since $\ell_{2}=\ell_{3}=0$ in both τ and τ^{\prime}. Therefore $\gamma=\left(\overline{\ell_{1}} \vee \ell_{4}\right)=1$ in τ^{\prime}. That is, all clauses γ of $\phi_{1}^{\prime \prime}$ remain satisfied in the assignment τ^{\prime}.

Summarizing, all clauses of the 2-CNF formula $\phi_{1}^{\prime \prime} \wedge \phi_{2} \wedge \phi_{0}$ remain satisfied in τ^{\prime}. Furthermore, $\alpha=1$ in τ^{\prime}, while for every clause β of ϕ_{1}^{\prime}, if $\beta=1$ in τ then also $\beta=1$ in τ^{\prime}. Thus, according to the above transition from τ to τ^{\prime}, we can modify iteratively the truth assignment τ to a truth assignment $\tau^{\prime \prime}$ that satisfies all clauses of $\phi \wedge \phi_{0}$. Therefore $\phi \wedge \phi_{0}$ is satisfiable if and only if the 2-CNF formula $\phi_{1}^{\prime \prime} \wedge \phi_{2} \wedge \phi_{0}$ is satisfiable.

Since the transition from the assignment τ to the assignment τ^{\prime} can be done in constant time (we only need to flip locally the value of one literal ℓ_{1} in the clause $\alpha=\left(\ell_{1} \vee \ell_{2} \vee \ell_{3}\right)$ of $\left.\phi_{1}^{\prime}\right)$, the computation of $\tau^{\prime \prime}$ from τ can be done in time linear to the size of $\phi \wedge \phi_{0}$. Therefore, since a satisfying truth assignment τ of the 2 CNF formula $\phi_{1}^{\prime \prime} \wedge \phi_{2} \wedge \phi_{0}$ (if one exists) can be computed in linear time using any standard linear time algorithm for the 2-SAT problem (e.g. [8]), a satisfying truth assignment $\tau^{\prime \prime}$ of $\phi \wedge \phi_{0}$ (if one exists) can be also computed in time linear to the size of $\phi \wedge \phi_{0}$ (and thus also in time linear to the size of ϕ). This completes the proof of the theorem.

The conditions of Definition 2.2 which guarantee the tractability of gradually mixed formulas are minimal, in the sense that, if we remove any of these two conditions, the resulting subclass of 3SAT is NP-complete.

Indeed, assume that we impose only the first condition of Definition 2.2 to the mixed formula $\phi=\phi_{1} \wedge \phi_{2}$. Then we can reduce 3SAT to this subclass as follows. Let ϕ_{0} be an instance of 3SAT. We define ϕ_{1} to be the formula obtained by ϕ_{0} if we replace every literal ℓ of ϕ_{0} by a new variable x_{ℓ}. For every two of these new variables x_{ℓ} and $x_{\ell^{\prime}}$ in ϕ_{1}, we add to ϕ_{2} the clauses $\left(x_{\ell} \vee \overline{x_{\ell^{\prime}}}\right) \wedge\left(\overline{x_{\ell}} \vee x_{\ell^{\prime}}\right)$ if $\ell=\ell^{\prime}$ in ϕ_{0}, and we add to ϕ_{2} the clauses $\left(x_{\ell} \vee x_{\ell^{\prime}}\right) \wedge\left(\overline{x_{\ell}} \vee \overline{x_{\ell^{\prime}}}\right)$ if $\ell=\overline{\ell^{\prime}}$ in ϕ_{0}. Then $\phi=\phi_{1} \wedge \phi_{2}$ satisfies the first condition of Definition 2.2 (since no two clauses of ϕ_{1} share any variable), while ϕ_{0} is satisfiable if and only if ϕ is satisfiable.

On the other hand, assume that we impose only the second condition of Definition 2.2 to the mixed formula $\phi=\phi_{1} \wedge \phi_{2}$. Then, by setting $\phi_{2}=\emptyset$, we can include in the resulting class every 3 -CNF formula, and thus this class is NP-complete.

3. Preliminaries.

3.1. Notation. In the remainder of this article we consider finite, simple, and undirected graphs. Given a graph G, we denote by $V(G)$ and $E(G)$ the sets of its vertices and edges, respectively. An edge between two vertices u and v of a graph $G=(V, E)$ is denoted by $u v$, and in this case u and v are said to be adjacent. The neighborhood of a vertex $u \in V$ is the set $N(u)=\{v \in V \mid u v \in E\}$ of its adjacent vertices. The complement of G is denoted by \bar{G}, i.e. $\bar{G}=(V, \bar{E})$, where $u v \in \bar{E}$ if and only if $u v \notin E$. For any subset $E_{0} \subseteq E$ of the edges of G, we denote for simplicity
$G-E_{0}=\left(V, E \backslash E_{0}\right)$. A subset $S \subseteq V$ of its vertices induces an independent set in G if $u v \notin E$ for every pair of vertices $u, v \in S$. Furthermore, S induces a clique in G if $u v \in E$ for every pair $u, v \in S$. For two graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$, we denote $G_{1} \subseteq G_{2}$ whenever $E_{1} \subseteq E_{2}$. Moreover, we denote for simplicity by $G_{1} \cup G_{2}$ and $G_{1} \cap G_{2}$ the graphs $\left(V, E_{1} \cup E_{2}\right)$ and $\left(V, E_{1} \cap E_{2}\right)$, respectively. A graph G is a split graph if its vertices can be partitioned into a clique K and an independent set I. Furthermore, $G=(V, E)$ is a threshold graph if we can assign to each vertex $v \in V$ a real weight a_{v}, such that $u v \in E$ if and only if $a_{u}+a_{v} \geq 1$.

A proper k-coloring of a graph G is an assignment of k colors to the vertices of G, such that adjacent vertices are assigned different colors. The smallest k for which there exists a proper k-coloring of G is the chromatic number of G, denoted by $\chi(G)$. If $\chi(G)=2$ then G is a bipartite graph; in this case the vertices of G are partitioned into two independent sets, the color classes. A bipartite graph G is denoted by $G=(U, V, E)$, where U and V are its color classes and E is the set of edges between them. For a bipartite graph $G=(U, V, E)$, its bipartite complement is the graph $\widehat{G}=(U, V, \widehat{E})$, where for two vertices $u \in U$ and $v \in V, u v \in \widehat{E}$ if and only if $u v \notin E$. A bipartite graph $G=(U, V, E)$ is a chain graph if the vertices of each color class can be ordered by inclusion of their neighborhoods, i.e. $N(u) \subseteq N(v)$ or $N(v) \subseteq N(u)$ for any two vertices u, v in the same color class. Note that chain graphs are closed under bipartite complementation, i.e. G is a chain graph if and only if \widehat{G} is a chain graph.

For any graph $G=(V, E)$ and any graph class \mathcal{G}, the \mathcal{G}-cover number of G is the smallest k such that $E=\bigcup_{i=1}^{k} E_{i}$, where $G_{i}=\left(V, E_{i}\right) \in \mathcal{G}, 1 \leq i \leq k$; in this case the graphs $\left\{G_{i}\right\}_{i=1}^{k}$ are a \mathcal{G}-cover of G. For several graph classes \mathcal{G} it is NP-complete to decide whether the \mathcal{G}-cover number of a graph is at most k, where $k \geq 3$, see e.g. [23]. Throughout the paper, whenever a set of the chain graphs $\left\{G_{i}\right\}_{i=1}^{\bar{k}}$ form a chain-cover of a bipartite graph G, then all these graphs are assumed to have the same color classes as G.

For any partial order $P=(U, R)$, we denote by $\bar{P}=(U, \bar{R})$ the inverse partial order of P, i.e. for any two elements $u, v \in U, u<_{P} v$ if and only if $v<_{P} u$. For any two partial orders $P_{1}=\left(U, R_{1}\right)$ and $P_{2}=\left(U, R_{2}\right)$, we denote $P_{1} \subseteq P_{2}$ whenever $R_{1} \subseteq R_{2}$. Moreover, we denote for simplicity $P_{1} \cup P_{2}$ and $P_{1} \cap P_{2}$ for the partial orders $\left(U, R_{1} \cup R_{2}\right)$ and $\left(U, R_{1} \cap R_{2}\right)$, respectively. If P_{2} is a linear order and $P_{1} \subseteq P_{2}$, then P_{2} is a linear extension of P_{1}. The orders P_{1} and P_{2} contradict each other if there exist two elements $u, v \in U$ such that $u<_{P_{1}} v$ and $v<_{P_{2}} u$. The linear-interval dimension of a partial order P (denoted $\operatorname{lidim}(P))$ is the lexicographically smallest pair (k, ℓ) such that $P=\bigcap_{i=1}^{k} P_{i}$, where $\left\{P_{i}\right\}_{i=1}^{k}$ are interval orders and exactly ℓ among them are not linear orders. In particular, P is a linear-interval order if its linear-interval dimension is at most $(2,1)$, i.e. $P=P_{1} \cap P_{2}$, where P_{1} is a linear order and P_{2} is an interval order.
3.2. Threshold graphs and alternating cycles. In this section we provide preliminary definitions and known results on alternating cycles and on threshold graphs, which will be useful for the remainder of the paper.

Definition 3.1. Let $G=(V, E)$ be a graph, $\widetilde{E} \subseteq E$ be an edge subset, and $k \geq 2$. A set of $2 k$ (not necessarily distinct) vertices $v_{1}, v_{2}, \ldots, v_{2 k} \in V$ builds an alternating cycle $A C_{2 k}$ in \widetilde{E}, if $v_{i} v_{i+1} \in \widetilde{E}$ whenever i is even and $v_{i} v_{i+1} \notin E$ whenever i is odd (where indices are $\bmod 2 k$). Furthermore, we say that G has an alternating cycle $A C_{2 k}$, whenever G has an $A C_{2 k}$ in the edge set $\widetilde{E}=E$.

For instance, for $k=3$, there exist two different possibilities for an $A C_{6}$, which are illustrated in Figures 1(a) and 1(b). These two types of an $A C_{6}$ are called an alternating path of length 5 or of length 6 , respectively $\left(A P_{5}\right.$ and $A P_{6}$ for short, respectively). In an $A P_{6}$ on vertices $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}$, if there exist the edges $v_{1} v_{3}$ and $v_{2} v_{6}$ (or, symmetrically, the edges $v_{3} v_{5}$ and $v_{4} v_{2}$, or the edges $v_{5} v_{1}$ and $v_{6} v_{4}$), then this $A P_{6}$ is called a double $A P_{6}$, cf. Figure $1(\mathrm{c})$.

Definition 3.2. Let $G=(V, E)$ be a graph and v_{1}, \ldots, v_{6} be the vertices of an $A P_{6}$. Then the non-edge $v_{1} v_{2}$ (resp. the non-edge $v_{3} v_{4}, v_{5} v_{6}$) is a base of the $A P_{6}$ and the edge $v_{4} v_{5}$ (resp. the edge $v_{6} v_{1}, v_{2} v_{3}$) is the corresponding ceiling of this $A P_{6}$.

Figure 1. All possibilities for an $A C_{6}:$ (a) an alternating path $A P_{5}$ of length 5, (b) an alternating path $A P_{6}$ of length 6, and (c) a double $A P_{6}$. The solid lines denote edges of the graph and the dashed lines denote non-edges of the graph.

Furthermore, note that for $k=2$, a set of four vertices $v_{1}, v_{2}, v_{3}, v_{4} \in V$ builds an alternating cycle $A C_{4}$ if $v_{1} v_{2}, v_{3} v_{4} \in E$ and $v_{1} v_{4}, v_{2} v_{3} \notin E$. There are three possible graphs on four vertices that build an alternating cycle $A C_{4}$, namely $2 K_{2}, P_{4}$, and C_{4}, which are illustrated in Figure 2.

Figure 2. The three possible $A C_{4}$'s: (a) a $2 K_{2}$, (b) a P_{4}, and (c) a C_{4}.

Alternating cycles can be used to characterize threshold and chain graphs. In particular, threshold graphs are the graphs with no induced $A C_{4}$, and chain graphs are the bipartite graphs with no induced $2 K_{2}$ [16]. We define now for any bipartite graph G the associated split graph of G, which we will use extensively in the remainder of the paper.

Definition 3.3. Let $G=(U, V, E)$ be a bipartite graph. The associated split graph of G is the split graph $H_{G}=\left(U \cup V, E^{\prime}\right)$, where $E^{\prime}=E \cup(V \times V)$, i.e. H_{G} is the split graph made by G by replacing the independent set V of G by a clique.

Observation 1. Let G be a bipartite graph and H_{G} be the associated split graph of G. Then, G has an induced $2 K_{2}$ if and only if H_{G} has an induced $A C_{4}$, and in this case this $A C_{4}$ is a P_{4}.

The next lemma connects the chain cover number $\operatorname{ch}(G)$ of a bipartite graph G with the threshold cover number $t\left(H_{G}\right)$ of the associated split graph H_{G} of G. Recall that the problem of deciding whether a graph G has threshold cover number at most
a given number k is NP-complete for $k \geq 3$ [23], while it is polynomial for $k=2$ [21].
Lemma 3.4 ([16]). Let $G=(U, V, E)$ be a bipartite graph. Then $\operatorname{ch}(G)=t\left(H_{G}\right)$.
The next two definitions of a conflict between two edges and the conflict graph are essential for our results.

Definition 3.5. Let $G=(V, E)$ be a graph and $e_{1}, e_{2} \in E$. If the vertices of e_{1} and e_{2} build an $A C_{4}$ in G, then e_{1} and e_{2} are in conflict, and in this case we denote $e_{1} \| e_{2}$ in G. Furthermore, an edge $e \in E$ is committed if there exists an edge $e^{\prime} \in E$ such that $e \| e^{\prime}$; otherwise e is uncommitted.

Definition 3.6 ([21]). Let $G=(V, E)$ be a graph. The conflict graph $G^{*}=\left(V^{*}, E^{*}\right)$ of G is defined by

- $V^{*}=E$ and
- for every $e_{1}, e_{2} \in E, e_{1} e_{2} \in E^{*}$ if and only if $e_{1} \| e_{2}$ in G.

Observation 2. Let $G=(V, E)$ be a graph and let $e \in E$. If e is uncommitted, then e is an isolated vertex in the conflict graph G^{*} of G.

Observation 3. Let $G=(V, E)$ be a split graph. Let K and I be a partition of V, such that K is a clique and I is an independent set (such a partition always exists for split graphs). Then, every edge of K is uncommitted.

Lemma 3.7. Let G be a graph and let the vertices v_{1}, \ldots, v_{6} of G build an $A P_{6}$ (an alternating path of length 6). Assume that among the three edges $\left\{v_{2} v_{3}, v_{4} v_{5}, v_{6} v_{1}\right\}$ of this $A P_{6}$, no pair of edges is in conflict. Then the edges $v_{3} v_{6}, v_{4} v_{1}, v_{5} v_{2}$ exist in G and $v_{4} v_{5}\left\|v_{3} v_{6}, v_{2} v_{3}\right\| v_{4} v_{1}$, and $v_{6} v_{1} \| v_{5} v_{2}$.

Proof. Suppose that $v_{3} v_{6}$ is not an edge of G. Then the edges $v_{2} v_{3}$ and $v_{6} v_{1}$ are in conflict, since $v_{1} v_{2}$ is not an edge of G (cf. Figure $1(\mathrm{~b})$), which is a contradiction to the assumption of the lemma. Therefore $v_{3} v_{6}$ is an edge of G. By symmetry, it follows that also $v_{4} v_{1}$ and $v_{5} v_{2}$ are edges in G. Note now that the edges $v_{4} v_{5} \| v_{3} v_{6}$ are in conflict, since $v_{3} v_{4}$ and $v_{5} v_{6}$ are not edges of G. By symmetry, it follows that also $v_{2} v_{3} \| v_{4} v_{1}$, and $v_{6} v_{1} \| v_{5} v_{2}$.

Note that the threshold cover number $t(G)$ of a graph $G=(V, E)$ equals the smallest k, such that the edge set E of G can be partitioned into k sets $E_{1}, E_{2}, \ldots, E_{k}$, each having a threshold completion in G (that is, there exists for every $i=1,2, \ldots, k$ an edge set E_{i}^{\prime}, such that $E_{i} \subseteq E_{i}^{\prime} \subseteq E$ and $\left(V, E_{i}^{\prime}\right)$ is a threshold graph). The following characterization of subgraphs that admit a threshold completion in a given graph G has been proved in [12].

Lemma 3.8 ([12]). Let H be a subgraph of a graph $G=(V, E)$. Then H has a threshold completion in G if and only if G has no $A C_{2 k}, k \geq 2$, on the edges of H.

If the conditions of Lemma 3.8 are satisfied, then such a threshold completion of H in G can be computed in linear time, as the next lemma states.

Lemma 3.9 ([21]). If a subgraph H of $G=(V, E)$ has a threshold completion in G, then it can be computed in $O(|V|+|E|)$ time.

Corollary 3.10. Let $G=(V, E)$ be a graph. Then, $t(G)=1$ if and only if G has no $A C_{2 k}, k \geq 2$. Furthermore, $t(G) \leq 2$ if and only if the set E of edges can be partitioned into two sets E_{1} and E_{2}, such that G has no $A C_{2 k}, k \geq 2$, in each E_{i}, $i=1,2$.

Proof. First note that $t(G)=1$ if and only if G is a threshold graph. Therefore, Lemma 3.8 implies that $t(G)=1$ if and only if G has no $A C_{2 k}, k \geq 2$.

Recall that the threshold cover number $t(G)$ of a graph $G=(V, E)$ equals the smallest k, such that the edge set E of G can be partitioned into k sets $E_{1}, E_{2}, \ldots, E_{k}$, each having a threshold completion in G. Therefore, if $t(G) \leq 2$, Lemma 3.8 implies that E can be partitioned into two sets E_{1} and E_{2}, such that G has no $A C_{2 k}, k \geq 2$, in each $E_{i}, i=1,2$. Note that, in the case where $t(G)=1$ (i.e. G is a threshold graph),
we can set $E_{1}=E$ and $E_{2}=\emptyset$. Conversely, suppose that E can be partitioned into two such sets E_{1} and E_{2}. Then Lemma 3.8 implies that both graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$ have a threshold completion in G, where $G_{1} \cup G_{2}=G$. Therefore $t(G) \leq 2$.

It can be easily proved that, for every graph G, the chromatic number $\chi\left(G^{*}\right)$ of its conflict graph G^{*} provides a lower bound for the threshold cover number $t(G)$ of G, as the next lemma states.

Lemma 3.11 ([16]). Let G be a graph. Then $\chi\left(G^{*}\right) \leq t(G)$.
Lemma 3.11 immediately implies that a necessary condition for a graph G to have threshold cover number $t(G) \leq 2$ is that $\chi\left(G^{*}\right) \leq 2$, i.e. that G^{*} is a bipartite graph. The main result of [21] is the next theorem, which proves that this is also a sufficient condition for graphs G with $\chi\left(G^{*}\right) \leq 2$.

THEOREM 3.12 ([21]). If the conflict graph G^{*} of a graph $G=(V, E)$ is bipartite (i.e. $\chi\left(G^{*}\right) \leq 2$), then $t(G) \leq 2$. Moreover, E can be partitioned in $O(|E|(|V|+|E|))$ time into two sets E_{1} and E_{2}, such that G has no $A C_{2 k}, k \geq 2$, in each $E_{i}, i=1,2$.

Due to the next theorem, it suffices for bipartite conflict graphs G^{*} to consider only small alternating cycles $A C_{2 k}$ with $k \leq 3$.

Theorem 3.13 ([12]). Suppose that the conflict graph G^{*} of a graph $G=(V, E)$ is bipartite (i.e. $\chi\left(G^{*}\right) \leq 2$), with (vertex) color classes E_{1} and E_{2}. If G has an $A C_{2 k}$ on the edges of E_{1} (resp. of E_{2}), where $k \geq 3$, then G has also an $A C_{6}$ in E_{1} (resp. of E_{2}).

Lemma $3.14([13])$. Let $G=(V, E)$ be a split graph. Let K and I be a partition of V such that K induces a clique and I induces an independent set in G. Assume that the vertices v_{1}, \ldots, v_{6} build an $A P_{6}$ in G. Then either $v_{1}, v_{3}, v_{5} \in K$ and $v_{2}, v_{4}, v_{6} \in I$, or $v_{1}, v_{3}, v_{5} \in I$ and $v_{2}, v_{4}, v_{6} \in K$.

Lemma 3.15. Any split graph G does not contain any $A P_{5}$ or any double $A P_{6}$.
Proof. Let $G=(V, E)$ be a split graph and let K and I be a partition of V, such that K induces a clique and I induces an independent set in G; such a partition exists by the definition of split graphs. The fact that a split graph does not contain any $A P_{5}$ has been proved in [13]. However, for the sake of completeness we present here a simple proof of this fact. Assume that G contains an $A P_{5}$ on the vertices $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}$ where $v_{1}=v_{4}$, cf. Figure $1(\mathrm{a})$. Suppose first that $v_{1}=v_{4} \in K$. Then, since $v_{2}, v_{3} \notin N\left(v_{1}\right)$, it follows that $v_{2}, v_{3} \in I$. This is a contradiction, since $v_{2} v_{3} \in E$. Suppose now that $v_{1}=v_{4} \in I$. Then, since $v_{5}, v_{6} \in N\left(v_{1}\right)$, it follows that $v_{5}, v_{6} \in K$. This is a contradiction, since $v_{5} v_{6} \notin E$. Therefore G does not contain any $A P_{5}$.

Now assume that G contains an $A P_{6}$ on the vertices $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}$, cf. Figure 1(b). We will prove that this is not a double $A P_{6}$ (cf. Figure 1(c)). Indeed, Lemma 3.14 implies that either $v_{1}, v_{3}, v_{5} \in K$ and $v_{2}, v_{4}, v_{6} \in I$, or $v_{1}, v_{3}, v_{5} \in I$ and $v_{2}, v_{4}, v_{6} \in K$. In both cases, none of the pairs of edges $\left\{v_{1} v_{3}, v_{2} v_{6}\right\},\left\{v_{3} v_{5}, v_{4} v_{2}\right\}$, and $\left\{v_{5} v_{1}, v_{6} v_{4}\right\}$ can exist simultaneously in G. Therefore, G has no double $A P_{6}$. This completes the proof of the lemma.
4. Linear-Interval covers of bipartite graphs. In this section we introduce the crucial notion of a linear-interval cover of bipartite graphs (cf. Definition 4.6). Then we use linear-interval covers to provide a new characterization of PI graphs (cf. Theorem 4.8), which is one of the main tools for our PI graph recognition algorithm. First we provide in the next theorem the characterization of PI graphs using
linear orders and interval orders.
ThEOREM 4.1. Let $G=(V, E)$ be a cocomparability graph and P be a partial order of \bar{G}. Then G is a PI graph if and only if $P=P_{1} \cap P_{2}$, where P_{1} is a linear order and P_{2} is an interval order.

Proof. For the purposes of the proof, a partial order $P=(U, R)$ is called a PI order [5], if there exists a PI representation (i.e. a simple-triangle representation) R, such that for any two $u, v \in U, u<_{P} v$ if and only if the triangle associated to u lies in R entirely to the left of the triangle associated to v.

Suppose that $P=P_{1} \cap P_{2}$ for two partial orders P_{1} and P_{2}, where P_{1} is a linear order and P_{2} is an interval order. Then P is a PI order [5], and thus G is a PI graph. Conversely, suppose that G is a PI graph. Equivalently, P is a PI order, and thus the linear-interval dimension of P is $\operatorname{lidim}(P) \leq(2,1)$ [5]. That is, $P=P_{1} \cap P_{2}$ for two partial orders P_{1} and P_{2}, where P_{1} is a linear order and P_{2} is an interval order. Moreover, whenever we are given a partial order P such that $P=P_{1} \cap P_{2}$, where P_{1} is a linear order and P_{2} is an interval order, it is straightforward to compute a PI model for P (cf. [5]). Equivalently, we can easily construct in this case a PI representation of the incomparability graph G of P (cf. lines 13-15 of Algorithm 1 below).

For every partial order P we define now the domination bipartite graph $C(P)$, which has been used to characterize interval orders [15]. Here "C" stands for "Comparable", since the definition of $C(P)$ uses the comparable elements of P.

Definition $4.2([15])$. Let $P=(U, R)$ be a partial order, where $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$. Furthermore let $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. The domination bipartite graph $C(P)=(U, V, E)$ is defined such that $u_{i} v_{j} \in E$ if and only if $u_{i}<_{P} u_{j}$.

Lemma 4.3 ([15]). Let $P=(U, R)$ be a partial order. Then, P is an interval order if and only if $C(P)$ is a chain graph.

Extending the notion of $C(P)$, we now introduce the bipartite graph $N C(P)$ to characterize linear orders (cf. Lemma 4.5). Here "NC" stands for "Non-strictly Comparable". Namely, this graph can be obtained by adding to the graph $C(P)$ the perfect matching $\left\{u_{i} v_{i} \mid i=1,2, \ldots, n\right\}$ on the vertices of U and V.

Definition 4.4. Let $P=(U, R)$ be a partial order, where $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$. Furthermore let $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Then, $N C(P)=(U, V, E)$ is the bipartite graph, such that $u_{i} v_{j} \in E$ if and only if $u_{i} \leq_{P} u_{j}$.

Lemma 4.5. Let $P=(U, R)$ be a partial order. Then, P is a linear order if and only if $N C(P)$ is a chain graph.

Proof. Let $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$. Suppose that P is a linear order, i.e. $u_{1}<_{P} u_{2}<_{P} \ldots<_{P} u_{n}$. Then, by Definition 4.4, the set of neighbors of a vertex $u_{i} \in U$ in the graph $N C(P)$ is $N\left(u_{i}\right)=\left\{v_{i}, v_{i+1}, \ldots, v_{n}\right\}$. Therefore, $N\left(u_{n}\right) \subset$ $N\left(u_{n-1}\right) \subset \ldots \subset N\left(u_{1}\right)$, and thus $N C(P)$ is a chain graph.

Suppose now that $N C(P)$ is a chain graph. Then the sets of neighbors of the vertices of U in the graph $N C(P)$ can be linearly ordered by inclusion. Let without loss of generality $N\left(u_{1}\right) \subseteq N\left(u_{2}\right) \subseteq \ldots \subseteq N\left(u_{n}\right)$. Therefore, since $v_{i} \in N\left(u_{i}\right)$ in $N C(P)$ for every $i=1,2, \ldots, n$, it follows that $v_{i} \in N\left(u_{j}\right)$ in $N C(P)$ whenever $i<j$. Therefore, by Definition 4.4, $u_{j}<_{P} u_{i}$ whenever $i<j$. That is, $u_{n}<_{P} u_{n-1}<_{P}$ $\ldots<_{P} u_{1}$, i.e. P is a linear order. \square

We introduce now the notion of a linear-interval cover of a bipartite graph. This notion is crucial for our main result of this section, cf. Theorem 4.8.

DEFINITION 4.6. Let $G=(U, V, E)$ be a bipartite graph, where $U=$ $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Let $E_{0}=\left\{u_{i} v_{i} \mid 1 \leq i \leq n\right\}$ and suppose that $E_{0} \subseteq E$. Then, G is linear-interval coverable if there exist two chain graphs
$G_{1}=\left(U, V, E_{1}\right)$ and $G_{2}=\left(U, V, E_{2}\right)$, such that $G=G_{1} \cup G_{2}$ and $E_{0} \subseteq E_{2} \backslash E_{1}$. In this case, the sets $\left\{E_{1}, E_{2}\right\}$ are a linear-interval cover of G.

Before we proceed with Theorem 4.8, we first provide the next auxiliary lemma.
Lemma 4.7. Let $Q_{1}=\left(U, R_{1}\right)$ be an interval order and $Q_{2}=\left(U, R_{2}\right)$ be a partial order, such that Q_{1} and Q_{2} do not contradict each other. Then there exists a linear order Q_{0} that is a linear extension of both Q_{1} and Q_{2}.

Proof. Let $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ be the ground set of Q_{1} and Q_{2}. Furthermore let $C\left(Q_{1}\right)=\left(U, V, E_{1}\right)$ be the domination bipartite graph of Q_{1}, where $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, cf. Definition 4.2. Since Q_{1} is an interval order by assumption, $C\left(Q_{1}\right)$ is a chain graph by Lemma 4.3, i.e. $C\left(Q_{1}\right)$ does not contain an induced $2 K_{2}$. Consider now two edges $u_{i} v_{j}$ and $u_{k} v_{\ell}$ of $C\left(Q_{1}\right)$, where $\{i, j\} \cap\{k, \ell\}=\emptyset$. Then $u_{i}<_{Q_{1}} u_{j}$ and $u_{k}<_{Q_{1}} u_{\ell}$ by Definition 4.2. Furthermore, at least one of the edges $u_{i} v_{\ell}$ and $u_{k} v_{j}$ exists in $C\left(Q_{1}\right)$, since otherwise the edges $u_{i} v_{j}$ and $u_{k} v_{\ell}$ induce a $2 K_{2}$ in $C\left(Q_{1}\right)$, which is a contradiction. Therefore $u_{i}<_{Q_{1}} u_{\ell}$ or $u_{k}<_{Q_{1}} u_{j}$.

Since Q_{1} and Q_{2} do not contradict each other by assumption, we can define the simple directed graph $G_{0}=(U, E)$, such that $\overrightarrow{u_{i} u_{j}} \in E$ if and only if $u_{i}<_{Q_{1}} u_{j}$ or $u_{i}<_{Q_{2}} u_{j}$. We will prove that G_{0} is acyclic. Suppose otherwise that G_{0} has at least one directed cycle, and let C be a directed cycle of G_{0} with the smallest possible length. Assume first that C has length 3 , and let its edges be $\overrightarrow{u_{i} u_{j}}, \overrightarrow{u_{j} u_{k}}$, and $\overrightarrow{u_{k} u_{i}}$. Then at least two of these edges belong to Q_{1} or to Q_{2}. Let without loss of generality $\overrightarrow{u_{i} u_{j}}$ and $\overrightarrow{u_{j} u_{k}}$ belong to Q_{1}, i.e. $u_{i}<_{Q_{1}} u_{j}$ and $u_{j}<_{Q_{1}} u_{k}$. Then also $u_{i}<_{Q_{1}} u_{k}$, since Q_{1} is transitive, and thus $\overrightarrow{u_{i} u_{k}} \in E$. This contradicts the assumption that $\overrightarrow{u_{k} u_{i}}$ is an edge of C. Assume now that C has length greater than 3. Suppose that two consecutive edges $\overrightarrow{u_{i} u_{j}}$ and $\overrightarrow{u_{j} u_{k}}$ of C belong to Q_{1}, i.e. $u_{i}<_{Q_{1}} u_{j}$ and $u_{j}<_{Q_{1}} u_{k}$. Then also $u_{i}<_{Q_{1}} u_{k}$, since Q_{1} is transitive, and thus $\overrightarrow{u_{i} u_{k}} \in E$. Therefore we can replace in C the edges $\overrightarrow{u_{i} u_{j}}$ and $\overrightarrow{u_{j} u_{k}}$ by the edge $\overrightarrow{u_{i} u_{k}}$, obtaining thus a smaller directed cycle than C, which is a contradiction by the assumption on C. Thus no two consecutive edges of C belong to Q_{1}. Similarly, no two consecutive edges of C belong to Q_{2}, and thus the edges of C belong alternately to Q_{1} and Q_{2}. In particular, C has even length.

Consider now three consecutive edges $\overrightarrow{u_{i} u_{j}}, \overrightarrow{u_{j} u_{k}}, \overrightarrow{u_{k} u_{\ell}}$ of C, where $\overrightarrow{u_{i} u_{j}}$ and $\overrightarrow{u_{k} u_{\ell}}$ belong to Q_{1}. Then $u_{i}<_{Q_{1}} u_{j}$ and $u_{k}<_{Q_{1}} u_{\ell}$, where $\{i, j\} \cap\{k, \ell\}=\emptyset$, and thus $u_{i}<_{Q_{1}} u_{\ell}$ or $u_{k}<_{Q_{1}} u_{j}$, as we proved above. That is, $\overrightarrow{u_{i} u_{\ell}} \in E$ or $\overrightarrow{u_{k} u_{j}} \in E$. Therefore, since we assumed that $\overrightarrow{u_{j} u_{k}}$ is an edge of C, it follows that $\overrightarrow{u_{k} u_{j}} \notin E$, and thus $\overrightarrow{u_{i} u_{\ell}} \in E$. Therefore, in particular, $\overrightarrow{u_{\ell} u_{i}} \notin E$, and thus C does not have length 4, i.e. it has length at least 6 . Thus we can replace in C the edges $\overrightarrow{u_{i} u_{j}}, \overrightarrow{u_{j} u_{k}}, \overrightarrow{u_{k} u_{\ell}}$ by the edge $\overrightarrow{u_{i} u_{\ell}}$, obtaining thus a smaller directed cycle than C, which is a contradiction by the assumption on C.

Therefore, there exists no directed cycle in G_{0}, i.e. G_{0} is a directed acyclic graph. Thus any topological ordering of G_{0} corresponds to a linear order $Q_{0}=\left(U, R_{0}\right)$ that is a linear extension of both Q_{1} and Q_{2}. This completes the proof of the lemma.

Theorem 4.8. Let $P=(U, R)$ be a partial order. In the bipartite complement $\widehat{C}(P)$ of the graph $C(P)$, denote $E_{0}=\left\{u_{i} v_{i} \mid 1 \leq i \leq n\right\}$. The following statements are equivalent:
(a) $P=P_{1} \cap P_{2}$, where P_{1} is a linear order and P_{2} is an interval order.
(b) $\widehat{C}(P)=\widehat{N C}\left(P_{1}\right) \cup \widehat{C}\left(P_{2}\right)$ for two partial orders P_{1} and P_{2} on V, where $\widehat{N C}\left(P_{1}\right)$ and $\widehat{C}\left(P_{2}\right)$ are chain graphs.
(c) $\widehat{C}(P)$ is linear-interval coverable, i.e. $\widehat{C}(P)=G_{1} \cup G_{2}$ for two chain graphs $G_{1}=\left(U, V, E_{1}\right)$ and $G_{2}=\left(U, V, E_{2}\right)$, where $E_{0} \subseteq E_{2} \backslash E_{1}$.

Proof. $(\mathrm{a}) \Rightarrow(\mathrm{b})$. Since P_{1} is a linear order, it follows by Lemma 4.5 that $N C\left(P_{1}\right)$ is a chain graph. Furthermore, sine P_{2} is an interval order, it follows by Lemma 4.3 that $C\left(P_{2}\right)$ is a chain graph. Therefore, since the class of chain graphs is closed under bipartite complementation, it follows that $\widehat{N C}\left(P_{1}\right)$ and $\widehat{C}\left(P_{2}\right)$ are chain graphs.

Let $u_{i}, u_{j} \in U$ such that $u_{i} v_{j} \in E(C(P))$. Then $u_{i}<_{P} u_{j}$ by Definition 4.2. Furthermore, since $P=P_{1} \cap P_{2}$ by assumption, it follows that $u_{i}<_{P_{1}} u_{j}$ and $u_{i}<_{P_{2}}$ u_{j}, and thus also $u_{i} v_{j} \in E\left(N C\left(P_{1}\right)\right)$ and $u_{i} v_{j} \in E\left(C\left(P_{2}\right)\right)$ by Definitions 4.2 and 4.4, respectively. Therefore $C(P) \subseteq N C\left(P_{1}\right) \cap C\left(P_{2}\right)$.

Let now $u_{i}, u_{j} \in U$ such that $u_{i} v_{j} \in E\left(N C\left(P_{1}\right)\right)$ and $u_{i} v_{j} \in E\left(C\left(P_{2}\right)\right)$. Then, it follows in particular that $u_{i} \neq u_{j}$ (since otherwise $u_{i} v_{j} \notin E\left(C\left(P_{2}\right)\right)$, a contradiction). Thus, $u_{i}<_{P_{1}} u_{j}$ and $u_{i}<_{P_{2}} u_{j}$ by Definitions 4.2 and 4.4. Therefore, since $P=P_{1} \cap P_{2}$ by assumption, it follows that $u_{i}<_{P} u_{j}$, and thus $u_{i} v_{j} \in E(C(P))$ by Definition 4.2. That is, $N C\left(P_{1}\right) \cap C\left(P_{2}\right) \subseteq C(P)$. Summarizing, $C(P)=N C\left(P_{1}\right) \cap C\left(P_{2}\right)$, and thus also $\widehat{C}(P)=\widehat{N C}\left(P_{1}\right) \cup \widehat{C}\left(P_{2}\right)$.
(b) $\Rightarrow(\mathrm{a})$. Since $\widehat{C}(P)=\widehat{N C}\left(P_{1}\right) \cup \widehat{C}\left(P_{2}\right)$, it follows that $C(P)=N C\left(P_{1}\right) \cap$ $C\left(P_{2}\right)$. Let $u_{i}, u_{j} \in U$ such that $u_{i}<_{P} u_{j}$. Then $u_{i} v_{j} \in E(C(P))$ by Definition 4.2. Therefore, since $C(P)=N C\left(P_{1}\right) \cap C\left(P_{2}\right)$, it follows that also $u_{i} v_{j} \in E\left(N C\left(P_{1}\right)\right)$ and $u_{i} v_{j} \in E\left(C\left(P_{2}\right)\right)$. Thus, in particular, $u_{i} \neq u_{j}$ (since otherwise $u_{i} v_{j} \notin E\left(C\left(P_{2}\right)\right)$, a contradiction). Therefore $u_{i}<_{P_{1}} u_{j}$ and $u_{i}<_{P_{2}} u_{j}$ by Definitions 4.2 and 4.4. That is, $P \subseteq P_{1} \cap P_{2}$.

Let now $u_{i}, u_{j} \in U$ such that $u_{i}<_{P_{1}} u_{j}$ and $u_{i}<_{P_{2}} u_{j}$. Then $u_{i} v_{j} \in E\left(N C\left(P_{1}\right)\right)$ and $u_{i} v_{j} \in E\left(C\left(P_{2}\right)\right)$ by Definitions 4.2 and 4.4. Therefore, since $C(P)=N C\left(P_{1}\right) \cap$ $C\left(P_{2}\right)$, it follows that also $u_{i} v_{j} \in E(C(P))$. Thus $u_{i}<_{P} u_{j}$ by Definition 4.2. That is, $P_{1} \cap P_{2} \subseteq P$. Summarizing, $P=P_{1} \cap P_{2}$. Furthermore, since by assumption $\widehat{N C}\left(P_{1}\right)$ and $\widehat{C}\left(P_{2}\right)$ are chain graphs, it follows that also $N C\left(P_{1}\right)$ and $C\left(P_{2}\right)$ are chain graphs. Therefore P_{1} is a linear order and P_{2} is an interval order by Lemmas 4.5 and 4.3, respectively.
(b) $\Rightarrow(\mathrm{c})$. Define $G_{1}=\widehat{N C}\left(P_{1}\right)$ and $G_{2}=\widehat{C}\left(P_{2}\right)$. Then, it follows by (b) that G_{1} and G_{2} are chain graphs and that $\widehat{C}(P)=G_{1} \cup G_{2}$. Note now by Definitions 4.2 and 4.4 that $E_{0} \cap E\left(C\left(P_{2}\right)\right)=\emptyset$ and that $E_{0} \subseteq E\left(N C\left(P_{1}\right)\right)$, respectively. Therefore $E_{0} \subseteq E\left(\widehat{C}\left(P_{2}\right)\right) \backslash E\left(\widehat{N C}\left(P_{1}\right)\right)$. Thus, since $E_{2}=E\left(G_{2}\right)=E\left(\widehat{C}\left(P_{2}\right)\right)$ and $E_{1}=$ $E\left(G_{1}\right)=E\left(\widehat{N C}\left(P_{1}\right)\right)$, it follows that $E_{0} \subseteq E_{2} \backslash E_{1}$. That is, $\widehat{C}(P)$ is linear-interval coverable by Definition 4.6.
$(\mathrm{c}) \Rightarrow(\mathrm{b})$. We will construct from the edge sets E_{1} and E_{2} of G_{1} and G_{2}, respectively, a linear order P_{1} and an interval order P_{2}, such that $\widehat{C}(P)=\widehat{N C}\left(P_{1}\right) \cup$ $\widehat{C}\left(P_{2}\right)$. Denote first the bipartite complement \widehat{G}_{2} of G_{2} as $\widehat{G}_{2}=\left(U, V, \widehat{E}_{2}\right)$. Note that \widehat{G}_{2} is a chain graph, since G_{2} is also a chain graph by assumption.

The interval order P_{2}. We define P_{2}, such that $u_{i}<_{P_{2}} u_{j}$ if and only if $u_{i} v_{j} \in \widehat{E}_{2}$. We will now prove that P_{2} is a partial order. Recall that $E_{0} \subseteq E_{2}$ by assumption, and thus $E_{0} \cap \widehat{E}_{2}=\emptyset$. That is, $u_{i} v_{i} \notin \widehat{E}_{2}$ for every $i=1,2, \ldots, n$. Furthermore, \widehat{G}_{2} is a chain graph, since G_{2} is a chain graph by assumption. Therefore, for two distinct indices i, j, at most one of the edges $u_{i} v_{j}$ and $u_{j} v_{i}$ belongs to \widehat{E}_{2}, since otherwise these two edges would induce a $2 K_{2}$ in \widehat{G}_{2}, which is a contradiction. Thus, according to our definition of P_{2}, whenever $i \neq j$, it follows that either $u_{i}<_{P_{2}} u_{j}$, or $u_{j}<_{P_{2}} u_{i}$, or u_{i} and u_{j} are incomparable in P_{2}. Suppose that $u_{i}<_{P_{2}} u_{j}$ and $u_{j}<_{P_{2}} u_{k}$ for three indices i, j, k. That is, $u_{i} v_{j}, u_{j} v_{k} \in \widehat{E}_{2}$ by definition of P_{2}. Since
$\widehat{G}_{2}=\left(U, V, \widehat{E}_{2}\right)$ is a chain graph, the edges $u_{i} v_{j}$ and $u_{j} v_{k}$ do not build a $2 K_{2}$ in \widehat{G}_{2}. Therefore, since $u_{j} v_{j} \notin \widehat{E}_{2}$, it follows that $u_{i} v_{k} \in \widehat{E}_{2}$, i.e. $u_{i}<_{P_{2}} u_{k}$. That is, P_{2} is transitive, and thus P_{2} is a partial order. Furthermore, note by the definition of P_{2} and by Definition 4.2 that $\widehat{G}_{2}=C\left(P_{2}\right)$. Therefore, since \widehat{G}_{2} is a chain graph, it follows by Lemma 4.3 that P_{2} is an interval order.

In order to define the linear order P_{1}, we first define two auxiliary orders Q_{1} and Q_{2}, as follows.

The interval order Q_{1}. We define Q_{1}, such that $u_{i}<_{Q_{1}} u_{j}$ if and only if $u_{i} v_{j} \in E_{1}$. We will prove that Q_{1} is a partial order. Recall that $E_{0} \cap E_{1}=\emptyset$ by assumption. That is, $u_{i} v_{i} \notin E_{1}$ for every $i=1,2, \ldots, n$. Furthermore, for two distinct indices i, j, at most one of the edges $u_{i} v_{j}$ and $u_{j} v_{i}$ belongs to E_{1}. Indeed, otherwise these two edges would induce a $2 K_{2}$ in G_{1}, which is a contradiction since G_{1} is a chain graph by assumption. Thus, according to our definition of Q_{1}, whenever $i \neq j$, it follows that either $u_{i}<_{Q_{1}} u_{j}$, or $u_{j}<_{Q_{1}} u_{i}$, or u_{i} and u_{j} are incomparable in Q_{1}. Suppose that $u_{i}<_{Q_{1}} u_{j}$ and $u_{j}<_{Q_{1}} u_{k}$ for three indices i, j, k. That is, $u_{i} v_{j}, u_{j} v_{k} \in E_{1}$ by definition of Q_{1}. Since G_{1} is a chain graph by assumption, the edges $u_{i} v_{j}$ and $u_{j} v_{k}$ do not build a $2 K_{2}$ in G_{1}. Therefore, since $u_{j} v_{j} \notin E_{1}$, it follows that $u_{i} v_{k} \in E_{1}$, i.e. $u_{i}<_{Q_{1}} u_{k}$. That is, Q_{1} is transitive, and thus Q_{1} is a partial order. Furthermore, note by the definition of Q_{1} and by Definition 4.2 that $G_{1}=C\left(Q_{1}\right)$. Therefore Q_{1} is an interval order by Lemma 4.3, since G_{1} is a chain graph by assumption.

The partial order Q_{2}. We define the partial order Q_{2} as the inverse partial order \bar{P} of P. That is, $u_{i}<_{Q_{2}} u_{j}$ if and only if $u_{j}<_{P} u_{i}$. Note that Q_{2} is transitive, since P is transitive.

Before we define the linear order P_{1}, we first prove that the partial orders Q_{1} and Q_{2} do not contradict each other. Suppose otherwise that $u_{i}<_{Q_{1}} u_{j}$ and $u_{j}<_{Q_{2}} u_{i}$, for some pair u_{i}, u_{j}. Then, since $u_{i}<_{Q_{1}} u_{j}$, it follows that $u_{i} v_{j} \in E_{1}$ by definition of Q_{1}. Therefore $u_{i} v_{j} \in E(\widehat{C}(P))$, since $\widehat{C}(P)=G_{1} \cup G_{2}$ by assumption. On the other hand, since $u_{j}<_{Q_{2}} u_{i}$, it follows that $u_{i}<_{P} u_{j}$ by definition of Q_{2}. Therefore $u_{i} v_{j} \in E(C(P))$ by Definition 4.2, and thus $u_{i} v_{j} \notin E(\widehat{C}(P))$, which is a contradiction. Therefore the partial orders Q_{1} and Q_{2} do not contradict each other.

The linear order P_{1}. Since the interval order Q_{1} and the partial order Q_{2} do not contradict each other, we can construct by Lemma 4.7 a common linear extension Q_{0} of Q_{1} and Q_{2}. That is, if $u_{i}<_{Q_{1}} u_{j}$ or $u_{i}<_{Q_{2}} u_{j}$, then $u_{i}<_{Q_{0}} u_{j}$. We define now the linear order P_{1} as the inverse linear order $\overline{Q_{0}}$ of Q_{0}. Note that P_{1} is also a linear extension of P, since $u_{i}<_{P} u_{j}$ implies that $u_{j}<_{Q_{2}} u_{i}$, which in turn implies that $u_{i}<_{P_{1}} u_{j}$.

Now we prove that $\widehat{C}(P) \subseteq \widehat{N C}\left(P_{1}\right) \cup \widehat{C}\left(P_{2}\right)$. Let $u_{i} v_{j} \in E_{1}$. Then $u_{i}<_{Q_{1}} u_{j}$ by the definition of Q_{1}, and thus $u_{j}<_{P_{1}} u_{i}$ by the definition of P_{1}. Therefore $u_{i} \not \leq_{P_{1}} u_{j}$, and thus $u_{i} v_{j} \notin E\left(N C\left(P_{1}\right)\right)$ by Definition 4.4. Therefore $u_{i} v_{j} \in E\left(\widehat{N C}\left(P_{1}\right)\right)$. Thus $E_{1} \subseteq E\left(\widehat{N C}\left(P_{1}\right)\right)$, i.e. $G_{1} \subseteq \widehat{N C}\left(P_{1}\right)$. Recall now that $\widehat{C}(P)=G_{1} \cup G_{2}$ by assumption. Furthermore recall that $\widehat{G}_{2}=C\left(P_{2}\right)$ as we proved above, and thus $G_{2}=\widehat{C}\left(P_{2}\right)$. Therefore, since $G_{1} \subseteq \widehat{N C}\left(P_{1}\right)$, it follows that $\widehat{C}(P) \subseteq \widehat{N C}\left(P_{1}\right) \cup \widehat{C}\left(P_{2}\right)$.

Finally we prove that $C(P) \subseteq N C\left(P_{1}\right) \cap C\left(P_{2}\right)$. Consider now an edge $u_{i} v_{j} \in$ $E(C(P))$. Then $u_{i}<_{P} u_{j}$ by Definition 4.2, and thus $u_{j}<_{Q_{2}} u_{i}$ by the definition of Q_{2}. Furthermore $u_{i}<_{P_{1}} u_{j}$ by the definition of P_{1}, and thus $u_{i} v_{j} \in E\left(N C\left(P_{1}\right)\right)$ by Definition 4.4. Note now that $C(P)=\widehat{G}_{1} \cap \widehat{G}_{2}$, since $\widehat{C}(P)=G_{1} \cup G_{2}$ by assumption.

Therefore, since $u_{i} v_{j} \in E(C(P))$ by assumption, it follows that also $u_{i} v_{j} \in \widehat{E}_{2}$. That is, if $u_{i} v_{j} \in E(C(P))$ then $u_{i} v_{j} \in E\left(N C\left(P_{1}\right)\right)$ and $u_{i} v_{j} \in \widehat{E}_{2}$. Therefore, since $\widehat{G}_{2}=C\left(P_{2}\right)$, it follows that $C(P) \subseteq N C\left(P_{1}\right) \cap C\left(P_{2}\right)$.

Summarizing, since $\widehat{C}(P) \subseteq \widehat{N C}\left(P_{1}\right) \cup \widehat{C}\left(P_{2}\right)$ and $C(P) \subseteq N C\left(P_{1}\right) \cap C\left(P_{2}\right)$, it follows that $\widehat{C}(P)=\widehat{N C}\left(P_{1}\right) \cup \widehat{C}\left(P_{2}\right)$. This completes the proof of the theorem.

The next corollary follows now easily by Theorems 4.1 and 4.8.
Corollary 4.9. Let $G=(V, E)$ be a cocomparability graph and P be a partial order of \bar{G}. Then, G is a PI graph if and only if the bipartite graph $\widehat{C}(P)$ is linearinterval coverable.

We now present Algorithm 1, which constructs a PI representation R of a cocomparability graph G by a linear-interval cover $\left\{E_{1}, E_{2}\right\}$ of the bipartite graph $\widehat{C}(P)$ (cf. Definition 4.6). Since $E_{0} \subseteq E_{2} \backslash E_{1}$ by Definition 4.6, where $E_{0}=\left\{u_{i} v_{i} \mid 1 \leq i \leq n\right\}$ and n is the number of vertices of G, note that $i \neq j$ during the execution of each of the lines 6,8 , and 10 of Algorithm 1.

```
Algorithm 1 Construction of a PI representation, given a linear-interval cover
Input: A cocomparability graph \(G\), a partial order \(P\) of \(\bar{G}\), the domination bipartite
    graph \(C(P)=(U, V, E)\), and a linear-interval cover \(\left\{E_{1}, E_{2}\right\}\) of \(\widehat{C}(P)\)
```

Output: A PI representation R of G
Let $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}, V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$
$Q_{1} \leftarrow \emptyset ; Q_{2} \leftarrow \emptyset ; P_{2} \leftarrow \emptyset$
for $i=1,2, \ldots, n$ do $\left\{\right.$ construction of the partial orders $\left.Q_{1}, Q_{2}, P_{2}\right\}$
for $j=1,2, \ldots, n$ do
if $u_{i} v_{j} \notin E_{2}$ then $\{i \neq j\}$
$u_{i}<_{P_{2}} u_{j}$
if $u_{i} v_{j} \in E_{1}$ then $\{i \neq j\}$
$u_{i}<_{Q_{1}} u_{j}$
if $u_{j}<_{P} v_{i}$ then $\{i \neq j\}$
$u_{i}<_{Q_{2}} u_{j}$
Compute a linear extension Q_{0} of $Q_{1} \cup Q_{2}$
$P_{1} \leftarrow \overline{Q_{0}}$
Place the elements of U on a line L_{1} according to the linear order P_{1}
Place a set of n intervals on a line L_{2} (parallel to L_{1}) according to the interval
order P_{2}
15: Build the PI representation R of G by connecting the endpoints of the intervals
on L_{2} with the corresponding points on L_{1}
return R

Theorem 4.10. Let G be a cocomparability graph with n vertices and P be the partial order of \bar{G}. Let $\left\{E_{1}, E_{2}\right\}$ be a linear-interval cover of $\widehat{C}(P)$. Then Algorithm 1 constructs in $O\left(n^{2}\right)$ time a PI representation R of G.

Proof. Since $\widehat{C}(P)$ admits a linear-interval cover $\left\{E_{1}, E_{2}\right\}$, Corollary 4.9 implies that G is a PI graph. Furthermore, it follows by the proof of the implication ((c) $\Rightarrow(\mathrm{b}))$ in Theorem 4.8 that the partial orders P_{1} and P_{2} that are constructed in lines 3-12 of Algorithm 1 are a linear order and an interval order, respectively, such that $\widehat{C}(P)=\widehat{N C}\left(P_{1}\right) \cup \widehat{C}\left(P_{2}\right)$. Furthermore, it follows by the proof of the implication $((\mathrm{b}) \Rightarrow(\mathrm{a}))$ in Theorem 4.8 that $P=P_{1} \cap P_{2}$ for these two partial orders. Once we
have computed in lines 3-12 the linear order P_{1} and the interval order P_{2}, for which $P=P_{1} \cap P_{2}$, it is now straightforward to construct a PI representation R of G as follows (cf. also [5] and the proof of Theorem 4.1). We arrange a set of n points (resp. n intervals) on a line L_{1} (resp. on a line L_{2}, parallel to L_{1}) according to the linear order P_{1} (resp. to the interval order P_{2}). Then we connect the endpoints of the intervals on L_{2} with the corresponding points on L_{1}. Regarding the time complexity, each of the lines 5-10 of Algorithm 1 can be executed in constant time, and thus the lines 3-10 can be executed in total $O\left(n^{2}\right)$ time. Furthermore, since the lines 11-15 can be executed in a trivial way in at most $O\left(n^{2}\right)$ time each, it follows that the running time of Algorithm 1 is $O\left(n^{2}\right)$. \square
5. Detecting linear-interval covers using Boolean satisfiability. The natural algorithmic question that arizes from the characterization of PI graphs using linear-interval covers in Corollary 4.9, is the following: "Given a cocomparability graph G and a partial order P of \bar{G}, can we efficiently decide whether the bipartite graph $\widehat{C}(P)$ has a linear-interval cover?" We will answer this algorithmic question in the affirmative in Section 6. In this section we translate every instance of this decision problem (i.e. whether the bipartite graph $\widehat{C}(P)$ has a linear-interval cover) to a restricted instance of 3SAT (cf. Theorem 5.4). That is, for every such a bipartite graph $\widehat{C}(P)$, we construct a Boolean formula ϕ in conjunctive normal form (CNF), with size polynomial on the size of $\widehat{C}(P)$ (and thus also on G), such that $\widehat{C}(P)$ has a linear-interval cover if and only if ϕ is satisfiable. In particular, this formula ϕ can be written as $\phi=\phi_{1} \wedge \phi_{2}$, where ϕ_{1} has three literals in every clause and ϕ_{2} has two literals in every clause. Moreover, as we will prove in Section 6, the satisfiability problem can be efficiently decided on the formula ϕ, by exploiting an appropriate sub-formula of ϕ which is gradually mixed (cf. Definition 2.2).

In the remainder of the paper, given a cocomparability graph G and a partial ordering P of its complement \bar{G}, we denote by $\widetilde{G}=\widehat{C}(P)$ the bipartite complement of the domination bipartite graph $C(P)$ of P. Furthermore we denote by H the associated split graph of \widetilde{G} and by H^{*} the conflict graph of H. Moreover, we assume in the remainder of the paper without loss of generality that $\chi\left(H^{*}\right) \leq 2$, i.e. that H^{*} is bipartite. Indeed, as we formally prove in Lemma 5.1 , if $\chi\left(H^{*}\right)>2$ then \widetilde{G} does not have a linear-interval cover, i.e. G is not a PI graph. Note that every proper 2-coloring of the vertices of the conflict graph H^{*} corresponds to exactly one 2-coloring of the edges of H that includes no monochromatic $A C_{4}$. We assume in the following that a proper 2-coloring (with colors blue and red) of the vertices of H^{*} is given as input; note that χ_{0} can be computed in polynomial time.

LEMMA 5.1. Let G be a cocomparability graph and P be a partial order of \bar{G}. Let $\widetilde{G}=\widehat{C}(P), H$ be the associated split graph of \widetilde{G}, and H^{*} be the conflict graph of H. If \widetilde{G} is linear-interval coverable, then $\chi\left(H^{*}\right) \leq 2$.

Proof. Suppose otherwise that $\chi\left(H^{*}\right)>2$. Then $t(H)>2$, since $\chi\left(H^{*}\right) \leq t(H)$ by Lemma 3.11. Therefore, Lemma 3.4 implies that $\operatorname{ch}(\widetilde{G})>2$, and thus G is not a trapezoid graph [15]. Therefore G is clearly not a PI graph, and thus \widetilde{G} is not linear-interval coverable by Corollary 4.9 , which is a contradiction to the assumption of the lemma. Therefore $\chi\left(H^{*}\right) \leq 2$.

Let $C_{1}, C_{2}, \ldots, C_{k}$ be the connected components of H^{*}. Some of these components of H^{*} may be isolated vertices, which correspond to uncommitted edges in H. We assign to every component C_{i}, where $1 \leq i \leq k$, the Boolean variable x_{i}. Since H^{*} is bipartite by assumption, the vertices of each connected component C_{i} of H^{*} can be

```
Algorithm 2 Construction of the 3-CNF Boolean formula \(\phi_{1}\)
Input: The bipartite graph \(\widetilde{G}=\widehat{C}(P)\), the associated split graph \(H\) of \(\widetilde{G}\), its conflict
    graph \(H^{*}\), and a proper 2-coloring \(\chi_{0}\) of the vertices of \(H^{*}\)
Output: The 3-CNF Boolean formula \(\phi_{1}\)
    \(\phi_{1} \leftarrow \emptyset\)
    for all triples of edges \(\left\{e, e^{\prime}, e^{\prime \prime}\right\} \subseteq E(H)\), such that \(\left\{e, e^{\prime}, e^{\prime \prime}\right\}\) build an \(A C_{6}\) in
    \(E(H)\) do \{note that this is an \(A C_{6}\) in the graph \(H\) itself and not in a color
    subclass of its edges \(\}\)
        if \(\ell_{e} \neq \overline{\ell_{e^{\prime}}}, \ell_{e^{\prime}} \neq \overline{\ell_{e^{\prime \prime}}}\), and \(\ell_{e} \neq \overline{\ell_{e^{\prime \prime}}}\) then
            if \(\phi_{1}\) does not contain \(\left(\ell_{e} \vee \ell_{e^{\prime}} \vee \ell_{e^{\prime \prime}}\right)\) and \(\left.\overline{\left(\ell_{e}\right.} \vee \overline{\ell_{e^{\prime}}} \vee \overline{\ell_{e^{\prime \prime}}}\right)\) then
                \(\phi_{1} \leftarrow \phi_{1} \wedge\left(\ell_{e} \vee \ell_{e^{\prime}} \vee \ell_{e^{\prime \prime}}\right) \wedge\left(\overline{\ell_{e}} \vee \overline{\ell_{e^{\prime}}} \vee \overline{\ell_{e^{\prime \prime}}}\right)\)
    return \(\phi_{1}\)
```

partitioned into two color classes $S_{i, 1}$ and $S_{i, 2}$. Without loss of generality, we assume that $S_{i, 1}$ (resp. $S_{i, 2}$) contains the vertices of C_{i} that are colored red (resp. blue) in χ_{0}. Note that, since vertices of H^{*} correspond to edges of H (cf. Definition 3.6), for every two edges e and e^{\prime} of H that are in conflict (i.e. $e \| e^{\prime}$) there exists an index $i \in\{1,2, \ldots, k\}$ such that one of these edges belongs to $S_{i, 1}$ and the other belongs to $S_{i, 2}$. We now assign a literal ℓ_{e} to every edge e of H as follows: if $e \in S_{i, 1}$ for some $i \in\{1,2, \ldots, k\}$, then $\ell_{e}=x_{i}$; otherwise, if $e \in S_{i, 2}$, then $\ell_{e}=\overline{x_{i}}$. Note that, by construction, whenever two edges are in conflict in H, their assigned literals are one the negation of the other.

Observation 4. Every truth assignment τ of the variables $x_{1}, x_{2}, \ldots, x_{k}$ corresponds bijectively to a proper 2 -coloring χ_{τ} (with colors blue and red) of the vertices of H^{*}, as follows: $x_{i}=0$ in τ (resp. $x_{i}=1$ in τ), if and only if all vertices of the component C_{i} have in χ_{τ} the same color as in χ_{0} (resp. opposite color than in χ_{0}). In particular, $\tau=(0,0, \ldots, 0)$ corresponds to the coloring χ_{0}.

We now present the construction of the Boolean formulas ϕ_{1} and ϕ_{2} from the graphs H and H^{*}, cf. Algorithms 2 and 3, respectively.

Description of the 3-CNF formula ϕ_{1} : Consider an $A C_{6}$ in the split graph H, and let $e, e^{\prime}, e^{\prime \prime}$ be its three edges in H, such that no two literals among $\left\{\ell_{e}, \ell_{e^{\prime}}, \ell_{e^{\prime \prime}}\right\}$ are one the negation of the other. According to Algorithm 2, the Boolean formula ϕ_{1} has for this triple $\left\{e, e^{\prime}, e^{\prime \prime}\right\}$ of edges exactly the two clauses $\alpha=\left(\ell_{e} \vee \ell_{e^{\prime}} \vee \ell_{e^{\prime \prime}}\right)$ and $\alpha^{\prime}=\left(\overline{\ell_{e}} \vee \overline{\ell_{e^{\prime}}} \vee \overline{\ell_{e^{\prime \prime}}}\right)$. It is easy to check by the assignment of literals to edges that the clause α (resp. the clause α^{\prime}) of ϕ_{1} is false in a truth assignment τ of the variables if and only if all edges $\left\{e, e^{\prime}, e^{\prime \prime}\right\}$ are colored red (resp. blue) in the 2-edge-coloring χ_{τ} of H (cf. Observation 4), as the following observation states.

ObSERVATION 5. Let τ be any truth assignment of the variables $x_{1}, x_{2}, \ldots, x_{k}$. Let $\left\{e_{1}, e_{2}, e_{3}\right\}$ be the edges of an $A C_{6}$ in H and let $\alpha=\left(\ell_{e_{1}} \vee \ell_{e_{2}} \vee \ell_{e_{3}}\right)$ and $\alpha^{\prime}=$ $\left(\overline{\ell_{e_{1}}} \vee \overline{\ell_{e_{2}}} \vee \overline{\ell_{e_{3}}}\right)$ be a the corresponding clauses in ϕ_{1}. This $A C_{6}$ is monochromatic in the coloring χ_{τ} if and only if $\alpha=0$ or $\alpha^{\prime}=0$ in τ.

Consider now another $A C_{6}$ of H on the edges $\left\{e_{1}, e_{2}, e_{3}\right\}$, in which at least one literal among $\left\{\ell_{e_{1}}, \ell_{e_{2}}, \ell_{e_{3}}\right\}$ is the negation of another literal, for example $\ell_{e_{1}}=\overline{\ell_{e_{2}}}$. Then, for any proper 2-coloring of the vertices of H^{*}, the edges e and e^{\prime} of H receive different colors, and thus this $A C_{6}$ is not monochromatic. Thus the next observation

```
Algorithm 3 Construction of the 2-CNF Boolean formula \(\phi_{2}\)
Input: The bipartite graph \(\widetilde{G}=\widehat{C}(P)\), the associated split graph \(H\) of \(\widetilde{G}\), its conflict
    graph \(H^{*}\), and a proper 2 -coloring \(\chi_{0}\) of the vertices of \(H^{*}\)
Output: The 2-CNF Boolean formula \(\phi_{2}\)
    Let \(H=\left(U, V, E_{H}\right)\), where \(U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}\) and \(V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}\)
    \(E_{0} \leftarrow\left\{u_{i} v_{i} \mid 1 \leq i \leq n\right\} ; \quad E^{\prime} \leftarrow E_{H} \backslash E_{0} ; \quad H^{\prime} \leftarrow H-E_{0}\)
    \(\phi_{2} \leftarrow \emptyset\)
    for every pair \(\{i, j\} \subseteq\{1,2, \ldots, n\}\) with \(u_{i} v_{j} \notin E^{\prime}\) do
        for \(t=1,2, \ldots, n\) do
            if \(u_{i} v_{t}, u_{t} v_{j} \in E^{\prime}\) then \(\left\{\right.\) the edges \(u_{i} v_{t}, u_{t} v_{j}\) are in conflict in \(H^{\prime}\) but not in
            \(H\}\)
            \(e \leftarrow u_{i} v_{t} ; \quad e^{\prime} \leftarrow u_{t} v_{j} ; \quad \phi_{2} \leftarrow \phi_{2} \wedge\left(\ell_{e} \vee \ell_{e^{\prime}}\right)\)
    return \(\phi_{2}\)
```

follows by Observation 5 .
Observation 6. The formula ϕ_{1} is satisfied by a truth assignment τ if and only if the corresponding 2-coloring χ_{τ} of the edges of H does not contain any monochromatic $A C_{6}$.

Description of the 2-CNF formula ϕ_{2} : Denote for simplicity $H=\left(U, V, E_{H}\right)$, where $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Furthermore denote $E_{0}=$ $\left\{u_{i} v_{i} \mid 1 \leq i \leq n\right\}$. Let $E^{\prime}=E_{H} \backslash E_{0}$ and $H^{\prime}=H-E_{0}$, i.e. H^{\prime} is the split graph that we obtain if we remove from H all edges of E_{0}. Consider now a pair of edges $e=u_{i} v_{t}$ and $e^{\prime}=u_{t} v_{j}$ of E^{\prime}, such that $u_{i} v_{j} \notin E^{\prime}$. Note that i and j may be equal. However, since $E^{\prime} \cap E_{0}=\emptyset$, it follows that $i \neq t$ and $t \neq j$. Moreover, since the edge $u_{t} v_{t}$ belongs to E_{H} but not to E^{\prime}, it follows that the edges e and e^{\prime} are in conflict in H^{\prime} but not in H (for both cases where $i=j$ and $i \neq j$). That is, although e and e^{\prime} are two non-adjacent vertices in the conflict graph H^{*} of H, they are adjacent vertices in the conflict graph of H^{\prime}. For both cases where $i=j$ and $i \neq j$, an example of such a pair of edges $\left\{e, e^{\prime}\right\}$ is illustrated in Figure 3. According to Algorithm 3, for every such pair $\left\{e, e^{\prime}\right\}$ of edges in H, the Boolean formula ϕ_{2} has the clause $\left(\ell_{e} \vee \ell_{e^{\prime}}\right)$. It is easy to check by the assignment of literals to edges of H that this clause $\left(\ell_{e} \vee \ell_{e^{\prime}}\right)$ of ϕ_{2} is false in the truth assignment τ if and only if both e and e^{\prime} are colored red in the 2-edge coloring χ_{τ} of H.

(a)

(b)

Figure 3. Two edges $e=u_{i} v_{t}$ and $e^{\prime}=u_{t} v_{j}$ of H, for which the formula ϕ_{2} has the clause ($\ell_{e} \vee \ell_{e^{\prime}}$), in the case where (a) $i \neq j$ and (b) $i=j$.

Now we provide the main result of this section in Theorem 5.4, which relates the existence of a linear-interval cover in $\widetilde{G}=\widehat{C}(P)$ with the Boolean satisfiability of the formula $\phi_{1} \wedge \phi_{2}$. Before we present Theorem 5.4, we first provide two auxiliary
lemmas.
Lemma 5.2. Let G be a cocomparability graph and P be a partial order of \bar{G}. Let $\widetilde{G}=\widehat{C}(P), H$ be the associated split graph of \widetilde{G}, and H^{*} be the conflict graph of H. Denote $\widetilde{G}=(U, V, \widetilde{E})$ and $E_{0}=\left\{u_{i} v_{i} \mid 1 \leq i \leq n\right\}$. Then, every $e \in E_{0}$ is an isolated vertex of H^{*}.

Proof. Note by Definition 3.3 that $H=\left(U \cup V, E_{H}\right)$, where $E_{H}=\widetilde{E} \cup(V \times V)$. Furthermore all edges of $V \times V$ in E_{H} correspond to isolated vertices in the conflict graph H^{*} of H by Observations 2 and 3 . Therefore all non-isolated vertices in H^{*} correspond to edges of \widetilde{G} (i.e. they do not belong to $V \times V$). Consider now an edge $e_{i}=u_{i} v_{i} \in E_{0} \subseteq \widetilde{E}$, where $1 \leq i \leq n$. Suppose that e_{i} is not an isolated vertex in the conflict graph H^{*}. Then the edge e_{i} of \widetilde{G} builds with another edge $e=u_{j} v_{k}$ an induced $A C_{4}$ in H, i.e. $e_{i}=u_{i} v_{i}$ and $e=u_{j} v_{k}$ induce a $2 K_{2}$ in \widehat{G}. Therefore $u_{j} v_{i}, u_{i} v_{k} \notin \widetilde{E}$, i.e. $u_{j} v_{i}, u_{i} v_{k} \in E(C(P))$. Thus $u_{j}<_{P} u_{i}$ and $u_{i}<_{P} u_{k}$ by Definition 4.2. Therefore, since P is transitive (as a partial order), it follows that $u_{j}<_{P} u_{k}$, and thus $u_{j} v_{k} \in E(C(P))$, i.e. $u_{j} v_{k} \notin \widetilde{E}$. This is a contradiction, since we assumed that $e=u_{j} v_{k}$ is an edge of \widetilde{G}, i.e. $u_{j} v_{k} \in \widetilde{E}$. Therefore, $e_{i}=u_{i} v_{i}$ is an isolated vertex of H^{*}. \quad I

Lemma 5.3. Let H be a split graph and H^{*} be the conflict graph of H, where H^{*} is bipartite with color classes E_{1} and E_{2}. Let the vertices v_{1}, \ldots, v_{6} of H build an $A C_{6}$ on the edges of E_{i}, where $i \in\{1,2\}$. Then the edges $v_{3} v_{6}, v_{4} v_{1}, v_{5} v_{2}$ exist in H and $v_{4} v_{5}\left\|v_{3} v_{6}, v_{2} v_{3}\right\| v_{4} v_{1}$, and $v_{6} v_{1} \| v_{5} v_{2}$.

Proof. Since H is a split graph, Lemma 3.15 implies that H does not contain any $A P_{5}$ or any double $A P_{6}$. Therefore, the $A C_{6}$ of H is an $A P_{6}$, i.e. an alternating path of length 6, cf. Figure 1(b). Since E_{1} and E_{2} are the two color classes of H^{*}, any two vertices e and e^{\prime} of H^{*} in the set E_{i}, where $i \in\{1,2\}$, are not adjacent in H^{*}. Equivalently, any two edges e and e^{\prime} of H in the set E_{i} are not in conflict, where $i \in\{1,2\}$. Therefore, since by assumption, all edges $\left\{v_{2} v_{3}, v_{4} v_{5}, v_{6} v_{1}\right\}$ of this $A C_{6}$ belong to the same color class E_{i} for some $i \in\{1,2\}$, it follows that no pair of these edges is in conflict in H. Thus Lemma 3.7 implies that the edges $v_{3} v_{6}, v_{4} v_{1}, v_{5} v_{2}$ exist in H and that $v_{4} v_{5}\left\|v_{3} v_{6}, v_{2} v_{3}\right\| v_{4} v_{1}$, and $v_{6} v_{1} \| v_{5} v_{2}$. \square

We are now ready to provide Theorem 5.4.
Theorem 5.4. $\widetilde{G}=\widehat{C}(P)$ is linear-interval coverable if and only if $\phi_{1} \wedge \phi_{2}$ is satisfiable. Given a satisfying assignment τ of $\phi_{1} \wedge \phi_{2}$, Algorithm 4 computes a linearinterval cover of \widetilde{G} in $O\left(n^{2}\right)$ time.

Proof. Denote $\widetilde{G}=(U, V, \widetilde{E})$, where $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\} \quad$ and $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Furthermore denote $H=\left(U, V, E_{H}\right)$, where $E_{H}=\widetilde{E} \cup(V \times V)$, cf. Definition 3.3. Let $E_{0}=\left\{u_{i} v_{i} \mid 1 \leq i \leq n\right\}$. Since $\widetilde{G}=\widehat{C}(P)$, note by Definition 4.2 that $E_{0} \subseteq \widetilde{E} \subseteq E_{H}$. Let χ_{0} be the 2 -coloring of the vertices of H^{*} (i.e. the edges of $H)$ that is given as input to Algorithms 2 and 3. Moreover, let $C_{1}, C_{2}, \ldots, C_{k}$ be the connected components of H^{*}.
(\Rightarrow) Suppose that \widetilde{G} is linear-interval coverable. That is, there exist by Definition 4.6 two chain graphs $G_{1}=\left(U, V, E_{1}\right)$ and $G_{2}=\left(U, V, E_{2}\right)$, such that $\widetilde{G}=G_{1} \cup G_{2}$ and $E_{0} \subseteq E_{2} \backslash E_{1}$. Let $H_{1}=\left(U, V, E_{H_{1}}\right)$ and $H_{2}=\left(U, V, E_{H_{2}}\right)$ be the associated split graphs of G_{1} and G_{2}, respectively. Note that $H=H_{1} \cup H_{2}$ and $E_{0} \subseteq E_{H_{2}} \backslash E_{H_{1}}$. Since G_{1} and G_{2} are chain graphs, i.e. $\operatorname{ch}\left(G_{1}\right)=\operatorname{ch}\left(G_{2}\right)=1$, Lemma 3.4 implies that $t\left(H_{1}\right)=t\left(H_{2}\right)=1$, i.e. H_{1} and H_{2} are threshold graphs. Therefore, neither H_{1} nor H_{2} includes an $A C_{4}$.

Recall that the formulas ϕ_{1} and ϕ_{2} have one Boolean variable x_{i} for every con-
nected component C_{i} of $H^{*}, i=1,2, \ldots, k$. We construct a 2 -coloring χ_{H} of the edges of H as follows. For every edge e of H (i.e. a vertex of H^{*}), if $e \in E_{H_{1}}$ then we color e red in χ_{H}; otherwise, if $e \in E_{H_{2}} \backslash E_{H_{1}}$ then we color e blue in χ_{H}. Recall that $E_{0} \subseteq E_{H_{2}} \backslash E_{H_{1}}$, and thus all edges of E_{0} are colored blue in χ_{H}. Since both H_{1} and H_{2} do not include any $A C_{4}$, it follows by the definition of χ_{H} that there exists no monochromatic $A C_{4}$ in χ_{H}. Therefore, every two edges e and e^{\prime} of H, which correspond to adjacent vertices in H^{*}, have different colors in χ_{H}, and thus χ_{H} constitutes a proper 2-coloring of the vertices of H^{*}. Therefore the coloring χ_{H} of the edges of H (i.e. vertices of H^{*}) defines a truth assignment τ of the variables $x_{1}, x_{2}, \ldots, x_{k}$ as follows (cf. Observation 4). For every connected component C_{i} of H^{*}, where $1 \leq i \leq k$, we define $x_{i}=1$ (resp. $x_{i}=0$) in τ if all vertices of C_{i} have in χ_{H} different (resp. the same) color as in χ_{0}. We will now prove that τ satisfies both formulas ϕ_{1} and ϕ_{2}.

Satisfaction of the Boolean formula ϕ_{1}. Let α be a clause of ϕ_{1}. Recall that α corresponds to some triple $\left\{e, e^{\prime}, e^{\prime \prime}\right\}$ of edges of H that builds an $A C_{6}$ in H (cf. lines 25 of Algorithm 2). In particular, either $\alpha=\left(\ell_{e} \vee \ell_{e^{\prime}} \vee \ell_{e^{\prime \prime}}\right)$ or $\alpha=\left(\overline{\ell_{e}} \vee \overline{\ell_{e^{\prime}}} \vee \overline{\ell_{e^{\prime \prime}}}\right)$, where $\ell_{e}, \ell_{e^{\prime}}, \ell_{e^{\prime \prime}}$ are the literals that have been assigned to the edges $e, e^{\prime}, e^{\prime \prime}$, respectively. Then, it follows from the description of the formula ϕ_{1} (cf. also Observation 5) that the clause $\left(\ell_{e} \vee \ell_{e^{\prime}} \vee \ell_{e^{\prime \prime}}\right)$ (resp. the clause $\left(\overline{\ell_{e}} \vee \overline{\ell_{e^{\prime}}} \vee \overline{\ell_{e^{\prime \prime}}}\right)$) is not satisfied in the truth assignment τ if and only if the edges $e, e^{\prime}, e^{\prime \prime}$ of H are all red (resp. all blue) in χ_{H}.

Let $\alpha=\left(\ell_{e} \vee \ell_{e^{\prime}} \vee \ell_{e^{\prime \prime}}\right)\left(\right.$ resp. $\left.\alpha=\left(\overline{\ell_{e}} \vee \overline{\ell_{e^{\prime}}} \vee \overline{\ell_{e^{\prime \prime}}}\right)\right)$. Suppose that α is not satisfied by τ, and thus the edges $e, e^{\prime}, e^{\prime \prime}$ of H are all red (resp. blue) in χ_{H}. Therefore all edges $e, e^{\prime}, e^{\prime \prime}$ belong to $E_{H_{1}}$ (resp. to $E_{H_{2}} \backslash E_{H_{1}}$, and thus to $E_{H_{2}}$) by the definition of χ_{H}. Thus H has an $A C_{6}$ on the edges $e, e^{\prime}, e^{\prime \prime}$, which belong to H_{1} (resp. to H_{2}). Therefore H_{1} (resp. H_{2}) does not have a threshold completion in H by Lemma 3.8. This is a contradiction, since H_{1} (resp. H_{2}) is a threshold graph. Therefore the clause $\alpha=\left(\ell_{e} \vee \ell_{e^{\prime}} \vee \ell_{e^{\prime \prime}}\right)\left(\right.$ resp. $\left.\alpha=\left(\overline{\ell_{e}} \vee \overline{\ell_{e^{\prime}}} \vee \overline{\ell_{e^{\prime \prime}}}\right)\right)$ of ϕ_{1} is satisfied by the truth assignment τ, and thus τ satisfies ϕ_{1}.

Satisfaction of the Boolean formula ϕ_{2}. Let $\alpha=\left(\ell_{e} \vee \ell_{e^{\prime}}\right)$ be a clause of ϕ_{2}. Recall that α corresponds to some pair of edges $e=u_{i} v_{t}$ and $e^{\prime}=u_{t} v_{j}$ of $E_{H} \backslash E_{0}$, such that $u_{i} v_{j} \notin E_{H} \backslash E_{0}$ (cf. lines 4-7 of Algorithm 3). Therefore, since $u_{t} v_{t} \in E_{0}$, it follows that the edges $\left\{e, e^{\prime}\right\}$ build an $A C_{4}$ in $H-E_{0}$ but not in H. Suppose that the clause $\alpha=\left(\ell_{e} \vee \ell_{e^{\prime}}\right)$ of ϕ_{2} is not satisfied by the truth assignment τ, i.e. $\ell_{e}=\ell_{e^{\prime}}=0$ in τ. Then, it follows from the description of the formula ϕ_{2} that both e and e^{\prime} are colored red in the 2-edge coloring χ_{H} of H. Therefore both edges e and e^{\prime} belong to H_{1} by the definition of χ_{H}. However, as we noticed above, the edges $\left\{e, e^{\prime}\right\}$ build an $A C_{4}$ in $H-E_{0}$, and thus they also build an $A C_{4}$ in $H_{1} \subseteq H-E_{0}$. This is a contradiction by Corollary 3.10, since H_{1} is a threshold graph. Therefore the clause $\alpha=\left(\ell_{e} \vee \ell_{e^{\prime}}\right)$ of ϕ_{2} is satisfied by the truth assignment τ, and thus τ satisfies ϕ_{2}.
(\Leftarrow) Suppose that $\phi_{1} \wedge \phi_{2}$ is satisfiable, and let τ be a satisfying truth assignment of $\phi_{1} \wedge \phi_{2}$. Recall that the formulas ϕ_{1} and ϕ_{2} have one Boolean variable x_{i} for every connected component C_{i} of $H^{*}, i=1,2, \ldots, k$. First, given the truth assignment τ, we construct the 2-coloring χ_{τ} of the vertices of H^{*} according to Observation 4. This 2-coloring of the vertices of H^{*} defines also a corresponding 2-coloring of the edges of H. Since ϕ_{1} is satisfied by τ, it follows by Observation 6 that, in the coloring χ_{τ} of its edges, H does not contain any monochromatic $A C_{6}$. Therefore Theorem 3.13 implies that H does not contain any monochromatic $A C_{2 k}$ in χ_{τ}, where $k \geq 3$.

The vertex coloring χ_{τ}^{\prime} of H^{*}. Now we modify the coloring χ_{τ} to the coloring
χ_{τ}^{\prime}, as follows. For every trivial connected component C_{i} of H^{*} (i.e. when C_{i} has exactly one vertex), we color the vertex of C_{i} blue in χ_{τ}^{\prime}, regardless of the color of C_{i} in χ_{τ}. On the other hand, for every non-trivial connected component C_{i} of H^{*} (i.e. when C_{i} has at least two vertices), the vertices of C_{i} have the same color in both χ_{τ} and χ_{τ}^{\prime}. This new 2-coloring of the vertices of H^{*} defines also a corresponding 2-coloring of the edges of H. Note in particular by Lemma 5.2 that all edges of E_{0} are colored blue in χ_{τ}^{\prime}. Denote by $E_{H_{1}}$ and $E_{H_{2}}$ the sets of red and blue edges of H in χ_{τ}^{\prime}, respectively. Note that $E_{0} \subseteq E_{H_{2}}$. Moreover note that H does not have any $A C_{4}$ on the vertices of $E_{H_{1}}$, or on the vertices of $E_{H_{2}}$, since χ_{τ}^{\prime} is a proper 2-coloring of the vertices of H^{*}. Define the subgraphs $H_{1}=\left(U, V, E_{H_{1}}\right)$ and $H_{2}=\left(U, V, E_{H_{2}}\right)$ of H. Note that $H=H_{1} \cup H_{2}$.
H_{2} has a threshold completion in H. Suppose now that H has an $A C_{2 k}$ on the edges of $E_{H_{2}}$, for some $k \geq 3$. Then Theorem 3.13 implies that H has also an $A C_{6}$ on the edges of $E_{H_{2}}$, i.e. H has an $A C_{6}$, in which all three edges are blue in χ_{τ}^{\prime}. Since H does not have any monochromatic $A C_{6}$ in χ_{τ}, it follows that for at least one of the edges e of the blue $A C_{6}$ of H in χ_{τ}^{\prime}, the color of e is different in χ_{τ} and in χ_{τ}^{\prime}. Therefore, it follows by the construction of χ_{τ}^{\prime} from χ_{τ} that the vertex of H^{*} that corresponds to e is an isolated vertex in H^{*}. That is, the edge e is uncommitted in H. This is a contradiction by Lemma 5.3, since e has been assumed to be an edge of a monochromatic $A C_{6}$ of H in χ_{τ}^{\prime}. Therefore H does not have any $A C_{2 k}$ on the edges of $E_{H_{2}}$, where $k \geq 3$. Thus, since H does not have any $A C_{4}$ on the vertices of $E_{H_{2}}$, it follows that H does not have any $A C_{2 k}$ on the edges of $E_{H_{2}}$, where $k \geq 2$. Therefore H_{2} has a threshold completion in H by Lemma 3.8.
H_{1} has a threshold completion in $H-E_{0}$. Denote now $H^{\prime}=H-E_{0}$. We will prove that H_{1} has a threshold completion in H^{\prime}. To this end, it suffices to prove by Lemma 3.8 that H^{\prime} does not have any $A C_{2 k}$ on the edges of $E_{H_{1}}$, where $k \geq 2$.

For the sake of contradiction, suppose that H^{\prime} includes an $A C_{4}$ on the edges of $E_{H_{1}}$. That is, there exist two edges $e, e^{\prime} \in E_{H_{1}}$ that are in conflict in H^{\prime}. Note by the definition of $E_{H_{1}}$ that the edges e and e^{\prime} are colored red in χ_{τ}^{\prime}, and thus they are also colored red in χ_{τ}. If the edges $\left\{e, e^{\prime}\right\}$ also build an $A C_{4}$ in H (i.e. before the removal of E_{0}), then the vertices e and e^{\prime} of H^{*} are adjacent in H^{*}, and thus the edges e and e^{\prime} of H have different colors in χ_{τ}, which is a contradiction. Thus the edges $\left\{e, e^{\prime}\right\}$ are in conflict in H^{\prime} but not in H. Recall now that for every such a pair $\left\{e, e^{\prime}\right\}$ of edges of H^{\prime} there exists a clause $\alpha=\left(\ell_{e} \vee \ell_{e^{\prime}}\right)$ in the formula ϕ_{2} (cf. lines 4-7 of Algorithm 3). It follows from the description of the formula ϕ_{2} that the clause α is not satisfied by the truth assignment τ if and only if both edges e, e^{\prime} in H are red in χ_{τ}. However, since τ is a satisfying assignment of ϕ_{2}, every clause of ϕ_{2} is satisfied by τ. Therefore at least one of the edges e and e^{\prime} is colored blue in χ_{τ}, which is a contradiction. Therefore H^{\prime} does not include any $A C_{4}$ on the edges of $E_{H_{1}}$.

Suppose now that H^{\prime} includes an $A C_{2 k}$ on the edges of $E_{H_{1}}$, where $k \geq 3$. Consider the smallest such $A C_{2 k}$ on the edges of $E_{H_{1}}$, i.e. an $A C_{2 k}$ with the smallest $k \geq 3$. Let $w_{1}, w_{2}, \ldots, w_{2 k}$ be the vertices of H^{\prime} that build this $A C_{2 k}$. Note by the definition of $E_{H_{1}}$ that all edges of this $A C_{2 k}$ are colored red in the coloring χ_{τ}^{\prime}, and thus they are also colored red in the coloring χ_{τ}. However, as we proved above, in the coloring χ_{τ} of its edges, H does not contain any monochromatic $A C_{2 k}$, where $k \geq 3$. Therefore, at least one of the non-edges of the $A C_{2 k}$ in the graph H^{\prime} is an edge of E_{0} in the graph H. Assume without loss of generality that this edge of E_{0} is $w_{1} w_{2}$. That is, assume that $w_{1} w_{2} \in E_{0}$, i.e. $w_{1} w_{2}=u_{i} v_{i}$ for some $i \in\{1,2, \ldots, n\}$.

Suppose that $w_{3} w_{2 k}$ is not an edge of H^{\prime}. Then, since $w_{1} w_{2} \in E_{0}$, there exists
(similarly to above) a clause α in the formula ϕ_{2} such that α is not satisfied by the truth assignment τ if and only if both edges $w_{2} w_{3}$ and $w_{2 k} w_{1}$ are colored red in χ_{τ}. However, τ is a satisfying truth assignment of ϕ_{2} by assumption, and thus at least one edge of $w_{2} w_{3}$ and $w_{2 k} w_{1}$ is colored blue in χ_{τ}, which is a contradiction. Therefore $w_{3} w_{2 k}$ is an edge of H^{\prime}. Suppose now that the edge $w_{3} w_{2 k}$ of H^{\prime} is colored red in χ_{τ}^{\prime}, and thus $w_{3} w_{2 k} \in E_{H_{1}}$ by the definition of $E_{H_{1}}$. Then the vertices $w_{3}, w_{4}, \ldots, w_{2 k}$ build an $A C_{2 k-2}$ in H^{\prime} on the edges of $E_{H_{1}}$, which is a contradiction to the minimality assumption of the $A C_{2 k}$ in H^{\prime}. Therefore the edge $w_{3} w_{2 k}$ of H^{\prime} is colored blue in χ_{τ}^{\prime}, and thus $w_{3} w_{2 k} \in E_{H_{2}}$.

Recall now that both the edges $w_{2} w_{3}$ and $w_{2 k} w_{1}$ of H^{\prime} are red in χ_{τ}^{\prime}. Therefore, by the definition of the coloring χ_{τ}^{\prime} from χ_{τ}, it follows that each of the edges $w_{2} w_{3}$ and $w_{2 k} w_{1}$ participates to at least one $A C_{4}$ in H (or equivalently the corresponding vertices of $w_{2} w_{3}$ and $w_{2 k} w_{1}$ in H^{*} are not isolated vertices). Let the edges $w_{2} w_{3}$ and $w_{2}^{\prime} w_{3}^{\prime}$ form an $A C_{4}$ in H, for some vertices w_{2}^{\prime} and w_{3}^{\prime}, where $w_{2} w_{2}^{\prime}$ and $w_{3} w_{3}^{\prime}$ are not edges in H. Similarly, let the edges $w_{2 k} w_{1}$ and $w_{2 k}^{\prime} w_{1}^{\prime}$ form an $A C_{4}$ in H, for some vertices $w_{2 k}^{\prime}$ and w_{1}^{\prime}, where $w_{2 k} w_{2 k}^{\prime}$ and $w_{1} w_{1}^{\prime}$ are not edges in H. Note that some of the vertices $\left\{w_{2}^{\prime}, w_{3}^{\prime}, w_{2 k}^{\prime}, w_{1}^{\prime}\right\}$ may coincide with each other, as well as with some of the vertices $\left\{w_{2}, w_{3}, w_{2 k}, w_{1}\right\}$. Recall that χ_{τ}^{\prime} is a proper 2 -coloring of the vertices of H^{*}. Therefore, since $w_{2} w_{3}$ and $w_{2 k} w_{1}$ are colored red in χ_{τ}^{\prime}, it follows that $w_{2}^{\prime} w_{3}^{\prime}$ and $w_{2 k}^{\prime} w_{1}^{\prime}$ are colored blue in χ_{τ}^{\prime}. Therefore the vertices $w_{1}, w_{2}, w_{2}^{\prime}, w_{3}^{\prime}, w_{3}, w_{2 k}, w_{2 k}^{\prime}, w_{1}^{\prime}$ build an $A C_{8}$ in H on the edges of $E_{H_{2}}$. This is a contradiction, since we proved above that H does not have any $A C_{2 k}$ on the edges of $E_{H_{2}}$, where $k \geq 2$.

Therefore, it follows that H^{\prime} does not include any $A C_{2 k}$ on the edges of $E_{H_{1}}$, where $k \geq 3$. Thus, since we already proved that H^{\prime} does not include any $A C_{4}$ on the edges of $E_{H_{1}}$, it follows that H^{\prime} does not include any $A C_{2 k}$ on the edges of $E_{H_{1}}$, where $k \geq 2$. Therefore H_{1} has a threshold completion in $H^{\prime}=H-E_{0}$ by Lemma 3.8.

Summarizing, H_{1} has a threshold completion in $H^{\prime}=H-E_{0}$, and H_{2} has a threshold completion in H. Furthermore all edges of E_{0} belong to the graph H, and $H=H_{1} \cup H_{2}$. Let \widetilde{H}_{1} be the threshold completion of H_{1} in $H-E_{0}$, and let \widetilde{H}_{2} be the threshold completion of H_{2} in H. Then \widetilde{H}_{1} and \widetilde{H}_{2} are two threshold graphs, i.e. they do not include any $A C_{4}$. Furthermore, let $\widetilde{G}_{1}=\left(U, V, \widetilde{E}_{1}\right)$ and $\widetilde{G}_{2}=\left(U, V, \widetilde{E}_{2}\right)$ be the bipartite graphs obtained by \widetilde{H}_{1} and \widetilde{H}_{2}, respectively, by removing from them all possible edges of $V \times V$. Note that $E_{0} \subseteq \widetilde{E}_{2} \backslash \widetilde{E}_{1}$, since every edge of E_{0} belongs to \widetilde{H}_{2} and not to \widetilde{H}_{1}. Furthermore, neither \widetilde{G}_{1} nor \widetilde{G}_{2} include any induced $2 K_{2}$, since \widetilde{H}_{1} and \widetilde{H}_{2} do not include any $A C_{4}$. Therefore both \widetilde{G}_{1} and \widetilde{G}_{2} are chain graphs. Moreover, since $H=H_{1} \cup H_{2}$, it follows that also $H=\widetilde{H}_{1} \cup \widetilde{H}_{2}$ and $\widetilde{G}=\widetilde{G}_{1} \cup \widetilde{G}_{2}$. Thus, since $E_{0} \subseteq \widetilde{E}_{2} \backslash \widetilde{E}_{1}$, it follows that \widetilde{G} is linear-interval coverable by Definition 4.6 and $\left\{\widetilde{E}_{1}, \widetilde{E}_{2}\right\}$ is a linear-interval cover of \widetilde{G}. This construction of $\left\{\widetilde{E}_{1}, \widetilde{E}_{2}\right\}$ from the satisfying truth assignment τ of $\phi_{1} \wedge \phi_{2}$ is shown in Algorithm 4.

Running time of Algorithm 4. First note that, since $|U|=|V|=n$, the split graph H has $O\left(n^{2}\right)$ edges. Therefore, since each edge of H is processed exactly once in the execution of lines 3-8 in Algorithm 4, these lines are executed in $O\left(n^{2}\right)$ time in total. Similarly, each of the lines 9,10 , and 13 is executed in $O\left(n^{2}\right)$ time. Now, each of the lines 11 and 12 is executed by Lemma 3.9 in time linear to the size of H, i.e. in $O\left(n^{2}\right)$ time each. Therefore the total running time of Algorithm 4 is $O\left(n^{2}\right)$. This completes the proof of the theorem.
6. The recognition of linear-interval orders and PI graphs. In this section we investigate the structure of the formula $\phi_{1} \wedge \phi_{2}$ that we computed in Section 5 .

```
Algorithm 4 Construction of a linear-interval cover of \(\widetilde{G}=\widehat{C}(P)\), if \(\phi_{1} \wedge \phi_{2}\) is sat-
isfiable
Input: The bipartite graph \(\widetilde{G}=\widehat{C}(P)\), the associated split graph \(H\) of \(\widetilde{G}\), its conflict
    graph \(H^{*}\), a proper 2 -coloring \(\chi_{0}\) of the vertices of \(H^{*}\), and a satisfying truth
    assignment \(\tau\) of \(\phi_{1} \wedge \phi_{2}\)
Output: A linear-interval cover \(\left\{\widetilde{E}_{1}, \widetilde{E}_{2}\right\}\) of \(\widetilde{G}\)
    Let \(H=\left(U, V, E_{H}\right)\), where \(U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}\) and \(V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}\)
    \(E_{0} \leftarrow\left\{u_{i} v_{i} \mid 1 \leq i \leq n\right\}\)
    for every connected component \(C_{i}, 1 \leq i \leq k\), of \(H^{*}\) do
        if \(C_{i}\) is an isolated vertex of \(H^{*}\) then
                color the vertex of \(C_{i}\) blue
        else
            if \(x_{i}=0\) in \(\tau\) then color every vertex of \(C_{i}\) with the same color as in \(\chi_{0}\)
            if \(x_{i}=1\) in \(\tau\) then color every vertex of \(C_{i}\) with the opposite color than in
            \(\chi_{0}\)
    \(E_{H_{1}} \leftarrow\left\{e \in E_{H} \mid e\right.\) is red \(\} ; H_{1} \leftarrow\left(U, V, E_{H_{1}}\right)\)
    \(E_{H_{2}} \leftarrow\left\{e \in E_{H} \mid e\right.\) is blue \(\} ; H_{2} \leftarrow\left(U, V, E_{H_{2}}\right)\)
    Compute a threshold completion \(\widetilde{H}_{1}\) of \(H_{1}\) in \(H-E_{0}\) (by Lemma 3.9)
    Compute a threshold completion \(\widetilde{H}_{2}\) of \(H_{2}\) in \(H\) (by Lemma 3.9)
    \(\widetilde{E}_{1} \leftarrow E\left(\widetilde{H}_{1}\right) \backslash(V \times V) ; \quad \widetilde{E}_{2} \leftarrow E\left(\widetilde{H}_{2}\right) \backslash(V \times V)\)
    return \(\left\{\widetilde{E}_{1}, \widetilde{E}_{2}\right\}\)
```

In particular, we first prove in Section 6.1 some fundamental structural properties of $\phi_{1} \wedge \phi_{2}$, which allow us to find an appropriate sub-formula of $\phi_{1} \wedge \phi_{2}$ which is gradually mixed (cf. Definition 2.2). Then we exploit this sub-formula of $\phi_{1} \wedge \phi_{2}$ in order to provide in Section 6.2 an algorithm that solves the satisfiability problem on $\phi_{1} \wedge \phi_{2}$ in time linear to its size, cf. Theorem 6.8. Finally, using this satisfiability algorithm, we combine our results of Sections 4 and 5 in order to recognize efficiently PI graphs and linear-interval orders in Section 6.2.
6.1. Structural properties of the formula $\phi_{1} \wedge \phi_{2}$. The three main structural properties of $\phi_{1} \wedge \phi_{2}$ are proved in Lemmas 6.3, 6.5, and 6.6, respectively. We first provide two auxiliary technical lemmas.

Lemma 6.1. Let $\alpha=\left(\ell_{1} \vee \ell_{2} \vee \ell_{3}\right)$ be a clause of ϕ_{1}. Assume that α corresponds to the $A P_{6}$ of H on the vertices v_{1}, \ldots, v_{6}, which has the literals $\ell_{1}, \ell_{2}, \ell_{3}$ on its edges (in this order). Then, for every edge e of H with literal $\ell_{e}=\ell_{2}$, there exists an $A P_{6}$ in H with $v_{1} v_{2}$ as is its base and e as its ceiling, which has the literals $\ell_{1}, \ell_{2}, \ell_{3}$ on its edges (in this order).

Proof. First note that by the construction of ϕ_{1} (cf. Section 5) no two literals among $\left\{\ell_{1}, \ell_{2}, \ell_{3}\right\}$ are one the negation of the other, i.e. $\ell_{1} \neq \overline{\ell_{2}}, \ell_{1} \neq \overline{\ell_{3}}$, and $\ell_{2} \neq \overline{\ell_{3}}$. Therefore also no pair among the edges of the $A P_{6}$ on the vertices v_{1}, \ldots, v_{6} is in conflict. Denote for simplicity $e^{\prime}=v_{4} v_{5}$. Since $\ell_{e^{\prime}}=\ell_{e}=\ell_{2}$, the edges e^{\prime} and e of H correspond to two vertices of the conflict graph H^{*} that lie in the same connected component of H^{*}. Thus there exists a path between these two vertices of H^{*}. That is, there exists a sequence of edges $e_{1}, e_{2}, \ldots, e_{t}$ in H, where $e_{1}=e^{\prime}$ and $e_{t}=e$, such that $e_{i} \| e_{i+1}$ for every $i \in\{1,2, \ldots, t-1\}$. Note that $\ell_{e_{i}} \in\left\{\ell_{2}, \overline{\ell_{2}}\right\}$ for all these edges
e_{i}. For every $1 \leq i \leq t$ denote $e_{i}=u_{i} w_{i}$, where $u_{1}=v_{4}$ and $w_{1}=v_{5}$. Furthermore let $u_{i} u_{i+1}$ and $w_{i} w_{i+1}$ be the non-edges between e_{i} and e_{i+1}, where $1 \leq i \leq t-1$. For simplicity of the presentation, denote $u_{0}=v_{3}$ and $w_{0}=v_{6}$.

We will prove by induction that for every $i \in\{1,2, \ldots, t\}$ there exists an $A P_{6}$ in H on the vertices $v_{1}, v_{2}, u_{i-1}, u_{i}, w_{i}, w_{i-1}$ (if i is odd), or on the vertices $v_{1}, v_{2}, u_{i}, u_{i-1}, w_{i-1}, w_{i}$ (if i is even), which has the literals $\ell_{1}, \ell_{2}, \ell_{3}$ on its edges (in this order). The induction basis (i.e. the case where $i=1$) follows immediately by the assumption of the lemma.

For the induction step, let first $i \geq 2$ be even. Then $i-1$ is odd, and thus there exists by the induction hypothesis an $A P_{6}$ in H on the vertices $v_{1}, v_{2}, u_{i-2}, u_{i-1}, w_{i-1}, w_{i-2}$ which has the literals $\ell_{1}, \ell_{2}, \ell_{3}$ on its edges (in this order). That is, $\ell_{v_{2} u_{i-2}}=\ell_{1}, \ell_{u_{i-1} w_{i-1}}=\ell_{2}$, and $\ell_{w_{i-2} v_{1}}=\ell_{3}$. Therefore, since $\ell_{u_{i} w_{i}} \in\left\{\ell_{2}, \overline{\ell_{2}}\right\}$ and $u_{i} w_{i} \| u_{i-1} w_{i-1}$ by assumption, it follows that $\ell_{u_{i} w_{i}}=\overline{\ell_{2}}$. Furthermore, since no pair among the edges of the $A P_{6}$ is in conflict, Lemma 3.7 implies in particular that the edges $v_{1} u_{i-1}$ and $v_{2} w_{i-1}$ exist in H and that $\ell_{v_{1} u_{i-1}}=\overline{\ell_{1}}$ and $\ell_{v_{2} w_{i-1}}=\overline{\ell_{3}}$.

Claim 1. $v_{1} \neq w_{i}$ and $v_{2} \neq u_{i}$.
Proof of Claim 1. Since H is a split graph, there exists a partition of its vertices into a clique K and an independent set I. Then, since H has an $A P_{6}$ on the vertices $v_{1}, v_{2}, u_{i-2}, u_{i-1}, w_{i-1}, w_{i-2}$, Lemma 3.14 implies that either $v_{1}, u_{i-2}, w_{i-1} \in K$ and $v_{2}, u_{i-1}, w_{i-2} \in I$, or $v_{1}, u_{i-2}, w_{i-1} \in I$ and $v_{2}, u_{i-1}, w_{i-2} \in K$. In the former case, since $w_{i-1} \in K$ and $w_{i-1} w_{i}$ is not an edge in H, it follows that $w_{i} \in I$. Thus $v_{1} \neq w_{i}$, since $v_{1} \in K$. Furthermore, since $w_{i} \in I$ and $u_{i} w_{i}$ is an edge in H, it follows that $u_{i} \in K$. Thus $v_{2} \neq u_{i}$, since $v_{2} \in I$. Similarly, in the latter case, since $u_{i-1} \in K$ and $u_{i-1} u_{i}$ is not an edge in H, it follows that $u_{i} \in I$. Thus $v_{2} \neq u_{i}$, since $v_{2} \in K$. Furthermore, since $u_{i} \in I$ and $u_{i} w_{i}$ is an edge in H, it follows that $w_{i} \in K$. Thus $v_{1} \neq w_{i}$, since $v_{1} \in I$. Summarizing, in both cases $v_{1} \neq w_{i}$ and $v_{2} \neq u_{i}$.

Suppose that $v_{1} w_{i}$ is not an edge in H. Then $u_{i} w_{i}$ is in conflict with $v_{1} u_{i-1}$, since also $u_{i-1} u_{i}$ is not an edge in H. Therefore $\ell_{u_{i} w_{i}}=\overline{\ell_{v_{1} u_{i-1}}}$. Thus, since $\ell_{u_{i} w_{i}}=\overline{\ell_{2}}$ and $\ell_{v_{1} u_{i-1}}=\overline{\ell_{1}}$, it follows that $\ell_{1}=\overline{\ell_{2}}$, which is a contradiction, since no two literals among $\left\{\ell_{1}, \ell_{2}, \ell_{3}\right\}$ are one the negation of the other. Therefore $v_{1} w_{i}$ is an edge in H. Furthermore $\ell_{v_{1} w_{i}}=\ell_{3}$, since $\ell_{v_{2} w_{i-1}}=\overline{\ell_{3}}$ and $w_{i-1} w_{i}, v_{1} v_{2}$ are not edges in H. By symmetry it follows that also $v_{2} u_{i}$ is an edge in H and that $\ell_{v_{2} u_{i}}=\ell_{1}$. Thus the vertices $v_{1}, v_{2}, u_{i}, u_{i-1}, w_{i-1}, w_{i}$ build an $A P_{6}$ in H, which has the literals $\ell_{1}, \ell_{2}, \ell_{3}$ on its edges (in this order). This completes the induction step whenever i is even.

Let now $i \geq 3$ be odd. Then $i-1$ is even, and thus there exists by the induction hypothesis an $A P_{6}$ in H on the vertices $v_{1}, v_{2}, u_{i-1}, u_{i-2}, w_{i-2}, w_{i-1}$ which has the literals $\ell_{1}, \ell_{2}, \ell_{3}$ on its edges (in this order). That is, $\ell_{v_{2} u_{i-1}}=\ell_{1}, \ell_{u_{i-2} w_{i-2}}=\ell_{2}$, and $\ell_{w_{i-1} v_{1}}=\ell_{3}$. Thus, since the edges $u_{i-2} w_{i-2}$ and $u_{i-1} w_{i-1}$ are in conflict by assumption, it follows that $\ell_{u_{i-1} w_{i-1}}=\overline{\ell_{2}}$. Furthermore, since the edges $u_{i-1} w_{i-1}$ and $u_{i} w_{i}$ are in conflict by assumption, it follows that $\ell_{u_{i} w_{i}}=\ell_{2}$. Thus the vertices $v_{1}, v_{2}, u_{i-1}, u_{i}, w_{i}, w_{i-1}$ build an $A P_{6}$ in H, which has the literals $\ell_{1}, \ell_{2}, \ell_{3}$ on its edges (in this order). This completes the induction step whenever i is odd.

Summarizing, for $i=t$, there exists an $A P_{6}$ in H on the vertices $v_{1}, v_{2}, u_{t-1}, u_{t}, w_{t}, w_{t-1}$ (if t is odd), or on the vertices v_{1}, v_{2}, u_{t}, u_{t-1}, w_{t-1}, w_{t} (if t is even), which has the literals $\ell_{1}, \ell_{2}, \ell_{3}$ on its edges (in this order). In both cases where t is even or odd, this $A P_{6}$ has the non-edge $v_{1} v_{2}$ as it base and the edge $e=u_{t} w_{t}$ as
its ceiling. This completes the proof of the lemma. \square
Lemma 6.2. Let $\alpha=\left(\ell_{1} \vee \ell_{2} \vee \ell_{3}\right)$ and $\beta=\left(\ell_{1} \vee \ell_{2} \vee \ell_{4}\right)$ be two clauses of ϕ_{1} that share two literals ℓ_{1} and ℓ_{2}. Then also $\ell_{3}=\ell_{4}$.

Proof. By the construction of the formula ϕ_{1} (cf. Section 5), the clauses α and β correspond to two $A C_{6}$'s in H. Since H is a split graph, Lemma 3.15 implies that each of these two $A C_{6}$'s is an $A P_{6}$, i.e. an alternating path of length 6 (cf. Figure $1(\mathrm{~b})$). Let $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}$ be the vertices of the first $A P_{6}$, which has the literals $\ell_{1}, \ell_{2}, \ell_{3}$ on its edges (in this order). Note that, by the construction of ϕ_{1}, no two literals among $\left\{\ell_{1}, \ell_{2}, \ell_{3}\right\}$ are one the negation of the other, i.e. $\ell_{1} \neq \overline{\ell_{2}}, \ell_{1} \neq \overline{\ell_{3}}$, and $\ell_{2} \neq \overline{\ell_{3}}$. Furthermore let $w_{1}, w_{2}, w_{3}, w_{4}, w_{5}, w_{6}$ be the vertices of the second $A P_{6}$, which has the literals $\ell_{1}, \ell_{2}, \ell_{4}$ on its edges (in this order). Since H is a split graph, there exists a partition of its vertices into a clique K and an independent set I.

Consider now the base $v_{5} v_{6}$ and the ceiling $v_{2} v_{3}$ of the first $A P_{6}$ (cf. Definition 3.2). That is, the vertices of this $A P_{6}$ can be ordered as $v_{5}, v_{6}, v_{1}, v_{2}, v_{3}, v_{4}$ (where $v_{5} v_{6}$ is not an edge); then the literals on its edges are $\ell_{3}, \ell_{1}, \ell_{2}$ (in this order). Since $\ell_{v_{2} v_{3}}=\ell_{w_{2} w_{3}}=\ell_{1}$, there exists by Lemma 6.1 an $A P_{6}$ with $v_{5} v_{6}$ as its base and $w_{2} w_{3}$ as its ceiling, which has the literals $\ell_{3}, \ell_{1}, \ell_{2}$ on its edges (in this order). Note that the ordering of the vertices in this $A P_{6}$ can be either $v_{5}, v_{6}, a, w_{3}, w_{2}, b$, or $v_{5}, v_{6}, a, w_{2}, w_{3}, b$, for some vertices a and b of H. We distinguish now these two cases.

Case 1. The $A P_{6}$ with $v_{5} v_{6}$ as its base and $w_{2} w_{3}$ as its ceiling has vertex ordering $v_{5}, v_{6}, a, w_{3}, w_{2}, b$. Consider now the base $a w_{3}$ and the ceiling $b v_{5}$ of this $A P_{6}$. That is, its vertices can be ordered as $a, w_{3}, w_{2}, b, v_{5}, v_{6}$ (where $a w_{3}$ is not an edge); then the literals on its edges are $\ell_{1}, \ell_{2}, \ell_{3}$ (in this order). Since $\ell_{b v_{5}}=\ell_{w_{4} w_{5}}=\ell_{2}$, there exists by Lemma 6.1 an $A P_{6}$ with $a w_{3}$ as its base and $w_{4} w_{5}$ as its ceiling, which has the literals $\ell_{1}, \ell_{2}, \ell_{3}$ on its edges (in this order). Note that the ordering of the vertices in this $A P_{6}$ can be either $a, w_{3}, c, w_{5}, w_{4}, d$, or $a, w_{3}, c, w_{4}, w_{5}, d$, for some vertices c and d of H. We distinguish now these two cases.

Case 1.1. The $A P_{6}$ with $a w_{3}$ as its base and $w_{4} w_{5}$ as its ceiling has vertex ordering $a, w_{3}, c, w_{5}, w_{4}, d$. Since no two literals among $\left\{\ell_{1}, \ell_{2}, \ell_{3}\right\}$ are one the negation of the other, it follows that no pair among the edges of this $A P_{6}$ is in conflict. Thus Lemma 3.7 implies in particular that the edge $w_{3} w_{4}$ exists in H. This is a contradiction to our initial assumption that the vertices $w_{1}, w_{2}, w_{3}, w_{4}, w_{5}, w_{6}$ build an $A C_{6}$ (and thus $w_{3} w_{4}$ is not an edge).

Case 1.2. The $A P_{6}$ with $a w_{3}$ as its base and $w_{4} w_{5}$ as its ceiling has vertex ordering $a, w_{3}, c, w_{4}, w_{5}, d$. Then Lemma 3.14 implies that either $w_{3} \in K$ and $w_{5} \in I$, or $w_{3} \in I$ and $w_{5} \in K$. However, due to our initial assumption that the vertices $w_{1}, w_{2}, w_{3}, w_{4}, w_{5}, w_{6}$ build an $A C_{6}$, Lemma 3.14 implies that either $w_{3}, w_{5} \in K$ or $w_{3}, w_{5} \in I$, which is a contradiction.

Case 2. The $A P_{6}$ with $v_{5} v_{6}$ as its base and $w_{2} w_{3}$ as its ceiling has vertex ordering $v_{5}, v_{6}, a, w_{2}, w_{3}, b$. Consider now the base $a w_{2}$ and the ceiling $b v_{5}$ of this $A P_{6}$. That is, its vertices can be ordered as $a, w_{2}, w_{3}, b, v_{5}, v_{6}$ (where $a w_{2}$ is not an edge); then the literals on its edges are $\ell_{1}, \ell_{2}, \ell_{3}$ (in this order). Since $\ell_{b v_{5}}=\ell_{w_{4} w_{5}}=\ell_{2}$, there exists by Lemma 6.1 an $A P_{6}$ with $a w_{2}$ as its base and $w_{4} w_{5}$ as its ceiling, which has the literals $\ell_{1}, \ell_{2}, \ell_{3}$ on its edges (in this order). Note that the ordering of the vertices in this $A P_{6}$ can be either $a, w_{2}, c, w_{5}, w_{4}, d$, or $a, w_{2}, c, w_{4}, w_{5}, d$, for some vertices c and d of H. We distinguish now these two cases.

Case 2.1. The $A P_{6}$ with $a w_{2}$ as its base and $w_{4} w_{5}$ as its ceiling has vertex ordering $a, w_{2}, c, w_{5}, w_{4}, d$. Then Lemma 3.14 implies that either $w_{2} \in K$ and $w_{4} \in I$,
or $w_{2} \in I$ and $w_{4} \in K$. However, due to our initial assumption that the vertices $w_{1}, w_{2}, w_{3}, w_{4}, w_{5}, w_{6}$ build an $A C_{6}$, Lemma 3.14 implies that either $w_{2}, w_{4} \in K$ or $w_{2}, w_{4} \in I$, which is a contradiction.

Case 2.2. The $A P_{6}$ with $a w_{2}$ as its base and $w_{4} w_{5}$ as its ceiling has vertex ordering $a, w_{2}, c, w_{4}, w_{5}, d$. Since no two literals among $\left\{\ell_{1}, \ell_{2}, \ell_{3}\right\}$ are one the negation of the other, it follows that no pair among the edges of this $A P_{6}$ is in conflict. Thus Lemma 3.7 implies in particular that the edge $w_{5} w_{2}$ exists in H and that $a d \| w_{5} w_{2}$. Thus, since $\ell_{a d}=\ell_{3}$, it follows that $\ell_{w_{5} w_{2}}=\overline{\ell_{3}}$. Recall now that we initially assumed that the vertices $w_{1}, w_{2}, w_{3}, w_{4}, w_{5}, w_{6}$ build an $A P_{6}$ in H, which has the literals $\ell_{1}, \ell_{2}, \ell_{4}$ on its edges (in this order). Similarly, Lemma 3.7 implies for this $A P_{6}$ that $w_{6} \underline{w}_{1} \| w_{5} w_{2}$. Thus, since $\ell_{w_{6} w_{1}}=\ell_{4}$, it follows that $\ell_{w_{5} w_{2}}=\overline{\ell_{4}}$. That is, $\ell_{w_{5} w_{2}}=\overline{\ell_{3}}=\overline{\ell_{4}}$, and thus $\ell_{3}=\ell_{4}$. This completes the proof of the lemma. \square

We are now ready to prove the three main structural properties of the formula $\phi_{1} \wedge \phi_{2}$ in Lemmas 6.3, 6.5, and 6.6, respectively. The proof of the next lemma is a based on the results of [21].

Lemma 6.3. Let α and β be two clauses of ϕ_{1}. If α and β share at least one variable, then $\{\alpha, \bar{\alpha}\}=\{\beta, \bar{\beta}\}$.

Proof. In Theorem 3.2 of [21], the authors consider an arbitrary graph G and its conflict graph G^{*}, which is bipartite. For every edge e of G, denote by $C^{*}(e)$ the connected component of G^{*} in which the vertex e belongs. For simplicity of the presentation, we will also refer in the following to $C^{*}(e)$ as the set of the corresponding edges in G. The authors of [21] assume an arbitrary 2-coloring of the vertices of G^{*} (i.e. of the edges of G), such that there is no monochromatic double $A P_{6}$, i.e. there is no double $A P_{6}$ on the edges of one edge-color class of G. Furthermore they assume that there is a monochromatic $A P_{6}$ in G on the vertices v_{1}, \ldots, v_{6} (which is not a double $A P_{6}$). Since this $A P_{6}$ is monochromatic, it follows that no pair among its three edges is in conflict in G (since any two edges in conflict would have different colors). Thus the edges $v_{3} v_{6}, v_{4} v_{1}, v_{5} v_{2}$ exist in G and $v_{4} v_{5}\left\|v_{3} v_{6}, v_{2} v_{3}\right\| v_{4} v_{1}$, and $v_{6} v_{1} \| v_{5} v_{2}$ by Lemma 3.7. The non-edge $v_{1} v_{2}$ is called the base of the $A P_{6}$ (cf. Definition 3.2); furthermore we call the edge $v_{3} v_{6}$ the front of the $A P_{6}$ [21]. Note here that the choice of the base $v_{1} v_{2}$ is arbitrary (the $A P_{6}$ has three bases $v_{1} v_{2}, v_{3} v_{4}$, and $v_{5} v_{6}$). Then, they prove ${ }^{2}$ in Theorem 3.2 that, if we flip the colors of all edges of $C^{*}\left(v_{3} v_{6}\right)$ then in the new edge coloring of G no edge of $C^{*}\left(v_{3} v_{6}\right)$ participates in a monochromatic $A P_{6}$. Note furthermore that $v_{4} v_{5} \in C^{*}\left(v_{3} v_{6}\right)$, since $v_{4} v_{5} \| v_{3} v_{6}$, and thus also the color of $v_{4} v_{5}$ changes by flipping the colors of the edges in $C^{*}\left(v_{3} v_{6}\right)$.

We now apply the results of [21] in our case as follows. Consider two clauses α and β of ϕ_{1} that share at least one variable. That is, each of the dual clauses $\{\alpha, \bar{\alpha}\}$ shares at least one literal with at least one of the dual clauses $\{\beta, \bar{\beta}\}$. If $\beta \in\{\alpha, \bar{\alpha}\}$ then clearly $\{\alpha, \bar{\alpha}\}=\{\beta, \bar{\beta}\}$, and thus the lemma follows.

Let now $\beta \notin\{\alpha, \bar{\alpha}\}$. Consider the $A C_{6}$ of H on the vertices v_{1}, \ldots, v_{6} that corresponds to the dual clauses $\{\alpha, \bar{\alpha}\}$. Since H is a split graph, it follows by Lemma 3.15 that H does not contain any $A P_{5}$ or any double $A P_{6}$. Therefore this $A C_{6}$ of H on

[^1]the vertices v_{1}, \ldots, v_{6} is an $A P_{6}$ (but not a double $A P_{6}$). Let $e=v_{2} v_{3}, e^{\prime}=v_{4} v_{5}$, and $e^{\prime \prime}=v_{6} v_{1}$. This $A P_{6}$ has the non-edge $v_{1} v_{2}$ as its base and the edge $v_{3} v_{6}$ as its front, cf. Definition 3.2. Note that either $\alpha=\left(\ell_{e} \vee \ell_{e^{\prime}} \vee \ell_{e^{\prime \prime}}\right)$ and $\bar{\alpha}=\left(\overline{\ell_{e}} \vee \overline{\ell_{e^{\prime}}} \vee \overline{\ell_{e^{\prime \prime}}}\right)$, or $\alpha=\left(\overline{\ell_{e}} \vee \overline{\ell_{e^{\prime}}} \vee \overline{\ell_{e^{\prime \prime}}}\right)$ and $\bar{\alpha}=\left(\ell_{e} \vee \ell_{e^{\prime}} \vee \ell_{e^{\prime \prime}}\right)$. Assume without loss of generality that $\alpha=\left(\ell_{e} \vee \ell_{e^{\prime}} \vee \ell_{e^{\prime \prime}}\right)$ and $\bar{\alpha}=\left(\overline{\ell_{e}} \vee \overline{\ell_{e^{\prime}}} \vee \overline{\ell_{e^{\prime \prime}}}\right)$. Recall by our assumption that α shares at least one literal with at least one of the dual clauses $\{\beta, \bar{\beta}\}$. Assume without loss of generality that α shares at least one literal with β (the case where α shares at least one literal with $\bar{\beta}$ can be handled in exactly the same way). Furthermore, let without loss of generality $\ell_{e^{\prime}}$ be the common literal of α and β, i.e. let $\beta=\left(\ell_{e^{\prime}} \vee \ell_{p} \vee \ell_{q}\right)$.

Since α is a clause of ϕ_{1}, it follows by the construction of ϕ_{1} that no two literals among $\left\{\ell_{e}, \ell_{e^{\prime}}, \ell_{e^{\prime \prime}}\right\}$ are one the negation of the other (cf. lines 3-5 of Algorithm 2). Similarly no two literals among $\left\{\ell_{e^{\prime}}, \ell_{p}, \ell_{q}\right\}$ are one the negation of the other, since β is a clause of ϕ_{1}. Consider now an arbitrary truth assignment τ of the variables $x_{1}, x_{2}, \ldots, x_{k}$, such that $\alpha=0$ in τ, i.e. $\ell_{e}=\ell_{e^{\prime}}=\ell_{e^{\prime \prime}}=0$ in τ. Note that such an assignment exists, since no two literals among $\left\{\ell_{e}, \ell_{e^{\prime}}, \ell_{e^{\prime \prime}}\right\}$ are one the negation of the other. Let χ be the 2-coloring of the vertices of H^{*} (i.e. of the edges of H) that corresponds to the truth assignment τ, cf. Observation 4. Since $\alpha=0$ in the truth assignment τ, Observation 5 implies that the $A P_{6}$ on the vertices v_{1}, \ldots, v_{6} is monochromatic in the edge-coloring χ of H. Then, due to the results of [21], if we flip in χ the colors of all edges of $C^{*}\left(v_{3} v_{6}\right)$, in the new edge coloring χ^{\prime} of H no edge of $C^{*}\left(v_{3} v_{6}\right)$ participates in a monochromatic $A P_{6}$.

Let τ^{\prime} be the truth assignment that corresponds to this new coloring χ^{\prime} (cf. Observation 4). Then τ and τ^{\prime} coincide on all variables except the variable of the component $C^{*}\left(v_{3} v_{6}\right)$ of H^{*}. Note that the color of $e^{\prime}=v_{4} v_{5}$ has been flipped in the transition from χ^{\prime} to χ, since $e^{\prime} \in C^{*}\left(v_{3} v_{6}\right)$, and thus $\ell_{e^{\prime}}=1$ in χ^{\prime}. Furthermore, since no edge of $C^{*}\left(v_{3} v_{6}\right)$ participates in a monochromatic $A P_{6}$ in χ^{\prime}, it follows that both clauses $\beta=\left(\ell_{e^{\prime}} \vee \ell_{p} \vee \ell_{q}\right)$ and $\bar{\beta}=\left(\overline{\ell_{e^{\prime}}} \vee \overline{\ell_{p}} \vee \overline{\ell_{q}}\right)$ are satisfied in τ^{\prime}, i.e. $\beta=1$ and $\bar{\beta}=1$ in τ^{\prime}, since both β and $\bar{\beta}$ include one of the literals $\left\{\ell_{e^{\prime}}, \overline{\ell_{e^{\prime}}}\right\}$. We will now prove that $\left\{\ell_{p}, \ell_{q}\right\} \cap\left\{\ell_{e}, \ell_{e^{\prime \prime}}\right\} \neq \emptyset$. Assume otherwise that $\left\{\ell_{p}, \ell_{q}\right\} \cap\left\{\ell_{e}, \ell_{e^{\prime \prime}}\right\}=\emptyset$. We distinguish the following three cases.

Case 1. $\ell_{p} \neq \ell_{e^{\prime}}$ and $\ell_{q} \neq \ell_{e^{\prime}}$. Then, since no two literals among $\left\{\ell_{e^{\prime}}, \ell_{p}, \ell_{q}\right\}$ are one the negation of the other, it follows that $\ell_{p}, \ell_{q} \notin\left\{\ell_{e^{\prime}}, \overline{\ell_{e^{\prime}}}\right\}$. Therefore the values of ℓ_{p} and ℓ_{q} remain the same in both assignments τ and τ^{\prime}. Since τ has been assumed to be an arbitrary assignment such that $\ell_{e}=\ell_{e^{\prime}}=\ell_{e^{\prime \prime}}=0$ in τ, we can choose the assignment τ to be such that $\ell_{p}=\ell_{q}=1$ in τ. Since the value of $\ell_{e^{\prime}}$ changes to 1 in τ^{\prime}, while the values of ℓ_{p} and ℓ_{q} are the same in both τ and τ^{\prime}, it follows that $\ell_{e^{\prime}}=\ell_{p}=\ell_{q}=1$ in τ^{\prime}, and thus $\bar{\beta}=0$ in τ^{\prime}, which is a contradiction.

Case 2. Exactly one of $\left\{\ell_{p}, \ell_{\underline{q}}\right\}$ is equal to $\ell_{e^{\prime}}$. Let without loss of generality $\ell_{p}=\ell_{e^{\prime}}$ and $\ell_{q} \neq \ell_{e^{\prime}}$, i.e. $\ell_{q} \notin\left\{\ell_{e^{\prime}}, \overline{\ell_{e^{\prime}}}\right\}$. Therefore the value of ℓ_{q} remains the same in both assignments τ and τ^{\prime}. Since τ has been assumed to be an arbitrary assignment such that $\ell_{e}=\ell_{e^{\prime}}=\ell_{e^{\prime \prime}}=0$ in τ, we can choose the assignment τ to be such that $\ell_{q}=1$ in τ. Since the value of $\ell_{p}=\ell_{e^{\prime}}$ changes to 1 in τ^{\prime}, while the value of ℓ_{q} is the same in both τ and τ^{\prime}, it follows that $\ell_{e^{\prime}}=\ell_{p}=\ell_{q}=1$ in τ^{\prime}, and thus $\bar{\beta}=0$ in τ^{\prime}, which is a contradiction.

Case 3. $\ell_{p}=\ell_{q}=\ell_{e^{\prime}}$. Then $\beta=\left(\ell_{e^{\prime}} \vee \ell_{p} \vee \ell_{q}\right)=\left(\underline{\ell_{e^{\prime}}}\right)$ and $\bar{\beta}=\left(\overline{\ell_{e^{\prime}}} \vee \overline{\ell_{p}} \vee \overline{\ell_{q}}\right)=\left(\overline{\ell_{e^{\prime}}}\right)$, and thus it is not possible that both $\beta=1$ and $\bar{\beta}=1$ in τ^{\prime}, which is again a contradiction.

Therefore $\left\{\ell_{p}, \ell_{q}\right\} \cap\left\{\ell_{e}, \ell_{e^{\prime \prime}}\right\} \neq \emptyset$. Thus, since the clauses α and β share also the
literal $\ell_{e^{\prime}}$, it follows that α and β share at least two literals. Therefore $\alpha=\beta$ by Lemma 6.2. This is a contradiction, since we assumed that $\beta \notin\{\alpha, \bar{\alpha}\}$. Therefore $\beta \in\{\alpha, \bar{\alpha}\}$, and thus $\{\alpha, \bar{\alpha}\}=\{\beta, \bar{\beta}\}$. This completes the proof of the lemma.
\square
DEFINITION 6.4. The clauses of ϕ_{2} are partitioned into the sub-formulas $\phi_{2}^{\prime}, \phi_{2}^{\prime \prime}$, such that ϕ_{2}^{\prime} contains all tautologies of ϕ_{2} and all clauses of ϕ_{2} in which at least one literal corresponds to an uncommitted edge, while $\phi_{2}^{\prime \prime}$ contains all the remaining clauses of ϕ_{2}.

Lemma 6.5. Let $\left\{e_{1}, e_{2}, e_{3}\right\}$ be the three edges of an $A C_{6}$ in H, which has clauses in ϕ_{1}. Let e be an edge of H such that $\left(\ell_{e} \vee \ell_{e_{1}}\right)$ is a clause in $\phi_{2}^{\prime \prime}$. Then $\phi_{2}^{\prime \prime}$ contains also at least one of the clauses $\left\{\left(\ell_{e} \vee \overline{\ell_{e_{2}}}\right),\left(\ell_{e} \vee \overline{\ell_{e_{3}}}\right)\right\}$.

Proof. Recall that H is the associated split graph of \widetilde{G}, where \widetilde{G} is the bipartite complement $\widehat{C}(P)$ of the domination bipartite graph $C(P)$ of the partial order P, cf. Definitions 3.3 and 4.2. For the purposes of the proof denote $C(P)=(U, V, E)$, where $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}, V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$; then $u_{i} v_{j} \in E$ if and only if $u_{i}<_{P} u_{j}$ (cf. Definition 4.2). Furthermore denote $\widetilde{G}=(U, V, \widetilde{E})$ for the bipartite complement $\widetilde{G}=\widehat{C}(P)$ of $C(P)$. Then $H=\left(U \cup V, E_{H}\right)$, where $E_{H}=\widetilde{E} \cup(V \times V)$ (cf. Definition 3.3). Moreover let $E_{0}=\left\{u_{i} v_{i} \mid 1 \leq i \leq n\right\}$ and observe that $E_{0} \subseteq \widetilde{E} \subseteq E_{H}$. Since edges of E correspond to non-edges of \widetilde{E}, it follows by the definition of E that $u_{i} v_{j} \notin \widetilde{E}$ if and only if $u_{i}<_{P} u_{j}$. That is, the non-edges of \widetilde{E} between vertices of U and vertices of V follow the transitivity of the partial order P.

Since H is a split graph, Lemma 3.15 implies that the $A C_{6}$ of H is an $A P_{6}$, i.e. an alternating path of length 6 (cf. Figure 1(b)). Furthermore, since V induces a clique and U induces an independent set in H, Lemma 3.14 implies that the vertices of the $A P_{6}$ in H belong alternately to U and to V. Thus let $u_{i}, v_{j}, u_{p}, v_{q}, u_{r}, v_{s}$ be the vertices of the $A P_{6}$ (where $u_{i} v_{j} \notin E_{H}$ according to our notation, cf. Definition 3.1). Without loss of generality let $e_{1}=u_{p} v_{j}, e_{2}=u_{r} v_{q}$, and $e_{3}=u_{i} v_{s}$. Since the $A P_{6}$ has clauses in ϕ_{1} by assumption, note by the construction of ϕ_{1} (cf. Section 5) that no two literals among $\left\{\ell_{e_{1}}, \ell_{e_{2}}, \ell_{e_{3}}\right\}$ are one the negation of the other. Therefore no pair among the edges $\left\{e_{1}, e_{2}, e_{3}\right\}$ is in conflict, and thus Lemma 3.7 implies that the edges $u_{p} v_{s}, u_{i} v_{q}, u_{r} v_{j}$ exist in H and $e_{2}=u_{r} v_{q}\left\|u_{p} v_{s}, e_{1}=u_{p} v_{j}\right\| u_{i} v_{q}$, and $e_{3}=u_{i} v_{s} \| u_{r} v_{j}$. Therefore $\ell_{u_{i} v_{q}}=\overline{\ell_{e_{1}}}, \ell_{u_{p} v_{s}}=\overline{\ell_{e_{2}}}$, and $\ell_{u_{r} v_{j}}=\overline{\ell_{e_{3}}}$.

Since $e_{1}=u_{p} v_{j}$ and $\left(\ell_{e} \vee \ell_{e_{1}}\right)$ is a clause of $\phi_{2}^{\prime \prime}$ (and thus also of ϕ_{2}), it follows by the construction of ϕ_{2} (cf. Section 5) that either $e=u_{a} v_{p}$ or $e=u_{j} v_{a}$ for some index $a \in\{1,2, \ldots, n\}$.

Case 1. $e=u_{a} v_{p}$. Denote $E_{H}^{\prime}=E_{H} \backslash E_{0}$. Then it follows by the construction of ϕ_{2} that $u_{a} v_{j} \notin E_{H}^{\prime}$, and thus either $u_{a} v_{j} \notin E_{H}$ or $u_{a} v_{j} \in E_{0}$. Furthermore, since $\left(\ell_{e} \vee \ell_{e_{1}}\right)$ is a clause of $\phi_{2}^{\prime \prime}$ by assumption, it follows by Definition 6.4 that e is a committed edge in H. That is, there exists an edge $e^{\prime}=u_{b} v_{c}$ such that $e^{\prime} \| e$, and thus $\ell_{e^{\prime}}=\overline{\ell_{e}}$. Since $e^{\prime} \| e$, it follows that $u_{a} v_{c}, u_{b} v_{p} \notin E_{H}$. Furthermore, since $u_{b} v_{p}, u_{p} v_{q} \notin E_{H}$, it follows that $u_{b}<_{P} u_{p}$ and $u_{p}<_{P} u_{q}$. Therefore $u_{b}<_{P} u_{q}$, since P is a partial order, and thus also $u_{b} v_{q} \notin E_{H}$.

Note that either $a=j$ or $a \neq j$ (cf. Figures $3(\mathrm{a})$ and $3(\mathrm{~b})$, respectively. We distinguish now these two cases, which are illustrated in Figures 4(a) and 4(b), respectively. In these figures, the edges e_{1}, e_{2}, e_{3} of the $A P_{6}$, as well as the edges e and e^{\prime}, are drawn by thick lines and all other edges are drawn by thin lines, while non-edges are illustrated with dashed lines.

Case 1.1. $a=j$ (cf. Figure 4(a)). Suppose that $u_{i} v_{c} \in E_{H}$. Then $u_{i} v_{c} \| u_{a} v_{j}=$
$u_{j} v_{j}$, since $u_{i} v_{j}, u_{a} v_{c} \notin E_{H}$. Thus the edge $u_{j} v_{j} \in E_{0}$ is committed, which is a contradiction by Lemma 5.2. Therefore $u_{i} v_{c} \notin E_{H}$. Suppose now that $u_{p} v_{c} \notin E_{H}$. Then $u_{b} v_{c} \| u_{p} v_{p}$, since $u_{b} v_{p}, u_{p} v_{c} \notin E_{H}$. Thus the edge $u_{p} v_{p} \in E_{0}$ is committed, which is a contradiction by Lemma 5.2. Therefore $u_{p} v_{c} \in E_{H}$. Furthermore $u_{p} v_{c} \| u_{i} v_{q}$, since $u_{p} v_{q}, u_{i} v_{c} \notin E_{H}$, and thus $\ell_{u_{p} v_{c}}=\overline{\ell_{u_{i} v_{q}}}$. Therefore, since $\ell_{u_{i} v_{q}}=\overline{\ell_{e_{1}}}$, it follows that $\ell_{u_{p} v_{c}}=\ell_{e_{1}}$.

Suppose that $u_{a} v_{q} \notin E_{H}$, and thus $u_{a}<_{P} u_{q}$. Then, since $u_{i} v_{j} \notin E_{H}$, it follows that $u_{i}<_{P} u_{j}$. Therefore, since $a=j$ and P is a partial order, it follows that $u_{i}<_{P} u_{q}$, and thus $u_{i} v_{q} \notin E_{H}$, which is a contradiction. Therefore $u_{a} v_{q} \in E_{H}$. Furthermore $u_{a} v_{q} \| u_{p} v_{c}$, since $u_{a} v_{c}, u_{p} v_{q} \notin E_{H}$, and thus $\ell_{u_{a} v_{q}}=\overline{\ell_{u_{p} v_{c}}}$. Therefore, since $\ell_{u_{p} v_{c}}=\ell_{e_{1}}$, it follows that $\ell_{u_{a} v_{q}}=\overline{\ell_{e_{1}}}$.

Since $u_{b} v_{q}, u_{a} v_{c} \notin E_{H}$, it follows that $e^{\prime}=u_{b} v_{c} \| u_{a} v_{q}$, and thus $\ell_{e^{\prime}}=\overline{\ell_{u_{a} v_{q}}}$. Therefore, since $\ell_{u_{a} v_{q}}=\overline{\ell_{e_{1}}}$, it follows that $\ell_{e^{\prime}}=\ell_{e_{1}}$. Finally, since $e^{\prime} \| e$, it follows that $\ell_{e}=\overline{\ell_{e^{\prime}}}$, and thus $\ell_{e}=\overline{\ell_{e_{1}}}$. Therefore the clause $\left(\ell_{e} \vee \ell_{e_{1}}\right)$ of $\phi_{2}^{\prime \prime}$ is a tautology, which is a contradiction by Definition 6.4.

Case 1.2. $a \neq j$ (cf. Figure 4(b)). Then $u_{a} v_{j} \notin E_{0}$. Thus, since $u_{a} v_{j} \notin E_{H}^{\prime}$, it follows that $u_{a} v_{j} \notin E_{H}$. Suppose that $u_{a} v_{s} \in E_{H}$ (cf. Figure 4(b)). Then $u_{a} v_{s} \| u_{r} v_{j}$, since $u_{a} v_{j}, u_{r} v_{s} \notin E_{H}$, and thus $\ell_{u_{a} v_{s}}=\overline{\ell_{u_{r} v_{j}}}$. Therefore, since $\ell_{u_{r} v_{j}}=\overline{\ell_{e_{3}}}$, it follows that $\ell_{u_{a} v_{s}}=\ell_{e_{3}}$. Suppose that $u_{a} v_{q} \notin E_{H}$. Then $u_{r} v_{q} \| u_{a} v_{s}$, since $u_{r} v_{s}, u_{a} v_{q} \notin E_{H}$. Therefore $\ell_{u_{a} v_{s}}=\overline{\ell_{e_{2}}}$, since $\ell_{u_{r} v_{q}}=\ell_{e_{2}}$. Thus, since $\ell_{u_{a} v_{s}}=\ell_{e_{3}}$, it follows that $\ell_{e_{3}}=\overline{\ell_{e_{2}}}$. This is a contradiction, since no two literals among $\left\{\ell_{e_{1}}, \ell_{e_{2}}, \ell_{e_{3}}\right\}$ are one the negation of the other. Therefore $u_{a} v_{q} \in E_{H}$. Moreover, since $u_{a} v_{j}, u_{p} v_{q} \notin E_{H}$, it follows that $u_{a} v_{q} \| u_{p} v_{j}=e_{1}$, and thus $\ell_{u_{a} v_{q}}=\overline{\ell_{e_{1}}}$. Furthermore $u_{a} v_{q} \| u_{b} v_{c}=e^{\prime}$, since $u_{b} v_{q}, u_{a} v_{c} \notin E_{H}$. Therefore $\ell_{u_{a} v_{q}}=\overline{\ell_{e^{\prime}}}$. Thus $\ell_{u_{a} v_{q}}=\ell_{e}$, since $\ell_{e^{\prime}}=\overline{\ell_{e}}$. Therefore, since $\ell_{u_{a} v_{q}}=\overline{\ell_{e_{1}}}$ and $\ell_{u_{a} v_{q}}=\ell_{e}$, it follows that $\ell_{e}=\overline{\ell_{e_{1}}}$. Therefore the clause $\left(\ell_{e} \vee \ell_{e_{1}}\right)$ of $\phi_{2}^{\prime \prime}$ is a tautology, which is a contradiction by Definition 6.4.

Therefore $u_{a} v_{s} \notin E_{H}$. Then also $u_{a} v_{s} \notin E_{H}^{\prime}$, and thus ϕ_{2} has the clause ($\ell_{u_{a} v_{p}} \vee$ $\left.\ell_{u_{p} v_{s}}\right)=\left(\ell_{e} \vee \overline{\ell_{e_{2}}}\right)$, since $e=u_{a} v_{p}$ and $\ell_{u_{p} v_{s}}=\overline{\ell_{e_{2}}}$. Furthermore, since both e and $u_{p} v_{s}$ are committed in H (as $e^{\prime} \| e$ and $u_{r} v_{q} \| u_{p} v_{s}$), the clause ($\ell_{e} \vee \overline{\ell_{e_{2}}}$) belongs to $\phi_{2}^{\prime \prime}$ by Definition 6.4.

Case 2. $e=u_{j} v_{a}$. This case is exactly symmetric to Case 1 . To see this, imagine exchanging the roles of U and V, i.e. U induces now a clique (instead of an independent set) and V induces an independent set (instead of a clique) in H. Imagine also flipping the lines L_{1} and L_{2} in Figure 4 (i.e. L_{2} comes now above L_{1}), such that the vertices of U and V still lie on the lines L_{1} and L_{2}, respectively. Similarly to Cases 1.1 and 1.2, we distinguish the cases $a=p$ (Case 2.1) and $a \neq p$ (Case 2.2), respectively. Then, Case 2.1 leads to a contradiction (similarly to Case 1.1), and Case 2.2 implies that the clause $\left(\ell_{e} \vee \overline{\ell_{e_{3}}}\right)$ belongs to $\phi_{2}^{\prime \prime}$ (instead of the clause $\left(\ell_{e} \vee \overline{\ell_{e_{2}}}\right)$ in Case 1.2).

Summarizing, if $e=u_{a} v_{p}$ then $\phi_{2}^{\prime \prime}$ includes the clause $\left(\ell_{e} \vee \overline{\ell_{e_{2}}}\right)$, while if $e=u_{j} v_{a}$ then $\phi_{2}^{\prime \prime}$ includes the clause $\left(\ell_{e} \vee \overline{\ell_{e_{3}}}\right)$. This completes the proof of the lemma. -

Lemma 6.6. Let $\left\{e_{1}, e_{2}, e_{3}\right\}$ be the three edges of an $A C_{6}$ in H, which has clauses in ϕ_{1}. Let e be an edge of H such that $\left(\ell_{e} \vee \overline{\ell_{e_{1}}}\right)$ is a clause in $\phi_{2}^{\prime \prime}$. Then $\phi_{2}^{\prime \prime}$ contains also at least one of the clauses $\left\{\left(\ell_{e} \vee \ell_{e_{2}}\right),\left(\ell_{e} \vee \ell_{e_{3}}\right)\right\}$.

Proof. Since H is a split graph, Lemma 3.15 implies that the $A C_{6}$ of H is an $A P_{6}$, i.e. an alternating path of length 6 (cf. Figure $\left.1(\mathrm{~b})\right)$. Using the notation of Lemma 6.5, denote by V and U the clique and the independent set of H, respectively. Then the vertices of the $A P_{6}$ in H belong alternately to U and to V by Lemma 3.14.

Figure 4. (a) The Case 1.1 and (b) the Case 1.2 in the proof of Lemma 6.5.

That is, $u_{i}, v_{j}, u_{p}, v_{q}, u_{r}, v_{s}$ are the vertices of the $A P_{6}$ in this order, for some vertices $u_{i}, u_{p}, u_{r} \in U$ and $v_{j}, v_{q}, v_{s} \in V$ (where $u_{i} v_{j}, u_{p} v_{q}, u_{r} v_{s} \notin E_{H}$ according to our notation, cf. Definition 3.1). Without loss of generality let $e_{1}=u_{p} v_{j}, e_{2}=u_{r} v_{q}$, and $e_{3}=u_{i} v_{s}$. Then, similarly to the preamble of the proof of Lemma 6.5, it follows that the edges $e_{1}^{\prime}=u_{i} v_{q}, e_{2}^{\prime}=u_{p} v_{s}$, and $e_{3}^{\prime}=u_{r} v_{j}$ exist in H and $e_{1}=u_{\underline{p}} v_{j} \| u_{i} v_{q}=\underline{e_{1}^{\prime}}$, $e_{2}=u_{r} v_{q} \| u_{p} v_{s}=e_{2}^{\prime}$, and $e_{3}=u_{i} v_{s} \| u_{r} v_{j}=e_{3}^{\prime}$. Therefore $\ell_{e_{1}^{\prime}}=\overline{\ell_{e_{1}}}, \ell_{e_{2}^{\prime}}=\overline{\ell_{e_{2}}}$, and $\ell_{e_{3}^{\prime}}=\overline{\ell_{e_{3}}}$.

Since $u_{i} v_{j}, u_{p} v_{q}, u_{r} v_{s} \notin E_{H}$, it follows that the vertices $u_{i}, v_{q}, u_{p}, v_{s}, u_{r}, v_{j}$ (in this order) build an $A C_{6}$ in H, where $\left\{e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}\right\}$ are its three edges. Therefore, by applying Lemma 3.15 on this new $A C_{6}$, it follows that if $\left(\ell_{e} \vee \ell_{e_{1}^{\prime}}\right)$ is a clause in $\phi_{2}^{\prime \prime}$, then $\phi_{2}^{\prime \prime}$ contains also at least one of the clauses $\left\{\left(\ell_{e} \vee \overline{\ell_{e_{2}^{\prime}}}\right),\left(\ell_{e} \vee \overline{\ell_{e_{3}^{\prime}}}\right)\right\}$. This completes the proof of the lemma, since $\ell_{e_{1}^{\prime}}=\overline{\ell_{e_{1}}}, \ell_{e_{2}^{\prime}}=\overline{\ell_{e_{2}}}$, and $\ell_{e_{3}^{\prime}}=\overline{\ell_{e_{3}}}$. \square

The next corollary, which follows easily by Definition 2.2 and by Lemmas 6.3-6.6, allows us to use the linear time algorithm for gradually mixed formulas (cf. Theorem 2.3) in order to solve the SAT problem on $\phi_{1} \wedge \phi_{2}^{\prime \prime}$.

Corollary 6.7. $\phi_{1} \wedge \phi_{2}^{\prime \prime}$ is a gradually mixed formula.
Proof. First note that, by construction, every clause of ϕ_{1} has 3 literals and every clause of ϕ_{2} has 2 literals. Furthermore, the first condition of Definition 2.2 is satisfied due to Lemma 6.3. Regarding the second condition of Definition 2.2, consider an arbitrary $A C_{6}$ in H that has clauses in ϕ_{1}. Denote by $\left\{e_{1}, e_{2}, e_{3}\right\}$ the three edges of this $A C_{6}$. Then this $A C_{6}$ contributes to the formula ϕ_{1} by the two (dual) clauses $\alpha=\left(\ell_{e_{1}} \vee \ell_{e_{2}} \vee \ell_{e_{3}}\right)$ and $\bar{\alpha}=\left(\overline{\ell_{e_{1}}} \vee \overline{\ell_{e_{2}}} \vee \overline{\ell_{e_{3}}}\right)$, cf. the construction of ϕ_{1} in Section 5. If $\left(\ell_{e} \vee \ell_{e_{1}}\right)$ is a clause of $\phi_{2}^{\prime \prime}$, then Lemma 6.5 implies that $\phi_{2}^{\prime \prime}$ includes also at least one of the clauses $\left\{\left(\ell_{e} \vee \overline{\ell_{e_{2}}}\right),\left(\ell_{e} \vee \overline{\ell_{e_{3}}}\right)\right\}$. Similarly, if $\left(\ell_{e} \vee \overline{\ell_{e_{1}}}\right)$ is a clause of $\phi_{2}^{\prime \prime}$, Lemma 6.6 implies that $\phi_{2}^{\prime \prime}$ includes also at least one of the clauses $\left\{\left(\ell_{e} \vee \ell_{e_{2}}\right),\left(\ell_{e} \vee \ell_{e_{3}}\right)\right\}$. Therefore the second condition of Definition 2.2 is also satisfied for the formula $\phi_{1} \wedge \phi_{2}^{\prime \prime}$, i.e. $\phi_{1} \wedge \phi_{2}^{\prime \prime}$ is a gradually mixed formula.
6.2. The recognition algorithm. In this section we use Corollary 6.7 to design an algorithm that decides satisfiability on $\phi_{1} \wedge \phi_{2}$ in time linear to its size (cf. Theo-
rem 6.8). This will enable us to combine the results of Sections 4 and 5 to recognize efficiently whether a given graph is a PI graph, or equivalently, due to Theorem 4.1, whether a given partial order P is the intersection of a linear order P_{1} and an interval order P_{2}.

THEOREM 6.8. $\phi_{1} \wedge \phi_{2}$ is satisfiable if and only if $\phi_{1} \wedge \phi_{2}^{\prime \prime}$ is satisfiable. Given a satisfying truth assignment of $\phi_{1} \wedge \phi_{2}^{\prime \prime}$ we can compute a satisfying truth assignment of $\phi_{1} \wedge \phi_{2}$ in linear time.

Proof. If $\phi_{1} \wedge \phi_{2}$ is satisfiable then $\phi_{1} \wedge \phi_{2}^{\prime \prime}$ is also satisfiable as a sub-formula of $\phi_{1} \wedge \phi_{2}$. Conversely, suppose that $\phi_{1} \wedge \phi_{2}^{\prime \prime}$ is satisfiable and let τ be a satisfying assignment. Consider an arbitrary clause $\gamma=\left(\ell_{e_{1}} \vee \ell_{e_{2}}\right)$ of the sub-formula ϕ_{2}^{\prime} of ϕ_{2}, cf. Definition 6.4. If γ is a tautology then γ is satisfied by any truth assignment of ϕ, and thus also by τ. Assume now that γ is not a tautology. Then at least one of its literals $\left\{\ell_{e_{1}}, \ell_{e_{2}}\right\}$ corresponds to an uncommitted edge by Definition 6.4. Recall now by the construction of ϕ_{1} (cf. Section 5) that in every clause of ϕ_{1}, no literal is the negation of another literal. Thus, for every clause of ϕ_{1}, no pair among the three edges in the corresponding $A C_{6}$ is in conflict. Therefore Lemma 3.7 implies that all three edges of such an $A C_{6}$ are committed. Thus, for every literal ℓ_{e} of ϕ_{2}^{\prime}, which corresponds to an uncommitted edge e, neither ℓ_{e} nor $\overline{\ell_{e}}$ appears in ϕ_{1}. Furthermore recall that $\phi_{2}^{\prime \prime}$ does not include any literal ℓ_{e} of any uncommitted edge e of H by Definition 6.4.

Summarizing, for every literal ℓ_{e} of ϕ_{2}^{\prime}, which corresponds to an uncommitted edge e, neither ℓ_{e} nor $\overline{\ell_{e}}$ appears in $\phi_{1} \wedge \phi_{2}^{\prime \prime}$. That is, the truth assignment τ of $\phi_{1} \wedge \phi_{2}$ does not assign any value to the literal ℓ_{e}. Furthermore, since e is uncommitted, no edge of H is assigned the literal $\overline{\ell_{e}}$. Therefore we can extend (in linear time) the truth assignment τ to a truth assignment τ^{\prime} that satisfies both $\phi_{1} \wedge \phi_{2}^{\prime \prime}$ and ϕ_{2}^{\prime}, by setting $\ell_{e}=1$ for all uncommitted edges e of H. That is, τ^{\prime} satisfies the formula $\phi_{1} \wedge \phi_{2}$. Therefore $\phi_{1} \wedge \phi_{2}$ is satisfiable if and only if $\phi_{1} \wedge \phi_{2}^{\prime \prime}$ is satisfiable. This completes the proof of the theorem.

Now we are ready to present our recognition algorithm for PI graphs (Algorithm 5). Its correctness and timing analysis is established in Theorem 6.9.

THEOREM 6.9. Let $G=(V, E)$ be a graph and $\bar{G}=(V, \bar{E})$ be its complement, where $|V|=n$ and $|\bar{E}|=m$. Then Algorithm 5 constructs in $O\left(n^{2} m\right)$ time a PI representation of G, or it announces that G is not a PI graph.

Proof. If the given graph G is a trapezoid graph, then Algorithm 5 computes in line 2 a partial order P of its complement \bar{G}. Otherwise, if G is not a trapezoid graph, then clearly it is also not a PI graph, and thus the algorithm correctly announces in line 3 that G is not a PI graph.

Let $C(P)$ be the domination bipartite graph of the partial order P (cf. Definition 4.2), and let $\widetilde{G}=\widehat{C}(P)$ be the bipartite complement of $C(P)$, which are computed in lines 4 and 5 of Algorithm 5, respectively. Furthermore let H be the associated split graph of \widetilde{G} (cf. Definition 3.3) and H^{*} be the conflict graph of H (cf. Definition 3.6), which are computed in lines 6 and 7 of Algorithm 5 , respectively. If H^{*} is not bipartite, i.e. if $\chi\left(H^{*}\right)>2$, then \widetilde{G} is not linear-interval coverable by Lemma 5.1, and thus G is not a PI graph by Corollary 4.9. Therefore Algorithm 5 correctly announces in line 18 that G is not a PI graph if H^{*} is not bipartite.

Suppose now that H^{*} is bipartite, i.e. $\chi\left(H^{*}\right) \leq 2$. Let χ_{0} be a 2-coloring of the vertices of H^{*}, which is computed in line 9 of Algorithm 5. Furthermore let ϕ_{1} and ϕ_{2} be the Boolean formulas that can be computed by Algorithms 2 and 3, respectively (cf. line 10 of Algorithm 5). If the formula $\phi_{1} \wedge \phi_{2}$ is not satisfiable, then \widetilde{G} is not linear-interval coverable by Theorem 5.4 , and thus G is not a PI graph by

```
Algorithm 5 Recognition of PI graphs
Input: A graph \(G=(V, E)\)
Output: A PI representation \(R\) of \(G\), or the announcement that \(G\) is not a PI graph
    if \(G\) is a trapezoid graph then
        Compute a partial order \(P\) of the complement \(\bar{G}\)
    else return " \(G\) is not a PI graph"
    Compute the domination bipartite graph \(C(P)\) from \(P\)
    \(\widetilde{G} \leftarrow \widehat{C}(P)\)
    Compute the associated split graph \(H\) of \(\widetilde{G}\)
    Compute the conflict graph \(H^{*}\) of \(H\)
    if \(H^{*}\) is bipartite then
        Compute a 2 -coloring \(\chi_{0}\) of the vertices of \(H^{*}\)
        Compute the formulas \(\phi_{1}\) and \(\phi_{2}\)
        if \(\phi_{1} \wedge \phi_{2}\) is satisfiable then
            Compute a satisfying truth assignment \(\tau \sim\) of \(\phi_{1} \wedge \phi_{2}\) by Theorem 6.8
            Compute from \(\tau\) a linear-order cover of \(\widetilde{G}\) by Algorithm 4
            Compute a PI representation \(R\) of \(G\) by Algorithm 1
        else
            return " \(G\) is not a PI graph"
    else
        return " \(G\) is not a PI graph"
    return \(R\)
```

Corollary 4.9. Therefore Algorithm 5 correctly announces in line 16 that G is not a PI graph if $\phi_{1} \wedge \phi_{2}$ is not satisfiable.

Suppose now that $\phi_{1} \wedge \phi_{2}$ is satisfiable, and let τ be a satisfying truth assignment of $\phi_{1} \wedge \phi_{2}$, as it is computed in line 12 of Algorithm 5. Then \widetilde{G} is linear-interval coverable by Theorem 5.4, and thus G is a PI graph by Corollary 4.9. Furthermore, given τ, we can compute a linear-interval cover of \widetilde{G} using Algorithm 4 (cf. line 13 of Algorithm 5). Finally, given this linear-interval cover of \widetilde{G}, we can compute a PI representation R of G using Algorithm 1 (cf. line 14 of Algorithm 5). Thus, if $\phi_{1} \wedge \phi_{2}$ is satisfiable, Algorithm 5 correctly returns R in line 19.

Time complexity. First note that the complement \bar{G} of G can be computed in $O\left(n^{2}\right)$ time, since both G and \bar{G} have n vertices. Furthermore, using the algorithm of [15] we can decide in $O\left(n^{2}\right)$ time whether G is a trapezoid graph, and within the same time bound we can compute a trapezoid representation of G, if it exists. Suppose in the following that G is a trapezoid graph. Then we can then compute in $O\left(n^{2}\right)$ time a partial order P of the complement \bar{G} of G as follows: $u<_{P} v$ if and only if the trapezoid for vertex u lies entirely to the left of the trapezoid for vertex v in this trapezoid representation of G. Therefore, lines 1-3 of Algorithm 5 can be executed in $O\left(n^{2}\right)$ time in total. Note that we choose to compute the partial order P using the trapezoid graph recognition algorithm of [15], in order to achieve the $O\left(n^{2}\right)$ time bound. Alternatively we could solve the transitive orientation problem on \bar{G} using the standard forcing algorithm with $O(n m)$ running time (note that m is the number of edges of \bar{G}).

Denote $\widetilde{G}=(U, V, \widetilde{E})$, where $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$.

Furthermore denote $E_{0}=\left\{u_{i} v_{i} \mid 1 \leq i \leq n\right\}$. Then $H=\left(U, V, E_{H}\right)$, where $E_{H}=$ $\widetilde{E} \cup(V \times V)$ by Definition 3.3. Since $C(P)$ and H have $2 n$ vertices each, each of the lines 4-6 of Algorithm 5 can be computed by a straightforward implementation in $O\left(n^{2}\right)$ time. Note that the partial order P has m pairs of comparable elements, since the complement \bar{G} of G has m edges. Therefore the domination bipartite graph $C(P)$ of P has m edges (cf. Definition 4.2), and thus its bipartite complement $\widetilde{G}=\widehat{C}(P)$ has $|\widetilde{E}|=n^{2}-m$ edges.

Consider a pair $\left\{e, e^{\prime}\right\}$ of edges of H that are in conflict, i.e. $e \| e^{\prime}$ in H. Then $e, e^{\prime} \notin V \times V$ by Observation 3, since H is a split graph and V induces a clique in H. Therefore both e and e^{\prime} are edges of \widetilde{G}, i.e. $e, e^{\prime} \in \widetilde{E}$, and thus $e=u_{i} v_{j}$ and $e^{\prime}=u_{p} v_{q}$ for some indices $i, j, p, q \in\{1,2, \ldots, n\}$. Furthermore, since e and e^{\prime} are in conflict, it follows that $u_{i} v_{q}, u_{p} v_{j} \notin \widetilde{E}$. That is, every pair of conflicting edges in H corresponds to exactly one pair $\left\{u_{i} v_{q}, u_{p} v_{j}\right\}$ of non-edges of $\widetilde{G}=\widehat{C}(P)$. Equivalently, every edge in the conflict graph H^{*} of H corresponds to exactly one pair of edges of $C(P)$. Since $C(P)$ has m edges, it follows that the conflict graph H^{*} has at most $O\left(m^{2}\right)$ edges. Furthermore note that the conflict graph H^{*} has $\binom{n}{2}+|\widetilde{E}|=O\left(n^{2}\right)$ vertices, since H has $\binom{n}{2}+|\widetilde{E}|$ edges. Therefore the conflict graph H^{*} can be computed in $O\left(n^{2}+m^{2}\right)$ time (cf. line 7 of Algorithm 5).

Note now that in time linear to the size of H^{*}, we can check whether H^{*} is bipartite, and we can compute a 2 -coloring χ_{0} of the vertices of H^{*}, if one exists. Therefore lines 8-9 of Algorithm 5 can be executed in $O\left(n^{2}+m^{2}\right)$ time. Furthermore, in time linear to the size of H^{*}, i.e. in $O\left(n^{2}+m^{2}\right)$ time, we can compute the connected components $C_{1}, C_{2}, \ldots, C_{k}$ of H^{*}. Then, having already computed the 2 -coloring χ_{0} and the connected components $C_{1}, C_{2}, \ldots, C_{k}$ of H^{*}, we can assign to every edge e of H the literal $\ell_{e} \in\left\{x_{i}, \overline{x_{i}} \mid 1 \leq i \leq k\right\}$ (cf. Section 5). This can be done in $O\left(n^{2}\right)$ time, since H has $\binom{n}{2}+|\widetilde{E}|=O\left(n^{2}\right)$ edges.

Now we bound the size of the formulas ϕ_{1} and ϕ_{2} that are computed by Algorithms 2 and 3, respectively. Regarding the size of ϕ_{2}, note that, by the construction of ϕ_{2}, if $\left(\ell_{e} \vee \ell_{e^{\prime}}\right)$ is a clause of ϕ_{2}, then $e=u_{i} v_{t}, e^{\prime}=u_{t} v_{j}$, and $u_{i} v_{j} \notin E_{H} \backslash E_{0}$, for some indices $i, j, t \in\{1,2, \ldots, n\}$. That is, for every index $t \in\{1,2, \ldots, n\}$ and for every pair (i, j) of indices in the set $\left\{(i, j) \mid i=j\right.$ or $\left.u_{i} v_{j} \notin E_{H}\right\}$, the formula ϕ_{2} has at most one clause. Note that every pair (i, j) of the set $\left\{(i, j) \mid u_{i} v_{j} \notin E_{H}\right\}$ corresponds to exactly one edge $u_{i} v_{j}$ of the bipartite graph $C(P)$. Thus, since $C(P)$ has m edges, it follows that $\mid\left\{(i, j) \mid i=j\right.$ or $\left.u_{i} v_{j} \notin E_{H}\right\} \mid \leq n+m$. Therefore ϕ_{2} has at most $n(n+m)$ clauses, and thus ϕ_{2} can be computed in $O(n(n+m))$ time by Algorithm 3.

Regarding the size of ϕ_{1}, recall first that every connected component C_{i} of the conflict graph H^{*} has been assigned exactly one Boolean variable x_{i}, where $i \in$ $\{1,2, \ldots, k\}$. Furthermore recall that every edge e of H has been assigned a literal $\ell_{e} \in\left\{x_{i}, \overline{x_{i}} \mid 1 \leq i \leq k\right\}$. Therefore, since every clause of ϕ_{1} appears only once in ϕ_{1} (cf. lines 4-5 of Algorithm 2), it follows by the construction of ϕ_{1} and by Lemma 6.3 that ϕ_{1} has at most $2 \frac{k}{3}$ clauses. Furthermore note that $k=O\left(n^{2}\right)$, since H^{*} has $O\left(n^{2}\right)$ vertices. Thus ϕ_{1} has at most $O\left(n^{2}\right)$ clauses.

Claim 2. The following two statements are equivalent:
(a) the formula ϕ_{1} contains the clauses $\alpha=\left(\ell_{e} \vee \ell_{e^{\prime}} \vee \ell_{e^{\prime \prime}}\right)$ and $\alpha^{\prime}=\left(\overline{\ell_{e}} \vee \overline{\ell_{e^{\prime}}} \vee \overline{\ell_{e^{\prime \prime}}}\right)$,
(b) there exist four distinct vertices a, b, c, d in H, such that:

- $a b \notin E_{H}$ and $b c, c d, d a \in E_{H}$,
- either $a, c \in U$ and $b, d \in V$, or $a, c \in V$ and $b, d \in U$,
- the edges $b c, c d, d a$ are committed in H,
- $\ell_{b c}=\underline{\ell_{e}}, \ell_{c d}=\overline{\ell_{e^{\prime}}}, \ell_{d a}=\underline{\ell_{e^{\prime \prime}}}$, and
- $\ell_{e} \neq \overline{\ell_{e^{\prime}}}, \ell_{e^{\prime}} \neq \overline{\ell_{e^{\prime \prime}}}, \ell_{e} \neq \overline{\ell_{e^{\prime \prime}}}$.

Proof of Claim 2. $\quad((\mathrm{a}) \Rightarrow(\mathrm{b}))$ Consider first a pair of clauses $\alpha=\left(\ell_{e} \vee \ell_{e^{\prime}} \vee\right.$ $\left.\ell_{e^{\prime \prime}}\right)$ and $\alpha^{\prime}=\left(\overline{\ell_{e}} \vee \overline{\ell_{e^{\prime}}} \vee \overline{\ell_{e^{\prime \prime}}}\right)$ in ϕ_{1}. These clauses correspond to an $A C_{6}$ on the edges $\left\{e, e^{\prime}, e^{\prime \prime}\right\}$ of H by the construction of ϕ_{1}. Furthermore, since H is a split graph, Lemma 3.15 implies that this $A C_{6}$ of H is an $A P_{6}$, i.e. an alternating path of length 6 (cf. Figure $1(\mathrm{~b})$). Let $w_{1}, w_{2}, w_{3}, w_{4}, w_{5}, w_{6}$ be the vertices of this $A P_{6}$, such that $e=w_{2} w_{3}, e^{\prime}=w_{4} w_{5}$, and $e^{\prime \prime}=w_{6} w_{1}$ (note that there always exists an enumeration of the vertices of the $A P_{6}$ such that the edges $e, e^{\prime}, e^{\prime \prime}$ are met in this order on the $A P_{6}$). Then, since V induces a clique in H and U induces an independent set in H, Lemma 3.14 implies that either $w_{1}, w_{3}, w_{5} \in U$ and $w_{2}, w_{4}, w_{6} \in V$, or $w_{1}, w_{3}, w_{5} \in V$ and $w_{2}, w_{4}, w_{6} \in U$. Since $\ell_{e} \neq \overline{\ell_{e^{\prime}}}, \ell_{e^{\prime}} \neq \overline{\ell_{e^{\prime \prime}}}$, and $\ell_{e} \neq \overline{\ell_{e^{\prime \prime}}}$ (cf. line 3 of Algorithm 2), it follows that no pair among the edges $\left\{e, e^{\prime}, e^{\prime \prime}\right\}$ is in conflict in H. Therefore Lemma 3.7 implies that the edges $w_{3} w_{6}, w_{4} w_{1}, w_{5} w_{2}$ exist in H and $e^{\prime}\left\|w_{3} w_{6}, e\right\| w_{4} w_{1}$, and $e^{\prime \prime} \| w_{5} w_{2}$. Thus all six edges $\left\{e, e^{\prime}, e^{\prime \prime}, w_{3} w_{6}, w_{4} w_{1}, w_{5} w_{2}\right\}$ are committed. Furthermore $\ell_{w_{4} w_{1}}=\overline{\ell_{e}}, \ell_{w_{3} w_{6}}=\overline{\ell_{e^{\prime}}}$, and $\ell_{w_{5} w_{2}}=\overline{\ell_{e^{\prime \prime}}}$. Thus the vertices $a=w_{1}, b=w_{2}, c=w_{3}$, and $d=w_{6}$ of H satisfy the conditions of the part (b) of the claim.
$((\mathrm{b}) \Rightarrow(\mathrm{a}))$ Conversely, consider four vertices a, b, c, d in H, as specified in the part (b) of the claim. Then, since the edge $c d$ is committed, there exists an edge $p q \in E_{H}$ such that $p c, q d \notin E_{H}$, and thus $c d \| p q$. Then $\ell_{p q}=\overline{\ell_{c d}}$. Therefore, since $\ell_{c d}=\overline{\ell_{e^{\prime}}}$, it follows that $\ell_{p q}=\ell_{e^{\prime}}$. Thus there exists an $A C_{6}$ in H on the vertices a, b, c, p, q, d, where $\ell_{b c}=\ell_{e}, \ell_{p q}=\ell_{e^{\prime}}$, and $\ell_{d a}=\ell_{e^{\prime \prime}}$. Furthermore, since $\ell_{e} \neq \overline{\ell_{e^{\prime}}}, \ell_{e^{\prime}} \neq \overline{\ell_{e^{\prime \prime}}}$, and $\ell_{e} \neq \overline{\ell_{e^{\prime \prime}}}$ by assumption, it follows by the construction of ϕ_{1} (cf. Algorithm 2) that ϕ_{1} contains the clauses $\alpha=\left(\ell_{e} \vee \ell_{e^{\prime}} \vee \ell_{e^{\prime \prime}}\right)$ and $\alpha^{\prime}=\left(\overline{\ell_{e}} \vee \overline{\ell_{e^{\prime}}} \vee \overline{\ell_{e^{\prime \prime}}}\right)$.

Now, due to Claim 2, we can implement Algorithm 2 for the computation of ϕ_{1} in time $O\left(n^{2} m+m^{2}\right)$ as follows. Recall first that $C(P)$ has m edges. We iterate for every edge $u_{i} v_{j}$ of $C(P)$, i.e. for every nonedge $u_{i} v_{j} \notin E_{H}$ of H. For every such $u_{i} v_{j}$, we mark all vertices in the sets A and B, where $A=\left\{v \in V \mid u_{i} v \in E_{H}\right.$ and $u_{i} v$ is committed in $\left.H\right\}$ and $B=\left\{u \in U \mid u v_{j} \in E_{H}\right.$ and $u v_{j}$ is committed in $\left.H\right\}$. Then we scan through the adjacency lists of all vertices in A to discover a pair of vertices $v \in A$ and $u \in B$ such that $u v$ is a committed edge of H, and $\ell_{v_{j} u} \neq \ell_{u v}, \ell_{u v} \neq \ell_{v u_{i}}$, and $\ell_{v_{j} u} \neq \overline{\ell_{v u_{i}}}$. Since H has $O\left(n^{2}\right)$ edges, this scan through the adjacency lists of the vertices of A can be done in $O\left(n^{2}\right)$ time. If we discover such an edge $u v$, then we add to ϕ_{1} the clauses $\alpha=\left(\ell_{v_{j} u} \vee \overline{\ell_{u v}} \vee \ell_{v u_{i}}\right)$ and $\alpha^{\prime}=\left(\overline{\ell_{v_{j} u}} \vee \ell_{u v} \vee \overline{\ell_{v u_{i}}}\right)$. Due to Claim 2, Algorithm 2 would add the same two clauses to ϕ_{1}.

Due to Lemma 6.3, no other clause of ϕ_{1} has one of the literals $\left\{\ell_{v_{j} u}, \overline{\ell_{v_{j} u}}, \ell_{u v}, \overline{\ell_{u v}}, \ell_{v u_{i}}, \overline{\ell_{v u_{i}}}\right\}$. After we add the two clauses α and α^{\prime} to ϕ_{1}, we visit all edges e of H which correspond to the same connected component in H^{*} with one of the edges $\left\{v_{j} u, u v, v u_{j}\right\}$. Note that exactly these edges e of H have a literal $\ell_{e} \in\left\{\ell_{v_{j} u}, \overline{\ell_{v_{j} u}}, \ell_{u v}, \overline{\ell_{u v}}, \ell_{v u_{i}}, \overline{\ell_{v u_{i}}}\right\}$. We then mark all these edges e such that we avoid visiting them again in any subsequent iteration during the construction of ϕ_{1}. Thus we ensure that each clause appears at most once ϕ_{1} (cf. lines 4-5 of Algorithm 2). Note that we can perform all such markings of edges e (for all iterations during the construction of ϕ_{1}) in time linear to the size of H^{*}, i.e. in $O\left(n^{2}+m^{2}\right)$ time. Summarizing, we need in total $O\left(n^{2} m+m^{2}\right)$ time to compute the formula ϕ_{1}. Thus, since the formula ϕ_{2} can be computed in $O(n(n+m))$ time, it follows that line 10 of

Algorithm 5 can be executed in $O\left(n^{2} m+m^{2}\right)$ time.
Now, we can test whether the formula $\phi_{1} \wedge \phi_{2}$ is satisfiable in time linear to its size by Theorem 6.8; moreover, within the same time bound we can compute a satisfying truth assignment τ of $\phi_{1} \wedge \phi_{2}$, if one exists. Thus, since ϕ_{1} has $O\left(n^{2}\right)$ clauses and ϕ_{2} has $O(n(n+m))$ clauses, lines 11-12 of Algorithm 5 can be executed in $O(n(n+m))$ time. Furthermore, line 13 of Algorithm 5 can be executed in $O\left(n^{2}\right)$ time by Theorem 5.4, calling Algorithm 4 as a subroutine. Finally, line 14 of Algorithm 5 can be executed in $O\left(n^{2}\right)$ time by Theorem 4.10, calling Algorithm 1 as a subroutine. Summarizing, since $m=O\left(n^{2}\right)$, the total running time of Algorithm 5 is $O\left(n^{2} m\right)$. This completes the proof of the theorem.

Due to characterization of PI graphs in Theorem 4.1 using partial orders, the next theorem follows now by Theorem 6.9.

Theorem 6.10. Let $P=(U, R)$ be a partial order, where $|U|=n$ and $|R|=m$. Then we can decide in $O\left(n^{2} m\right)$ time whether P is a linear-interval order, and in this case we can compute a linear order P_{1} and an interval order P_{2} such that $P=P_{1} \cap P_{2}$.
7. Concluding remarks. In this article we provided the first polynomial algorithm for the recognition of simple-triangle graphs, or equivalently for the recognition of linear-interval orders, solving thus a longstanding open problem. For a graph G with n vertices, where its complement \bar{G} has m edges, our $O\left(n^{2} m\right)$-time algorithm either computes a simple-triangle representation of G, or it announces that such one does not exist. The main tool for our recognition algorithm was a new hybrid tractable subclass of 3SAT, called the class of gradually mixed formulas. In addition, we introduced the notion of a linear-interval cover of bipartite graphs, which naturally extends the well-known notion of the chain-cover of bipartite graphs. There are two main lines for further research. The first one is to identify more "islands of tractability" for hybrid classes of SAT (and more generally of CSP), while the ultimate goal is to find a complete characterization of the hybrid classes of CSP that are tractable. The second line for further research is to resolve the complexity of the recognition for the related classes with simple-triangle graphs, such as the classes of unit and proper tolerance graphs [11] (these are subclasses of parallelogram graphs, and thus also subclasses of trapezoid graphs), proper bitolerance graphs [2,11] (they coincide with unit bitolerance graphs [2]), and multitolerance graphs [18] (they naturally generalize trapezoid graphs [18,20]). On the contrary, the recognition problems for the related classes of triangle graphs [17], tolerance and bounded tolerance (i.e. parallelogram) graphs [19], and max-tolerance graphs [14] have been already proved to be NP-complete.

Acknowledgment. The author wishes to thank Jayme Luiz Szwarcfiter for initial discussions on the simple-triangle recognition problem.

REFERENCES

[1] S. Benzer. On the topology of the genetic fine structure. Proc. of the National Academy of Sciences (PNAS), 45:1607-1620, 1959.
[2] K. P. Bogart and G. Isaak. Proper and unit bitolerance orders and graphs. Discrete Mathematics, 181(1-3):37-51, 1998.
[3] A. Brandstädt, V. B. Le, and J. P. Spinrad. Graph classes: a survey. Society for Industrial and Applied Mathematics (SIAM), 1999.
[4] A. V. Carrano. Establishing the order to human chromosome-specific DNA fragments. Biotechnology and the Human Genome, Plenum Press:37-50, 1988.
[5] M. R. Cerioli, F. de S. Oliveira, and J. L. Szwarcfiter. Linear-interval dimension and PI orders. Electronic Notes in Discrete Mathematics, 30:111-116, 2008.
[6] D. G. Corneil and P. A. Kamula. Extensions of permutation and interval graphs. In Proceedings of the 18th Southeastern Conference on Combinatorics, Graph Theory and Computing, pages 267-275, 1987.
[7] I. Dagan, M. C. Golumbic, and R. Y. Pinter. Trapezoid graphs and their coloring. Discrete Applied Mathematics, 21(1):35-46, 1988.
[8] S. Even, A. Itai, and A. Shamir. On the complexity of timetable and multicommodity flow problems. SIAM Journal on Computing, 5(4):691-703, 1976.
[9] P. W. Goldberg, M. C. Golumbic, H. Kaplan, and R. Shamir. Four strikes against physical mapping of DNA. Journal of Computational Biology, 2(1):139-152, 1995.
[10] M. C. Golumbic. Algorithmic graph theory and perfect graphs (Annals of Discrete Mathematics, Vol. 57). North-Holland Publishing Co., 2 edition, 2004.
[11] M. C. Golumbic and A. N. Trenk. Tolerance Graphs. Cambridge Studies in Advanced Mathematics, 2004.
[12] P. L. Hammer, T. Ibaraki, and U. N. Peled. Threshold numbers and threshold completions. Annals of Discrete Mathematics, 11:125-145, 1981.
[13] T. Ibaraki and U. N. Peled. Sufficient conditions for graphs to have threshold number 2. Annals of Discrete Mathematics, 11:241-268, 1981.
[14] M. Kaufmann, J. Kratochvil, K. A. Lehmann, and A. R. Subramanian. Max-tolerance graphs as intersection graphs: cliques, cycles, and recognition. In Proceedings of the 17 th annual ACM-SIAM symposium on Discrete Algorithms (SODA), pages 832-841, 2006.
[15] T.-H. Ma and J. P. Spinrad. On the 2-chain subgraph cover and related problems. Journal of Algorithms, 17:251-268, 1994.
[16] N. Mahadev and U. N. Peled. Threshold Graphs and Related Topics (Annals of Discrete Mathematics, Vol. 56). North-Holland Publishing Co., 1995.
[17] G. B. Mertzios. The recognition of triangle graphs. Theoretical Computer Science, 438:34-47, 2012.
[18] G. B. Mertzios. An intersection model for multitolerance graphs: Efficient algorithms and hierarchy. Algorithmica, 69(3):540-581, 2014.
[19] G. B. Mertzios, I. Sau, and S. Zaks. The recognition of tolerance and bounded tolerance graphs. SIAM Journal on Computing, 40(5):1234-1257, 2011.
[20] A. Parra. Triangulating multitolerance graphs. Discrete Applied Mathematics, 84(1-3):183-197, 1998.
[21] T. Raschle and K. Simon. Recognition of graphs with threshold dimension two. In Proceedings of the 27th ACM symposium on Theory of computing (STOC), pages 650-661, 1995.
[22] J. P. Spinrad. Efficient graph representations, volume 19 of Fields Institute Monographs. American Mathematical Society, 2003.
[23] M. Yannakakis. The complexity of the partial order dimension problem. SIAM Journal on Algebraic and Discrete Methods, 3:351-358, 1982.

[^0]: *This work was partially supported by the EPSRC Grant EP/K022660/1. A preliminary conference version of this work appeared in the Proceedings of the 21st European Symposium on Algorithms (ESA), Sophia Antipolis, France, pages 719-730, 2013.
 ${ }^{\dagger}$ School of Engineering and Computing Sciences, Durham University, United Kingdom. Email: george.mertzios@durham.ac.uk
 ${ }^{1}$ Benzer [1] earned the prestigious Lasker Award (1971) and Crafoord Prize (1993) partly for showing that the set of intersections of a large number of fragments of genetic material in a virus form an interval graph.

[^1]: ${ }^{2}$ In [21], the authors prove within the proof of Theorem 3.2 a more general statement (cf. equations (2) and (3) in [21]). In particular, they flip the colors of all edges $x y$ of G, for which there exists an $A P_{6}$ in G having $v_{1} v_{2}$ as its basis and $x y$ as its front (cf. equation (2) in [21]); note here that all these edges, whose color is being flipped, may correspond to one or more connected components in the conflict graph G^{*}. Then they prove that in the new edge coloring of G no flipped edge participates in a monochromatic $A P_{6}$ (cf. equation (3) in [21]). In their proof, which is correct and technically involved, they actually prove that this happens also when we flip the colors of only one connected component $C^{*}\left(v_{3} v_{6}\right)$ of G^{*}, where $v_{3} v_{6}$ is the front of the initial monochromatic $A P_{6}$ on the vertices v_{1}, \ldots, v_{6}.

