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Abstract

We consider the holographic computation of two dimensional conformal field
theory partition functions on non-orientable surfaces. We classify the three dimen-
sional geometries that give bulk saddle point contributions to the partition function,
and find that there are fewer saddles than in the orientable case. For example, for
the Klein bottle there is a single smooth saddle and a single additional saddle with
an orbifold singularity. We argue that one must generally include singular bulk sad-
dle points in order to reproduce the CFT results. We also discuss loop corrections
to these partition functions for the Klein bottle.
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1 Introduction

The AdS/CFT correspondence states that the quantum gravity with asymptotically
AdS boundary conditions is equivalent to a conformal field theory living on the
boundary of AdS [1]. This implies, for example, that the partition function of a bulk
theory of gravity equals that of a conformal field theory in one less dimension. This
remarkable proposal is usually difficult to test directly. An important exception,
however, occurs in the case of three dimensional gravity, where a variety of exact
computations are possible.

We will study the partition function of three dimensional theories of gravity
in Euclidean signature. This partition function should, at least in principle, be
regarded as an integral over a space of Euclidean bulk solutions with specified
boundary conditions. The partition function will in general be a function of the
sources for any bulk fields which are turned on at the asymptotic boundary. In this
paper we will focus on the metric degrees of freedom, and set other sources to be
zero. The partition function is then a function of the topology and the conformal
structure of the asymptotic boundary. Our goal is to compute these functions,
and to thus use CFT consistency conditions to constrain possible bulk theories of
gravity.

These computations are typically carried out in the case where the boundary
is a Riemann surface. The simplest case is when the boundary is the sphere S2.
In this case there is a single semi-classical saddle that contributes to the sum over
geometries: Euclidean AdS3, i.e. hyperbolic space. Unless sources for bulk fields
are turned on, the result has a trivial interpretation in the boundary CFT; the CFT
partition on S2 is just a number, which can be interpreted as the norm of the ground
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state of the theory. A more interesting case is when the boundary is the torus T 2.
The torus partition function encodes the spectrum of the dual CFT, which is then
highly constrained by the modular invariance on the torus. This was used to argue
that the bulk gravity theory must include an infinite number of classical saddle-
points [2, 3, 4]. Higher genus Riemann surfaces can also be considered, although
the constraints of higher genus modular invariance are more difficult to extract (see
e.g.[5]).

We will consider instead the partition function on non-orientable surfaces, fo-
cusing on the case of RP2 and the Klein bottle K2. The structure of conformal
field theory on non-orientable surfaces is well studied, and appears in the study of
string worldsheet theories in the presence of orientifolds (see e.g. [6, 7] and [8], [9]
for reviews).

We will describe and classify the bulk saddle point geometries which contribute
to these partition functions. This discussion will closely follow the construction in
the orientable case. We will find, however, far fewer smooth bulk geometries than
in the orientable case. For RP

2 there are no smooth bulk geometries. For K2,
there is only one smooth saddle; this should be compared to the infinite number of
smooth saddles in the T 2 case. The classical action of this saddle point contributes
to the partition function of AdS3 gravity with K2 boundary conditions. We will
also discuss the perturbative corrections to saddle point geometries, comparing the
bulk one-loop determinant to CFT expectations.

We find that, in the regime of large central charge where the semi-classical cal-
culation can be trusted, including just the smooth saddle-points does not reproduce
the expected CFT behaviour. We will find a class of non-smooth saddles that obey
the desired boundary conditions, which contain simple Z2 orbifold singularities, and
argue that these singular saddles must be included in the gravity path integral if
we are to reproduce typical CFT behaviour. We also consider the one-loop deter-
minant about both the singular and smooth saddles, and find that they reproduce
general CFT expectations. 1

These observations are important for our understanding of the holographic dic-
tionary for general two-dimensional CFTs, and also for attempts to construct the-
ories of pure gravity. If one wishes to define a theory of pure gravity in AdS3,
whose degrees of freedom include only the metric, the most natural definition is
that the path integral should include only smooth geometries. This is because the
non-smooth geometries which locally solve the equations of motion typically have
orbifold singularities which are associated with new degrees of freedom. This pro-
posal was advocated in [12, 13, 14], who defined pure gravity as the theory whose
Euclidean path includes only smooth saddles. These authors computed, for the
case of the torus, the partition function of general relativity exactly including these
smooth geometries. For large central charge, which would describe the dual of semi-
classical gravity, the result did not satisfy the axioms of a conformal field theory;
the resulting partition function could not be interpreted as a finite temperature
partition function of a theory with a positive definite spectrum.

The computation of the torus partition function outside of the semi-classical
regime was considered in [15]. The torus partition function, computed as a sum

1It is important to note that many theories can only be defined on orientable surfaces, so the
non-orientable partition functions vanish. A notable example is chiral gravity [10], for which the non-
orientable partition function appears to vanish identically in both the boundary and the bulk. So our
conclusions do not, for example, contradict the proposal of [11] that chiral gravity can be regarded as a
sum over only smooth geometries. In this paper we consider only cases – such as pure Einstein gravity
without fermions – where the non-orientable contributions are not manifestly zero.
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over smooth geometries, was found to match that of a minimal model CFT for
certain O(1) values of the central charge. This was interpreted as evidence that
pure gravity might exist as a proper quantum mechanical theory for certain highly
quantum mechanical values of the cosmological constant. For example, the Ising
model CFT with c = 1/2 was conjectured to be dual to general relativity in a
highly quantum regime, where the curvature of AdS is Planck scale. We are now in
a position to test this conjecture for the non-orientable saddles RP2 and K2. Our
conclusion is that the paucity of smooth bulk saddle points implies that the original
conjecture – that these minimal models are obtained by a sum only over smooth
saddle points – must be modified.

In the next section, we discuss the construction of the bulk saddle-points con-
tributing to the partition function for a non-orientable surface in general, and de-
scribe the resulting saddles in detail for RP2 and the Klein bottle K2. In section 3
we discuss the behaviour of CFT partition functions on the Klein bottle in certain
limits of the Klein bottle modulus, and argue that these indicate that we must
typically include as saddle points geometries which contain orbifold singularities.
In section 4, we carry out the one-loop determinant calculation from the bulk point
of view, and show that this matches field theory expectations. We will use both a
method of images calculation and a mode sum, and see that these agree with the
CFT expectations for both the singular and smooth saddles. There is an interesting
subtlety in the calculation for the smooth case.

2 Classical Bulk Saddles

We will consider the partition function of three dimensional gravity in Euclidean sig-
nature with asymptotically AdS boundary conditions. This partition function will
depend on the topology and conformal structure of the geometry at the asymptotic
boundary, which we denote Σ. We will describe the solutions of three dimensional
Einstein gravity where the boundary Σ is non-orientable. These geometries give
saddle point contributions to the partition function.

We will focus on the case of pure Einstein gravity, when there are no additional
bulk fields present. In this case the solutions are quotients of Euclidean AdS3 (i.e.
H

3), so are easy to classify. In pure Einstein gravity these are the only solutions.
Even if other bulk fields are present, these quotients will still be solutions, since
they locally solve the same equation of motion as empty AdS. However, in the more
general case additional solutions may be present.

We will begin by describing the general features of the solutions, before moving
on to specific examples.

2.1 Filling in Non-Orientable Surfaces

Topologically, every non-orientable surface Σg can be written as the connected sum
of g copies of real projective space

Σg = RP
2# . . .#RP

2 (1)

where the integer g ≥ 1 is the genus of the surface. The process of taking a
connected sum with RP

2 (removing a disk and gluing in a cross-cap) has a natural
CFT interpretation in terms of the cross cap state, which will be useful in the next
section.
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We wish to find locally hyperbolic three-manifolds whose conformal boundary
is Σg. Any such bulk geometry must be a quotient of the form H

3/Γ, where Γ is a
discrete subgroup of the SL(2,C) isometry group of H3.

In constructing the saddles, we will find it convenient to use the fact that any
non-orientable manifold can be represented as the Z2 quotient of an orientable
manifold: the surface Σg can be represented as the Z2 quotient of an orientable
surface Σ̂g. Here Σ̂g is the natural double cover (called the orientable double cover)
where we simply take two copies of each point on Σ, one for each orientation.
Σ̂g is orientable by construction, and has a Z2 symmetry interchanging the two
orientations. The statement that Σg = Σ̂g/Z2 is the natural generalization of the
observation that RP2 is the quotient of the sphere by the antipodal map, S2/Z2.

This observation applies in the bulk as well, and allows us to related the bulk
saddles with non-orientable boundary to the more familiar case of bulk saddles with
orientable boundary. We first note that any 3-manifold with non-orientable bound-
ary must be non-orientable itself. Thus any any bulk geometry with Σg boundary is
the Z2 quotient of an orientable manifold whose boundary is the orientable double
cover Σ̂g. There is no guarantee, however, that the bulk saddles obtained in this
way will be smooth.

This fact also allows us to describe the moduli space of conformal structures
of a general non-orientable surface in terms of the more familiar moduli space of
Riemann surfaces. The moduli space of Σg is just the subspace of the moduli space
of Σ̂g which preserves the Z2 symmetry.2 The bulk saddle point action will be a
function of this moduli space.

2.2 RP2

Real projective space, RP
2 is the quotient of the sphere by the antipodal map:

RP
2 = S2/Z2. The bulk saddles are of the form H

3/Z2. In order to specify the bulk
saddle point uniquely, we must therefore choose a g ∈ SL(2,C) with g2 = 1. Every
such g has a single fixed point in the bulk, and different choices of g correspond
to different choices of fixed point in the bulk. These saddles can be visualized by
starting with the H

3 which has an S2 boundary, and extending the antipodal map
on S2 into the interior of H3. Of course, one can always conjugate this antipodal
map by an isometry on H

3 (i.e. a conformal transformation on S2), which has the
effect of moving the bulk fixed point and changing the resulting element g.

We note in particular that since every g ∈ SL(2,C) has a fixed point there are
no smooth saddles for RP

2. So if the bulk path integral includes a sum only over
smooth saddles there will be no contribution to the RP

2 partition function ZRP2 .
This already is a bit mysterious from the CFT point of view, since typically ZRP2

is non-zero.

2.3 Klein Bottle

The next example is the Klein bottle K2 = RP
2#RP

2. This geometry is the
Z2 quotient of the rectangular torus: K2 = T 2/Z2. Explicitly, we quotient the
rectangular torus t ∼ t + β, φ ∼ φ + 2π by the Z2 symmetry t → −t, φ → φ + π,
as depicted in figure 1. We can identify saddle points with Klein bottle boundary

2For example, the Klein bottle has a single real modulus, and it is obtained as the quotient of a
rectangular torus t ∼ t+ β, φ ∼ φ+ 2π for real β by the Z2 symmetry t→ −t, φ→ φ+ π. More general
tori do not arise as the double cover of a non-orientable surface.
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Figure 1: The Klein bottle can be thought of as the quotient of a rectangular torus by
the Z2 action (t, φ) ∼ (−t, φ + π). There are two natural fundamental regions for this
identifications. On the left, we have a representation as the propagation between two
cross-caps. On the right, we have the alternative representation with an orientation-
reversing identification of the two sides.

conditions in the bulk by looking for saddle points for the torus which are invariant
under this Z2 action.

We will begin by describing the bulk saddle points with torus boundary. These
were classified by [13], who showed that the only smooth saddles are handlebod-
ies which are topologically equivalent to a solid donut. These handlebodies are
labelled by which non-contractible cycle in the torus becomes contractible in the
bulk. Explicitly, the torus has H1(T 2) = Z ⊕ Z, with a natural basis consisting of
an a cycle along t and a b cycle along φ. Any combination ma + nb can become
contractible in the bulk, so there is an infinite family of saddles in the bulk, labelled
by two integers m,n. Since the Z2 is a symmetry of the boundary, a given bulk
saddle will either be invariant under it or will be exchanged with some other saddle.
Under the orientation-reversing Z2 action, the a cycle is odd and the b cycle is even.
Thus, a cycle ma+nb is exchanged with the cycle −ma+nb under the Z2, and the
corresponding bulk handlebodies are also exchanged. We conclude that there are
only two bulk handlebodies which are invariant under the Z2: the one where the a
cycle is contractible and the one where the b cycle is contractible.

This allows us to construct the Klein bottle saddle points as quotients of these
two geometries. The Klein bottle has H1(K2) = Z⊕Z2, where the Z is the a cycle,
along the t direction, and the Z2 is the b cycle, along the φ direction. When the a
cycle is contractible in the bulk, the Z2 symmetry acts without fixed points, and we
obtain a smooth quotient. For the torus this saddle is the non-rotating BTZ black
hole, and for the Klein bottle it is the Euclidean version of the RP

2 geon studied
in [16]. When the b cycle is contractible in the bulk, the saddle for the torus is
thermal AdS. This has fixed points for the Z2 symmetry t→ −t, φ→ φ+ π at the
origin in the spatial slices at t = 0, β/2. So the resulting saddle for the Klein bottle
has two Z2 fixed points.

For later use, we now discuss these two solutions explicitly. We work in the
upper-half plane picture of Euclidean AdS3, that is the hyperbolic three-space H

3,
where

ds2 =
dy2 + dzdz̄

y2
, (2)

with y ∈ (0,∞), and z is a complex coordinate on the planes of constant y. We
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will also find it convenient to introduce the coordinates ρ, θ, φ where

y = eρ sin θ, z = eρ cos θeiφ, (3)

with ρ ∈ (−∞,∞), θ ∈ (0, π/2) and φ ∈ (0, 2π). The orbifold by γ : (y, z) →
(eβy, eβz) makes the boundary at z = 0 into a rectangular torus. In the ρ, θ, φ
coordinates, this acts as ρ → ρ + β, so a fundamental region is ρ ∈ (0, β). If we
write z = et+iφ, where t is the Euclidean time coordinate on the boundary, this is
the torus with t ∼ t+β, φ ∼ φ+2π, and the bulk solution is thermal AdS3, as the

φ circle becomes contractible in the bulk. If we write z = e
β
2π

(φ+it), it is the torus
with t ∼ t + 4π2/β, φ ∼ φ + 2π, and the bulk solution is the non-rotating BTZ
black hole, where the t circle becomes contractible in the bulk.

The saddles for the Klein bottle are obtained by taking the Z2 quotient t→ −t,
φ → φ + π. In the first case, where z = et+iφ, this corresponds to the action

z → −z̄−1. In the second case, with z = e
β
2π

(φ+it), it is z → eβ/2z̄. In the first case
the modular parameter of the Klein bottle is l = β/4π, while in the second case it
is l = π/β.

Each of these can be extended to a discrete (orientation-reversing) isometry of
H

3: the former is
σ : z → − z

|z|2 + y2
, y → y

|z|2 + y2
, (4)

while the latter is
κ : z → eβ/2z̄, y → eβ/2y. (5)

In the former case σ2 is the identity, so we obtain a space with a Klein bottle bound-
ary by taking H

3/Γ where Γ is the group generated by σ and γ, Γ = {γn, σγn|n ∈
Z}. Thus in this case Γ ≃ Z × Z2. A fundamental region for the identification
H

3/Γ is ρ ∈ (0, β/2). The quotient has fixed points at z = 0 and y = 1, eβ/2; that
is θ = π/2, ρ = 0, β/2.

In the latter case, κ2 = γ, so we obtain a space with a Klein bottle boundary by
taking H

3/Γ where Γ is simply the group generated by κ. Thus Γ = {κn|n ∈ Z}.
Thus in this case Γ ≃ Z, and the quotient is freely acting in the bulk. A convenient
fundamental region for the identification H

3/Γ is ρ ∈ (0, β), φ ∈ (0, π). This is
simply the Euclidean geon geometry.

Unlike in the torus case, where the infinite family of saddles gave the bulk
partition function as an infinite sum, which could be interpreted as a sum over
the modular group [3], the partition function for the Klein bottle has only two
contributions. This in itself does not obviously lead to problems: the dominant
contribution for all values of the modulus for the rectangular torus is either the
thermal AdS or the non-rotating BTZ, which are precisely the two saddles which
descend to saddles of the Klein bottle.

However, if we restrict to smooth saddles, the Klein bottle partition function will
be simply given by the unique contribution from the Euclidean geon (the quotient
of non-rotating BTZ), so

ZK ≈ Det(∆)e−Ig , (6)

whereDet(∆) represents the one-loop determinant of bulk fields around this saddle-
point, to be discussed later, and Ig is the action of the Euclidean geon spacetime.
As a result, the partition function would not exhibit any analogue of the Hawking-
Page transition as we vary the modulus. We will see in the next section that this
result is highly non-generic from the CFT point of view. We will argue subsequently
that we recover the expected behaviour by including the saddle with fixed points.
In section 4 we will probe this further by considering the one-loop contributions.
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2.4 Other Examples

Although we will focus on RP
2 and K2, we will also comment briefly on more

complicated surfaces. For the non-orientable surfaces Σg = RP
2# . . .#RP

2 with
g ≥ 2 the construction of the bulk saddle points is more complicated. The orientable
double cover Σ̂g is now a Riemann surface with genus ≥ 2. For example, for
Σ3 = RP

2#RP
2#RP

2 = T 2#RP
2 the double cover is a genus two surface.

As in the Klein bottle case, the saddles can be characterized by stating which
cycles in Σg become contractable in the bulk. A natural basis of cycles for Σg

contains a cycles ai and b cycles bj with intersection numbers ai ∩ bj = δij . For
the double cover Σ̂g we can choose a basis of a and b cycles such that each cycle is
either odd or even under the orientation reversing Z2.

The easiest way to construct bulk saddle points is by quotienting those for Σ̂g.
The simplest such solutions are handlebodies, which are labelled by a choice of half
of the non-contractible boundary cycles which become contractible in the bulk. If
these contractible cycles get exchanged with some other cycles under the Z2 action
(because they are a combination of odd and even cycles) then the corresponding
handlebodies are similarly exchanged. The only handlebodies which are invariant
under the Z2 action are those where the contractible cycles are each either odd or
even under the Z2 action. It is possible to have some odd contractible cycles and
some even ones, but not contractible cycles which are some combination of odd
and even cycles. Thus, while the set of possible handlebody solutions for the non-
orientable surface is much smaller than for the orientable double cover, for higher
genus, where there are more than one odd or more than one even cycle, there will be
infinite families of saddles for the non-orientable surface. The situation is therefore
much more complicated than the Klein bottle case. We conjecture that the bulk
saddles which do not have the Z2 symmetry will all be subdominant in the moduli
space of Z2-invariant orientable surfaces, as in the torus case, but we have not
checked this explicitly.

In addition to these handlebody geometries, there are also have non-handlebody
saddles. As in the orientable cases, non-handlebody solutions for the non-orientable
boundaries can be simply constructed by taking a two-boundary wormhole as in [17]
and quotienting by a Z2 action which includes interchanging the two boundaries.
For example, let us consider the case where the surface Σg has a freely acting
Z2 symmetry, denoted σ. This lifts to a symmetry of the orientable double cover
Σ̂g. We can then consider the two-boundary solution dy2 + cosh2 ydΣ̂2

g, which has

topology Σ̂g × R. The quotient by σ composed with y → −y is a non-handlebody
saddle for Σ̂g: it has y ∈ (0,∞), with a copy of Σ̂g at each y > 0 and Σ̂g/σ at y = 0.
Taking the non-orientable quotient then leads to a saddle with Σg boundary.

If we include all the saddles, both the smooth ones and the ones with fixed point
singularities, there is no particular reason to be interested in these non-handlebody
solutions, as they are conjectured to be sub-dominant relative to the dominant
handlebodies [18]. If we were to want to consider just smooth solutions, the non-
handlebodies could be important, as they might dominate over the handlebody we
are allowed to keep. However, more recent work suggests the non-handlebodies are
subdominant compared to all handlebody solutions [19]. Hence we will not consider
the non-handlebodies further.
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3 CFT Interpretation & the Crosscap State

We now discuss the CFT partition functions on closed non-orientable surfaces. We
will first review a few relevant facts about CFTs on non-orientable surfaces, which
are typically studied in the context of orientifolds. We then compare these CFT
expectations to the bulk saddle-points described in the previous section.

3.1 CFT Partition Functions on RP2 and K2

Conformal field theory partition functions on Riemann surfaces are well studied.
Although they are typically difficult to compute exactly, they are in principle de-
termined uniquely once the three-point function coefficients Cijk and the torus
one-point functions are determined [20]. Similarly, CFT partition functions on non-
orientable surfaces are uniquely determined only once one specifies an additional
piece of data: the one point functions on RP

2 [6] (as reviewed in [9]). In particular,
if we write RP

2 as the z-plane quotiented by the involution I(z) = −z̄−1, whose
fundamental region is the unit disc, the one-point functions of primary operators
(with h = h̄) are constrained by conformal invariance to be [6]

〈φk〉c =
Γk

(1 + zz̄)2h
. (7)

Here k labels the primary operators in the theory, and the coefficients Γk are the
new data we must specify to define the CFT on non-orientable surfaces.

CFTs on non-orientable surfaces can be understood by regarding a non-orientable
surface as constructed by gluing cross-caps into a closed orientable surface. The
CFT path integral on the cross-cap defines a state, |C〉, in the Hilbert space of the
CFT on a circle. The state |C〉 can be constructed explicitly in terms of the data Γk.
In particular, because the cross-cap is constructed from an antipodal identification
on the disk (which takes Ln → (−1)nL̄n), it must satisfy

(Ln − (−1)nL̄−n)|C〉 = 0. (8)

For rational CFTs, this can be solved explicitly in terms of Ishibashi states, much
like for boundary states in boundary conformal field theory. The cross-cap Ishibashi
states are defined by summing over the descendents of a given primary, pairing the
elements of the chiral and anti-chiral Verma modules, so

|Ci〉〉 =
∑

~m

(−1)
∑

j mj |φi, ~m〉 ⊗ U |φ̄i ,̄~m〉, (9)

where ~m denotes the state constructed by acting with the each raising operator L−j

mj times on the primary, and U is an anti-unitary operator (see [9] for details).
These cross-cap Ishibashi states form a basis for the solutions of (8), so the cross-cap
state is a linear combination of them.

Non-orientable partition functions can be interpreted in terms of insertions of
this cross-cap state. For example, RP2 is obtained by gluing a disk onto a cross-cap.
This means that equation (7) can be interpreted as a transition amplitude between
the vacuum state at the origin and the cross-cap state |C〉 on the boundary of the
unit disc, 〈φk〉c = 〈0|φk|C〉. In particular, the RP

2 partition function is simply the
overlap between the vacuum state and the cross-cap,

ZRP 2 = 〈0|C〉 = ΓI. (10)
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The one-point functions (7) thus determine the cross-cap state

|C〉 =
∑

i

Γi|Ci〉〉. (11)

where the sum is over all primary states in the theory. As in boundary CFT, these
coefficients are restricted by a consistency condition [6]

∑

k

CijkΓkM

[

i j̄
j ī

]

= (−1)hi−h̄i+hj−h̄jCijpΓp (12)

where M is the usual conformal block transformation matrix. This is a linear
equation for the Γk; since there is one equation for each p, the system will determine
|C〉 uniquely up to normalization. The cross-cap state is determined by the Γk, and
hence the partition function on any non-orientable surface can be calculated given
these Γk.

Unlike the RP2 partition function, ZK(β) is a function of the modular parameter
β which contains detailed information about the cross cap state and the CFT
spectrum. From the representation of the Klein bottle on the left panel of figure
1, we see that the Klein bottle can be represented as the expectation value of the
propagator e−βH/2 between two cross-cap states. Explicitly, we have (see e.g. [9])

ZK(β) = 〈C|e−βH/2|C〉 =
∑

i

Γ2
i 〈〈Ci|e−βH/2|Ci〉〉 =

∑

i

Γ2
iχi

(

i
β

2π

)

, (13)

where χi is the character of the Virasoro representation built on the primary φi. In
the limit where β is large this sum is dominated by the vacuum state if ΓI 6= 0, so
that

ZK(β → ∞) ≈ Z2
RP 2 exp

{

βc

24

}

(14)

Here we have used the fact that ΓI = ZRP2 and that the vacuum state has energy
H = −c/12.

There is a second representation of the Klein bottle partition function, however,
where we represent the Klein bottle as a the propagation over a dual channel with
the insertion of a parity reversal operator, as in the right panel of figure 1. As usual,
when doing so we must make the conformal transformation so that the t circle has
length 2π, so the propagation will be over a distance 2π2/β. Thus we can write

ZK(β) = Tr(Pe−2π2H/β), (15)

where P is the parity operator, and the trace is over the Hilbert space of the CFT
on the circle. We note that parity-odd states contribute negatively to the trace.
This allows us to approximate ZK at small β, where the vacuum dominates in this
channel:

ZK(β → 0) ≈ exp

{

π2c

6β

}

(16)

We note that ZRP2 does not appear in this expression; we have only assumed that
the vacuum state is parity invariant.

3.2 Comparison With Bulk Gravity

Let us now compare these results with the bulk gravity expectations. In defining
the partition function of three dimensional gravity as a sum over geometries, the
first question is which geometries should be included.

10



3.2.1 Smooth saddles

The most natural supposition is that only smooth geometries contribute as saddle
points. We can now compare this with the CFT results described above. We will
restrict our attention to the semi-classical (large c) regime where the saddle point
approximation is valid.

As we saw in section 2, there is no smooth bulk solution of Einstein gravity
with RP

2 boundary. So if only smooth saddles are included, this would seem to
set ZRP2 = 0. For the Klein bottle, we have one smooth saddle, the Euclidean
continuation of the RP2 geon. The classical action of this saddle is easy to compute:
since the solution is the Z2 quotient of the BTZ black hole, the action just half the
action of the non-rotating BTZ black hole. This gives a contribution to the K
partition function

Zgeon(β) ≈ exp

{

π2c

6β

}

(17)

which correctly reproduces the small β behaviour (16) of the CFT.
The large β behaviour of the CFT is however a more challenging test for the bulk

gravity. The action of the geon vanishes as β → ∞, implying that at leading order
in c the partition function ZK should remain finite as β → ∞, in contradiction with
the exponential growth expected from (14). However, we have already seen that
including only smooth saddles led us to conclude that the coefficient ZRP2 = ΓI

should vanish. The prediction for the large β behaviour of ZK reinforces this
requirement. From (13) we see that the bulk prediction that the action remains
finite as β → ∞ requires further that Γi vanish for all operators with dim(φi) <

c
12 .

A bulk calculation where we only include smooth saddles thus can only repro-
duce the behaviour of CFTs if the one-point functions Γi vanish for all operators
with dim(φi) <

c
12 . Although we are considering a bulk saddle-point calculation at

large c, these one-point functions must vanish exactly to reproduce the bulk calcu-
lation, and not just at some order in 1/c, or the exponential growth will eventually
take over at sufficiently large β. This is a significant restriction on the CFT. Indeed,
as the one-point functions are determined by the consistency condition (12), it is
not clear if there exist CFTs which satisfy it. In particular, we expect that solutions
of (12) are uniquely determined up to a single overall normalization. So it appears
to be extraordinarily difficult to find a solution where the Γi are non-vanishing only
for heavy operators of dimension greater than c/12.

This restriction can be expressed in a natural way, by noting that the states with
dimension less than c

12 are interpreted as perturbative states from the bulk point
of view, while states with larger dimension are interpreted as black holes. In other
words, in a theory with only smooth saddles, the cross cap state |C〉 is built purely
out of black holes (states with dimension greater than c

12 ) rather than perturbative
states. Theories dual to pure gravity are assumed to have no perturbative states
other than the vacuum state. For such theories, what we have learned is that there
is an additional restriction that the one-point function of the vacuum state (the
RP

2 partition function) vanish.

3.2.2 Minimal models

Although our interest is mainly in theories at large central charge c, where the
semi-classical bulk description is valid, the restriction on the one-point functions
derived above motivates us to consider the minimal models, where the RP

2 one-
point functions can be computed explicitly. For example, in the Ising model we

11



have [6]

Γ2
I = N 2 +

√
2

2
, Γ2

ǫ = N 2−
√
2

2
, Γ2

σ = 0. (18)

where N is an overall normalization.
The gravitational dual of the Ising model was considered in [15], where it was

observed that the torus partition function of the Ising model (and other minimal
models) can be reproduced by a sum over geometries. It was argued that in the sum
one had to include only the contributions from smooth metrics. In this setup the
quantization of the space of smooth metrics around thermal AdS gave the minimal
model vacuum character, and the sum over handlebodies then gave the full Ising
model partition function.

It is immediately clear that, once we consider non-orientable saddles, it is no
longer possible to reproduce Ising model partition functions including only smooth
geometries. If we adopt the perspective of [15] – namely that one should include only
contributions from smooth metrics – then the RP

2 partition function immediately
vanishes. This is only possible if we set the normalization constant N = 0, which
would imply the vanishing of all RP2 one point functions. In this case, according
to (13) the Klein bottle partition function would vanish identically. However, we
have already identified a smooth saddle point which contributes to the Klein Bottle
partition function.

The calculation of the one-point functions can be extended to other minimal
models, but we are not aware of explicit calculations in the literature. In the
context of the pure gravity programme, it would be extraordinarily interesting to
find a model with Γi = 0 for the operators with dim(φi) <

c
12 , and some Γi 6= 0

for higher-dimension operators. We conjecture, although we have not proven, that
such theories do not exist.

3.2.3 Including Singular Saddles

In a general CFT, including the minimal models, the RP
2 one point functions are

generically non-zero, and we cannot reproduce the CFT behaviour by considering
only smooth saddles in the bulk. We are therefore led to consider the inclusion
of singular saddle points. In the context of a pure gravity partition function, this
inclusion of singular saddles would be a significant modification of the usual rules,
and it is not clear what singularities should be considered acceptable. In the context
of string theory, it might seem more natural to include such contributions, but note
that the singularities are instanton contributions - they occur at points in the
Euclidean time circle - so they do not correspond to including some additional
“particle-like” degrees of freedom in the path integral as in [3].

In section 2, we identified a class of natural singular bulk saddles for a non-
orientable surface Σg, where we have a smooth saddle for the orientable double
cover Σ̂g, but the Z2 quotient has a fixed point in the bulk. For RP

2, this gives
the quotient H3/Z2, which gives a contribution to ZRP2 . We will obtain non-zero
values for the one-point functions Γi by including this saddle. For the Klein bottle,
we have in addition to the smooth saddle from the quotient of BTZ, a singular
saddle from the quotient of thermal AdS, which we now include as a contribution
to the Klein bottle partition function. In the low temperature regime, it is this
saddle that dominates the thermal partition function in the torus case. The action
of the quotient will be half the action of the thermal AdS saddle, plus potentially
a contribution from the singularities. Thus,

I = IAdS/2 + Ising = −β c

24
+ Ising. (19)
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Since the singularities are localised at points in the t direction, their contribution
should be independent of β and will contribute an overall (β independent) constant
to the sum. So this successfully reproduces the behaviour of the leading term in
the CFT calculation (14).

Thus, the inclusion of the singular Z2 quotients resolves the mismatch between
general CFTs and the bulk results. In the next section, we will consider one-loop
contributions to explore this match further and see if the bulk calculation can
reproduce the Virasoro vacuum character appearing in (14).

4 One-Loop Corrections

We now turn to the calculation of one-loop determinants around the bulk saddles,
to further explore the agreement between bulk calculations and CFT expectations.
Our main goal is to reproduce the Virasoro character in (13) from the one-loop
determinant around the saddle with fixed points, but we will also discuss the cal-
culation of the one-loop determinant around the smooth saddle, where we find an
interesting subtlety. We will first discuss the calculation using the method of im-
ages, following [21]. We will then discuss the mode sum calculation, to clarify where
the odd features in the smooth calculation come from. Our actual calculations are
limited to a discussion of the one-loop determinant for a scalar field on the bulk
saddle, but we comment on the expectations for the full gravity one-loop determi-
nant. A discussion of other approaches to the one-loop determinant is relegated to
the appendix.

4.1 Sum over images calculation

We first consider the discussion using a sum over images calculation of the heat
kernel, following the discussion in [21]. We will consider the calculation for a scalar
field in the bulk satisfying a massive wave equation, ∇2φ−m2φ = 0. The one-loop
determinant on a bulk space M is obtained formally in terms of the eigenvalues λn
of the differential operator ∆ = ∇2 −m2,

log det∆ =
∑

n

log λn. (20)

We first approach this calculation by introducing the heat kernel, which is a sum
over the eigenfunctions,

K(t, x, y) =
∑

n

e−λntψn(x)ψn(y), (21)

where ψn(x) is the eigenfunction of ∆ with eigenvalue λn, and x, y are points in
M. The one-loop determinant is then

log det∆ = −
∫ ∞

0+

dt

t

∫

M
d3x

√
gK(t, x, x). (22)

The heat kernel is a useful tool because it can be defined as the a solution of the
equation (∂t+∆x)K(t, x, y) = 0 with the boundary condition K(0, x, y) = δ3(x−y).
In the present case, this is a particularly convenient way to approach the problem,
as M = H

3/Γ, and we can obtain the heat kernel on M by method of images from
the known solution on hyperbolic space,

KH3/Γ(t, x, y) =
∑

γ∈Γ
K(t, x, γy). (23)
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In [21], this was evaluated for thermal AdS. Here we will evaluate it for the bulk
saddles for the Klein bottle introduced in section 2.3

Let us consider first the quotient with fixed points, as this will give the simpler
answer and it is the case we are most interested in testing. As discussed in section
2.3, this is a quotient of H3 by a discrete group Γ ≃ Z×Z2, where the Z2 generator
is σ and the Z generator is γ. We write the heat kernel on the quotient as the sum
over images,

KH3/Γ(t, x, x′) =
∑

n

KH3
(t, x, γnx′) +

∑

n

KH3
(t, x, σγnx′) (24)

= Kth(t, x, x′) +
∑

n

KH3
(t, x, σγnx′).

The first contibution is just the heat kernel on thermal AdS, as this is the quotient
of H3 by the Z generated just by γ. Thus, the scalar one-loop determinant is given
by

− log det∆ =

∫ ∞

0

dt

t

∫

H3/Γ
d3x

√
gKH3/Γ(t, x, x) (25)

= −1

2
log det∆th +

∫ ∞

0

dt

t

∫

H3/Γ
d3x

√
g
∑

n

KH3
(t, x, σγnx).

The factor of half in the first term is from the smaller volume of the fundamental
region in the quotient compared to thermal AdS. We need to calculate the second
term explicitly. The heat kernel depends only on the geodesic distance

r(x, x′) = arccosh

(

1 +
(y − y′)2 + |z − z′|2

2yy′

)

. (26)

Inserting

y′ = enβ
y

|z|2 + y2
, z′ = −enβ z

|z|2 + y2
, (27)

the geodesic length is

r(x, x′) = arccosh

(

y2(1− enβ−2ρ)2 + |z|2(1 + enβ−2ρ)2

2y2enβ−2ρ

)

(28)

= arccosh
(

cosh(nβ + 2ρ) + 2 cot2 θ cosh2(nβ/2 + ρ)
)

.

As in [21], since the heat kernel is a function of r it is convenient to trade the integral
over θ in d3x for an integral over r. The Jacobian factor from the transformation
will depend on ρ, so

d3x
√
g = dρdφdθ

cos θ

sin3 θ
=

dρ

4 cosh2(nβ/2 + ρ)
dφdr sinh r. (29)

The range of r is r ∈ (nβ+2ρ,∞). Recall the range of ρ and φ in the fundamental
region for the quotient is ρ ∈ (0, β/2) and φ ∈ (0, 2π). The integral over r is the
one calculated in [21]:

∫ ∞

nβ+2ρ
dr sinh rKH3

(t, r) =
e−(m2+1)t− (nβ+2ρ)2

4t

4π3/2
√
t

. (30)

In the determinant, the integral over φ gives a factor of 2π, but the integral over ρ
is non-trivial. Thus

−log det∆ = −1

2
log det∆th+2

∑

n

2π

4

∫ β/2

0

dρ

cosh2(nβ/2 + ρ)

∫ ∞

0

dt

t

e−(m2+1)t− (nβ+2ρ)2

4t

4π3/2
√
t

.

(31)

14



To do the t integral we need to distinguish between n ≥ 0 and n < 0. The result is

− log det∆ = −1

2
log det∆th +

∑

n≥0

1

8

∫ β/2

0

dρ

cosh2(nβ/2 + ρ)

e−
√
1+m2(nβ+2ρ)

nβ/2 + ρ

−
∑

n<0

1

8

∫ β/2

0

dρ

cosh2(nβ/2 + ρ)

e
√
1+m2(nβ+2ρ)

nβ/2 + ρ
. (32)

Now a remarkable simplification occurs: we can replace the sum by a change of
range in the ρ integral.

− log det∆ = −1

2
log det∆th +

1

8

∫ ∞

0

dρ

ρ cosh2 ρ
e−

√
1+m2ρ − 1

8

∫ 0

−∞

dρ

ρ cosh2 ρ
e
√
1+m2ρ

= −1

2
log det∆th +

1

4

∫ ∞

0

dρ

ρ cosh2 ρ
e−

√
1+m2ρ. (33)

The additional term is independent of β, so it is just some uninteresting constant
normalisation factor in the one-loop determinant; the β dependence is all in the
piece that can be identified with the one-loop determinant on thermal AdS.

The additional constant factor is divergent for the scalar. This is not unex-
pected; the quotient had fixed points, and one might expect a new UV divergence
from propagators from the fixed point to itself in the sum over images. Indeed the
contribution from ρ = 0 in the two integrals correspond to the two fixed points at
y = 1, eβ/2.

We have not analysed the vector and metric one-loop determinants; these are
much more difficult than in the thermal AdS calculation in [21] because of non-
trivial factors transforming the indices of the tensor fields when we act with σ. But
we expect a similar logic will apply to them, so we can guess the form of the answer.
The integrals over r and t are as in the thermal AdS case, but with the range for
the r integral changed as above, so in the output of these calculations β will be
replaced by β + 2ρ. There will then be a non-trivial ρ integral, with the measure
factor giving cosh(nβ/2+ ρ)−2 in place of | sin(nπt)|−2. As a result, the answer for
the full one-loop partition function should be

lnZ1−loop
gravity =

1

2
Z1−loop
th + 2π

∑

n

∫ β/2

0

dρ

cosh2(nβ/2 + ρ)

∫ ∞

0

dt

t

e−
(β+2ρ)2

4t

4π3/2
√
t
[e−t − e−4t]

=
1

2
Z1−loop
th − 1

2

∑

n≥0

∫ β/2

0

dρ

(nβ/2 + ρ) cosh2(nβ/2 + ρ)
(e−2(nβ+2ρ) − e−(nβ+2ρ))

+
1

2

∑

n<0

∫ β/2

0

dρ

(nβ/2 + ρ) cosh2(nβ/2 + ρ)
(e2(nβ+2ρ) − e(nβ+2ρ))

=
1

2
Z1−loop
th +

∫ ∞

0

dρ

ρ cosh2 ρ
e−2ρ(1− e−2ρ). (34)

Again, the final contribution is independent of β, and gives a constant factor in
the one-loop determinant. However, the prediction is that in the full calculation
this factor would be finite. This may also not be surprising, as unlike the scalar
theory, pure gravity has no physical bulk degrees of freedom to pick up new UV
divergences at the fixed points. This gives some additional encouragement to think
that we can sensibly deal with these singular saddles in pure gravity.
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If we believe our extrapolation from the scalar results, the one-loop partition
function would then be

Z1−loop
gravity = C

√

Z1−loop
th = C

∞
∏

m=2

1

(1− e−mβ)
. (35)

This is precisely what we want; taken together with the fact that the leading saddle-
point action will have half its thermal AdS value, this makes the partition function
equal to the Virasoro character of the identity,

Zgravity = Cekβ
∞
∏

m=2

1

(1− e−mβ)
. (36)

This is precisely the expected vacuum character, χ(iβ/2π) = χ(q = e−β). This is a
strong test of the proposal that we need to include singular saddles in the bulk to
reproduce the expected CFT behaviour.

To see that the fact that we got a simple vacuum character in this calculation
is quite non-trivial, it is useful to also consider the one-loop calculation for the
smooth saddle. To do this by method of images, we write the smooth saddle as
H

3/Γ where Γ is the Z group generated by κ in (5). The scalar heat kernel is

KH3/Γ(t, x, x′) =
∑

n

KH3
(t, x, κnx′). (37)

Since κ2 = γ, it is useful to break this sum into a sum over even and odd n:

KH3/Γ(t, x, x′) =
∑

n even

KH3
(t, x, κnx′) +

∑

n odd

KH3
(t, x, κnx′) (38)

=
∑

m

KH3
(t, x, κ2mx′) +

∑

n odd

KH3
(t, x, κnx′)

=
∑

m

KH3
(t, x, γmx′) +

∑

n odd

KH3
(t, x, κnx′)

= KBTZ(t, x, x′) +
∑

n odd

KH3
(t, x, κnx′),

where we write the first term as the BTZ heat kernel as the γ quotient in this case
is interpreted as non-rotating BTZ. Thus the one-loop determinant is given by

− log det∆ =

∫ ∞

0

dt

t

∫

H3/Γ
d3x

√
gKH3/Γ(t, x, x) (39)

= −1

2
log det∆BTZ +

∫ ∞

0

dt

t

∫

H3/Γ
d3x

√
g
∑

n odd

KH3
(t, x, κnx).

The factor of half in the first term comes again from the fact that the fundamental
region has half the volume of the BTZ one. We need to compute the second term
explicitly. For the geodesic distance

r(x, x′) = arccosh

(

1 +
(y − y′)2 + |z − z′|2

2yy′

)

(40)

for odd n, we take y′ = enβ/2y, z′ = enβ/2z̄, which gives

r(x, x′) = arccosh

(

cosh
nβ

2
+ 2 cot2 θ| sin(φ+ i

nβ

4
)|2

)

. (41)
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As in [21], since the heat kernel is a function of r it is convenient to trade the
integral over θ in d3x for an integral over r. The Jacobian factor from the change
of variables is now φ dependent, so

d3x
√
g = dρdφdθ

cos θ

sin3 θ
= dρ

dφ

4| sin(φ+ inβ4 )|2
dr sinh r. (42)

The range of r is r ∈ (nβ/2,∞). The integral over r was calculated in [21]:

∫ ∞

nβ/2
dr sinh rKH3

(t, r) =
e−(m2+1)t−n2β2

16t

4π3/2
√
t

. (43)

The integral over ρ gives a factor of β, but the integral over φ is now non-trivial.
Thus

−log det∆ = −1

2
log det∆BTZ+2

∑

n=1,3,...

β

4

∫ π

0

dφ

| sin(φ+ inβ4 )|2
∫ ∞

0

dt

t

e−(m2+1)t−n2β2

16t

4π3/2
√
t

.

(44)
The integral over t is also identical to the one evaluated in [21], so

− log det∆ = −1

2
log det∆BTZ +

∑

n=1,3,...

e−
n
2
β
√
1+m2

2πn

∫ π

0

dφ

| sin(φ+ inβ4 )|2
. (45)

Up to this point the analysis is very similar to the singular case above, but in this
case the second term really is a non-trivial function of β. The φ integral is easily
evaluated to find

− log det∆ = −1

2
log det∆BTZ +

∑

n=1,3,...

e−
n
2
β
√
1+m2

2n

1

sinh nβ
4 cosh nβ

4

. (46)

To make contact with the CFT side, it is convenient to define q = e−β as in [21];
then we have

− log det∆ = −
∞
∑

m=1

q2mh

m(1− qm)2
+ 2

∑

n=1,3,...

qnh

n(1− qn/2)(1 + qn/2)
(47)

= −2
∑

n=2,4,...

qnh

n(1− qn/2)2
+ 2

∑

n=1,3,...

qnh

n(1− qn/2)(1 + qn/2)

= 2
∞
∑

n=1

qnh

n(1− (
√
q)n)(1 − (−√

q)n)
,

where h = 1
2 (1 +

√
1 +m2). This is not just the square root of the BTZ answer,

which we might have expected.
We can extrapolate to guess the answer in the vector and metric cases, as we

did for the singular saddle. The r and t integrals are identical to the ones in [21],
and there is a non-trivial φ integral, which comes just from the measure factor in
converting from θ to r, so it is independent of the spin of the field, and effectively
multiplies the expression for each odd n by tanh β

4 . Thus, the result for the one-loop
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gravity partition function is predicted to be

lnZ1−loop
gravity =

∞
∑

n=1

2qn(1− qn/2)

n(1− (
√
q)n)(1 − (−√

q)n)
(48)

= 2

∞
∑

n=1

2qn

n(1− (−√
q)n)

= −
∞
∑

m=2

ln(1− (−√
q)m)2.

4.2 Mode sum calculation

The result for the smooth saddle displayed some structure that is a little difficult
to understand. To shed further light on this, we have calculated the one-loop
determinant using a calculation from the spectrum of the laplacian on the bulk
saddle. We want to find the eigenfunctions ∆ψn = −λnψn, then we can write

K(t, x, y) =
∑

n

e−λntψn(x)ψn(y). (49)

Here the idea is to choose a basis ψn such that some elements are invariant under
the quotient, so the heat kernel on the quotient space will be a sum over a subset
of the modes considered in the original space. It is then obviously convenient to
work with modes which in addition to being eigenfunctions of ∆ are eigenfunctions
of ∂t, ∂φ in the thermal AdS coordinates where the metric is

ds2 = cosh2 ρdt2 + dρ2 + sinh2 ρdφ2, (50)

with the periodic identification t ∼ t+ β. If we take

ψ = eim
2πt
β einφfmn(ρ) (51)

for integers m,n, then the eigenvalue problem reduces to an ODE for f ,

(cosh ρ sinh ρ)−1∂ρ(cosh ρ sinh ρ∂ρf)−
4π2

β2
m2 f

cosh2 ρ
− n2

f

sinh2 ρ
= −λf. (52)

We can reduce this to a hypergeometric equation by defining z = tanh2 ρ and
κ = 1

2 − 1
2

√
1− λ, so λ = −4κ(κ− 1), and setting

f = z
n
2 (1− z)κF. (53)

Then

z(1− z)∂2zF + ((n+1)− (n+1+ 2κ)z)∂zF − (
n2

4
+
m2π2

β2
+ κn+ κ2)F = 0. (54)

the solution that is regular at z = 0 is

F = 2F1(κ+
n

2
+ im

π

β
, κ+

n

2
− im

π

β
;n+ 1; z). (55)

The asymptotic expansion near the boundary at z = 1 is given by the usual hyper-
geometric formula,

F (a, b; c; z) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
F (a, b; a+ b− c+ 1; 1− z) (56)

+
Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
(1− z)1−2κF (c− a, c− b; c− a− b+ 1; 1 − z).
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As a result, for all λ < 1 the expansion has a non-normalizable component, so these
values are not in the spectrum; the Laplacian has no discrete part to its spectrum.
For λ > 1, by contrast κ = 1

2 − iα, and the two asymptotic behaviours of f are

(1− z) 1
2
±iα, which are both acceptable, so any solution is normalizable. This is the

continuous part of the spectrum of the Laplacian on hyperbolic space. Thus the
spectrum of the Laplacian is all λ > 1.

We want to choose a basis of solutions of the form (51) which have nice trans-
formation properties under the quotients we consider. for n = m = 0, there’s a
single solution, and with the appropriate normalization, the eigenfunction is

1

2πβ
f00λ(ρ). (57)

For n = 0, there are two solutions,

1

πβ
cosm

2π

β
tfm0λ(ρ),

1

πβ
sinm

2π

β
tfm0λ(ρ), m > 0 (58)

for m = 0, there are two solutions,

1

πβ
cosnφf0nλ(ρ),

1

πβ
sinnφf0nλ(ρ), n > 0, (59)

and for general m,n there are four solutions,

2

πβ
cosm

2π

β
t cosnφfmnλ(ρ),

2

πβ
cosm

2π

β
t sinnφfmnλ(ρ) m,n > 0, (60)

2

πβ
sinm

2π

β
t cosnφfmnλ(ρ),

2

πβ
sinm

2π

β
t sinnφfmnλ(ρ) m,n > 0, (61)

Plugging this into the general formula, we can write the scalar heat kernel on
thermal AdS for coincident points as

K(t, x, x) =
1

2πβ

∫ ∞

1
dλµ(λ)e−λt(f200λ + 2

∑

m>0

f2m0λ + 2
∑

n>0

f20nλ + 4
∑

m,n>0

f2mnλ),

(62)
where µ(λ) is the spectral function, which measures the degeneracy of modes at
each value of λ. This can be determined by applying the normalization condition

∫

dρ cosh ρ sinh ρfmnλ(ρ)fm′n′λ′(ρ) = δmm′δnn′

δ(λ− λ′)
µ(λ)

. (63)

This normalization condition can be applied for any choice of m,n; in particular,
it can be applied for m = m′ = 0, which implies that the spectral function µ(λ)
is independent of the temperature. As a result, to understand the temperature
dependence of the heat kernel, we will not need to know the spectral function
explictly. A discussion of this spectral function can be found for example in [22].

Note that the heat kernel on thermal AdS is manifestly independent of t, φ,
which is a consequence of the translation invariance in these directions, but is some
non-trivial function of ρ. It is the dependence on ρ which should make these sums
convergent. The 1,2,2,4 structure in the sum may seem a little strange; this looks
more natural if we observe that what it means is that the heat kernel is naturally
written as the sum

K(t, x, x) =
1

2πβ

∫ ∞

1
dλµ(λ)e−λt

∑

m,n∈Z
f2mnλ. (64)
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Now consider the quotient under t → −t, φ→ φ+π, to obtain the expression on
the singular quotient. For even n (including n = 0), the cos t modes are invariant,
and for odd n, the sin t modes are invariant. For m = 0, the modes with even n are
invariant. The n = m = 0 mode is also invariant. On the quotient, the volume of
the φ, t space is halved, so the normalization factors in the modes in the quotient
is different by a factor of

√
2. Thus the heat kernel on the quotient is

Ksing(t, x, x) =
1

πβ

∫ ∞

1
dλµ(λ)e−λt(f200λ + 2

∑

m>0

f2m0λ cos
2m

2π

β
t+ 2

∑

n>0,even

f20nλ

+4
∑

m,n>0,n even

f2mnλ cos
2m

2π

β
t+ 4

∑

m,n>0,n odd

f2mnλ sin
2m

2π

β
t).(65)

This is now a function of t, which is not surprising, as the quotient broke homo-
geneity in the t direction. The spectral function µ(λ) here is unchanged, as it is
determined by the same normalization integral (63).

Integrating over t and φ,
∫

dtdφKsing(t, x, x) =

∫ ∞

1
dλµ(λ)e−λt(f200λ+

∑

m>0

f2m0λ+2
∑

n>0,even

f20nλ+2
∑

m,n>0

f2mnλ).

(66)
To understand the sum over images result, we compare this to the result of in-
tegrating the thermal heat kernel over the fundamental region; that is, we define
∆K = Ksing(t, x, x)−K(t, x, x) where K(t, x, x) is given by (64). Then
∫

dtdφ∆K(t, x, x) =

∫ ∞

1
dλµ(λ)e−λt(

1

2
f200λ +

∑

n>0,even

f20nλ −
∑

n>0,odd

f20nλ). (67)

Because the difference only involves terms with m = 0, it is manifestly independent
of the modular parameter. This explains the miraculous-seeming combination of
integrals in the sum over images calculation which gave a constant result.

The smooth quotient which gives the geon is t → t + β/2, φ → −φ in these
coordinates. Thus, the modes which are invariant are cosnφ for even m (including
m = 0), and sinnφ for odd m. For n = 0 even m is invariant. The n = m = 0
mode is also invariant. Thus the heat kernel on the quotient is

Ksmooth(t, x, x) =
1

πβ

∫ ∞

1
dλe−λt(f200λ + 2

∑

m>0,even

f2m0λ + 2
∑

n>0

f20nλ cos
2 nφ

+4
∑

m,n>0,m even

f2mnλ cos
2 nφ+ 4

∑

m,n>0,m odd

f2mnλ sin
2 nφ).(68)

Integrating over the fundamental region,
∫

dtdφKsmooth(t, x, x) =

∫ ∞

1
dλµ(λ)e−λt(f200λ+2

∑

m>0,even

f2m0λ+
∑

n>0

f20nλ+2
∑

m,n>0

f2mnλ).

(69)
Defining similarly ∆K(t, x, x) = Ksmooth(t, x, x)−K(t, x, x), where K(t, x, x) given
by (64) is now interpreted as the heat kernel on BTZ,
∫

dtdφ∆K(t, x, x) =

∫ ∞

1
dλµ(λ)e−λt(

1

2
f200λ+

∑

m>0,even

f2m0λ−
∑

m>0,odd

f2m0λ). (70)

This can also be rewritten, perhaps more suggestively, as
∫

dtdφ∆K(t, x, x) =

∫ ∞

1
dλµ(λ)e−λt 1

2

∑

m∈Z
(−1)mf2m0λ. (71)
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So we see that there is a non-trivial difference coming from zero mode contributions
on the spatial circle. In this case, this leads to a non-trivial temperature dependence
in the additional contribution to the one-loop determinant. The key difference
between the singular and smooth saddles is that in the former case the difference
involves zero modes in the time direction, which are independent of the modulus,
but in the latter case it involves zero modes in the spatial direction, which depend
on the modulus.

Here again we have only carried out the calculation for scalar fields, but it should
be more straightforward to extend this analysis to the vector and metric to verify
that the contributions on the singular saddle are the same as in thermal AdS, up
to an additional contribution independent of the modulus.

4.3 One-loop corrections: CFT calculation

The singular saddle reproduced the expected behaviour of the CFT partition func-
tion at low temperatures (large modular parameter β), as the one-loop determinant
around the quotient was just the square root of the one-loop determinant around
the thermal AdS solution. This is a useful confirmation of our argument that we
need to include this singular saddle to reproduce the expected CFT behaviour.
However, the one-loop determinant around the smooth saddle did not have such a
simple form. We might naively have expected this just to be given by the Virasoro
character in the other channel, as it is in the torus case. Here we examine this issue
more carefully from the CFT point of view and see that in fact we would expect a
non-trivial contribution from zero modes in the CFT analysis, just as we are finding
in the bulk calculation.

The CFT partition function at small modular parameter β, where we would
expect the smooth saddle to dominate, is conveniently expressed as in (15) as a
trace over states with an insertion of a parity projection. The bulk calculation we
have considered is for a scalar field, which corresponds to the contribution of the
dual scalar operator φ in the CFT partition function.

It is useful to first recall the torus partition function. The Fock space basis of
states for the scalar is labelled by a string of non-negative integers nℓℓ′ for ℓ, ℓ

′ =
0, . . .∞, so the basis states are

|ψ{nℓℓ′}〉 =
∞
∏

ℓ,ℓ′=0

(∂ℓ∂̄ℓ
′

φ)nℓℓ′ |0〉. (72)

The partition function on the rectangular torus is given by a sum over this basis,

Tr(e−βH) =

∞
∏

ℓ,ℓ′=0

∞
∑

nℓℓ′=0

e−β(2h+ℓ+ℓ′)nℓℓ′ =

∞
∏

ℓ,ℓ′=0

1

1− e−β(2h+ℓ+ℓ′)
. (73)

For comparison to the Klein bottle partition function, this can be written as

Tr(e−βH) =
∞
∏

ℓ=0

1

1− e−β(2h+2ℓ)

∞
∏

ℓ=1

ℓ−1
∏

ℓ′=0

1

(1− e−β(2h+ℓ+ℓ′))2
, (74)

where we have separated out the diagonal and off-diagonal contributions, and made
use of the fact that the energy only depends on ℓ+ℓ′ to combine contributions above
and below the diagonal.

For the Klein bottle, the partition function includes an action of parity. This
means we should organise our basis into parity eigenstates. In the basis above, the
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states where {nℓℓ′} is invariant under interchange of ℓ with ℓ′ are parity-even, and
the others are not parity eigenstates. From the non-invariant basis states we can
construct a parity-even combination

|ψ+〉 = |ψ{nℓℓ′}〉+ |ψ{nℓ′ℓ}〉 (75)

and a parity-odd combination

|ψ−〉 = |ψ{nℓℓ′}〉 − |ψ{nℓ′ℓ}〉. (76)

Since these states have the same energy, their contribution to the trace will cancel,
and we are left with just the contribution from the invariant states where {nℓℓ′} =
{nℓ′ℓ}, that is, those labelled by strings {nℓℓ′} with nℓ1ℓ2 = nℓ2ℓ1 .

That is, for the partition function (15) the non-zero contribution comes from
the trace over states where we act with the same number of ∂ℓ∂̄ℓ

′

φ and ∂ℓ
′

∂̄ℓφ, to
form basis states

∞
∏

ℓ=0

(∂ℓ∂̄ℓφ)nℓ

∞
∏

ℓ=1

ℓ−1
∏

ℓ′=0

(∂ℓ∂̄ℓ
′

φ∂ℓ
′

∂̄ℓφ)nℓℓ′ |0〉. (77)

We see already that the diagonal terms with ℓ = ℓ′, corresponding to the momentum
zero modes, have a different behaviour to the off-diagonal terms.

Evaluating the partition function,

Tr(Pe−
β
2
H) =

∞
∏

ℓ=0

1

1− e−
β
2
(2h+2ℓ)

∞
∏

ℓ=1

ℓ−1
∏

ℓ′=0

1

1− e−β(2h+ℓ+ℓ′)
. (78)

This has the same qualitative structure seen in the gravity calculation; the off-
diagonal part is the square root of the torus partition function (74), but the diagonal
part, corresponding to the momentum zero modes, spoil this pattern.
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A Alternative approaches to the one-loop de-

terminant

In our analysis of the one-loop determinant, we only analysed the scalar modes
explicitly, as the extension to vector and metric was non-trivial. Here we would
like to comment on two other approaches to calculating the one-loop determinant
used in the literature where one might have hoped that the extension to vector and
metric would be more straightforward, and explain why we were not able to use
them.
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A.1 More algebraic approach

The work of [21] was generalised by [23], who make more use of group theory and the
description of the hyperbolic plane as a group manifold. A central element in their
discussion is the construction of a section of the principal bundle over the hyperbolic
plane which is invariant under the quotient. This relies on the transformation we
quotient by being expressible as

g → AgB−1 (79)

for some group elements A, B. (See their (2.24), and (4.2) for the explicit represen-
tation). Unfortunately, the quotients which give non-orientable boundaries don’t
seem to be expressible in this form. The obstruction is easiest to see if we consider
the quotient of H3 to obtain a space with RP 2 boundary: in terms of the embedding
coordinates T,Xi, the global coordinates on the hyperbolic space are

T = coshχ,Xi = sinhχxi, (80)

where xi are coordinates on a unit S2. So the quotient that turns the boundary S2

into RP 2 is reversing the sign of the xi. In terms of the embedding coordinates,
the SL(2,C) group element is

g =

(

T +X1 X2 + iX3

X2 − iX3 T −X1

)

. (81)

The quotient is thus not g → −g as in the S3 case, but sends

g =

(

α γ
κ δ

)

(82)

to

g′ =

(

δ −γ
−κ α

)

. (83)

For this to be of the form g′ = AgB−1 for some A,B requires

δ = B11(A11α+A12κ) +B21(A11γ +A12δ), (84)

− γ = B12(A11α+A12κ) +B22(A11γ +A12δ), (85)

− κ = B11(A21α+A22κ) +B21(A21γ +A22δ), (86)

α = B12(A21α+A22κ) +B22(A21γ +A22δ). (87)

Now for this to hold for any α, γ, κ, δ, the first equation requires e.g. B11A11 = 0,
but the second requires B22A11 = −1, and the third requires B11A22 = −1, which
produces a contradiction.

A.2 Quasi-normal modes

Another approach would be to follow [24], and evaluate the one-loop determinant
from the quasi normal mode frequencies. For the quotient with fixed points, it’s
useful to think of the space as thermal AdS, so the mode spectrum is

zn,l,± = ±(2n+ l +∆), n = 0, 1, 2, . . . , l ∈ Z, (88)
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and their expression for the one-loop determinant is

Z = ePol(∆)
∏

z⋆

1

2 sinh |z⋆|
2T

= ePol(∆)
∏

n,l

1

4 sinh2
|zn,l|
2T

(89)

In taking the quotient under t→ −t, φ→ φ+ π we should keep the normal modes
in this spectrum which are invariant under the quotient. For even l, these are
the symmetric combination of the modes labelled by zn,l,± and for odd l it’s the
antisymmetric combination of the modes labelled by zn,l,±. Thus for each n, l, we
keep one of the two modes. Thus the one-loop determinant on the quotient is

Z = ePol(∆)
∏

n,l

1

2 sinh
|zn,l|
2T

(90)

So up to possible differences in the polynomial part, the one-loop determinant on
the quotient is precisely the square root of that on thermal AdS.

For the geon quotient, this basis of normal modes is not useful, as none of them
are invariant under t → t + β/2, φ → −φ. Instead we should use the basis of
quasinormal modes on BTZ, where the spectrum is

zp,s = p− 2πT i(∆ + s), s = 0, 1, 2, . . . , p ∈ Z, (91)

and z̄p,s = z∗p,s. Now to get an invariant combination we take a combination of zp,s
and z̄−p,s = −zp,s: again the symmetric combination for p even and the antisym-
metric combination for p odd.

The one-loop determinant on BTZ was

Z = ePol(∆)
∏

z⋆

√
z⋆z̄⋆

4π2T
Γ(

iz⋆
2πT

)Γ(
−iz̄⋆
2πT

) = ePol(∆)
∏

p,s

izp,s
4π2T

Γ(
izp,s
2πT

)2, (92)

and up to changes in the polynomial part, the one-loop determinant on the geon
would be the square root of this,

Z = ePol(∆)
∏

p,s

i
√
zp,s

4π2T
Γ(
izp,s
2πT

). (93)

However, we know that there is a non-trivial difference between the one-loop de-
terminant on the quotient and the square root of BTZ. In this approach to the
calculation, this difference is hidden in the Pol(∆) prefactor, so we do not get much
control of it. This calculation thus provides a nice illustration of the subtleties
in applying the quasi-normal mode approach, and while it would in principle be
straightforward to extend this approach to vector and metric fields, it would be
better to do so in the full mode sum analysis where the zero mode contributions
can also be controlled.

References

[1] J. M. Maldacena, The Large N limit of superconformal field theories and
supergravity, Int. J. Theor. Phys. 38 (1999) 1113–1133, [hep-th/9711200].
[Adv. Theor. Math. Phys.2,231(1998)].

[2] J. M. Maldacena and A. Strominger, AdS(3) black holes and a stringy
exclusion principle, JHEP 12 (1998) 005, [hep-th/9804085].

24

http://xxx.lanl.gov/abs/hep-th/9711200
http://xxx.lanl.gov/abs/hep-th/9804085


[3] R. Dijkgraaf, J. M. Maldacena, G. W. Moore, and E. P. Verlinde, A Black
hole Farey tail, hep-th/0005003.

[4] J. Manschot and G. W. Moore, A Modern Farey Tail,
Commun.Num.Theor.Phys. 4 (2010) 103–159, [arXiv:0712.0573].

[5] X. Yin, Partition Functions of Three-Dimensional Pure Gravity, Commun.
Num. Theor. Phys. 2 (2008) 285–324, [arXiv:0710.2129].

[6] D. Fioravanti, G. Pradisi, and A. Sagnotti, Sewing constraints and
nonorientable open strings, Phys.Lett. B321 (1994) 349–354,
[hep-th/9311183].

[7] G. Pradisi, A. Sagnotti, and Ya. S. Stanev, The Open descendants of
nondiagonal SU(2) WZW models, Phys. Lett. B356 (1995) 230–238,
[hep-th/9506014].

[8] Y. S. Stanev, Two-dimensional conformal field theory on open and
unoriented surfaces, in Geometry and physics of branes. Proceedings, 4th
SIGRAV Graduate School on Contemporary Relativity and Gravitational
Physics and 2001 School on Algebraic Geometry and Physics, SAGP 2001,
Como, Italy, May 7-11, 2001, pp. 39–85, 2001. hep-th/0112222.

[9] R. Blumenhagen and E. Plauschinn, Introduction to conformal field theory,
Lect.Notes Phys. 779 (2009) 1–256.

[10] W. Li, W. Song, and A. Strominger, Chiral Gravity in Three Dimensions,
JHEP 04 (2008) 082, [arXiv:0801.4566].

[11] A. Maloney, W. Song, and A. Strominger, Chiral Gravity, Log Gravity and
Extremal CFT, Phys. Rev. D81 (2010) 064007, [arXiv:0903.4573].

[12] E. Witten, Three-Dimensional Gravity Revisited, arXiv:0706.3359.

[13] A. Maloney and E. Witten, Quantum Gravity Partition Functions in Three
Dimensions, JHEP 1002 (2010) 029, [arXiv:0712.0155].

[14] C. A. Keller and A. Maloney, Poincare Series, 3D Gravity and CFT
Spectroscopy, JHEP 1502 (2015) 080, [arXiv:1407.6008].

[15] A. Castro, M. R. Gaberdiel, T. Hartman, A. Maloney, and R. Volpato, The
Gravity Dual of the Ising Model, Phys.Rev. D85 (2012) 024032,
[arXiv:1111.1987].

[16] J. Louko and D. Marolf, Single exterior black holes and the AdS / CFT
conjecture, Phys.Rev. D59 (1999) 066002, [hep-th/9808081].

[17] J. M. Maldacena and L. Maoz, Wormholes in AdS, JHEP 02 (2004) 053,
[hep-th/0401024].

[18] X. Yin, On Non-handlebody Instantons in 3D Gravity, JHEP 09 (2008) 120,
[arXiv:0711.2803].

[19] H. Maxfield, S. Ross, and B. Way, Holographic Partition Functions and
Phases for Higher Genus Riemann Surfaces, arXiv:1601.0098.

[20] G. W. Moore and N. Seiberg, LECTURES ON RCFT, in 1989 Banff NATO
ASI: Physics, Geometry and Topology Banff, Canada, August 14-25, 1989,
1989.

[21] S. Giombi, A. Maloney, and X. Yin, One-loop Partition Functions of 3D
Gravity, JHEP 0808 (2008) 007, [arXiv:0804.1773].

25

http://xxx.lanl.gov/abs/hep-th/0005003
http://xxx.lanl.gov/abs/0712.0573
http://xxx.lanl.gov/abs/0710.2129
http://xxx.lanl.gov/abs/hep-th/9311183
http://xxx.lanl.gov/abs/hep-th/9506014
http://xxx.lanl.gov/abs/hep-th/0112222
http://xxx.lanl.gov/abs/0801.4566
http://xxx.lanl.gov/abs/0903.4573
http://xxx.lanl.gov/abs/0706.3359
http://xxx.lanl.gov/abs/0712.0155
http://xxx.lanl.gov/abs/1407.6008
http://xxx.lanl.gov/abs/1111.1987
http://xxx.lanl.gov/abs/hep-th/9808081
http://xxx.lanl.gov/abs/hep-th/0401024
http://xxx.lanl.gov/abs/0711.2803
http://xxx.lanl.gov/abs/1601.0098
http://xxx.lanl.gov/abs/0804.1773


[22] R. Camporesi and A. Higuchi, Spectral functions and zeta functions in
hyperbolic spaces, J. Math. Phys. 35 (1994) 4217–4246.

[23] J. R. David, M. R. Gaberdiel, and R. Gopakumar, The Heat Kernel on
AdS(3) and its Applications, JHEP 04 (2010) 125, [arXiv:0911.5085].

[24] F. Denef, S. A. Hartnoll, and S. Sachdev, Black hole determinants and
quasinormal modes, Class. Quant. Grav. 27 (2010) 125001,
[arXiv:0908.2657].

26

http://xxx.lanl.gov/abs/0911.5085
http://xxx.lanl.gov/abs/0908.2657

	1 Introduction
	2 Classical Bulk Saddles
	2.1 Filling in Non-Orientable Surfaces
	2.2 R¶2
	2.3 Klein Bottle
	2.4 Other Examples

	3 CFT Interpretation & the Crosscap State
	3.1 CFT Partition Functions on RP2 and K2
	3.2 Comparison With Bulk Gravity
	3.2.1 Smooth saddles
	3.2.2 Minimal models
	3.2.3 Including Singular Saddles


	4 One-Loop Corrections
	4.1 Sum over images calculation
	4.2 Mode sum calculation
	4.3 One-loop corrections: CFT calculation

	A Alternative approaches to the one-loop determinant
	A.1 More algebraic approach
	A.2 Quasi-normal modes


