
MNRAS 449, 3537–3542 (2015) doi:10.1093/mnras/stv617

Sensitivity improvements for Shack–Hartmann wavefront sensors
using total variation minimization

A. G. Basden,1‹ T. J. Morris,1 D. Gratadour2 and E. Gendron2

1Department of Physics, South Road, Durham DH1 3LE, UK
2Observatoire de paris, 5 place jules janssen, F-92195 Meudon, Paris, France

Accepted 2015 March 18. Received 2015 March 13; in original form 2014 November 13

ABSTRACT
We investigate the improvements in Shack–Hartmann wavefront sensor image processing
that can be realized using total variation minimization techniques to remove noise from
these images. We perform Monte Carlo simulation to demonstrate that at certain signal-to-
noise levels, sensitivity improvements of up to one astronomical magnitude can be realized.
We also present on-sky measurements taken with the CANARY adaptive optics system that
demonstrate an improvement in performance when this technique is employed, and show
that this algorithm can be implemented in a real-time control system. We conclude that total
variation minimization can lead to improvements in sensitivity of up to one astronomical
magnitude when used with adaptive optics systems.

Key words: instrumentation: adaptive optics – instrumentation: detectors – methods: numer-
ical – methods: statistical.

1 IN T RO D U C T I O N

Astronomical imaging on large telescopes is restricted in achievable
resolution by atmospheric turbulence which perturbs the wavefront
of incident light. A solution to this problem is the use of adap-
tive optics (AO) systems (Babcock 1953) which use one or more
wavefront sensors to measure these perturbations, and a deformable
mirror (DM) to actively compensate them in real time. The most
commonly used wavefront sensor for astronomical systems is a
Shack–Hartmann sensor (Shack 1971) which divides the telescope
pupil plane into an array of sub-apertures and is then used to mea-
sure the incident instantaneous wavefront tilt across these.

The isoplanatic patch of the atmosphere limits the AO corrected
distance from the guide star on which the wavefront sensor is fo-
cused to about 10 arcsec, i.e. regions further from the guide star are
essentially uncorrected by the AO. Additionally, since the wavefront
sensors require enough light to reliably detect target motion on mil-
lisecond time-scales within each sub-aperture, bright targets are
required. Therefore, the fraction of the sky that is observable with
AO correction, the sky-coverage, is typically only a few per cent for
most AO systems. Improving sky-coverage for AO systems is there-
fore desirable, requiring increased sensitivity wavefront sensors.

Total variation minimization (TVM; Rudin, Osher & Fatemi
1992) is a process that attempts to reduce the total variance within
a signal. Typically, a signal containing significant noise will have
a high total variation, and the integrated absolute gradient will be
large. Minimization of the total variation of this signal, subject
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to the constraint that the cleaned signal remains a close match to
the original, removes unwanted noise, while retaining important
features such as sudden gradient changes. TVM is very effective
at removing noise in flat image regions whilst also maintaining
image features. Alternative approaches such as median filtering
and smoothing also reduce the noise, but unfortunately remove
features such as sharp edges which may be inherent to the im-
age, and therefore are not appropriate where high image fidelity is
necessary.

Fig. 1(a) shows a noiseless Shack–Hartmann wavefront sensor
image. Within this image, there are many sharp peaks, the posi-
tion of which (relative to some reference position) requires deter-
mination with high precision, so that the corresponding incident
wavefront can be reconstructed. Once noise is added (Fig. 1b), this
determination becomes more difficult with increased uncertainty.
By applying the principle of TVM (Fig. 1c), noise levels can be
reduced, resulting in improved spot position determination.

In Section 2, we provide details of the TVM algorithm that we
have investigated, and of the investigations that we have performed.
In Section 3, we present our results, including on-sky measurements,
and we conclude in Section 4.

2 T V M M O D E L A N D A P P L I C AT I O N D E TA I L S

We use a convergent algorithm developed by Chambolle (2004)
for the minimization of total variation of an image. This algorithm
has applications beyond image noise removal, for example image
scaling; here however we concentrate only on noise removal.

It is assumed that an observed image, g is the addition of an a
priori piecewise smooth (or with little oscillation) image, u and a
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Figure 1. (a) An example simulated noiseless Shack–Hartmann wavefront
sensor image, (b) with photon and readout noise added, (c) after noise
removal using TVM.

random Gaussian noise of estimated variance σ 2. Therefore, the
original image is estimated by solving (Chambolle 2004)

min
(||u − g||2 = N2σ 2

)
, (1)

where N2 is the number of pixels.
Throughout this paper, we consider noise reduction applied to

individual sub-apertures, rather than noise reduction applied to the
whole wavefront sensor image, because this is of most relevance to
an on-sky situation; within an AO real-time control system, system
latency is reduced (and hence performance improved) if individual
wavefront sensor sub-apertures are processed separately, as soon as
the relevant pixel data arrive at the real-time computer, rather than
waiting and processing a whole frame at once. The ability to access
the camera pixel stream depends somewhat on camera mode; how-
ever with the CANARY AO system (Myers et al. 2008) and many
others, camera customization, interface development, and custom
software has made this possible. CANARY uses the Durham AO
real-time controller (DARC) for wavefront control (Basden et al.
2010; Basden & Myers 2012) which is optimized for low latency
operation, and has the ability to process sub-apertures individu-
ally once pixels become available. We have therefore implemented
the TVM algorithm within this system (which we discuss in Sec-
tion 2.2), applying TVM on a per-sub-aperture basis.

2.1 Monte Carlo simulation of total variation
minimization performance

There are many parameters that need to be considered when inves-
tigating sub-aperture slope estimation improvement, including the
size of the spots (determined by optics and atmospheric conditions),
the signal level of the target, detector readout noise, and the number
of pixels within each sub-aperture.

We investigate performance of the noise removal algorithm span-
ning this parameter space using Monte Carlo simulation techniques.
Our procedure is as follows.

(i) A sub-aperture spot is generated at a random, known, position
(Strue).

(ii) Noise (photon and readout) is added.
(iii) Spot position is estimated using a centre of gravity algorithm

(Ssys).
(iv) TVM is applied to the image.
(v) Spot position is estimated using a centre of gravity algorithm

(Stvm).
(vi) Steps 1–5 are repeated many (N) times.
(vii) The performance metric is calculated.

The performance metric is given by

R =
∑N

m=1 | (Strue(m) − S(m)
) |

N
, (2)

where N is the number of measurements taken and S(m) is the mth
individual slope measurement measured with the mth Monte Carlo
realization, either the true position, or the estimated position (with
noise added, Ssys, and after application of noise removal, Stvm). In
essence, the absolute offset between estimated and true positions are
computed, and the mean offset calculated over 10 000 realizations.
We refer to R as the slope error, or slope estimation accuracy, and
to Ssys as the ‘No tvm’ case.

We consider signal levels from high light level, down to very low
(10 photons per sub-aperture i.e. too low for good AO correction, but
still of academic interest). We consider a range of detector readout
noise from 0.1 to 16 electrons, which includes the parameter space
for the electron multiplying CCDs (EMCCDs) and scientific CMOS
(sCMOS) detectors that are candidate wavefront sensors, and also
that corresponding to an electronically shuttered laser guide star
(LGS) wavefront sensor that was used with CANARY. Sub-aperture
sizes are considered from 8 × 8 to 16 × 16 pixels, corresponding to
the sizes used for CANARY, and also those that are likely for wide-
field Extremely Large Telescope (ELT)-scale AO instruments. Spot
sizes are investigated ranging from Nyquist sampled, to spots with
an full width at half-maximum of about four pixels, i.e. towards the
practical upper size limit with which a typical AO system would
work.

In conjunction with the noise removal algorithm under consid-
eration here, we use a background subtraction algorithm based on
brightest pixels (Basden, Myers & Gendron 2012), which sets the
image background threshold level (both noisy and denoised) at
a level such that a given number of image pixels remain above
this threshold in each sub-aperture. When investigating perfor-
mance, we use the number of retained image pixels that gives best
performance.

2.2 On-sky testing of total variation minimization

We have implemented the TVM algorithm within the DARC system
that is used by CANARY. This is a dynamically loadable modular
control system, and so the introduction of new algorithms does not
require a modification of the core system, and these algorithms
can be loaded and unloaded from the real-time system without
affecting its subsequent operation, making it ideal for algorithm
development.

Our implementation includes three adjustable parameters, which
can be altered on a sub-aperture basis [allowing optimized operation
with wavefront sensors where the spot point spread function (PSF)
varies across the sensor, for example differing elongation when
using LGSs]. These are the ‘strength’ (estimated noise standard
deviation) of the noise removal, the tolerance level (at which the
image is considered denoised), and the maximum number of itera-
tions allowed (to avoid significant increase to AO system latency).
The maximum number of iterations is set to a number greater than
that typically required for convergence (in which case, the algo-
rithm does not perform all iterations); it serves to prevent real-time
system jitter in rare cases where the algorithm is not converging
quickly.

During these tests, we operate CANARY in a single conjugate
AO (SCAO) mode, using a single on-axis wavefront sensor, and
interleave processing with and without TVM while measuring per-
formance. Strehl ratio of the AO corrected image is our performance
metric, computed on-axis using standard CANARY tools (Gendron
et al. 2011).
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Figure 2. A comparison showing a noisy Shack–Hartmann spot, and the
same image after application of the TVM algorithm.

3 D I S C U S S I O N O F P E R F O R M A N C E
IMPROV EMENTS USING TVM

Accuracy of Shack–Hartmann slope estimation has been inves-
tigated in simulation, comparing noisy and denoised Shack–
Hartmann spots. Fig. 2 shows a comparison of a simulated noisy and
denoised Shack–Hartmann spot. In this figure, it is clearly evident
that the TVM algorithm is effective at reducing the noise within this
image.

3.1 Performance as a function of spot size

The size of a Shack–Hartmann spot determines, for a given flux
level, the intensity level of the brightest pixels, since incident flux
is spread over the spot. Fig. 3 shows performance as a function of
signal level for different spot sizes, processed both with and without
TVM. Here, a 16 × 16 sub-aperture has been used, with 0.1 electron
readout noise. From this figure, it is evident that smaller spot sizes
benefit most from TVM, since the difference between the noisy and
denoised cases is largest. When using TVM, a reduction in signal
level by a factor of between 2–3 is possible while still maintaining
the non-TVM performance level, i.e. guide star magnitude can be
decreased by up to one astronomical order of magnitude when using
TVM.
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Figure 3. A figure showing Shack–Hartmann slope estimation error as a
function of signal level for cases with different Shack–Hartmann spot sizes,
given as a function of Nyquist sampled size in the legend. Solid lines show
performance with TVM, while dashed lines are without. Uncertainties are
at the 1 per cent level and are not shown for clarity.
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Figure 4. A figure showing Shack–Hartmann slope estimation error as a
function of signal level for different sized sub-apertures, with the linear
dimension given in the legend. Solid lines show performance with TVM,
while dashed lines are without. Uncertainties are at the 1 per cent level and
are not shown for clarity.

3.2 Performance as a function of sub-aperture size

For a given spot size, a larger sub-aperture will contain a larger num-
ber of pixels with just noise (i.e. negligible useful signal). However,
in some cases, a large sub-aperture may be necessary, for example
in open-loop AO systems, where a wide-field of view is required
to detect large spot motions. Fig. 4 shows slope estimation error as
a function of signal level, for different sub-aperture sizes. Here, it
is interesting to note that in the denoised case (with TVM), perfor-
mance is essentially unrelated to sub-aperture size, since the TVM
is successfully removing the background noise. However, in the
noisy cases, performance gets worse as sub-aperture size increases
as expected due to the presence of an increased number of noisy
pixels. In this figure, readout noise is set at 0.1 electrons, and the
Shack–Hartmann spot is Nyquist sampled.

3.3 Performance at low signal-to-noise ratios

Fig. 5 shows performance as a function of signal level for different
wavefront sensor readout noise, for a 16 × 16 pixel sub-aperture
with a Nyquist sampled spot. Here, it can be seen that as signal level
is reduced, the slope error (R) in cases without TVM increases faster
than with. At certain signal levels, using TVM allows operation at
light levels a factor of 2–3 times lower than without TVM, whilst
achieving the same slope estimation accuracy. For example, with
a readout noise of 0.1 electrons, a signal level of 30 photons with
TVM gives the same performance as 80 photons without TVM.

3.4 Discussion of background level selection
using brightest pixels

So far, we have been using the number of pixels for background
selection that give best performance, both for the noisy and denoised
cases. However, it is useful to investigate how this background
affects performance. Fig. 6 shows slope error (R) as a function of
number of brightest pixels retained for two different signal levels
(assuming 0.1 electrons readout noise, a 16 × 16 sub-aperture and a
Nyquist sampled spot). It is evident here that when there are fewer
photons, TVM is effective at removing the effect of noise, so that
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Figure 5. A figure showing Shack–Hartmann slope estimation error as a
function of signal level for cases with different readout noise (as given in
the legend). Solid lines show performance with TVM, while dashed lines
are without. Uncertainties are at the 1 per cent level and are not shown for
clarity.
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Figure 6. A figure showing slope error as a function of number of brightest
pixels retained after background level removal prior to slope estimation.
Results for two different light levels are shown, with and without TVM,
as noted in the legend. Uncertainties are at the 1 per cent level and are not
shown for clarity.

the final slope error (R) is less dependent on the number of brightest
pixels retained. Fig. 7 shows slope error (R) as a function of number
of brightest pixels retained for different spot sizes. Here, it is clear
that again, TVM removes some of the sensitivity to background
level, since noise has effectively been removed (a signal level of 50
photons is assumed). Similarly, using the above assumptions, Fig. 8
shows slope error (R) at different detector readout noise levels, again
displaying the improvements brought by the TVM algorithm.

When selecting the number of brightest pixels to retain during
background level thresholding, the main consideration should be
given to the size of the sub-aperture PSF. Using TVM provides a
key benefit of reducing the dependency on accurate background
subtraction.
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Figure 7. A figure showing slope error as a function of number of brightest
pixels retained after background level removal prior to slope estimation.
Results for different sub-aperture PSF spot sizes are shown, with and without
TVM, as noted in the legend, where the size is the PSF oversampling factor
beyond Nyquist sampled. Uncertainties are at the 1 per cent level and are not
shown for clarity.
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Figure 8. A figure showing slope error as a function of number of brightest
pixels retained after background level removal prior to slope estimation.
Results for different readout noise levels (in electrons) are shown, with and
without TVM, as noted in the legend. Uncertainties are at the 1 per cent level
and are not shown for clarity.

3.5 Application to LGS elongated spots

We have also investigated the application of TVM to elongated
Shack–Hartmann spots. For the results presented here, we assume a
spot that is elongated by a factor of 3, i.e. three times longer in one
dimension than the other. Fig. 9 shows performance (slope error, R)
as a function of signal level, for different readout noise values, both
with and without TVM. It can be seen here that the benefit obtained
from TVM increases with readout noise, and performance is never
worse than without TVM. The performance improvements are less
marked than for the natural guide star (NGS) case, though the use
of TVM can enable the same slope prediction performance for light
levels reduced by up to about 25 per cent for the high readout noise
case with greater than three electrons.
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Figure 9. A figure showing predicted Shack–Hartmann slope error as a
function of signal level for a 16 × 16 pixel sub-aperture with an elongated
spot PSF (3 × longer than wide). Cases with and without TVM are given
in the legend, for different detector readout noise. Uncertainties are at the
1 per cent level and are not shown for clarity.

Figure 10. (a) A single frame of a wavefront sensor image obtained on-sky
by the CANARY AO system at the William Herschel Telescope. (b) The
noise removed using TVM with a variance of 1 (in active sub-apertures). (c)
Calibrated image after TVM and background subtraction.

3.6 On-sky measurements

Because on-sky time was limited, we did not attempt to explore a
large parameter space of seeing conditions, spot size, signal level
and readout noise. Rather, we have selected a target where noise
is evident within the sub-apertures (Fig. 10), and operated the CA-
NARY AO system in SCAO mode both with and without TVM.
The data presented here were taken on the night of 2014 July 12
with CANARY on the William Herschel Telescope, for just over
1 h from about 3 am.

We have taken four sets of observations, during which the
CANARY SCAO loop was closed, and H-band science images
obtained. Each set of observations commenced with a measurement
without TVM, and then a number of measurements (8 or 20) with
different TVM strength (estimated noise standard deviation) factors
(increasing monotonically from 0 to 2). Within the observation set,
this was then repeated. The detector used was an EMCCD, and mul-
tiplication gain was set to maximum for the first two observation
sets, and 75 per cent for the last two, allowing the signal level to be
reduced. Signal level was between 500–1000 detector counts.

Results are shown in Fig. 11, and provide evidence that this
technique is able to improve AO system performance, though, due
to the lack of on-sky time, this is not wholly conclusive. Mean
Strehl ratios for each observation set are shown in Table 1, and in
each case show an improvement when using TVM. There is a large
variation in performance as a function of time, which is typical of
the time-varying seeing conditions commonly seen with CANARY.
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Figure 11. (a) A figure showing H-band Strehl ratio obtained with
CANARY operating in SCAO mode, both with and without TVM as a
function of time from first observation. The red circles show Strehl obtained
without TVM, while other points are with TVM at different strengths. (b)
H-band Strehl ratio as a function of r0, with red circles representing mea-
surements without TVM, and black crosses representing measurements with
TVM. (c) H-band Strehl ratio as a function of TVM noise standard deviation
estimate. The horizontal lines show Strehl obtained without TVM.
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Table 1. AO system performance as given by H-band Strehl
ratio (per cent) for CANARY operating in SCAO mode,
both without and with TVM (with results averaged over
all strengths, or estimated noise standard deviation, investi-
gated) during the four different observations made (Obs). Also
shown is performance using TVM with strength restricted to
between 0.6–1.1.

Obs No TVM TVM TVM strength 0.6–1.1

1 18.4 ± 0.1 18.8 ± 1.8 20.0 ± 1.6
2 20.3 ± 1.2 20.5 ± 1.3 21.4 ± 2.0
3 20.9 ± 1.5 21.4 ± 1.1 22.0 ± 0.4
4 19.6 ± 1.6 20.0 ± 1.8 20.6 ± 1.2

It should be noted that the improvement obtained using TVM is, in
this case, small; it is likely that larger improvements would be seen
at other signal-to-noise regimes, though this was not investigated
on-sky.

Because of the natural variability of seeing, we also show, in
Fig. 11(b), the H-band Strehl ratio as a function of Fried’s parameter,
r0. In this case, r0 is computed from reconstructed pseudo-open-
loop slope measurements, which are, in turn computed from a time
series of the on-axis closed-loop wavefront slope measurements
and the recorded DM actuator commands. The line fitted through
these data points is the best fit to the cases with TVM implemented
(with a regression correlation 0.38). There is evidence here that
the TVM performance is above the level of performance without
TVM (represented by circles), indicating that the use of TVM has
improved performance. However, again, there is some uncertainty,
due to the lack of on-sky measurements, and so this should not be
taken as conclusive; the statistical significance is low.

There is some evidence from Fig. 11(c) that using estimated noise
standard deviation of around 0.8 in the TVM gives best performance
(though we acknowledge that this could just be an artefact of the
changing seeing conditions). Therefore, Table 1 also includes the
mean Strehl ratios obtained by considering only noise standard
deviation estimates (TVM strength) of between 0.6 and 1.1, and
shows that indeed, using TVM in this regime leads to a further
increase in AO performance.

3.7 High noise wavefront sensor cameras

The wavefront sensors commonly used for laboratory AO systems
typically have higher readout noise than those used on-sky, primar-
ily for reasons of cost. We therefore investigate the performance of
TVM for a sensor with a readout noise of 16 electrons, correspond-
ing to the Imperx Bobcat model that we use with the DRAGON
AO test-bench (Reeves et al. 2012). Incidentally, this sensor was
also briefly used on-sky with CANARY as a substitute LGS wave-
front sensor (it has an electronic shuttering capability) after a fault
developed in the previous sensor.

Fig. 12 shows slope error (R) as a function of incident signal for
different sub-aperture spot sizes. As previously, the TVM algorithm
provides an advantage for slope estimation, and gains up to one
astronomical magnitude in performance for this sensor.

4 C O N C L U S I O N S

We have investigated the use of a TVM algorithm to improve slope
estimation accuracy with Shack–Hartmann wavefront sensor im-
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Figure 12. A figure showing Shack–Hartmann slope error as a function
of signal level for a 16 × 16 pixel sub-aperture and a detector with 16
electrons readout noise. Lines for different PSF sizes are shown (given in
the legend), with the numbers corresponding to the oversampling factor
(beyond Nyquist). Cases with and without TVM are given in the legend.
Uncertainties are at the 1 per cent level and are not shown for clarity.

ages. We find that in certain situations with low signal-to-noise
ratio (with appropriate signal and noise levels), the performance
improvements obtained can be equivalent to gaining an astronom-
ical magnitude in photon flux. The use of TVM never leads to
a reduction in slope estimation accuracy on average. Larger sub-
aperture sizes see most benefit and so this is particularly relevant
for open-loop AO systems. Our investigation has shown that TVM
is applicable for both NGS and elongated LGS Shack–Hartmann
spots. We have also presented on-sky results from the CANARY
AO demonstrator instrument, which provide evidence for successful
improvement of on-sky AO performance using TVM.
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