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Abstract

In several countries the expansion and establishment of renewable energies result

in widely scattered and often weather-dependent energy production, decoupled

from energy demand. Large, fossil-fuelled power plants are gradually replaced

by many small power stations that transform wind, solar and water power into

electrical power. This leads to changes in the historically evolved power grid

that favours top-down energy distribution from a backbone of large power plants

to widespread consumers. Now, with the increase of energy production in lower

layers of the grid, there is also a bottom-up flow of the grid infrastructure

compromising its stability. In order to locally adapt the energy demand to the

production, some countries have started to establish Smart Grids to incentivise

customers to consume energy when it is generated.

This paper investigates how data centres can benefit from variable energy

prices in Smart Grids. In view of their low average utilisation, data centre

providers can schedule the workload dependent on the energy price. We consider

a scenario for a data centre in Paderborn, Germany, hosting a large share of

interruptible and migratable computing jobs. We suggest and compare two

scheduling strategies for minimising energy costs. The first one merely uses

current values from the Smart Meter to place the jobs, while the other one also

estimates the future energy price in the grid based on weather forecasts. In
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spite of the complexity of the prediction problem and the inaccuracy of the

weather data, both strategies perform well and have a strong positive effect on

the utilisation of renewable energy and on the reduction of energy costs.

This work improves and extends the paper of the same title published on

the SustainIT conference [1]. While that paper puts more emphasis on the

utilisation of green energy, the new algorithms find a better balance between

energy costs and turnaround time. We slightly alter the scenario using a more

realistic multi-queue batch system and improve the scheduling algorithms which

can be tuned to prioritise turnaround time or green energy utilisation.

Keywords: Smart Grid, scheduling, energy efficiency

1. Introduction

With the “Energiewende” (energy transition) [2], the German government

decided to enforce a more sustainable energy development policy improving the

overall energy efficiency and the share of renewable energy. Many other countries

follow similar policies. The reasons are manifold and include the reduction of5

greenhouse gas emissions, the risk of nuclear accidents and the costs of and the

dependency on fossil fuels. The shift from nuclear and coal-fired power plants

towards wind and solar power plants results in a widespread energy generation

in subgrids and in the decoupling of energy production and energy consumption.

Therefore, the following problems need to be addressed:10

1. Energy generation within distribution grids makes the grid more complex

and causes problems because many of the transformers to the respective

transmission grids are often not capable of transporting the (peak) energy

produced by windmills and solar collectors. Since it would be costly to

purchase high-performance transformers to adapt the grid to accommodate15

the mini power plants, it is desirable to consume energy locally when it is

produced.

2. Energy is not always produced when it is needed and not always needed

2



when it is produced. For this reason, it is desirable to adapt consumption

to generation as long as there is no efficient way of storing energy.20

3. Energy consumption should be contained since energy that is not used

does not have to be generated.

Several countries try to overcome the first two problems by introducing a

Smart Grid that monitors the state and the load flow of the electrical grid’s

elements and provides these data in real time such that measures can be taken if25

necessary. Stimuli for consumers are prices that reflect the situation in the grid.

If too much energy is produced in an area, the price will drop for the consumers

there.

In anticipation of the Smart Grid and dynamic energy prices, solutions for

these problems were developed in the project “GreenPAD”1 which considered30

a scenario in Paderborn, Germany. It focused on a local data centre offering

computing services to research institutes and small companies. The main issue

was to build a Green Control Centre that schedules the incoming workload to

time periods of energy surplus and thus lower energy prices.

In this paper we describe the scenario and challenges and evaluate two types35

of schedulers using different performance metrics. To keep the expenses low, we

concentrate on schedulers that use either free or inexpensive data. Aside from

standard schedulers and optimised schedulers with perfect knowledge that are

run for comparison, the schedulers utilise data from the Smart Grid including

information about the current local energy production and consumption. The40

so-called green scheduler also analyses low-cost weather recordings and forecasts

to predict the future energy surpluses and prices.

Although this task is in principle more complex than the prediction of on-site

solar and wind power plants (treated e.g. in [3, 4, 5, 6]), we show that our

low-cost schedulers already suffice to increase the share of renewable energy to a45

nearly optimal value. The price to pay is an increase in the turnaround time

1http://www.green-pad.de
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so that one has to make a compromise between the green energy rate and the

service quality. In terms of our assumed price model, the energy costs saved

amount to about 7.7 % in a scenario where 9.9 % would be optimal. From

these results it follows that, at least for small data centres, the purchase of more50

expensive weather or energy forecasts would not be profitable as they might not

save the money they cost.

This work improves and extends the paper of the same title published on

the SustainIT conference [1]. While the previous paper puts more emphasis on

the utilisation of green energy, the improved algorithms find a better balance55

between energy costs and turnaround time. We slightly alter the scenario using a

more realistic multi-queue batch system and improve the scheduling algorithms

which can be tuned to prioritise turnaround time or green energy utilisation.

For the evaluation of the algorithms we include a new cluster trace with a

completely different load profile and investigate the algorithms’ performance for60

non-preemptive job scheduling.

The paper is structured as follows: After a discussion of related work, we

describe the scenario in more detail. In Section 2 we outline the software

consisting of a scheduler and an energy prediction component, where the latter

is only used by the energy-efficient scheduler. The schedulers are compared65

and evaluated in Section 3 before the paper is summarised and concluded in

Section 4.

1.1. Related Work

The deployment of renewable energy has recently gained popularity in the

IT industry [7, 8] and inspired projects in both, academia and industry, for70

example DC4Cities2, Parasol3, GreenStar Network4, GreenQloud5 and Green

Mountain6. The main research challenge is the irregular power output of wind

2http://www.dc4cities.eu
3http://parasol.cs.rutgers.edu
4http://www.greenstarnetwork.com
5https://www.greenqloud.com
6http://www.greenmountain.no
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farms and solar collectors. Solutions to these problems usually include one or

more of the five key aspects that were defined by Deng et al. [8]: 1. generation

models, 2. prediction of renewable energy, 3. capacity planning, 4. scheduling75

within and 5. in between data centres. In this paper we concentrate mostly

on the fourth point, but also consider the second one. Therefore, this survey

first discusses publications related to energy prediction and then work about

energy-aware scheduling.

Improvements in numerical weather prediction (NWP) and in power forecast80

algorithms have considerably improved the accuracy of the forecast models in the

past decades [9]. The taxonomy of forecast models is so diverse that we cannot

cover it completely, but only name a few models: direct time series forecasting

(e.g. [10, 11]), time series models in combination with neural networks ([12, 13]),

direct power forecast models with statistical improvements (e.g. [14, 13]), models85

dealing with non-linear power curves and the accuracy of NWP input (e.g.

[9, 15]). For an extensive survey the reader is referred to Giebel et al. [15].

Complementing the energy prediction, it is also useful to predict how much

energy will be consumed. Like in our case, this can be difficult because of missing

data or fluctuations in the consumers’ behaviour. These fluctuations are also90

a problem for providers who need to adapt the production to the consumption

or, especially in Smart Grids, the consumption to the production by offering

incentives [16, 17].

In [18] Brown and Renau introduce ReRack, a simulation environment for

analysing the costs associated with the employment of renewable energy. The95

software includes an optimizer that uses a genetic algorithm to improve the

system subject to a user-defined cost function. The paper suggests input and

algorithms in the form of models and parameters, but only provides a very brief

section about the actual application of the tool. Ren et al. present a framework

in [19] that helps to reduce a data centre’s energy costs and possibly its carbon100

footprint. The analysis uses linear programming and is based on the energy

prices for on-site and off-site green energy as well as energy from other sources.

Provided that the carbon footprint target is not too high, they show that the
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on-site generation of green energy can also reduce the costs. Since we do not

consider on-site energy production, we cannot apply their framework.105

The following papers discuss energy-aware schedulers and present software

solutions for different scenarios involving data centres supplied by small on-site

power plants. While their use cases differ from ours, the basic idea is similar as

they want to execute jobs when (local) green energy is available. SolarCore [3]

considers a system that relies on solar power as the main energy source, but110

automatically switches to grid power when solar energy drops below a threshold.

By controlling the power state of servers, a green energy utilisation of 82% is

achieved with little impact on performance. Solely relying on renewable sources,

Blink [20] puts servers in active or inactive mode depending on the energy

situation. Its major drawback is that using only renewable sources is unrealistic115

and causes unbounded performance degradation. iSwitch [4] explores a design

that puts servers into two groups: the first half is supplied with energy from the

grid, the other half with on-site wind energy. Based on the availability of wind

energy, iSwitch migrates load between the groups. The system introduced in [21]

is a real-time scheduler for batch and service jobs based on off-site solar and120

wind energy production and they use short-term weather forecasts to get more

precise energy predictions. The project Parasol at Rutgers University proposes

the software systems GreenSlot [5] and GreenHadoop [6]. GreenSlot is a batch

job scheduler for data centres which are powered by an on-site photovoltaic array

and use the electrical grid only as a backup. The scheduler predicts the solar125

energy available and places the jobs in such a way that their deadlines are met

and that the utilisation of green energy is maximised. GreenHadoop is a similar

system designed for Hadoop jobs. By deferring the map and reduce jobs, it tries

to match the variable green energy supply.

Besides placing and migrating jobs within a single data centre (which is130

also what we do), many papers consider the case of migrating jobs between

geographically dispersed data centres. GreenWare, proposed by Zhang et al. [22],

is a middleware that dispatches jobs to data centres based on local energy prices.

The authors found that, if energy is dynamically priced based on the proportion
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of fossil energy, the usage of fossil energy can be significantly reduced. Free135

Lunch [23] co-locates data centres with renewable energy generation sites and

migrates workload between data centres according to available power. Green-

Nebula [24], developed by the Parasol project, follows a similar approach. It

extends the OpenNebula cloud manager and maximises the use of green energy

by migrating VMs across data centres. In [25] Li et al. assume a dynamic pricing140

market and propose a collaboration framework for energy cost optimisation

that couples data centres with the electricity market. They claim that this

collaboration can reduce the costs by up to 75%.

To the best of our knowledge there are no papers that schedule jobs based on

data from Smart Grids. However, there are papers that consider scheduling with145

respect to dynamic energy prices. Niehörster et al. [26] propose a scheduling

mechanism for a dynamic pricing model based on the spot market of the European

Energy Exchange7 (EEX). A multi-agent system, which is aware of the price,

is placed on top of a cloud’s infrastructure layer. Scheduler agents collaborate

with worker agents that monitor the jobs during their execution and control150

the system such that it fulfils the service-level agreements while minimising the

electricity costs.

1.2. Scenario

This paper describes schedulers that increase the usage of locally produced

energy and thereby reduce the energy costs, but in contrast to most related155

work, a more complex scenario is considered. The energy price depends on the

surplus in the local grid so that energy predictions are only useful if they are

made for the whole local grid involving suppliers and consumers, and not only

for an on-site power plant. This section describes the scenario in more detail.

1.2.1. Smart Grid160

The hypothetical Smart Grid that we consider in our experiments is located

in Paderborn, Germany. Aside from the data centre, the local electrical grid

7http://www.eex.com
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supplies companies of different size and residential areas. As depicted in Figure 1,

the suppliers in this medium voltage (MV) grid are wind farms and photovoltaic

collectors on rooftops. The fossil-fuelled power plants are located in the extra165

high voltage (EHV) grid outside of the MV grid. Although the Smart Grid

is not yet in place, the necessary values are made available by the local grid

provider Westfalen Weser Energy8 (WWE). Besides the data centre’s usage,

data from additional metering points are supplied which are used to train the

linear models for energy prediction (cf. Section 2.1). These meterings are the170

energy flow between the MV grid and the high voltage (HV) grid, the energy

generated by the wind farms and the contribution of the solar panels. However,

since the panels are located in residential areas, these last values are actually the

difference between production and consumption in the respective low voltage

(LV) grids.175

1.2.2. Weather data for energy prediction

The green schedulers include planning algorithms that predict the local energy

production in the near future. Apart from the energy values, these schedulers

require current weather readings and forecasts. The former are taken from

the closest weather station of the German Weather Service9 (DWD) in Bad180

Lippspringe, the latter from the European Weather Consult10 (EWC). Instead

of predicting the energy oneself, one could also purchase energy forecasts, but

these forecasts are usually only offered to energy companies, cover wider areas

and can be very expensive. The energy prediction models will be described in

Section 2.1.185

1.2.3. Workload

The share of energy consumed from the HV grid can be reduced because of

two reasons: First, computing clusters or clouds are usually not fully utilised

8http://ww-energie.com
9http://www.dwd.de

10http://www.weather-consult.com
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Figure 1: Proposed smart grid architecture in Paderborn

so there is the possibility of running jobs at more favourable times. Second, we

are interested in data centres with a large share of interruptible and migratable190

computing jobs, usually so-called batch jobs that can be stopped and restarted

as well as replaced essentially at any time. In our experiments, a large data

centre is simulated using freely available traces11.

1.2.4. Objective target

The goal is to increase the share of locally produced green energy while195

keeping the performance degradation low and without compromising the average

throughput of the data centre. By delaying and interrupting jobs, however, it is

obvious that the quality of service will degrade. We use a natural quality measure

for batch jobs, namely the average turnaround time (TAT). The turnaround

time of a job is the time it stays in the system, i.e. the time from its arrival at200

11http://www.cs.huji.ac.il/labs/parallel/workload
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the queue to its completion.

Besides the share of renewable energy we will also assess the schedules by

calculating the energy costs. Since there is no suitable price model in Germany

yet, we use a hypothetical one. Assuming that in future the energy price will be

dynamic and highly dependent on where the energy is produced, this model sets205

the price according to the current surplus. In Section 3.1 we will describe it in

more detail.

2. Green Control Centre

The Green Control Centre is our implementation of the energy-efficient cloud

environment. As depicted in Figure 2, it consists of the Energy Prediction210

Component and the Scheduler Component that will be described in the follow-

ing subsections. The Green Control Centre was embedded in an OpenStack12

cloud environment, for which reason Figure 2 displays a few OpenStack compo-

nents. Nevertheless, the concept is generally valid for any data centre running

computationally intensive jobs.215

2.1. Energy Prediction Component

The Energy Prediction Component predicts the future availability of renew-

able energy. Its inputs are the current energy and weather readings as well as

the weather forecast. The subcomponents Wind Model and Photovoltaic Model

use these inputs to compute the energy forecast for the wind farms and the low220

voltage grids (with their solar collectors), respectively. The Grid Model combines

the output of these two subcomponents with a consumption estimate by the

Consumer Model to predict the energy surplus or shortage in the Paderborn

grid. This difference between production and consumption is the value that

determines the energy price in our scenario. It must be evened out by either225

receiving energy from or providing energy to the high voltage grid. In the worst

12http://www.openstack.org/

10



Figure 2: Green Control Centre architecture diagram

case, the energy suppliers have to be turned off while the grid provider still has

to pay for them.

2.1.1. Wind Energy Prediction

To build a model that predicts the wind energy based on weather forecasts,230

it is necessary to determine the relevant weather attributes. This is done by

computing the Pearson correlation of individual attributes with the generated

wind energy. The results are displayed in Table 1. The selected attributes are

wind speed, wind direction, temperature and atmospheric pressure. Unsurprisingly,

the wind speed shows the strongest correlation. Yet, although the value of 0.678235

indicates a high correlation, it should be even higher. The reason for the relatively

low values is that the quality of the weather data is affected by the distance

between the weather station and the wind park (17 km) and by the fact that

European weather services measure the wind speed at a height of 10 metres

while the hubs of the wind turbines are between 36 and 62 metres high. We can240

quantify the error because we also have the wind speed readings the turbines
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take at hub height for operational purposes. Their correlation coefficients are

around 0.82. The discrepancy in the coefficients suggests a significant difference

between the weather readings and the actual weather at the wind farms.

Our analysis of the wind speed forecast data shows that the expected error245

grows with the wind speed. Although the overall expected error of 1.0 ms−1 is

quite acceptable, it becomes large for high wind speeds, for instance 5.3 ms−1

for a wind speed of 10.0 ms−1. Translated into wind energy, the values measured

range between 0 and 31 MW. The average error of our wind energy prediction

remains high due to its immediate dependence on the weather forecasts. It250

amounts to 3.0 MW.

For the prediction of wind energy we applied linear regression. The linear

model was trained with the chosen weather attributes taking the readings of

exactly one year. Once a model is trained, the wind energy can be determined

by feeding the weather forecast attributes to it. The complexity for creating a255

model is linear in the number of training values so that the computation does

not take a lot of time. However, since the model does not have to be renewed

very often and since this can be done in a separate process, the scheduler should

not be slowed down by it anyway. The computation of one energy value is linear

in the number of attributes and therefore very fast.260

We investigated whether more advanced machine learning techniques would

improve the forecast quality, but did not see a significant change. One approach

was the extension of the linear model by clustering the weather data before

applying linear regression. Another approach tested was the popular power curve

model (e.g. [9], [15]) which directly maps the wind speed to the generated energy.265

Based on the weather readings, we derived power curves for the wind farms

and used them for the prediction, but we could not see any improvement. We

suppose that the prediction could only be improved if the weather measurements

were better. However, the evaluation in Section 3 will show that the quality is

already sufficient for our purposes.270
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Table 1: Pearson correlation of weather measurements and wind energy production

Correlation

Weather attribute Wind farm 1 Wind farm 2 Wind farm 3

Wind speed 0.678 0.622 0.591

Wind direction x-axis 0.093 0.137 0.097

Wind direction y-axis 0.305 0.151 0.056

Sunshine -0.172 -0.133 -0.108

Temperature -0.181 -0.164 -0.140

Atmospheric pressure -0.229 -0.249 -0.234

Rain 0.118 0.083 0.093

2.1.2. Photovoltaic Energy Prediction

The photovoltaic energy prediction is more complicated in our scenario

because we do not have exact measurements for the installed panels. Instead, we

have the energy exchange of one of the LV grids with Paderborn’s MV grid. The

LV grid includes not only the production of the panels, but also the consumption275

of the respective residential area. Additionally, since the installed photovoltaic

power of the whole grid (3.5 MW peak) is about ten times larger than the

installed power for the monitored grid (330 kW peak), we have to extrapolate

the measurements of the LV grid accordingly.

We determine the significant weather attributes using correlation and apply280

linear regression to estimate the energy. Table 2 shows that the two relevant

attributes are cloud coverage and temperature. Yet in this case, further attributes

are reasonable: irradiation angle of the sun, day of the week and time. The latter

two are required so that the system can learn the behaviour of the consumers

in the LV grid which is assumed to be day-of-the-week and time-of-the-day285

dependent. The irradiation angle and the cloud coverage determine the amount

of solar energy reaching the Earth’s surface. For the calculation of the irradiation

13



Table 2: Pearson correlation of the weather attributes with the low voltage grid energy exchange

Weather attribute Correlation

Wind speed 0.18967

Wind direction X-Axis 0.02072

Wind direction Y-Axis 0.05713

Cloud coverage 0.67093

Temperature 0.44410

Atmospheric pressure 0.01274

Rain -0.07279

angle, we use the tool Pysolar13.

The analysis of the cloud coverage forecast quality reveals an average error

of 28.6%. It is respectively higher (46.3%) or lower (21.2%) if a cloudless or290

overcast sky is predicted. The measured energy values of the low voltage grid

cover a range of 322 kW surplus and 122 kW demand where the periods of

energy demand are almost always at night. At these times, the values show little

variance in the consumer behaviour and can be predicted with an average error

of less than 20 kW. Surplus situations, on the other hand, have an average error295

of 50 to 85 kW.

2.1.3. Energy Consumption Prediction

For reasons of privacy, individual energy consumption readings necessary

for pattern matching are not available. Yet, even though the precision of the

prediction is limited, one can still get a fair estimate by training a linear model300

using time data like the day of the week, date and time of the day. This allows

to roughly predict the general consumption during the day, week or season. In a

future Smart Grid, the grid provider could publish anonymised or generalised

usage statistics allowing a more elaborate prediction of the consumption.

13http://pysolar.org
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2.1.4. Prediction of the Grid Exchange305

The grid exchange estimated by the Grid Model is the amount of energy

that has to flow to balance the surplus or shortage in the local grid. For the

prediction the Grid Model simply sums up the outputs of the other models:

Wind Model, Photovoltaic Model and Consumer Model.

The measured grid exchange values range between 30.6 MW surplus and310

21.8 MW demand. The average error of the prediction grows with the green

energy surplus and is between 2.5 and 10 MW. We believe that the rather poor

precision could be improved by using better weather data, for instance provided

by on-site weather stations.

In our scenario we use the grid exchange to derive an energy price that would315

be provided by a Smart Meter. Since the data centre is integrated into the Smart

Grid, we conclude that it has access to the Smart Meter and that the energy

price is available at runtime so that it can be used to correct the forecast.

2.2. Scheduler

In the reference implementation (Figure 2), the Scheduler Component is320

embedded into an OpenStack environment where it functions as an energy-aware

batch-processing system. The main components are the Batch Queue managing

the incoming batch jobs and the Scheduler generating a schedule and placing

the jobs accordingly. Three further components are needed to integrate the

service into OpenStack: The Nova Client is used to keep track of the cloud325

infrastructure, to monitor the state of the cloud, i.e. the available resources, and

to start and stop virtual machines. Keystone, accessed by the Keystone Client,

is OpenStack’s identity service and handles the user and project management.

Horizon finally is a web-based graphical user interface into which we integrated

a read-only view of the batch processing system.330

The system creates a home directory and an input and output subdirectory

for every cloud user. New jobs and any input parameters are placed in the input

directory, the results in the output directory. The home directory is mounted
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into the job’s virtual machine by a cloud-init14 script .

In the following we describe different implementations of the Scheduler sub-335

component, namely FIFO scheduler, MATH scheduler, green scheduler (GREEN),

enhanced green scheduler (ENHG), cost optimal scheduler (OPT), shortest re-

maining time scheduler (SRT) and shortest job first scheduler (SJF) where the

last four schedulers are in some way optimised using additional data and are

mainly run for comparison. All schedulers differ in the way in which they choose340

the times at which the jobs are run. Once this is decided, the placement of

the virtual machines is done in a best-fit manner. In doing so, it bypasses

the OpenStack scheduling mechanism and directly accesses the administrator

interface, transparent to the cloud infrastructure.

Common scheduling objectives in batch processing systems are maximising345

throughput, minimising the average turnaround time, ensuring fairness and

avoiding starvation of jobs. The shortest remaining time scheduler, for example,

minimises the average waiting time, but favours short jobs over longer ones.

This violates the fairness objective and might lead to job starvation. Finding a

suitable trade-off among all these objectives is especially difficult in our case:350

Minimising energy consumption during phases of high energy costs requires that

jobs are deferred, which essentially contradicts almost all mentioned objectives.

The traces used for our evaluation specify neither priorities nor deadlines

so that we assign the same priority to every job and set a maximum waiting

time. If a job has waited for four days, it will be processed as soon as possible.355

The batch processing system is inspired by the procedures in place at the HPC

system Mogon at Mainz University15. When a user submits a job, he has to

specify the allocation time necessary to run their jobs. The allocation time and

the resources requested determine in which of the following queues the job is

placed:360

• tiny: allocation time of at most one hour

14https://launchpad.net/ubuntu/+source/cloud-init
15https://hpc.uni-mainz.de/
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• short: allocation time of at most six hours, at most one node

• short node: allocation time of at most six hours, multiple nodes

• long: allocation time of more than six hours, one node

• long node: allocation time of more than six hours, multiple nodes365

In order to avoid extreme waiting times, the total workload enqueued must

be limited. The limit could be set by the site administrator and should depend

on the processing capacity of the data center and the maximum waiting time.

The scheduling process consists of a main phase running a custom scheduler

enclosed by a preprocessing and a postprocessing phase. In the main phase, the370

custom scheduler has to decide whether to run jobs or not. If so, jobs are fetched

from the five queues in a round-robin fashion starting with the queue containing

the oldest job. Internally, each of the queues is strictly FIFO. If a queue is empty

or if the first job cannot be scheduled, the queue is skipped in that round.

The preprocessing phase schedules jobs that must be run regardless of the375

custom scheduler strategy. In our case this affects jobs having passed their

maximum waiting time and – once they have been started – non-preemptive jobs.

Again, preprocessing starts with the oldest job and continues in a round-robin

fashion. In the non-preemptive case the starvation of a large job is possible when

the cluster is repeatedly blocked by smaller jobs. For this reason we apply the380

following procedure: When the first job of any queue cannot be placed after twice

its maximum waiting time, then a large enough share of the cluster is reserved

for this job and no other job is allowed to be scheduled there. Generally, the

preprocessing phase can be extended by additional rules, for example, concerning

hard deadlines and high priority jobs.385

During the postprocessing phase, additional jobs from the tiny queue, usually

short test runs, are scheduled regardless of the energy costs because a fast

response time is desirable. Due to the limited runtime, these jobs have a

negligible impact even if no green energy is available. Note that they are only

run if the scheduler decides to postpone processing because otherwise the tiny390
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jobs would have been already scheduled in the main phase.

2.2.1. First In - First Out (FIFO) Scheduler

The FIFO scheduler is a fair scheduler ignorant of the Smart Grid that does

not try to utilise green or locally produced energy. It processes the jobs of every

queue in the order of their arrival and starts each job in the earliest time slot395

possible. This is a plausible strategy in batch processing systems that consider

neither deadlines nor priorities. It achieves high throughput and fairness.

2.2.2. Shortest Remaining Time and Shortest Job First Scheduler

Since multi-processor scheduling is known to be an NP-hard problem [27],

there is no known efficient algorithm for computing a turnaround time-optimal400

schedule. We use the shortest remaining time scheduler (SRT) when all jobs

are preemptive and the shortest job first scheduler (SJF) when all jobs are

non-preemptive. Both schedulers are proven to be optimal for single-processor

scheduling with respect to the average turnaround time [28].

2.2.3. MATH Scheduler405

The MATH scheduler memorises former energy prices and former sizes of the

five queues and uses these data to assess the current situation. The pseudo code

of the scheduler is given in Algorithm 1 and Algorithm 2. The former creates

a local view, the latter a global view of prices and queues. They are used to

decide whether to place new jobs or to wait.410

In each round, the algorithm first computes the total remaining allocation

time of all jobs (line 1). This value denotes the enqueued workload size. For the

local view, it keeps two lists of fixed length n, LP and LQ, which respectively

store the energy prices and workload sizes of the last n hours. In line 4 and 5,

the rank of the current price and queue size are determined by sorting the lists415

in ascending order. If indexQ, the position in LQ, is not smaller than indexP ,

the position in LP (line 6), jobs are placed subject to the available resources.

As described is Section 2.2, the algorithm iterates through the five queues in a

round robin fashion (line 7 - 10).
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Algorithm 1 Specific code of MATH scheduler

1: remAllocationtime ←
∑

q∈queues
∑

j∈q remainingAllocationtime(j)

2: update LP by replacing the oldest entry with the current price pc

3: update LQ by replacing the oldest entry with the current workload size

4: indexP ← index of current price in LP (sorted in ascending order)

5: indexQ ← index of current workload size in LQ (sorted in ascending order)

6: if indexQ ≥ indexP or checkGlobalStatus(remAllocationtime, pc) then

7: for all job ∈ queues do

8: // round-robin queueing

9: if enough resources available then

10: dequeue job and process it

Figure 3: Graphical representation of the mathematical model

A small indexP (indexQ) implies that the current energy price (or workload420

size) is low compared to recent prices (or sizes) while a large indexP (indexQ)

indicates a relatively high price (or workload size). A data centre operator has

an incentive to run jobs when energy is cheap and is forced to run them when

the enqueued workload is high. For this reason, the algorithm executes jobs if

indexQ ≥ indexP (line 6). Figure 3 shows a graphical representation of the idea.425

Jobs are also executed if the global state is considered favourable (line 6).

The global state is assessed by the function checkGlobalStatus(...) which is

given in Algorithm 2. A sliding window approach, as used for the local view,
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might not be suitable during steady weather conditions and cannot take seasonal

effects into account. The global view is therefore designed to widen the window430

without storing all the values. Instead of lists, the algorithm keeps a hash map A

having one entry for each possible price (rounded to one decimal place). When a

new price is noted, the respective value is incremented by one, and all entries are

multiplied by an ageing factor f (line 1 - 3). For the evaluation, we have chosen

f such that it halves the impact of a single event every six months. The variable435

sum<pc
(sum>pc

) reflects the number of times a smaller (larger) energy price than

pc was observed. By defining an upper threshold on the workload size (line 7),

the algorithm determines the current fillRate (line 8). If the squared fillRate

is greater than the priceRate (line 6), checkGlobalStatus(...) returns true,

otherwise false (line 9).440

The decision is made by comparing the fillRate of the queue with the

priceRate which is essentially the percentage of prices that are smaller than

the current one. The fillRate is squared to reduce the influence of the global

view and to strengthen the local view which should be the main criterion.

Algorithm 2 checkGlobalStatus(remAllocationtime, pc)

1: for all p do

2: A[p]← A[p] · f

3: A[pc]← A[pc] + 1

4: sum<pc
←

∑
p<pc

A[p]

5: sum>pc
←

∑
p>pc

A[p]

6: priceRate← sum<pc / (sum<pc + sum>pc)

7: workloadLimit← 48 ·#cores

8: fillRate← remAllocationtime / workloadLimit

9: return fillRate2 > priceRate

The runtime complexity of Algorithm 1 is dominated by either the number of445

enqueued jobs or the size of LP and LQ. Summing up the remaining allocation

time in line 1 has a runtime complexity linear in the number of jobs enqueued in

all five queues. LP and LQ are implemented as double-linked lists. The updates
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in line 2 and 3 are fast, but sorting the list has O(n · log(n)) runtime complexity

(line 4 and 5) where the size n of the lists is defined by the sliding window. Let k450

be the number of scheduled jobs per scheduling step and c the number of nodes

in the cluster. Then the for-loop of Algorithm 1 has a complexity of O(k · c).

The runtime complexity of Algorithm 2 is linearly bound by the size of the

hash map A. Rounding the energy prices to one decimal place keeps the size of

A small.455

2.2.4. Green Scheduler

As described in Section 2.1, the green scheduler uses weather / energy

forecasts to decide when the jobs are to be run. The weather forecasts, and

subsequently also the energy forecasts, are provided for the next 48 hours and

divided into one hour slots. The goal of the green scheduler is to maximise460

the utilisation of the most energy-efficient slots. Its workflow is described in

Algorithm 3.

Similar to the global view of the MATH scheduler (Algorithm 2), the green

scheduler calculates the fill rate of the system (line 1 - 3). In contrast to the

constant value of 48 hours in Algorithm 2, queueThreshold is configurable.465

During the evaluation we use thresholds of 12 to 192 hours. The algorithm

favours nearby time slots over distant ones by adding increasing penalties to the

forecast values (line 6). The reasons are the improvement of the turnaround time

and the inaccuracy of long-distance forecasts. It is usually not worth to wait

longer for a small and uncertain benefit. Having access to a Smart Meter, the470

algorithm can correct the energy forecast for the next slot. Instead of relying on

the previously generated energy forecast for the next 60 minutes, we replace it

by the most recent Smart Meter measurement (line 7). This reduces the damage

induced by forecasts of bad quality.

For each job t marks the slot at which the job’s maximum waiting time is475

reached (line 10). F≤t defines the subset of the energy forecast F containing

all slots until t (line 11). These are the slots for which processing the job is

optional. By sorting the energy values in F≤t in ascending order and computing
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Algorithm 3 Specific code of green scheduler

1: queueLimit← queueThreshold ·#cores

2: remAllocationtime ←
∑

q∈queues
∑

j∈q remainingAllocationtime(j)

3: fillRate← remAllocationtime / queueLimit

4: F ← energy forecast as hash map (hours to timeslot → energy value)

5: for all (time, value) ∈ F do

6: F [time]← value + time · 0.05

7: F [0]← current energy value

8: for all job ∈ queues do

9: // round-robin queueing

10: t← job’s time to end of maximum waiting time

11: F≤t ← F limited by t

12: index← index of current value in F≤t (sorted in ascending order)

13: percBetterValues← index / |F≤t|

14: if percBetterValues ≤ fillRate then

15: if enough resources available then

16: dequeue job and process it

the index of the current energy value (line 12), the algorithm determines the

percentage of slots that are better than the current one in F≤t (line 13). The480

job is executed if the percentage is smaller than the fill rate and if sufficient

resources are available (line 14-16). The idea is that also less favourable slots

are utilised when the fill rate grows.

Due to the new multi-queue approach and preprocessing and postprocessing

phases, the previous version of the green scheduler presented in [1] needed to485

be redesigned. Furthermore, the new maximum waiting time requires that the

energy situation is individually assessed for every job.

The runtime complexity of the green scheduler is dominated by line 2 and by

the for-loop at line 8. As discussed in Section 2.2.3, summing up the workload

is linearly bound by the number of enqueued jobs. The second for-loop has a490

runtime complexity of O(k · (c + |F |)), where k is the number of scheduled jobs
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and c the number of nodes in the cluster. Calculating and updating the energy

forecast can be done in a separate process and should not be part of the critical

path (see Section 2.1.1). The time complexity of line 4 and of the first loop is

therefore O(|F |).495

2.2.5. Enhanced Green Scheduler (ENHG)

As described in Section 2.1, the energy forecast turned out to be fairly

inaccurate, which limits the efficiency of the green scheduler. For this reason, it

is interesting to determine how well the green scheduler would work if it had

access to a perfect energy forecast. We call this scheduler the enhanced green500

scheduler. Since the energy forecast is correct, the penalty is not applied.

2.2.6. Cost Optimal Scheduler (OPT)

While the enhanced green scheduler uses perfect energy forecasts, it is not

optimal because it is limited by the 48 hour forecast window. The cost optimal

scheduler has perfect knowledge of the future energy prices and uses it to create505

an (assumably) nearly optimal schedule. It can only be an approximation because

the problem of scheduling jobs of different runtimes and resource requirements

is known to be NP-hard [27].

The scheduling algorithm creates one hundred schedules and picks the best

of them. For each of these schedules it generates a random list of all jobs and510

schedules one job after the other. For each job, the algorithm finds the best

valid schedule while observing the maximum waiting time; i.e., the placement of

the job is optimal conditioned on the placement of the previous jobs of the list.

This procedure is unlikely to produce an optimal schedule, but, due to the

low utilisation of the clusters in our experiments, we expect a fairly small number515

of collisions and the approximation to be acceptable.

3. Evaluation

For the evaluation, we compare the scheduling strategies described in the

previous section. They are executed in a simulated environment using real

23



Table 3: Percentiles of the energy price in ct/kWh

P(05) P(10) P(25) P(50) P(75) P(90) mean

10.0 11.35 14.8 17.25 18.9 20.0 16.49

weather and energy data and workload traces. To quantify the quality of the520

strategies, we use three measures: the first is the share of green energy, the

second is the energy costs in our hypothetical price model and the third is the

average turnaround time of the jobs. Before summarising the execution and the

outcomes of the experiments, we start by describing and motivating the price

model.525

3.1. Price Model

As pointed out before, the grid provider has an incentive to reduce the local

surplus and sell the energy where it is produced. For this reason, we assume

that the customer price will drop once the locally generated energy exceeds the

customer demand and model the price as a function p(x) of the grid exchange x530

between the Paderborn grid and the HV grid (see Section 2.1.4):

p(x) = R + y(x).

R is the reference price of 15 ct/kWh and y(x) the dynamic portion defined as

follows:

y(x) =


−V, if x ≤ −10

V, if x ≥ 10

x
10 · V, otherwise

where the variance V is set to V = 1
3 ·R = 5 ct/kWh.

According to Eurostat16, the 15 ct/kWh baseline is the average price for535

small industry consumers with an annual energy consumption of 20 to 500 MWh

in Germany. This price includes all non-recoverable taxes and levies.

16http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nrg pc 205&lang=en
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Since the prices of the EPEX17 intra day spot market usually vary by more

than 50 €/MWh, we consider the variance of 33 % or 5 ct/kWh a conservative

estimate. Increasing or decreasing the variance would have an impact on the540

achievable savings, but, regardless of the exact value, the cost analysis would

show the same trend. Table 3 displays the percentiles of the resulting energy

price for the simulation period.

3.2. Simulation

To simulate a realistic data centre, we take workload logs from the Potsdam545

Institute for Climate Impact Research18 (PIK). These are the same traces that

we used in [1]. In addition, we run simulations on the traces from the Narwhal

cluster which was part of the Sharcnet1920. Each simulation covers a full year

and is executed in one hour steps. We assume that the batch jobs executed are

CPU-intensive and consume the full thermal design power (TDP) of the assigned550

cores.

The scheduling strategies of Section 2.2 are simulated with different configu-

rations. The MATH scheduler is run with sliding window sizes of 7, 28, 91 and

182 days and the (enhanced) green scheduler with queue sizes of 12, 24, 48, 96

and 192 hours. While the differences among the MATH scheduler results were555

already small in our previous paper [1] (with the exception of the 7 days window),

they are now, after improving the scheduler and introducing the multi-queue

model, so insignificant that we will only discuss the 91 days configuration as a

representative of the MATH scheduler.

Since these schedulers achieve improvements by delaying the processing of560

jobs during unfavourable time periods, unfinished jobs remain in the queues

at the end of the simulation. The differences in the computation time of these

schedulers are evened out by charging 20 ct/kWh for the additional computation

17http://www.epexspot.com
18http://www.cs.huji.ac.il/labs/parallel/workload/l pik iplex
19https://www.sharcnet.ca
20http://www.cs.huji.ac.il/labs/parallel/workload/l sharcnet/index.html
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Figure 4: Comparison of the PIK I simulation results with different configurations

time.

3.2.1. PIK Traces565

The PIK cluster is a 320 node IBM iDataPlex Cluster and has 2560 cores.

The Intel Xeon Harpertown CPU has a TDP between 50 and 150 watts. We

simulated the cluster assuming a TDP of 120 watts per CPU and 30 watts per

core. Based on measurements in our own data centre, we set a server’s idle

power consumption to 80 watts and the power-off / Wake on LAN consumption570

to 7 watts. The workload logs contain 742965 jobs using up to 1024 cores and

having individual runtimes between a few seconds and 30 days. We extracted

three traces that we name PIK I, PIK II and PIK III. They cover the period

between the 1st June and the 31st May of the years 11/12, 10/11 and 09/10,

respectively.575

Table 4, 5 and 6 show the results of the PIK simulations for the proposed

scheduling strategies. The first column of each table names the scheduling

strategy. Column 2 and 3 show the total energy costs and these costs normalised

with respect to the FIFO scheduler. Hence, it represents the cost reduction of

the respective scheduling strategy. The average turnaround time is displayed in580

the forth column and the percentage of renewable energy in the fifth column.

Figures 4, 5 and 6 are graphical representation of the results. The bar charts
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PIK I - 11/12

Strategy
Costs

in EUR

Cost

ratio

TAT

in hours

Renewable

energy share

SRT 51835 1.000 12.53 26.10

FIFO 51855 1.000 12.52 26.01

MATH(91) 49658 0.957 23.89 34.50

GREEN(12) 50937 0.982 15.03 29.28

GREEN(24) 49829 0.961 17.78 33.26

GREEN(48) 48701 0.939 20.75 38.03

GREEN(96) 48079 0.927 23.59 41.26

GREEN(192) 47882 0.923 26.22 42.70

ENHG(12) 50899 0.982 15.13 29.60

ENHG(24) 49663 0.958 18.46 34.05

ENHG(48) 48214 0.930 22.35 39.54

ENHG(96) 47871 0.923 27.49 41.79

ENHG(192) 48681 0.939 32.01 39.37

OPT 46726 0.901 60.60 46.28

Table 4: PIK I - 11/12 simulation results using different scheduling strategies and configurations

display the share of renewable energy consumption achieved by each scheduler

and the scatter plot sets the cost efficiency in relation to the turnaround time.

During the PIK I simulation, the FIFO scheduler needs 7.058 million core585

hours and energy for € 51855. The average turnaround time of the finished jobs

is 12.52 hours, and 26.01 % of the consumed energy is locally generated. Almost

identical results are accomplished with the shortest remaining time scheduler.

For the MATH scheduler, we observe that the use of green energy increases

to 34.50 % and that the costs are reduced by 4.3 %. This comes at the costs590

of an increased average turnaround time of eight hours. The green scheduler

can improve the usage of renewable energy and cost savings further. For the

longest queue size of 192 hours, the share of renewable energy can be increased to
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PIK II - 10/11

Strategy
Costs

in EUR

Cost

ratio

TAT

in hours

Renewable

energy share

SRT 39210 0.999 10.47 24.32

FIFO 39250 1.000 10.47 24.15

MATH(91) 37779 0.963 14.06 30.81

GREEN(12) 38309 0.976 12.33 28.58

GREEN(24) 37475 0.955 14.35 32.48

GREEN(48) 36749 0.936 16.43 37.04

GREEN(96) 36434 0.928 18.10 39.84

GREEN(192) 36319 0.925 19.26 41.29

ENHG(12) 38072 0.970 12.95 29.85

ENHG(24) 37080 0.945 15.43 34.58

ENHG(48) 36291 0.925 18.51 39.50

ENHG(96) 36199 0.922 21.36 40.90

ENHG(192) 36758 0.937 23.94 38.36

OPT 35079 0.894 58.60 46.71

Table 5: PIK II - 10/11 simulation results using different scheduling strategies and configurations

42.70 % which results in cost savings of 7.7 %. Comparing the MATH scheduler

with the 96 hour green scheduler, which have a similar turnaround time, shows595

the benefit of the energy forecast. The green scheduler achieves 3.1 % higher

cost savings and 8.2 % higher utilisation of renewable energy at a slightly lower

turnaround time.

Interestingly, the enhanced green scheduler performs best with a 96 hour

queue. Compared to ENHG(96), ENHG(192) has a lower cost efficiency and a600

lower share of renewable energy consumed. The reason is that, if the queue is

relatively full, many jobs will pass the maximum waiting time. (For a full 192

hours queue, the cluster requires 192 hours to process all jobs, and the maximum

waiting time is only 96 hours.) This limits the scheduler’s ability to shift the
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Figure 6: Comparison of the PIK III simulation results with different configurations

workload and reduces its efficiency.605

As a penalty is applied to the energy forecast of the green scheduler (but

not the enhanced green scheduler), the green scheduler shows a better average

turnaround time in general and the impact of the above-mentioned effect is

smaller for the GREEN(192) scheduler.

The cost-optimal scheduler achieves maximum cost savings of 9.9 % which is610

only 2.2 % more than the best green scheduler results. With a queue size of 48

to 192 hours, the green scheduler performs well.

The PIK II and III simulation results show the same trend, as one can see in
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PIK III - 09/10

Strategy
Costs

in EUR

Cost

ratio

TAT

in hours

Renewable

energy share

SRT 45632 1.002 8.77 28.16

FIFO 45548 1.000 9.06 28.57

MATH(91) 43448 0.954 13.62 37.21

GREEN(12) 44604 0.979 10.40 31.87

GREEN(24) 43647 0.958 11.88 36.42

GREEN(48) 42755 0.939 13.54 41.27

GREEN(96) 42232 0.927 15.07 44.41

GREEN(192) 42113 0.925 16.10 45.48

ENHG(12) 44465 0.976 10.65 32.63

ENHG(24) 43389 0.953 12.36 37.48

ENHG(48) 42452 0.932 15.13 42.26

ENHG(96) 42285 0.928 17.69 43.61

ENHG(192) 42734 0.938 20.46 41.94

OPT 41032 0.901 53.50 48.72

Table 6: PIK III - 09/10 simulation results using different scheduling strategies and configura-

tions

Figure 4b, 5b and 6b. The MATH scheduler, green scheduler and enhanced green

scheduler find a good trade-off between green energy utilisation and turnaround615

time.

Table 7 shows a comparison of the results of the improved scheduler with

the previously published ones [1]. The surprising increase in the turnaround

time of the FIFO scheduler can be explained by the job distribution in the newly

introduced multi-queue model. The 292184 jobs of the PIK I trace are divided620

into the queues as follows: tiny: 184256 (63 %); short: 41743 (14 %); short-node:

6254 (2 %), long: 57178 (20 %), long-node: 2753 (1 %). The different queue

lenghths are ignored when the jobs are taken out of the them in a round-robin
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Comparison of old and updated strategies

Old Strategy Results New Strategy Results

Strategy
Cost

ratio

TAT

in hours

Cost

ratio

TAT

in hours

FIFO 1.000 11.58 1.000 12.52

MATH(91) 0.936 32.10 0.958 23.89

GREEN(3) 0.914 34.11 - -

GREEN(12) 0.900 45.20 0.982 15.03

GREEN(24) 0.884 62.69 0.961 17.78

GREEN(48) 0.863 123.36 0.939 20.75

GREEN(96) - - 0.927 23.59

GREEN(192) - - 0.923 26.22

ENHG(3) 0.918 28.82 - -

ENHG(12) 0.901 32.46 0.982 15.13

ENHG(24) 0.882 60.85 0.958 18.46

ENHG(48) 0.863 138.71 0.930 22.35

ENHG(96) - - 0.923 27.49

ENHG(192) - - 0.939 32.01

OPT 0.831 389.39 0.901 60.60

Table 7: Comparison of the cost efficiency and turnaround time of the old and new strategies

for the PIK 11/12 trace

fashion. This is not a problem in off-peak situations when all the queues are

processed completely regardless of their initial size, but peak hours seem to be625

sufficient to considerably increase the average turnaround time.

Compared to the results of [1], cost efficiency and turnaround time of all green

schedulers are lower. It seems as if the newly introduced maximum waiting time

has shrunken the spectrum of possible results. However, taking the turnaround

time into account, the new results can be regarded as better. The best previous630

turnaround time was achieved by the GREEN(3) scheduler: TAT 2.9 times
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(b) Costs versus turnaround time

Figure 7: Comparison of the Narwhal simulation results with different configurations

higher compared to FIFO, 8.6 % cost efficiency. In comparison, in the new

system the worst turnaround time was reached by the GREEN(192) scheduler

which has a turnaround time factor of roughly 2.1 and achieves cost savings of

7.7 %.635

Even more important than the improved TAT-cost trade-off is the achieved

flexibility. By increasing the maximum waiting time the new version could achieve

the same cost savings, but the old version is not able to achieve comparable

turnaround times. For systems with hard deadlines or complex priority schemes,

it is now feasible to define a maximum waiting time for each job to have a fast640

response time where necessary, while being cost-efficient where possible.

3.2.2. Narwhal Trace

The Narwhal cluster21 consists of 267 nodes each equipped with two dual-core

Opteron processors. The simulated power consumption of every cores is 45 watts;

the idle power consumption is 80 watts per node. This results in a maximum645

power consumption of 260 watts per node. The simulation executes the trace

from 2006 which consists of 266785 jobs. The runtimes of the jobs range from a

few seconds to a few days, and the majority of jobs allocate a single core only.

21https://www.sharcnet.ca/help/index.php/Narwhal
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Narwhal

Strategy
Costs

in EUR

Cost

ratio

TAT

in hours

Renewable

energy share

SRT 71248 1.000 13.78 27.41

FIFO 71234 1.000 44.52 27.57

MATH(91) 70319 0.987 53.07 29.94

GREEN(12) 71105 0.998 38.16 27.92

GREEN(24) 70920 0.996 38.53 28.39

GREEN(48) 70509 0.990 41.60 29.34

GREEN(96) 70214 0.986 47.16 30.19

GREEN(192) 70194 0.985 57.75 30.52

ENHG(12) 71120 0.998 38.32 27.87

ENHG(24) 70906 0.995 38.39 28.41

ENHG(48) 70607 0.991 42.65 29.15

ENHG(96) 70383 0.988 48.65 29.85

ENHG(192) 70392 0.988 60.34 29.98

OPT 70042 0.983 65.44 29.96

Table 8: Narwhal simulation results using different scheduling strategies and configurations

Table 8 and Figure 7 present the simulation results. While the absolute

numbers are disappointing regarding green energy utilisation, the strategies show650

the same trend that has been observed for the Potsdam traces. In our simulation

the PIK traces result in an average cluster utilisation of 23 % to 32 %, while the

Narwhal trace implies a utilisation of 68 %. The jobs enter the system in bursts

and do not permit any relevant workload shifting within the allowed waiting

time. As a result, the optimal scheduler achieves costs savings of only 1.7 %.655

210887 out of the 266785 jobs are regarded “tiny”, for which reason the

shortest remaining time scheduler has a much better turnaround time than the

FIFO scheduler. Even some of the (enhanced) green schedulers have a better

average turnaround time than the FIFO scheduler. This can be explained by
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PIK I - 11/12

Strategy
Preemptive

cost ratio

Non-preemptive

cost ratio

Preemptive

TAT in h

Non-preemptive

TAT in h

SRT/SJF 1.000 1.000 12.53 12.13

FIFO 1.000 1.000 12.52 12.22

MATH(91) 0.957 0.997 23.89 12.41

GREEN(12) 0.982 0.985 15.03 14.25

GREEN(24) 0.961 0.978 17.78 15.11

GREEN(48) 0.939 0.973 20.75 15.92

GREEN(96) 0.927 0.968 23.59 16.92

GREEN(192) 0.923 0.965 26.22 17.76

Table 9: Simulation results using nonpreemptive job scheduling

the postprocessing phase of the green scheduler, which processes additonal jobs660

of the tiny queue.

All in all, there is only little room for improvement when a large share of

workloads cannot be shifted. Yet, it is interesting to see how the algorithms

behave under circumstances very different from the PIK traces and that they

still perform well.665

3.3. Non-preemptive Simulation

In the previous sections we assumed that jobs can be interrupted at any time.

We have rerun the PIK I simulation under the assumption that the jobs are

non-preemptive.

Table 9 lists the results of the MATH scheduler, the green scheduler and670

the FIFO scheduler. It compares the cost ratio and turnaround time of the

preemptive case from Table 4 with the values of the non-preemptive case. While

the values of the MATH scheduler nearly degrade to the level of the FIFO

scheduler for non-preemptive jobs, the green scheduler is still able to reduce the

costs by up to 3.5 % compared to the FIFO results.675
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3.4. Summary

Considering the large average error of the energy forecast, the green schedulers’

results are surprisingly close to the enhanced green scheduler results. This

indicates that a reasonable estimate of the expected energy situation is enough

to make an informed decision, as long as a Smart Meter can be queried to680

correct forecast errors at runtime. This is an important outcome and allows the

conclusion that even a simple forecast with an error margin of up to 30 % can

yield good results. Whether a better forecast is worth the higher operational

overhead and potentially expensive input data depends on the size of the data

centre and, neglecting the environmental aspect, the possible cost savings. In685

cases where the energy price is difficult to predict, the MATH scheduler might

still be able to improve the data centre efficiency.

As a matter of principle, the strategies need to be able to postpone job

processing. In Section 3.2.2 and 3.3 we evaluated the effects of high cluster

utilisation and non-preemptible jobs and showed that the efficiency gains are690

much lower. However, these unfavourable scenarios show that the proposed

strategies still do better compared to FIFO scheduling.

4. Conclusion

This paper has presented and evaluated two Smart Grid-aware scheduling

strategies. We assessed the increase in the utilisation of locally produced renew-695

able energy and the monetary benefit based on a hypothetical, yet conservatively

estimated price model. We also quantified the performance penalty in terms of a

higher turnaround time. The assumed Smart Grid is based on real measurements

of Paderborn’s energy grid, and, to the best of our knowledge, this paper is the

first in making predictions for a Smart Grid itself while most of the previous700

work predicted the generation of on-site power plants using the grid merely as a

backup energy source.

For the more simple scheduler based on a mathematical model, recording

Smart Meter values is already sufficient to increase the share of consumed
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renewable energy to 34.5 % compared to 26.0 % of the reference FIFO scheduler705

running the PIK 11/12 trace. The green scheduler also requires weather data to

predict the future energy surplus in the grid and to schedule the incoming jobs

accordingly. While it is possible to further improve the use of renewable energy

to 42.7 %, the downside is a rise of the average turnaround time by a factor of

up to 2.1. Our approximation of a cost optimal scheduler achieves a renewable710

energy consumption of 46.3 %, at the costs of an increased average turnaround

time of 4.8 %.

Compared to the prior versions of the strategies presented in [1], the new

MATH scheduler and green scheduler show an improved trade-off between green

energy utilisation and turnaround time. We added two parameters, the maximum715

waiting time of the jobs and the forecast penalty, which can be used to tune the

algorithms. The maximum waiting time determines for how long a job can be

postponed. If it is too short, it limits the energy-optimised placement of the

jobs; if it is too long, the throughput might be too low. The forecast penalty

downgrades predicted energy values subject to their forecast time. A slightly720

worse energy current value can thus be preferred to a value in the (distant)

future.

Our future work will focus on the influence of hard deadlines and job priorities

on the scheduling strategies. Furthermore, we will refine our strategies, once we

can test them in a real Smart Grid environment.725
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