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In this paper we provide a purely combinatorial proof of the Friend-
ship Theorem, which has been first proven by P. Erdös et al. by using
also algebraic methods. Moreover, we generalize this theorem in a nat-
ural way, assuming that every pair of nodes occupies � ≥ 2 common
neighbors. We prove that every graph, which satisfies this generalized
�-friendship condition, is a regular graph.
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1 INTRODUCTION

A graph is called a friendship graph if every pair of its nodes has exactly one
common neighbor. This condition is called the friendship condition. Fur-
thermore, a graph is called a windmill graph, if it consists of k ≥ 1 triangles,
which have a unique common node, known as the “politician”. Clearly, any
windmill graph is a friendship graph. Erdös et al. [1] were the first who
proved the Friendship Theorem on graphs:

Theorem 1 (Friendship Theorem). Every friendship graph is a windmill
graph.

The proof of Erdös et al. used both combinatorial and algebraic meth-
ods [1]. Due to the importance of this theorem in various disciplines and
applications except graph theory, such as in the field of block designs and
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2 GEORGE B. MERTZIOS AND WALTER UNGER

coding theory [2], as well as in the set theory [3], several different approaches
have been used to provide a simpler proof.

In 1971, Wilf provided a geometric proof of the Friendship Theorem by
using projective planes [4], while in 1972, Longyear and Parsons gave a
proof by counting neighbors, walks and cycles in regular graphs [3]. Both
Longyear et al. and Wilf refer to an unpublished proof of G. Higman in lec-
ture form at a conference on combinatorics in 1969; however, to the best of
our knowledge, no known printed article of this proof exists. Hammersley
avoided the use of eigenvalues and provided in 1983 a proof using numerical
techniques [5]. He extended the Friendship Theorem to the so called “love
problem”, where self loops are allowed. In 2001, Aigner and Ziegler men-
tioned the Friendship Theorem in [6] as one of the greatest theorems of Erdös
of all time. In the same year, West gave a proof similar to that in [3], count-
ing common neighbors and cycles [7]. Finally, Huneke gave in 2002 two
proofs, one being more combinatorial and one that combines combinatorics
and linear algebra [8].

The friendship condition can be rewritten as follows: “For every pair of
nodes, there is exactly one path of length two between them”. In this direc-
tion, the friendship problem can be generalized as follows: Find all graphs,
in which every pair of nodes is connected with exactly � paths of length k.
Such graphs are called �-regularly k-path connected graphs, or simply P�(k)-
graphs [9]. The Friendship Theorem implies that the P1(2)-graphs are exactly
the windmill graphs. For the case of P1(k)-graphs, where k > 2, Kotzig con-
jectured in 1974 that there exists no such graph (Kotzig’s conjecture) [10] and
he proved this conjecture for 3 ≤ k ≤ 8 [11]. Kostochka proved in 1988 that
the conjecture is true for k ≤ 20 [12]. Furthermore, Xing and Hu proved the
Kotzig’s conjecture in 1994 for k ≥ 12 [13] and Yang et al. in 2000 for the
cases k = 9, 10 and 11 [14]. Thus, the Kotzig’s conjecture is valid now as a
theorem.

In Section 2 of this paper we propose a simple purely combinatorial proof
of the Friendship Theorem. At first step, we prove that any graph G satisfying
the friendship condition is a windmill graph, under the assumption that G has
at least one node of degree at most two. At second step, we prove that G is
a regular graph in the case that all its nodes have degree greater than two.
Finally, we prove by contradiction that G has always a node of degree two,
following a counting argument similar to [3].

In Section 3, we generalize the friendship condition in a natural way to
the �-friendship condition: “Every pair of nodes has exactly � ≥ 2 common
neighbors”. The graphs that satisfy the �-friendship condition are exactly the
P�(2)-graphs and they are called �-friendship graphs. We prove that every �-
friendship graph is a regular graph, for every � ≥ 2. This result implies that
the �-friendship graphs coincide with the class of strongly regular graphs
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srg(n, k, λ, μ) with λ = μ = �, which correspond to symmetric balanced
incomplete block designs [7]. This class of graphs has been extensively stud-
ied and several non-trivial examples of them are known in the literature [15,
16]. Finally, in Section 4 we summarize the results obtained in this paper.

2 A COMBINATORIAL PROOF OF THE FRIENDSHIP
THEOREM

In this section we propose a purely combinatorial proof of the Friendship
Theorem, i.e. that every friendship graph is a windmill graph. In the fol-
lowing, denote by C4 a node-simple cycle on 4 nodes, by N (v) the set of
neighbors of v in G and N [v] = N (v) ∪ {v}.

Lemma 1. Let G be a friendship graph. Then G is connected and it contains
no C4 as a subgraph. Furthermore deg (v) ≥ 2 for every node v of G, and
the distance between any two nodes in G is at most two.

Proof. The proof is done by contradiction. If G is not connected, then there
are at least two nodes of G with no common neighbor, which is in contradic-
tion to the friendship condition. If G includes C4 as a subgraph (not necessary
induced), there are two nodes v and u with at least two common neighbors,
as it is illustrated in Figure 1(a). This is a contradiction to the friendship con-
dition. Assume that deg (v) = 1 for a node v of G, and let u be the unique
neighbor of v. Then, v has no common neighbor with u, which is again a
contradiction. Finally, if a pair (v, u) of G has distance at least three, then v

and u have no common neighbor in G, which is also a contradiction.

Since deg (v) ≥ 2 for every node v of a friendship graph G by Lemma 1,
we may distinguish the nodes of a friendship graph by their degree, as Defi-
nition 1 states.

v u

(a)

v u

a

b

(b)

u w

v

a b

(c)

FIGURE 1
Three forbidden cases.

390i-MVLSC˙V1 3



4 GEORGE B. MERTZIOS AND WALTER UNGER

Definition 1. In a friendship graph G, every node v with deg (v) = 2 is
called a simple node, otherwise it is called a complex node.

Lemma 2. For every node v of a friendship graph G, N [v] induces a wind-
mill graph.

Proof. Consider two nodes v and u ∈ N (v). Due to the assumption, they
have a unique common neighbor a, as it is illustrated in Figure 1(b). Consider
now another node b ∈ N (v) \ {u, a}. If b ∈ N (u), then G includes a C4

as a subgraph, which is a contradiction due to Lemma 1. Thus, b �∈ N (u).
Since this holds for every node b ∈ N (v) \ {u, a}, it follows that every node
u ∈ N (v) produces with v exactly one triangle. Therefore, for every node v

of G, N [v] induces a windmill graph.

Lemma 3. If a friendship graph G has at least one simple node, then G is a
windmill graph.

Proof. Consider a simple node v of G with N (v) = {u, w}, as it is illustrated
in Figure 1(c). Due to Lemma 2, u and w are also neighbors. At first, since
u and w have a unique common neighbor, all their neighbors are distinct,
except v. In the case where G is constituted of only these three nodes, G is
obviously a windmill graph. Otherwise, every node of V \ {v, u, w} is either
a neighbor of u or of w, since in the opposite case it would have no com-
mon neighbor with v, which is a contradiction. Finally, consider two nodes
a ∈ N (u) \ {v,w} and b ∈ N (w) \ {v, u}. Then, a and b are not neighbors,
since otherwise u, w, b and a would induce a C4, which is in contradiction to
Lemma 1. It follows that the distance between a and b is three, which is also
a contradiction. Thus, at least one node of {u, w} is simple and the other one
is neighbored to all other nodes in G. It follows that G is a windmill graph,
due to Lemma 2.

Lemma 4. If a friendship graph G has no simple node, then G is a 2k-
regular graph with 2k(2k − 1) + 1 nodes, for some k ≥ 2.

Proof. Suppose that all nodes of G are complex nodes, i.e. their degree is
greater than two. Let v be such a node of G. Then, all the remaining nodes
in V \ {v} are partitioned into the sets L = N (v) and L ′ = V \ N [v].

Due to Lemma 2 and the assumption, N [v] induces a non-trivial wind-
mill graph, as it is illustrated in Figure 2. Suppose now that the windmill
graph N [v] has k ≥ 2 triangles. Thus the graph induced by N (v) is a perfect
matching of size k with edges: {v0

1, v
1
1}, {v0

2, v
1
2}, . . . , {v0

k , v
1
k }. Now con-

sider a node vx
i of L , for some i ∈ {1, 2, . . . , k} and x ∈ {0, 1}. Denote
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FIGURE 2
A non-trivial windmill graph.

by N ′(vx
i ) = N (vx

i ) ∩ L ′ the set of nodes of the windmill graph N [vx
i ] that

belong to L ′, as it is illustrated in Figure 3. Due to the assumption it follows
that N ′(vx

i ) �= ∅.
Due to the windmill structure of N [vx

i ], N ′(vx
i ) constitutes a perfect

matching of kx
i ≥ 1 pairs of nodes in L ′, denoted by P�(vx

i ), � = 1, 2, . . . , kx
i .

Clearly, there is no edge connecting two nodes from two different pairs
Pa(vx

i ) and Pb(vx
i ), since otherwise there exists a C4, which is a contradiction

due to Lemma 1. Similarly, an arbitrary node in N ′(vx
i ) does not have any

other neighbor in L except vx
i , since otherwise there exists again a C4. Define

now the i th block Bi := N ′(v0
i ) ∪ N ′(v1

i ), as it is illustrated in Figure 3.
Since k ≥ 2, there are at least two different blocks Bi and Bj in G. Con-

sider now a node q ∈ N ′(v0
j ), as it is illustrated in Figure 4. Since the nodes

q and v0
i have exactly one common neighbor, q has exactly one neighbor

p in N ′(v0
i ). On the other hand, the only neighbor of p in N ′(v0

j ) is q,
since otherwise p would have more than one common neighbor with v0

j ,
which is a contradiction. Thus, the edges between N ′(v0

i ) and N ′(v0
j ) con-

stitute a perfect matching. This holds similarly for the edges between N ′(vx
i )

and N ′(vy
j ) as well, where x, y ∈ {0, 1} and hence, it holds k0

i = k1
i =: k ′ for

every i ∈ {1, 2, . . . , k}.
Now, an arbitrary node p ∈ N ′(v0

i ) is a neighbor to exactly two nodes q
and s of any of the k − 1 blocks Bj , j �= i , one in N ′(v0

j ) and one in N ′(v1
j ),

as it is illustrated in Figure 4. Similarly, q and s are neighbors to exactly two
nodes q ′ and s ′ of N ′(v1

i ), respectively. Therefore, since p has a common
neighbor with every node of N ′(v1

i ), it follows that 2(k − 1) ≥ |N ′(v1
i )| =

2k ′. If 2(k − 1) > 2k ′, then there exist two neighbors q, s of p in
⋃

j �=i B j ,
such that both q and s have the same neighbor z ∈ N ′(v1

i ). Thus G contains a
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v

v0
i v1

i

v0
k−1

v1
k−1

v0
k

v1
kv0

1

v1
1

v0
2

v1
2

P1(v1
i )

P
2 (v 1

i )

P k
1 i
(v

1 i
)P

1 (v 0i )

P 2
(v

0 i
)

Pk0
i
(v0

i )

N
′ (v

0
i
)

N
′(v

1i )

N
′ (v

0
i
)

N
′(v

1i )
Bi

FIGURE 3
The i th block Bi .

C4 on the vertices p, q, s, z, which is a contradiction by Lemma 1. Therefore
2(k − 1) = 2k ′, i.e. k ′ = k − 1. Thus, taking into account the two neighbors
r and u0

i of p, it has exactly 2(k − 1) + 2 = 2k neighbors in G. Furthermore,
any node vx

i has 2k ′ + 2 = 2k neighbors in G as well. Thus, since deg(v) =
2k, it follows that G is a 2k-regular graph. Finally, since the blocks Bi , i ∈
{1, 2, . . . , k} have 2k · 2(k − 1) nodes in total and since v has 2k neighbors,
it follows that G has n = 2k(2k − 1) + 1 nodes.

Lemma 5. There is at least one simple node in any friendship graph G.

Proof. The proof will be done by contradiction. Suppose that all nodes of
G are complex, i.e. their degree is greater than two. Then, by Lemma 4, G
is a 2k-regular graph with n = 2k(2k − 1) + 1 nodes, for some k ≥ 2. For
an arbitrary natural number � ≥ 2, let T (�) be the set of all ordered �-tuples
〈v1, v2, . . . , v�〉 of (not necessary distinct) nodes of G, such that vi is neigh-
bored with vi+1 for every i ∈ {1, 2, . . . , � − 1}. Since n = 2k(2k − 1) + 1, it
holds that

|T (�)| = n · (2k)�−1 ≡ 1 mod (2k − 1) (1)

390i-MVLSC˙V1 6
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FIGURE 4
The regularity of the friendship graph G.

for every � ≥ 2. If the nodes v� and v1 are neighbored, then the tuple
〈v1, v2, . . . , v�〉 constitutes a closed �-walk in G. Let C(�) ⊆ T (�) be the
set of all closed �-walks. Let furthermore C*(�) = {〈v1, v2, . . . , v�−1, v�〉 ∈
T (�) : v� = v1} be the set of all closed (� − 1)-walks in G.

Consider now the surjective mapping f : C(�) → T (� − 1), such
that f (〈v1, v2, . . . , v�−1, v�〉) = 〈v1, v2, . . . , v�−1〉. For every tuple
〈v1, v2, . . . , v�−1〉 of T (� − 1) \ C*(� − 1), i.e. with v�−1 �= v1, it
holds that 〈v1, v2, . . . , v�−1〉 = f (〈v1, v2, . . . , v�−1, y〉), where y is
the unique common neighbor of v�−1 and v1 in G. On the other
hand, for every tuple 〈v1, v2, . . . , v�−1 = v1〉 of C*(� − 1) it holds that
〈v1, v2, . . . , v�−1 = v1〉 = f (〈v1, v2, . . . , v�−1 = v1, z〉), where z is any of
the 2k neighbors of v1 in G. Since f is surjective and due to (1), it follows
that

|C(�)| = 2k · |C*(� − 1)| + |T (� − 1) \ C*(� − 1)|
≡ |T (� − 1)| mod (2k − 1) (2)

≡ 1 mod (2k − 1)

for every � ≥ 2.
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8 GEORGE B. MERTZIOS AND WALTER UNGER

Now, for an arbitrary prime divisor p of 2k − 1, consider the bijective
mapping (cyclic permutation) π : C(p) → C(p), with π (

〈
v1, v2, . . . , vp

〉
) =〈

v2, . . . , vp, v1
〉
. Since p is a prime number, all tuples π i (

〈
v1, v2, . . . , vp

〉
),

where i ∈ {1, 2, . . . , p} are distinct. The mapping π defines in a
trivial way an equivalence relation: the tuples

〈
v1, v2, . . . , vp

〉
and〈

w1, w2, . . . , wp
〉

are equivalent if there is a number t ∈ {1, 2, . . . , p}, such
that π t (

〈
v1, v2, . . . , vp

〉
) = 〈

w1, w2, . . . , wp
〉
. This equivalence relation par-

titions C(p) into equivalence classes of p elements each and thus, it holds
that

|C(p)| ≡ 0 mod (p) (3)

Since p is a prime divisor of 2k − 1, (3) is in contradiction to (2) for � = p.

The Friendship Theorem follows now directly from to Lemmas 2, 3, 4
and 5.

3 THE GENERALIZED FRIENDSHIP PROBLEM

In this section we generalize the friendship condition, assuming that each
pair of nodes occupies exactly � ≥ 2 common neighbors. We prove that these
graphs are d-regular, with d ≥ � + 1.

Definition 2. The condition: “Every pair of nodes has exactly � common
neighbors” is called the �-friendship condition. The graphs that satisfy the
�-friendship condition are exactly the P�(2)-graphs and they are called �-
friendship graphs.

Proposition 1. Every �-friendship graph G is a regular graph, for � ≥ 2.

Proof. Consider a node v ∈ V with d = deg (v). Similarly to Section 2,
denote L = N (v) and L ′ = V \ N [v]. Obviously, every node of the set L ′

has distance 2 from v. Consider now a node a ∈ L . It follows that a has
exactly � neighbors in L , since the pair {v, a} has exactly � common neigh-
bors in G.

Suppose at first that L ′ = ∅. Let L ∩ N (a) = {a1, a2, . . . , a�}. For every
i ∈ {1, 2, . . . , �}, the pair {a, ai } has v as a common neighbor and � − 1
more common neighbors in L . It follows that ai ∈ N

(
a j

)
for every i �= j ∈

{1, 2, . . . , �}, i.e. the tuple {v, a, a1, . . . , a�} constitutes an (� + 2)-clique, as
it is illustrated in Figure 5. Now, suppose that L \ {a, a1, a2, . . . , a�} �= ∅ and
consider a node b ∈ L \ {a, a1, a2, . . . , a�}. This node has no neighbor in the

390i-MVLSC˙V1 8
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v

a a1 a2 a�b

FIGURE 5
The case L ′ = ∅.

set {a, a1, a2, . . . , a�}, since otherwise at least one node of this set would have
more than � neighbors in L , which is a contradiction. Thus, the pair {a, b} has
v as the only common neighbor, which is also a contradiction, since � ≥ 2.
Therefore, if L ′ = ∅, then G is isomorphic to the complete graph K�+1 and
therefore G is an (� + 1)-regular graph.

Suppose now that L ′ �= ∅. As it is illustrated in Figure 6, every node
x ∈ L ′ has exactly � neighbors in L , since otherwise the pair {v, x} would
not have exactly � common neighbors in G. If we fix the node a ∈ L , then
there exist in G exactly (d − 1) � paths of length two with extreme nodes a
and b, where b ∈ L , since there are d − 1 nodes b ∈ L \ {a} and every such
pair {a, b} has exactly � common neighbors in G. Among them, exactly
d − 1 ones have v as the intermediate node. Furthermore, exactly � (� − 1)
ones have their intermediate node in L , since a has exactly � neighbors in L
and each of them has � − 1 other neighbors in L except a. Thus, each of the
remaining

(d − 1) � − (d − 1) − � (� − 1) = (d − � − 1) (� − 1)

v

ba

x

L

L ′

d edges

� edges
d − � − 1 edges

}
� edges

FIGURE 6
The case L ′ �= ∅.
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10 GEORGE B. MERTZIOS AND WALTER UNGER

paths has a node in L ′ as their intermediate node. Consider now a node
x ∈ L ′ ∩ N (a). The edge between a and x is included in exactly � − 1 paths
of length two with extreme nodes a and b, where b ∈ L , since x has exactly
� − 1 other neighbors in L except a. Thus, every a ∈ L is neighbored to
exactly

(d − � − 1) (� − 1)

(� − 1)
= (d − � − 1) (4)

nodes in L ′. It follows that

∣∣L ′∣∣ = d (d − � − 1)

�
(5)

since L includes d nodes, each one of them has d − � − 1 neighbors in L ′

and each node of L ′ is neighbored to � nodes of L . Finally, since |V | =
|L| + ∣∣L ′∣∣ + 1 and |L| = d , it follows from (5) that

|V | = d (d − 1)

�
+ 1 (6)

Since (6) holds for the degree d of an arbitrary node v ∈ V , it results that
every node v has equal degree d in G and therefore G is a d-regular graph.

A graph G with n nodes is called a strongly regular graph if there exist
parameters k, λ, μ such that G is k-regular, every pair of adjacent nodes
have exactly λ common neighbors, and every pair of non-adjacent nodes
has exactly μ common neighbors [7]. The class of strongly regular graphs
with n nodes and parameters k, λ, μ is denoted by srg(n, k, λ, μ). Due
to Proposition 1, the �-friendship graphs coincide with the strongly regu-
lar graphs srg(n, k, λ, μ) with λ = μ = �. Several non-trivial examples of
srg(n, k, �, �) are known in the literature, e.g. the line graph of K6 with
n = 15, k = 8, � = 4 [16], the cartesian product K4 × K4 (or Shrikhande
graph) with n = 16, k = 6, � = 2 and the halved 5-cube graph with n =
16, k = 10, � = 6, which is referred to as Clebsch graph in [15].

4 CONCLUSION

In this paper we propose a purely combinatorial proof of the Friendship Theo-
rem, originally proved by Erdös et al. Furthermore, we generalize the simple
friendship condition in a natural way to the �-friendship condition: “Every
pair of nodes has exactly � ≥ 2 common neighbors” and we prove that every

390i-MVLSC˙V1 10
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graph which satisfies this condition is a regular graph. It remains open to
characterize fully this class of graphs, which together with the recent proof
of the Kotzig’s conjecture, will complete the characterization of the graphs
P�(2) and P1(k) that are the direct generalizations of the class P1(2) of the
friendship graphs.
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