J. of Mult.-Valued Logic & Soft Computing, Vol. 0, pp. 1–11 Reprints available directly from the publisher Photocopying permitted by license only

The Friendship Problem on Graphs*

George B. Mertzios 1,† and Walter $Unger^2$

¹School of Engineering and Computing Sciences, Durham University, UK. ²Department of Computer Science, RWTH Aachen University, Germany. E-mail: quax@cs.rwth-aachen.de

Received: October 10, 2009. Accepted: September 9, 2013.

In this paper we provide a purely combinatorial proof of the Friendship Theorem, which has been first proven by P. Erdös et al. by using also algebraic methods. Moreover, we generalize this theorem in a natural way, assuming that every pair of nodes occupies $\ell \ge 2$ common neighbors. We prove that every graph, which satisfies this generalized ℓ -friendship condition, is a regular graph.

Keywords: Friendship theorem, friendship graph, windmill graph, Kotzig's conjecture.

1 INTRODUCTION

A graph is called a *friendship graph* if every pair of its nodes has exactly one common neighbor. This condition is called the *friendship condition*. Furthermore, a graph is called a *windmill graph*, if it consists of $k \ge 1$ triangles, which have a unique common node, known as the "politician". Clearly, any windmill graph is a friendship graph. Erdös *et al.* [1] were the first who proved the Friendship Theorem on graphs:

Theorem 1 (Friendship Theorem). Every friendship graph is a windmill graph.

The proof of Erdös *et al.* used both combinatorial and algebraic methods [1]. Due to the importance of this theorem in various disciplines and applications except graph theory, such as in the field of block designs and

^{*} This work was partially supported by the EPSRC Grant EP/K022660/1.

[†]Corresponding author: E-mail: george.mertzios@durham.ac.uk

coding theory [2], as well as in the set theory [3], several different approaches have been used to provide a simpler proof.

In 1971, Wilf provided a geometric proof of the Friendship Theorem by using projective planes [4], while in 1972, Longyear and Parsons gave a proof by counting neighbors, walks and cycles in regular graphs [3]. Both Longyear *et al.* and Wilf refer to an unpublished proof of G. Higman in lecture form at a conference on combinatorics in 1969; however, to the best of our knowledge, no known printed article of this proof exists. Hammersley avoided the use of eigenvalues and provided in 1983 a proof using numerical techniques [5]. He extended the Friendship Theorem to the so called "love problem", where self loops are allowed. In 2001, Aigner and Ziegler mentioned the Friendship Theorem in [6] as one of the greatest theorems of Erdös of all time. In the same year, West gave a proof similar to that in [3], counting common neighbors and cycles [7]. Finally, Huneke gave in 2002 two proofs, one being more combinatorial and one that combines combinatorics and linear algebra [8].

The friendship condition can be rewritten as follows: "For every pair of nodes, there is exactly one path of length two between them". In this direction, the friendship problem can be generalized as follows: *Find all graphs, in which every pair of nodes is connected with exactly l paths of length k*. Such graphs are called *l-regularly k-path connected* graphs, or simply $P_{\ell}(k)$ -graphs [9]. The Friendship Theorem implies that the $P_1(2)$ -graphs are exactly the windmill graphs. For the case of $P_1(k)$ -graphs, where k > 2, Kotzig conjectured in 1974 that there exists no such graph (*Kotzig's conjecture*) [10] and he proved this conjecture for $3 \le k \le 8$ [11]. Kostochka proved in 1988 that the conjecture is true for $k \le 20$ [12]. Furthermore, Xing and Hu proved the Kotzig's conjecture in 1994 for $k \ge 12$ [13] and Yang *et al.* in 2000 for the cases k = 9, 10 and 11 [14]. Thus, the Kotzig's conjecture is valid now as a theorem.

In Section 2 of this paper we propose a simple purely combinatorial proof of the Friendship Theorem. At first step, we prove that any graph G satisfying the friendship condition is a windmill graph, under the assumption that G has at least one node of degree at most two. At second step, we prove that G is a regular graph in the case that all its nodes have degree greater than two. Finally, we prove by contradiction that G has always a node of degree two, following a counting argument similar to [3].

In Section 3, we generalize the friendship condition in a natural way to the ℓ -friendship condition: "Every pair of nodes has exactly $\ell \ge 2$ common neighbors". The graphs that satisfy the ℓ -friendship condition are exactly the $P_{\ell}(2)$ -graphs and they are called ℓ -friendship graphs. We prove that every ℓ -friendship graph is a regular graph, for every $\ell \ge 2$. This result implies that the ℓ -friendship graphs coincide with the class of strongly regular graphs

 $srg(n, k, \lambda, \mu)$ with $\lambda = \mu = \ell$, which correspond to symmetric balanced incomplete block designs [7]. This class of graphs has been extensively studied and several non-trivial examples of them are known in the literature [15, 16]. Finally, in Section 4 we summarize the results obtained in this paper.

2 A COMBINATORIAL PROOF OF THE FRIENDSHIP THEOREM

In this section we propose a purely combinatorial proof of the Friendship Theorem, i.e. that every friendship graph is a windmill graph. In the following, denote by C_4 a node-simple cycle on 4 nodes, by N(v) the set of neighbors of v in G and $N[v] = N(v) \cup \{v\}$.

Lemma 1. Let G be a friendship graph. Then G is connected and it contains no C_4 as a subgraph. Furthermore deg $(v) \ge 2$ for every node v of G, and the distance between any two nodes in G is at most two.

Proof. The proof is done by contradiction. If *G* is not connected, then there are at least two nodes of *G* with no common neighbor, which is in contradiction to the friendship condition. If *G* includes C_4 as a subgraph (not necessary induced), there are two nodes *v* and *u* with at least two common neighbors, as it is illustrated in Figure 1(a). This is a contradiction to the friendship condition. Assume that deg (*v*) = 1 for a node *v* of *G*, and let *u* be the unique neighbor of *v*. Then, *v* has no common neighbor with *u*, which is again a contradiction. Finally, if a pair (*v*, *u*) of *G* has distance at least three, then *v* and *u* have no common neighbor in *G*, which is also a contradiction.

Since deg $(v) \ge 2$ for every node v of a friendship graph G by Lemma 1, we may distinguish the nodes of a friendship graph by their degree, as Definition 1 states.

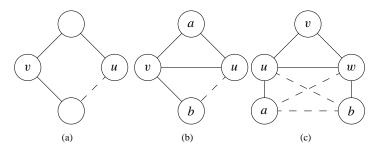


FIGURE 1 Three forbidden cases.

Definition 1. In a friendship graph G, every node v with deg(v) = 2 is called a simple node, otherwise it is called a complex node.

Lemma 2. For every node v of a friendship graph G, N[v] induces a windmill graph.

Proof. Consider two nodes v and $u \in N(v)$. Due to the assumption, they have a unique common neighbor a, as it is illustrated in Figure 1(b). Consider now another node $b \in N(v) \setminus \{u, a\}$. If $b \in N(u)$, then G includes a C_4 as a subgraph, which is a contradiction due to Lemma 1. Thus, $b \notin N(u)$. Since this holds for every node $b \in N(v) \setminus \{u, a\}$, it follows that every node $u \in N(v)$ produces with v exactly one triangle. Therefore, for every node v of G, N[v] induces a windmill graph.

Lemma 3. If a friendship graph G has at least one simple node, then G is a windmill graph.

Proof. Consider a simple node v of G with $N(v) = \{u, w\}$, as it is illustrated in Figure 1(c). Due to Lemma 2, u and w are also neighbors. At first, since u and w have a unique common neighbor, all their neighbors are distinct, except v. In the case where G is constituted of only these three nodes, G is obviously a windmill graph. Otherwise, every node of $V \setminus \{v, u, w\}$ is either a neighbor of u or of w, since in the opposite case it would have no common neighbor with v, which is a contradiction. Finally, consider two nodes $a \in N(u) \setminus \{v, w\}$ and $b \in N(w) \setminus \{v, u\}$. Then, a and b are not neighbors, since otherwise u, w, b and a would induce a C_4 , which is in contradiction to Lemma 1. It follows that the distance between a and b is three, which is also a contradiction. Thus, at least one node of $\{u, w\}$ is simple and the other one is neighbored to all other nodes in G. It follows that G is a windmill graph, due to Lemma 2.

Lemma 4. If a friendship graph G has no simple node, then G is a 2k-regular graph with 2k(2k - 1) + 1 nodes, for some $k \ge 2$.

Proof. Suppose that all nodes of *G* are complex nodes, i.e. their degree is greater than two. Let *v* be such a node of *G*. Then, all the remaining nodes in $V \setminus \{v\}$ are partitioned into the sets L = N(v) and $L' = V \setminus N[v]$.

Due to Lemma 2 and the assumption, N[v] induces a non-trivial windmill graph, as it is illustrated in Figure 2. Suppose now that the windmill graph N[v] has $k \ge 2$ triangles. Thus the graph induced by N(v) is a perfect matching of size k with edges: $\{v_1^0, v_1^1\}, \{v_2^0, v_2^1\}, \dots, \{v_k^0, v_k^1\}$. Now consider a node v_i^x of L, for some $i \in \{1, 2, \dots, k\}$ and $x \in \{0, 1\}$. Denote

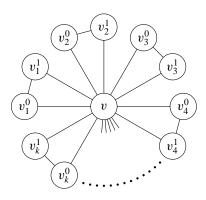


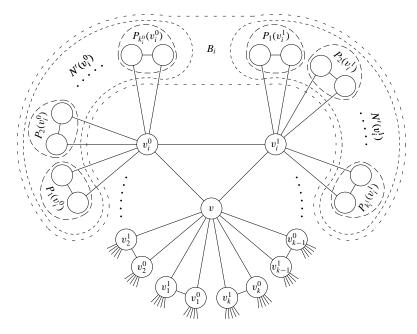
FIGURE 2 A non-trivial windmill graph.

by $N'(v_i^x) = N(v_i^x) \cap L'$ the set of nodes of the windmill graph $N[v_i^x]$ that belong to L', as it is illustrated in Figure 3. Due to the assumption it follows that $N'(v_i^x) \neq \emptyset$.

Due to the windmill structure of $N[v_i^x]$, $N'(v_i^x)$ constitutes a perfect matching of $k_i^x \ge 1$ pairs of nodes in L', denoted by $P_\ell(v_i^x)$, $\ell = 1, 2, ..., k_i^x$. Clearly, there is no edge connecting two nodes from two different pairs $P_a(v_i^x)$ and $P_b(v_i^x)$, since otherwise there exists a C_4 , which is a contradiction due to Lemma 1. Similarly, an arbitrary node in $N'(v_i^x)$ does not have any other neighbor in L except v_i^x , since otherwise there exists again a C_4 . Define now the i^{th} block $B_i := N'(v_i^0) \cup N'(v_i^1)$, as it is illustrated in Figure 3.

Since $k \ge 2$, there are at least two different blocks B_i and B_j in G. Consider now a node $q \in N'(v_j^0)$, as it is illustrated in Figure 4. Since the nodes q and v_i^0 have exactly one common neighbor, q has exactly one neighbor p in $N'(v_i^0)$. On the other hand, the only neighbor of p in $N'(v_j^0)$ is q, since otherwise p would have more than one common neighbor with v_j^0 , which is a contradiction. Thus, the edges between $N'(v_i^0)$ and $N'(v_j^0)$ constitute a perfect matching. This holds similarly for the edges between $N'(v_i^x)$ and $N'(v_j^y)$ as well, where $x, y \in \{0, 1\}$ and hence, it holds $k_i^0 = k_i^1 =: k'$ for every $i \in \{1, 2, ..., k\}$.

Now, an arbitrary node $p \in N'(v_i^0)$ is a neighbor to *exactly* two nodes q and s of any of the k-1 blocks B_j , $j \neq i$, one in $N'(v_j^0)$ and one in $N'(v_j^1)$, as it is illustrated in Figure 4. Similarly, q and s are neighbors to exactly two nodes q' and s' of $N'(v_i^1)$, respectively. Therefore, since p has a common neighbor with every node of $N'(v_i^1)$, it follows that $2(k-1) \ge |N'(v_i^1)| = 2k'$. If 2(k-1) > 2k', then there exist two neighbors q, s of p in $\bigcup_{j \neq i} B_j$, such that both q and s have the same neighbor $z \in N'(v_i^1)$. Thus G contains a



 C_4 on the vertices p, q, s, z, which is a contradiction by Lemma 1. Therefore 2(k-1) = 2k', i.e. k' = k - 1. Thus, taking into account the two neighbors r and u_i^0 of p, it has exactly 2(k-1) + 2 = 2k neighbors in G. Furthermore, any node v_i^x has 2k' + 2 = 2k neighbors in G as well. Thus, since deg(v) = 2k, it follows that G is a 2k-regular graph. Finally, since the blocks B_i , $i \in \{1, 2, ..., k\}$ have $2k \cdot 2(k-1)$ nodes in total and since v has 2k neighbors, it follows that G has n = 2k(2k-1) + 1 nodes.

Lemma 5. There is at least one simple node in any friendship graph G.

Proof. The proof will be done by contradiction. Suppose that all nodes of *G* are complex, i.e. their degree is greater than two. Then, by Lemma 4, *G* is a 2*k*-regular graph with n = 2k(2k - 1) + 1 nodes, for some $k \ge 2$. For an arbitrary natural number $\ell \ge 2$, let $T(\ell)$ be the set of all ordered ℓ -tuples $\langle v_1, v_2, \ldots, v_\ell \rangle$ of (not necessary distinct) nodes of *G*, such that v_i is neighbored with v_{i+1} for every $i \in \{1, 2, \ldots, \ell - 1\}$. Since n = 2k(2k - 1) + 1, it holds that

$$|T(\ell)| = n \cdot (2k)^{\ell-1} \equiv 1 \mod (2k-1)$$
(1)

390i-MVLSC[•]V1 6

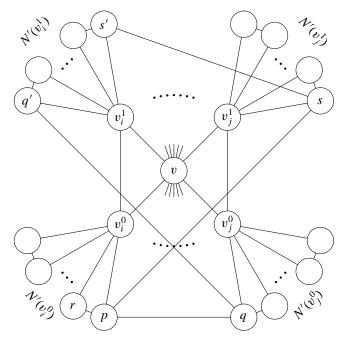


FIGURE 4

The regularity of the friendship graph G.

for every $\ell \ge 2$. If the nodes v_{ℓ} and v_1 are neighbored, then the tuple $\langle v_1, v_2, \ldots, v_{\ell} \rangle$ constitutes a *closed* ℓ -walk in *G*. Let $C(\ell) \subseteq T(\ell)$ be the set of all closed ℓ -walks. Let furthermore $C^*(\ell) = \{\langle v_1, v_2, \ldots, v_{\ell-1}, v_{\ell} \rangle \in T(\ell) : v_{\ell} = v_1\}$ be the set of all closed $(\ell - 1)$ -walks in *G*.

Consider now the surjective mapping $f: C(\ell) \to T(\ell-1)$, such that $f(\langle v_1, v_2, \ldots, v_{\ell-1}, v_\ell \rangle) = \langle v_1, v_2, \ldots, v_{\ell-1} \rangle$. For every tuple $\langle v_1, v_2, \ldots, v_{\ell-1} \rangle$ of $T(\ell-1) \setminus C^*(\ell-1)$, i.e. with $v_{\ell-1} \neq v_1$, it holds that $\langle v_1, v_2, \ldots, v_{\ell-1} \rangle = f(\langle v_1, v_2, \ldots, v_{\ell-1}, y \rangle)$, where y is the unique common neighbor of $v_{\ell-1}$ and v_1 in G. On the other hand, for every tuple $\langle v_1, v_2, \ldots, v_{\ell-1} = v_1 \rangle$ of $C^*(\ell-1)$ it holds that $\langle v_1, v_2, \ldots, v_{\ell-1} = v_1 \rangle$ of $C^*(\ell-1)$ it holds that $\langle v_1, v_2, \ldots, v_{\ell-1} = v_1 \rangle = f(\langle v_1, v_2, \ldots, v_{\ell-1} = v_1, z \rangle)$, where z is any of the 2k neighbors of v_1 in G. Since f is surjective and due to (1), it follows that

$$|C(\ell)| = 2k \cdot |C^*(\ell-1)| + |T(\ell-1) \setminus C^*(\ell-1)|$$

$$\equiv |T(\ell-1)| \mod (2k-1)$$

$$\equiv 1 \mod (2k-1)$$
(2)

for every $\ell \geq 2$.

Now, for an arbitrary prime divisor p of 2k - 1, consider the bijective mapping (cyclic permutation) $\pi : C(p) \to C(p)$, with $\pi(\langle v_1, v_2, \ldots, v_p \rangle) = \langle v_2, \ldots, v_p, v_1 \rangle$. Since p is a prime number, all tuples $\pi^i(\langle v_1, v_2, \ldots, v_p \rangle)$, where $i \in \{1, 2, \ldots, p\}$ are distinct. The mapping π defines in a trivial way an equivalence relation: the tuples $\langle v_1, v_2, \ldots, v_p \rangle$ and $\langle w_1, w_2, \ldots, w_p \rangle$ are equivalent if there is a number $t \in \{1, 2, \ldots, p\}$, such that $\pi^t(\langle v_1, v_2, \ldots, v_p \rangle) = \langle w_1, w_2, \ldots, w_p \rangle$. This equivalence relation partitions C(p) into equivalence classes of p elements each and thus, it holds that

$$|C(p)| \equiv 0 \mod (p) \tag{3}$$

Since p is a prime divisor of 2k - 1, (3) is in contradiction to (2) for $\ell = p$.

The Friendship Theorem follows now directly from to Lemmas 2, 3, 4 and 5.

3 THE GENERALIZED FRIENDSHIP PROBLEM

In this section we generalize the friendship condition, assuming that each pair of nodes occupies exactly $\ell \ge 2$ common neighbors. We prove that these graphs are *d*-regular, with $d \ge \ell + 1$.

Definition 2. The condition: "Every pair of nodes has exactly ℓ common neighbors" is called the ℓ -friendship condition. The graphs that satisfy the ℓ -friendship condition are exactly the $P_{\ell}(2)$ -graphs and they are called ℓ -friendship graphs.

Proposition 1. Every ℓ -friendship graph G is a regular graph, for $\ell \geq 2$.

Proof. Consider a node $v \in V$ with $d = \deg(v)$. Similarly to Section 2, denote L = N(v) and $L' = V \setminus N[v]$. Obviously, every node of the set L' has distance 2 from v. Consider now a node $a \in L$. It follows that a has exactly ℓ neighbors in L, since the pair $\{v, a\}$ has exactly ℓ common neighbors in G.

Suppose at first that $L' = \emptyset$. Let $L \cap N(a) = \{a_1, a_2, \dots, a_\ell\}$. For every $i \in \{1, 2, \dots, \ell\}$, the pair $\{a, a_i\}$ has v as a common neighbor and $\ell - 1$ more common neighbors in L. It follows that $a_i \in N(a_j)$ for every $i \neq j \in \{1, 2, \dots, \ell\}$, i.e. the tuple $\{v, a, a_1, \dots, a_\ell\}$ constitutes an $(\ell + 2)$ -clique, as it is illustrated in Figure 5. Now, suppose that $L \setminus \{a, a_1, a_2, \dots, a_\ell\} \neq \emptyset$ and consider a node $b \in L \setminus \{a, a_1, a_2, \dots, a_\ell\}$. This node has no neighbor in the

8

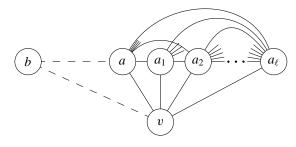


FIGURE 5 The case $L' = \emptyset$.

set $\{a, a_1, a_2, \ldots, a_\ell\}$, since otherwise at least one node of this set would have more than ℓ neighbors in L, which is a contradiction. Thus, the pair $\{a, b\}$ has v as the only common neighbor, which is also a contradiction, since $\ell \ge 2$. Therefore, if $L' = \emptyset$, then G is isomorphic to the complete graph $K_{\ell+1}$ and therefore G is an $(\ell + 1)$ -regular graph.

Suppose now that $L' \neq \emptyset$. As it is illustrated in Figure 6, every node $x \in L'$ has exactly ℓ neighbors in L, since otherwise the pair $\{v, x\}$ would not have exactly ℓ common neighbors in G. If we fix the node $a \in L$, then there exist in G exactly $(d-1)\ell$ paths of length two with extreme nodes a and b, where $b \in L$, since there are d-1 nodes $b \in L \setminus \{a\}$ and every such pair $\{a, b\}$ has exactly ℓ common neighbors in G. Among them, exactly d-1 ones have v as the intermediate node. Furthermore, exactly $\ell(\ell-1)$ ones have their intermediate node in L, since a has exactly ℓ neighbors in L and each of them has $\ell - 1$ other neighbors in L except a. Thus, each of the remaining

$$(d-1)\ell - (d-1) - \ell(\ell-1) = (d-\ell-1)(\ell-1)$$

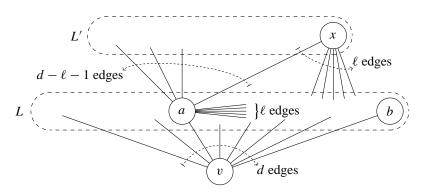


FIGURE 6 The case $L' \neq \emptyset$.

paths has a node in L' as their intermediate node. Consider now a node $x \in L' \cap N(a)$. The edge between a and x is included in exactly $\ell - 1$ paths of length two with extreme nodes a and b, where $b \in L$, since x has exactly $\ell - 1$ other neighbors in L except a. Thus, every $a \in L$ is neighbored to exactly

$$\frac{(d-\ell-1)(\ell-1)}{(\ell-1)} = (d-\ell-1)$$
(4)

nodes in L'. It follows that

$$\left|L'\right| = \frac{d\left(d-\ell-1\right)}{\ell} \tag{5}$$

since *L* includes *d* nodes, each one of them has $d - \ell - 1$ neighbors in *L'* and each node of *L'* is neighbored to ℓ nodes of *L*. Finally, since |V| = |L| + |L'| + 1 and |L| = d, it follows from (5) that

$$|V| = \frac{d(d-1)}{\ell} + 1$$
 (6)

Since (6) holds for the degree d of an arbitrary node $v \in V$, it results that every node v has equal degree d in G and therefore G is a d-regular graph.

A graph *G* with *n* nodes is called a *strongly regular* graph if there exist parameters k, λ, μ such that *G* is *k*-regular, every pair of adjacent nodes have exactly λ common neighbors, and every pair of non-adjacent nodes has exactly μ common neighbors [7]. The class of strongly regular graphs with *n* nodes and parameters k, λ, μ is denoted by $srg(n, k, \lambda, \mu)$. Due to Proposition 1, the *l*-friendship graphs coincide with the strongly regular graphs $srg(n, k, \lambda, \mu)$ with $\lambda = \mu = \ell$. Several non-trivial examples of $srg(n, k, \ell, \ell)$ are known in the literature, e.g. the line graph of K_6 with $n = 15, k = 8, \ell = 4$ [16], the cartesian product $K_4 \times K_4$ (or Shrikhande graph) with $n = 16, k = 6, \ell = 2$ and the halved 5-cube graph with n = $16, k = 10, \ell = 6$, which is referred to as Clebsch graph in [15].

4 CONCLUSION

In this paper we propose a purely combinatorial proof of the Friendship Theorem, originally proved by Erdös *et al.* Furthermore, we generalize the simple friendship condition in a natural way to the ℓ -*friendship condition*: "Every pair of nodes has exactly $\ell \ge 2$ common neighbors" and we prove that every graph which satisfies this condition is a regular graph. It remains open to characterize fully this class of graphs, which together with the recent proof of the Kotzig's conjecture, will complete the characterization of the graphs $P_{\ell}(2)$ and $P_{1}(k)$ that are the direct generalizations of the class $P_{1}(2)$ of the friendship graphs.

REFERENCES

- P. Erdös, A. Rényi, and V. Sós. On a problem of graph theory. *Studia Sci. Math.*, 1:215–235, 1966.
- [2] Katie Leonard. The friendship theorem and projective planes. Portland State University, December 7 2005.
- [3] J.Q. Longyear and T.D. Parsons. The friendship theorem. *Indagationes Math.*, 34:257–262, 1972.
- [4] H.S. Wilf. The friendship theorem. Combinatorial mathematics and its applications, 1971.
- [5] J.M. Hammersley. *The friendship problem and the love problem*. Cambridge University Press, 1983.
- [6] M. Aigner and G.M. Ziegler. Proofs from the Book. Springer, 2 edition, 2001.
- [7] D.B. West. Introduction to Graph Theory. Prentice Hall, 2 edition, 2001.
- [8] C. Huneke. The friendship theorem. American Mathematical Monthly, 109:192–194, 2002.
- [9] A. Kotzig. Regularly k-path connected graphs. *Congresus Numerantium*, 40:137–141, 1983.
- [10] J.A. Bondy and U.S.R. Murty. *Graph theory with applications*. American Elsevier Publ. Co., Inc., 1976.
- [11] A. Kotzig. Selected open problems in graph theory. Academic Press, New York, 1979.
- [12] A. Kostochka. The nonexistence of certain generalized friendship graphs. Combinatorics (Eger, 1987), Colloq. Math. Soc. J'anos Bolyai, 52:341–356, 1988.
- [13] K. Xing and H.U. Baosheng. On Kotzig's conjecture for graphs with a regular pathconnectedness. *Discrete Mathematics*, 135:387–393, 1994.
- [14] Y. Yang, J. Lin, C. Wang, and K. Li. On Kotzig's conjecture concerning graphs with a unique regular path-connectivity. *Discrete Mathematics*, 211:287–298, 2000.
- [15] A.E. Brouwer, A.M. Cohen, and A. Neumaier. *Distance-Regular Graphs*. Springer Verlag, 1989.
- [16] J.H. van Lint and R.M. Wilson. A course in combinatorics. Cambridge University Press, 2 edition, 2001.