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Abstract. In this paper, we consider a limited data reconstruction problem
for temporarily evolving computed tomography (CT), where some regions are

static during the whole scan and some are dynamic (intensely or slowly chang-

ing). When motion occurs during a tomographic experiment one would like
to minimize the number of projections used and reconstruct the image it-

eratively. To ensure stability of the iterative method spatial and temporal

constraints are highly desirable. Here, we present a novel spatial-temporal
regularization approach where all time frames are reconstructed collectively as

a unified function of space and time. Our method has two main differences

from the state-of-the-art spatial-temporal regularization methods. Firstly, all
available temporal information is used to improve the spatial resolution of each

time frame. Secondly, our method does not treat spatial and temporal penalty

terms separately but rather unifies them in one regularization term. Addition-
ally we optimize the temporal smoothing part of the method by considering

the non-local patches which are most likely to belong to one intensity class.
This modification significantly improves the signal-to-noise ratio of the recon-

structed images and reduces computational time. The proposed approach is

used in combination with golden ratio sampling of the projection data which
allows one to find a better trade-off between temporal and spatial resolution

scenarios.

1. Introduction. If one desires to improve the temporal resolution of a recon-
structed dataset in order to reduce blurring from sample motion there is a need
to either collect many projections quickly or to collect fewer projections. Further
there are cases, for example when imaging living things, where there is a need to
minimise the overall X-ray dose which can also lead to sparse temporal data. These
strategies result in a low signal-to-noise ratio (SNR) of reconstructed images which
are difficult to analyse and to segment. To increase the SNR and the resolution of
images it is advisable to use iterative reconstruction techniques [1] over analytical
methods (filtered back-projection (FBP) or Fourier direct inversion [2]).

In contrast to analytical methods, iterative approaches can accommodate: uncon-
ventional line integral, multiple acquisition models (mainly beneficial for emission
tomography), different noise models (e.g. Poisson instead Gaussian statistics can
be used to describe the photon counting process) and a priori information regarding
the solution can be embedded into the reconstruction algorithm [3].

When dealing with underdetermined ill-posed problems in tomography it is nec-
essary to impose additional constraints on the solution (e.g. smoothness) to ensure
well-posedness of the inversion [3]. For example, smooth solutions are favoured
more when applying the Tikhonov quadratic constraint (`2 norm minimization).
The Tikhonov penalty is beneficial in noise suppression, however it also biases the
solution significantly due to loss of the high frequencies (normally related to edges
in the images). Penalties which approximate the `1 norm, such as total variation
(TV) [4], can successfully deal with noise while leaving edges intact. Unfortunately
these penalties lead to an undesirable “cartoon” effect when images are recovered
as piecewise-constant valued regions. One can avoid the piecewise-constant appear-
ance in reconstructed images, for example, by using higher order PDE’s (e.g. fourth
order) for the regularizing terms [5]. However, such techniques are local in the sense
that they are based on the estimation of image gradients and usually very sensitive
to the level of noise in the images.

Non-local (NL) image denoising methods [6] and regularization penalties based
on them [7] have proven to be less sensitive to noise by considering similar neigh-
bourhood patches (squared windows) in the image. Recently, a patch-based (PB)
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regularization has been introduced which is equivalent to non-local penalties under
certain assumptions [8, 9]. The PB regularization is presented as an optimization
problem where different cost functions can be taken [8]. Some differences between
PB and NL regularization methods are that for PB models there is: (a) the proposed
cost function is independent on pre-estimated weights and therefore independent of
the initial guess, (b) theoretical proof given for iterative NL means, (c) more flexibil-
ity for choosing various penalties. Using non-convex penalties for the cost function
optimization can be beneficial for image quality, however it can lead to local min-
ima (points). In this paper we use the relaxation or continuation strategy similar to
[8] to improve the convergence properties of the iterative method using non-convex
penalties in regularization.

In situations when series (time frames) of projection data are available it is
beneficial to use temporal information in addition to spatial constraints [5],[10]-[18].
It is crucial to emphasize that the motion model is usually problem specific, therefore
various model assumptions lead to different 4D reconstruction algorithms (a good
overview can be found in [12]). Adding temporal information into the reconstruction
using only adjacent time frames (local) is the “safest” method since it minimizes the
risk of smoothing over distant time frames which potentially encompass significantly
different information. Various techniques are used to penalize differences in adjacent
time frames, such as, Gibbs smoothing [13], TV temporal penalty [16, 17], temporal
higher order PDE smoothing [5] and non-local means [14, 10].

The local temporal regularization approach is well suited for experiments where
significant motion is involved (which affects the region of interest (ROI)) during
the scan (e.g. acyclic breathing of an unconscious patient) [17]. Using distant time
frames in this case will cause strong artifacts in the reconstruction. However, in
some cases when the motion is hard to predict and the dynamic changes happen
within certain ROIs, the use of all time frames can significantly enhance the quality
of the static objects [15, 18].

In this paper, we consider a dynamic imaging model, where some regions are
static during the whole scan and some are dynamic (intensely or slowly changing)
[19, 20]. Good example of such model is a movement of a fluid front (e.g. oil, water
etc.) through a porous network (e.g. rock) [21]. The method we propose is closely
related to the PB regularization in spatial and temporal domains [10]. The main
difference from [10] is that all available time frames are used instead of only adjacent
ones and an additional optimization strategy in the temporal domain is performed
prior to the inter-patch calculations. The proposed combination is novel and leads
to a substantial increase in resolution of time-repetitive features while minimizing
the computational expense.

The majority of methods which use temporal information are local ones [12].
This is explained by the fact that in some applications the data changes quickly in
time, therefore employing distant time frames will result in errors. Another aspect
is that the computational time increases proportionally to the number of frames
considered. Nevertheless, for certain applications the use of all time frames can be
beneficial for the quality of the reconstructed images [5].

In this work we use ideas of Markov Random Field (MRF) probabilistic assump-
tions [22] to identify local structural correlations over multiple time frames. We
aim to find the image structures (edges) which remain static in time, then based
on the obtained structural information we perform temporal PB regularization. It
is important that we minimize the number of patches in the temporal domain by
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choosing elements of the image which belong only to the pre-built structural set.
By calculating similarity measures between time independent patches we tend to
minimize smoothing between structurally different elements.

This technique has the potential to significantly enhance edges which remain
static during the acquisition scan while dynamic features normally remain smooth
but are not eliminated. Additionally the proposed approach is able to decrease
the number of aliasing artifacts. Furthermore, strong reduction of computational
resources compared to other PB spatio-temporal methods [10] is provided with the
proposed technique.

We use a splitting technique [23] to minimize a cost function in an alternating
manner by switching between minimization of two sub-problems [8],[18],[16],[5]. The
first step is performed with a conjugate gradient least squares (CGLS) optimization
algorithm [25]; the second step is a fixed point iteration which includes the PB
spatial-temporal smoothing term.

Four different numerical experiments (noisy image sequence recovery, synthetic
modified Shepp-Logan phantom reconstruction, modelled fluid flow through rock
and real data reconstruction) with visual and quantitative assessments were per-
formed to evaluate the proposed approach. We perform a comparison of our method
patch-based spatial-temporal MRF (PB-ST-MRF) with other state-of-the-art reg-
ularization techniques, namely: PB with spatial regularization (PB-S) [8] and PB
spatial-temporal regularization (PB-ST) [10]. To further test our method we use
neutron tomography (nCT) data to reconstruct dynamic aqueous flow through pore
structures in rocks [21]. The very limited number of noisy projections (due to long
exposures in nCT) and random artifacts makes it a good application to examine
how effective the proposed method is.

The paper is organized as follows. In section 2, the methods are described for the
parallel beam tomography model in 4D, the NL and PB regularization strategies are
explained, the new MRF based spatial-temporal penalty and the proposed algorithm
are presented. Section 3 shows numerical experiments of image sequences recovery,
the reconstruction of two different synthetic dynamic phantoms and quantitative
assessment for various methods. In addition the real data nCT experiment is shown.
The results are discussed in section 4 and conclusions are drawn in section 5.

2. METHOD.

2.1. Parallel beam tomography model in 4D. A discrete representation of the
attenuation to be reconstructed can be written as a system of linear equations:

bj =

N∑
i=1

ajixi + δj , (1)

where bj , j = 1, . . . ,M is the measured projection data (sinogram), xi, i = 1, . . . ,N
is the discrete distribution of attenuation coefficient to be reconstructed and δj is
the noise component in the measurements bj . Weights aji ∈ [0, 1] (contribution of
element i to the value detected in the bin j) are forming the sparse system matrix
A : RN → RM.

Writing equation (1) in a matrix-vector form and adding the temporal dimension
gives

bk = Akxk + δk, k = 1, 2, . . . ,K (2)

where K is the total number of 3D time frames.
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The explicit (direct) solution for (2) can be written as x̂k = A†kbk with a pseudo-

inverse A†k = (ATA)−1
k ATk bk. This direct inversion (if practically possible) is highly

sensitive to noise due to amplification of high-frequency components: x̂k = A†kbk =

A†k(Akxk + δk) = xk + A†kδk. In our case the system of equations (2) is severely
underdetermined (M � N) and the system matrix A is ill-conditioned. To find
an approximate solution x̂k from the undersampled noisy measurements one can
choose iterative techniques instead of conventional direct approaches [1, 3, 11].

Here we aim to reconstruct iteratively the unknown set of images xk while adding
a regularizing penalty in the spatial and temporal domain.

2.2. Main structure of the 4D reconstruction algorithm. Let us define X =
(xT1 ,x

T
2 , . . . ,x

T
K)T as the vector of all image time frames and similarly define the

measured projections vector as B = (bT1 , b
T
2 , . . . , b

T
K)T . Therefore the system of

equations to solve is B = AX, where the block diagonal matrix A is given as:

A =


A1 0 . . . 0
0 A2 0
...

. . .
...

0 0 . . . AK

 (3)

The traditional approach to solve a linear system of equations, such as (1), is to

find the best fit X̂ to the exact X using a least-square approximation [1]. In other
words, one would like to minimize the `2 norm between the forward projections and
the projection data

X̂ = arg min
X

{
1

2
‖AX −B‖22

}
︸ ︷︷ ︸

Φ(X)

. (4)

Since the cost function Φ(X) is quadratic, one can use gradient based approaches
to find the minima of (4) by iteratively solving

Xn+1 = Xn − γ∇Φ(X). (5)

One can substitute ∇Φ(X) = AT (AX−B) into (5) to get the Landweber method
[1]. This method converges iteratively to the least-squares solution with initializa-
tion X0 = 0 provided that 0 < γ < 2/λmax where λmax is the largest eigenvalue of
ATA. However, the speed of convergence for the Landweber method is slow (higher
frequencies are recovered more slowly than the lower ones). In this work, we use the
conjugate gradient least squares (CGLS) algorithm [25] to accelerate convergence
and remove the need to identify the parameter γ empirically (5).

Unfortunately, even with faster optimization methods, such as CGLS, the solu-
tion for (4) is not uniquely defined due to noise and an ill-conditioned matrix A. To
turn (4) into a well-posed problem, one has to regularize the solution X by adding
the penalty term R(X), resulting in the following regularized problem:

X̂ = arg min
X

{
1

2
‖AX −B‖22 + βR(X)

}
, (6)

where β is a regularization parameter which represents the trade-off between the
data fidelity and the regularization term.

The nature of the penalty R(X) defines the strategy to minimize (6). If R(X)
is convex and differentiable (e.g. quadratic R(X) = 1

2‖ΓX‖
2
2, where Γ is a linear
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operator, such as a differential operator Γ = ∇), the gradient based algorithms
(5) can be used. In the case when R(X) = ‖ΓX‖1 the problem becomes non-
differentiable and either approximations to `1 can be used [4] or other than gradient
based techniques employed [23]. Non-convex penalties, e.g. R(X) = ‖ΓX‖0 can
be strongly beneficial for the sparse signals, however, to avoid local minima more
complicated optimization techniques should be used, e.g. simulated annealing [22].

Non-smooth penalties, such as total variation (TV) [4] have proven to be very
effective by non-linearly penalizing local outliers in the image. Piecewise constant
noiseless images can be obtained using the penalty R(X) = ‖∇X‖1. In contrast to
a local gradient based regularizer, such as TV, we use a non-local regularizer which
is related to non-local means [6].

2.3. Non-local means for the spatial regularization. Behind the NL means
denoising technique proposed in [6] there is a simple idea of exploring image redun-
dancy by averaging among similar patches. Instead of comparing intensity levels
for different image pixels, which is an erroneous technique for noisy images, one can
compare the subsets of pixels within squared window (patches). This approach is
much more robust against noise.

Let u : Ω → R be a noisy image, then the noiseless approximation û can be
obtained by NL averaging between patches in u as:

û =
∑
i∈Ω

∑
j∈N (i)

ωijuj , (7)

where N is a search window with dimensions (2Ns + 1) × (2Ns + 1), and ωij is a
weight between similarity patches P(ui),P(uj) with dimensions (2Np+1)×(2Np+1)
centred at points i and j respectively:

ωij =
1

Zi
exp−

‖P(ui)−P(uj)‖
2
η

h2 , (8)

where h is a filtering parameter, Zi =
∑
j∈N ωij is a normalization constant and η

is a Gaussian function which gives more weight to the central element.
With a proper choice of the parameter h, the patches in u which are found to be

similar in terms of the `2 metric will be averaged with higher weights ω. Dissimilar
patches will be weighted less, however they still contribute to the final estimation
of û. Therefore the search window N should be large but not too large to avoid
smoothing across many dissimilar patches (this leads to more blurry images). The
size of the searching patch P is also an important parameter, and it is normally
chosen according to the noise level in u. Additionally, the sizes of the search windows
and similarity patches dictate the computational complexity of the algorithm [6].

For the non-local regularization of (6), one can employ the following penalty term
[7]:

R(xk) =

N∑
i=1

∑
j∈N (i)

ωij,k(xi,k − xj,k)2, k = 1, 2, . . . ,K (9)

where spatial regularization of each time frame xk = (xi,k)i=1,...,N depends on the
pre-specified NL weights (8). Note that the weight ωij,k is calculated between i and
j for the particular time frame k. The main problem of penalties such as (9) is
the dependency of cost function on pre-specified weights ωij . In some cases a good
initialization for x to estimate ωij might not be available.
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Recently, a unified PB regularization penalty has been introduced [8] which is
independent on a priory selected weights:

R(xk) =

N∑
i=1

∑
j∈N (i)

φ(‖P(xi,k)− P(xj,k)‖η), k = 1, 2, . . . ,K (10)

where φ : R → R is a robust distance metric for non-linear weighting between
patches. In [8] the term (10) was modified into:

RPB−S(xk) =

N∑
i=1

∑
j∈N (i)

γij,k(xk)|xi,k − xj,k|2, k = 1, 2, . . . ,K (11)

γij,k(xk) =
∑
p∈B

η(p)$(i−p,j−p)(xk); p ∈ [−Np, . . . ,Np]× [−Np, . . . ,Np]︸ ︷︷ ︸
B

, (12)

and

$ij = ψ(‖P(xi)− P(xj)‖η), (13)

where ψ(x) = φ′(x)/2x is a weight function. The significant difference between the
model (11) and (9) is that the weights γ(xk) are obtained as the sum of similarity
measures $ between all patch pairs in the search window N .

It has been shown in [8] that the PB model (11) is equivalent to (9) under a
proper choice of the function φ. For example one can see the similarity to (8) with:

φ(x) =
(
1− exp(−x2/h2)

)
; ψ(x) = exp(−x2/2h2). (14)

Other types of φ(x) functions are given in [8], each producing slightly different
results, but in this work we use functions given in (14).

As it is presented now, the term (11) introduces PB spatial regularization (PB-S)
into problem (6), however at this stage the temporal dimension has not been con-
sidered. One can generalize the penalty term (11) to include temporal information
and obtain some improvements.

2.4. Temporal redundancy. In [10], the problem of penalized image reconstruc-
tion from undersampled Fourier data for MRI application has been considered.
The PB temporal regularization has been introduced by adding another dimension
to the problem, in other words, dynamic 2D data was tackled as a 3D volume,
where the third coordinate is time (k). In particular, for the penalty in (11), the
search window was taken as N = Ns,x × Ns,y × Ns,k and the similarity patch
P = Np,x ×Np,y ×Np,k. The size of the temporal dimension (the number of time
frames included) Ns,k was set to 5 and Np,k = 3. We refer to this approach as the
PB spatial-temporal technique (PB-ST).

Here we present a novel idea where all the available temporal data is used to
improve the resolution of correlated structures even further. We unify the spatial
and temporal approaches into one penalty term. However, patches in the temporal
space will be treated differently from patches in the local time frame. Since only
certain patches in the temporal space are taken into account, the computational
performance of the proposed technique is significantly faster in comparison to the
PB-ST method [10]. Furthermore, the proposed approach yields better SNR values
for the reconstructed images.

Following ideas from [10], the penalty term (11) can be generalized for all tem-
poral frames to be included with Ns,k = K. However, due to the large number of
potentially different time frames within the search window (N = Ns,x×Ns,y ×K),
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the denoising procedure might be prone to oversmoothing and infeasibly slow to
compute.

Our novel idea is to minimize the amount of temporal information by taking into
account only the most probable patches within the window N = Ns,x ×Ns,y ×K.
To identify those patches we use ideas based on Markov random fields (MRF) for
natural images [22]. The Gibbs assumption on the distribution of pixels in noiseless
images claims that closer neighbours to the central pixel have the highest probability
to be within one intensity class [24]. One can use a simple absolute difference metric
to find the most similar neighbours. This metric, however, is very sensitive to noise
in images, therefore, to ensure improved stability, we propose to calculate it globally
across multiple time frames.

The proposed unified spatial-temporal penalty is defined as follows:

RPB−ST−MRF (xk) =

N∑
i=1


∑

j∈N (i)

γij,k(xk)|xi,k − xj,k|2︸ ︷︷ ︸
Spatial

+

+
∑

l∈{1,2,...,K}\{k}

∑
j∈ℵK(i,n0,S)

γij,l(xl)|xi,k − xj,l|2︸ ︷︷ ︸
Temporal

 , k = 1, 2, . . . ,K (15)

The regularization term (15) consists of the spatial part which is exactly the same
as (11) and the temporal part which depends on the pre-specified set ℵK(i, n0, S).
Now we explain how the set ℵK(i, n0, S) is defined for every element i.

In Fig. 1 we show how the set ℵK(i, n0, S) can be identified for the number
of time frames K = 3. This example demonstrates the 3D problem (2D (x, y
coordinates) + 1D (time)), although it can be easily generalized to 4D. We call
ℵK(i, n0, S) the structural set, since it represents the most probable (in the sense
of Gibbs notion) distribution of correlated structured features (e.g. edges) across
all time frames in the searching window S. Initially, the generalized map is formed
by a linear projection of the similarity measures (absolute differences) for every
neighbour j, calculated in every time frame, on a imaginary space (depicted as a
bottom layer in Fig. 1, left). Then, the n0 number of the most prominent neighbours
is chosen to build the structural set ℵK(i, n0, S) (depicted as a bottom layer in Fig.
1, right). Finally, the weights are calculated only for the elements of the selected
set ℵK(i, n0, S) (temporal part of the term (15)).

Selection of the most prominent neighbours (total number n0) is performed ac-
cording to the following thresholding principle:

P1 ≤ · · · ≤ Pn0 ≤ · · · ≤ Pn; n = 1, . . . , |S(i)| (16)

where Pn =
∑K
k=1 |ui,k − ujn,k|, and |S(i)| is a total number of neighbours in the

searching window (e.g. for S = 3 in 3D, |S(i)| = S × S × S − 1 = 26 neighbours).
The threshold value Pn0

can be specified by assigning n0 to some constant value
and usually n0 is taken to be 25− 30% of |S(i)| (e.g. n0 = 9 for |S(i)| = 26).

When the structural set is found ℵK(i, n0, S) (see Fig. 1, right) one can perform
the calculation of PB weights (12) with every selected element (neighbour) in the
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k1

k2

k3

S

k1

k2

k3

S

Figure 1. 3D representation (2D (x, y dimensions) + 1D (time))
of the structural set ℵK(i, n0, S) which is build from all available
time frames K (here k1,2,3). For every time frame the absolute
differences are calculated and then summed over all time frames
resulting in the generalized map (bottom layer in left image). The
resulting generalized map of all absolute differences is analysed
and certain neighbours (total amount of n0) are taken into the set
ℵK(i, n0, S) (bottom layer in right image). Then for each element
i, the set ℵK(i, n0, S) is used to choose elements for the PB regular-
ization in the temporal space only. On the right image the weights
are calculated with respect to the time frame k1.

other time frames. Note that for the current time frame (k1 on Fig. 1, right) the
MRF-based set ℵK(i, n0, S) is not used but the classical spatial PB regularization
is performed (15).

The main idea of the following approach is to minimize the number of candi-
dates in the temporal domain for calculating non-local weights. If some structural
boundaries are present through time they will be further enhanced since all irrele-
vant (dissimilar) neighbours are not considered.

Therefore the proposed PB-ST-MRF technique uses only Ns,xNs,yNs,z+Pn0
K+

K elements instead Ns,xNs,yNs,zK for PB-ST method. Our modification signif-
icantly reduces the number of computations and increases the resolution of the
images.

2.5. Numerical algorithm. In this section we present an efficient way to solve (6)
with the proposed penalty (15). Following [8] we split our minimization problem into
two subproblems. The first problem is the least squares minimization (4) which we
solve with the CGLS algorithm [25]. And the second problem includes the proposed
penalty term (15):

arg min
xk
‖xk − x̂k‖22 + βRPB−ST−MRF (xk), k = 1, 2, . . . ,K (17)
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where x̂k is initialized with a solution from CGLS step. Note that for PB-ST-MRF
penalty (15) all time frames K should be reconstructed prior to the step (17).

The problem (17) is solved with one (though many iterations are possible) fixed
point step [8]:

xn+1
k =

x̂k + β
2

[∑
j∈N (i) γij,k(x̂k)x̂j,k +

∑
l∈{1,2,...,K}\{k}

∑
j∈ℵK(i,n0,S) γij,l(x̂l)x̂j,l

]
1 + β

2

[∑
j∈N (i) γij,k(x̂k) +

∑
l∈{1,2,...,K}\{k}

∑
j∈ℵK(i,n0,S) γij,l(x̂l)

]
(18)

The pseudocode of our reconstruction method is given in Algorithm 1. The
regularization methods used in this paper were implemented in C with open multi-
processing (OMP) support and CUDA languages to parallelize and accelerate com-
putations. The open source codes are freely available through the following link
[28].

Algorithm 1 Simultaneous 4D reconstruction with unified PB-ST-MRF regular-
ization and continuation strategy

Initialize: X = 0, N (iterations number), β, Ns, Np, hfixed, hfac, n0, S

h = hfixed +Nhfac;

while n < N do

• perform one iteration of CGLS to get estimate X̂

• perform fixed point step (18) using h in γij,k(x̂k) estimation and

hfixed in γij,l(x̂l) estimation

• check convergence criteria; if stop return Xn+1

• h = h−Nhfac;

• n = n+ 1;

end

return Xn+1

Using non-convex penalties with (13) can be beneficial in improved resolution
of images, however the optimization problem becomes more challenging [8]. Local
minima might be present and to avoid convergence to them there are effective but
highly computationally expensive methods, such as simulated annealing [22]. In
[8], the continuation strategy is used to improve convergence, however location
the global minima is not guaranteed. The main idea is to relax parameter h by
taking it larger on the first iterations of algorithm and then reducing its value in
iterations. This leads to isotropic smoothing of noise on the first iterations and then
non-isotropic treatment of image structures on higher iterations. In practice this
technique works quite well and it also very simple to implement.

In our algorithm we perform this strategy for the spatial part of the regularization
term (15) but keep h fixed for the the temporal part (to avoid larger weights in-
between different time frames). The factor hfac is chosen to be a small constant. For
our experiments we used the number of iterations as a stopping criteria for iterative
process, however other stopping rules can be used [1].
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3. Numerical Experiments. In this section we perform four different numerical
experiments to demonstrate the feasibility and the improvement of the proposed
technique over current state-of-the-art methods. The first experiment presents an
image sequence denoising problem. We compare three denoising algorithms which
all use the PB model to restore the noisy image. The second and third experiments
demonstrate the 2D tomographic reconstruction of dynamically changing phantoms
and the fourth one considers a dynamic reconstruction of neutron data. For parallel
projection and backprojection operations we used GPU accelerated modules from
the ASTRA toolbox [31].

In the following experiments we use a non-convex function φ (14). The algorithms
differ in the way the temporal information is handled. The BP-S method performs
only spatial denoising [8], the BP-ST method treats the 2D sequence of images as
3D data (adjacent time frames are taken only) [10]. The proposed method BP-
ST-MRF (15) uses all available image sequences, however the amount of temporal
information is significantly reduced with the MRF approach (see section 2.4).

3.1. Image sequence denoising experiment. Here we demonstrate an exam-
ple of denoising a sequence of noisy images (video denoising). The noiseless image
“Lena” was taken (see Fig. 2 (a)) and 25 realizations of normal noise (with stan-
dard deviation of 10% of the signal) have been applied resulting in 25 images with
randomly distributed noise (see the first image from the sequence on Fig. 2 (b)).

To quantify our results we use the signal-to-noise ratio (SNR) metric in decibels
(dB):

SNR(u, u∗)ROI = 20 log

(
‖u‖2

‖u− u∗‖2

)
, (19)

where u is the ideal image and u∗ is a recovered one.

Figure 2. Image sequence denoising experiment. (a) original
noiseless image (magnified part), the original image has 256× 256
pixels size; (b) a noisy image; (c) PB-S; (d) PB-ST; (e) PB-
ST-MRF. Images obtained with the following parameters: Ns =
5,Np = 3, h = 0.2, β = 0.1, n0 = 3, S = 3.

We empirically tested each of the methods for the optimal set of parameters to
achieve the best SNR values which are provided in table 1. The spatial denoising
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with PB-S method gives the lowest SNR and strong artifacts are visible on the
images (see Fig. 2 (c)). By including adjacent image sequences with PB-ST method
one can reduce the number of artifacts, improve image resolution and increase
the SNR. Using all available image sequences with the PB-ST-MRF method we
significantly improve resolution (note how some features are better resolved, e.g.
the hat, nose) and it gives the best SNR level.

Table 1. Image sequence denoising experiment illustrated in Fig.
2, SNR (19) and computation times for the various methods

unoise PB-S PB-ST PB-ST-MRF
SNR/dB 15.32 22.6 25.8 28.2
Time/sec 10.1 510.2 25.9

In table 1, the computation times for all algorithms on 8 cores Intel Xeon CPU
2.27GHz are provided. The times given in the table represent the recovery of all
25 image sequences. The computer codes (C and CUDA versions) which reproduce
the presented example are freely available through the following link [28]. The
computational time strongly depends on the size of the searching window and the
similarity patch. With the number of image sequences the computational time
increases drastically (see the time for PB-ST method). For 4D data with higher
resolution the computational time for PB-ST method becomes impractical. The
proposed reduction technique within the PB-ST-MRF method (see section 2.4) can
significantly reduce the computation time. The GPU acceleration of the algorithm
further reduces time of computation.

3.2. Golden ratio firing order. For the more realistic modelling of our recon-
struction experiment using a synthetic phantom we used a Golden ratio (GR) scan-
ning angle decomposition strategy [29, 30]. This firing technique is used in practice
[20] providing a flexible image acquisition strategy for dealing with motion related
experiments [29]. Since the real data results considered in this paper were obtained
using GR acquisition, it is more consistent to use this firing technique for the syn-
thetic data as well.

The GR scanning approach [30] is used to obtain projections in a non-sequential
order. The basic idea is to adapt the angle sequence of projections so that any
subsets of chronologically contiguous projections contain sufficient information for
reconstruction [29]. This technique is well suited to iterative reconstruction methods
when one can divide the scan into an arbitrary number of subscans which are
normally sampled below the Nyquist rate.

The method uses the GR constant χ = (1 +
√

5)/2 to determine the next pro-
jection angle. In this scheme, the acquisition angle θ of i projection is described
by

θi = iχπ modπ, (20)

therefore two consequent projections taken with (20) will be nearly orthogonal to
each other. Every subsequence of the whole projection set covers the scan arc from
π to 2π. This is an important feature for the ability to reconstruct the data with
different spatiotemporal resolutions. This acquisition scheme can be started with
no predefined end and arbitrarily terminated at any convenient end point [29].
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3.3. Dynamic 2D Shepp-Logan (SL) phantom reconstruction. In this sec-
tion we present numerical results for the reconstruction of an idealised 3D phantom
(x, y spatial coordinates and time k).

In Fig. 3 (a), the 3D synthetic phantom for the numerical experiments is pre-
sented. The spatial x, y dimensions are 128×128 pixels and the temporal dimension
is K = 64 (z dimension in the volume shown in Fig. 3 (a)). The phantom com-
prises several static objects which remain stationary during the experiment (objects
without numbers in Fig. 3 (a)) as well as objects 1-3. The presented objects have
different intensity values. We test our method by introducing 64 frames during
which object 1 is shifting, object 2 is rotating and object 3 is contracting (see Fig.
3 (b-d)).

We performed a forward projection of 2D xk phantoms (k = 1, 2, . . . ,K) using
160 detectors and 30 acquisition angles per time frame. Note that the 30 angles
were distributed over a [0, π] angular interval using the GR strategy (20) and we
assume that the whole object is stationary during each time frame. Then δk re-
alizations of Poisson noise were applied to the data assuming an incoming beam
intensity of 5000 photon counts per detector pixel. Using noisy sinograms bk, all
phantoms were reconstructed using the CGLS method [25], PB-S, PB-ST, PB-ST-
MRF methods (see Fig. 4). To demonstrate how temporal resolution can be easily
lost we reconstructed the whole set bk using FBP [2] as a single sinogram (see Fig.
3 (e)).

Figure 3. 3D phantom with spatial dimensions 128 × 128 pixels
and K = 64 time frames during which 30 projections were acquired
for each. It comprises of several static objects (no numbers) and
dynamic objects (1-3). Object 1 moves from the left to the right,
object 2 quickly rotates anticlockwise around its own axis and ob-
ject 3 contracts. One can visualise the time series as a 3D rendered
volume (a). Slices 1 (b), 30 (c) and 64 (d) are shown. In (e),
the FBP reconstruction of all time frames forming one sinogram
(size of 160 × 1920 pixels) is presented. Note the loss of temporal
resolution and the significant noise level.

Table 2. Dynamic SL reconstruction experiment, SNR (19) values
for the various methods illustrated in Fig. 4.

FBP CGLS PB-S PB-ST PB-ST-MRF
Static ROI’s 12.4 15.1 23.6 25.4 29.0
Dynamic ROI’s 16.3 19.0 22.1 24.3 22.2
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Figure 4. 2D reconstructions of frame No. 30 (see Fig. 3 (c))
reconstructed from 30 projection angles: FBP (a), CGLS (b), PB-
S (c), BP-ST(d), BP-ST-MRF (e). The parameters used were
(see Algorithm 1): N = 10, β = 0.002,Ns = 5,Np = 3, hfixed =
0.1, hfac = 0.01, n0 = 3, S = 3.

The reconstruction processes for FBP, CGLS, PB-S, PB-ST and BP-ST-MRF
methods were optimized to the maximum of SNR values for each method. The
SNR values were calculated for ROIs belonging to the static and dynamic objects
and are summarized in table 2. As expected, for static objects the proposed method
outperforms others, however for dynamic objects the PB-ST method gives slightly
better results.

It can be noted that not all dynamic objects reconstructed with the PB-ST-MRF
method are worse than with PB-ST. Notably object 2 (which has a fast and repet-
itive rotation cycle) is reconstructed more poorly (the loss of the elliptical shape)
than the others with PB-ST-MRF. This is due to the fact that our MRF based
method generalizes information about repetitive structures in time (see section 4).
The PB-ST-MRF method is better suited to objects which are appearing and dis-
appearing in time without any repetition, such as the object 1. Since the object 2
is contracting slowly in time our method brings certain artifacts which affect the
shape of the circle. However it is not crucial and certainly not worse in resolution
than PB-S. We can generalize by stating that the proposed method gives the same
or better results for dynamic objects than the spatial based approach. However the
recovery of the static objects is considerably better with the proposed method.

3.4. Dynamic reconstruction of a simulated phantom modelling fluid flow
through rock. To further demonstrate the applicability of the PB-ST-MRF method,
a more realistic phantom was designed.

The synthetic phantom was created as follows. First, a high quality reconstruc-
tion based on an X-ray projection data set of rock (porous granitic gravel), which
was acquired on a Nikon XTH 225 ST scanner at the Manchester X-ray facility,
was calculated with a Feldkamp algorithm. This reconstruction is displayed in Fig.
5(a). Based on this reconstruction, the rock region was extracted and all other
attenuation values were set to zero, resulting in the image displayed in Fig. 5 (b).
Next, fluid flow was simulated in the void space region, where the time points at
which fluids enters a certain voxel were randomly generated by applying a global
thresholding operation on a 2D Perlin noise image [26].

In total, 1500 projections using the GR firing order (20) were simulated. Each
projection was generated with a strip kernel [2] and a higher resolution version of
the phantom, i.e., on a 800 × 800 isotropic pixel grid. Poisson distributed noise
was applied to the projection data, assuming an incoming beam intensity of 10000
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(photon count). Reconstructions were calculated on a 200 × 200 isotropic pixel
grid and with a linear projection model [2], thus avoiding the “inverse crime” of
generating the data with the same model as the model that is used for calculating
the reconstruction [27]. In total, 30 different time frames were reconstructed by
subdividing the simulated projection data into 30 distinct subsets of 50 projections
each.

Figure 5. Reconstruction of the porous granitic gravel sample
from 2000 projections using the Feldkamp algorithm (a); three dif-
ferent time frames of the resulting sequence of simulated images
are displayed in (b-d)

Figure 6. 2D reconstructions of the time frame k = 1 (top row)
and k = 18 (bottom row) with methods CGLS (a), PB-S (b), BP-
ST(c), BP-ST-MRF (d). The parameters used were (see Algorithm
1): N = 10, β = 0.01,Ns = 5,Np = 3, hfixed = 20, hfac = 1, n0 =
3, S = 3.

Similarly to the experiment in section 3.3, we calculated SNR values for the static
(rock) and for dynamic (simulated fluid flow) ROIs (see table 3). The behaviour of
the proposed method is very similar to the previous experiment. The static part
of the phantom (rock) is reconstructed with very good resolution (see Fig. 6) and
with higher SNR in comparison to all other methods. However, the reconstructed
dynamic part with BP-ST-MRF method is slightly biased (oversmoothed) in com-
parison to the ground truth and the SNR value is lower than for BP-ST method.
This drawback of the proposed technique is expected and several solutions to over-
come this problem are given in section 4.
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Table 3. Dynamic SL reconstruction experiment, SNR (19) values
for methods

CGLS PB-S PB-ST PB-ST-MRF
Static ROI’s 9.29 15.27 16.2 17.1
Dynamic ROI’s 11.1 16.35 17.23 16.48

As indicated by the numerical results, our method performs better or worse
depending on the specific class of the dynamic reconstruction problem. There is,
however, a class of applications where our method consistently gives better results
than the other methods.

3.5. Reconstruction of neutron tomography data. Neutron tomography (nCT),
like x-ray tomography (xCT), is a non-destructive technique which can provide
three-dimensional (3D) images from reconstruction of a series of 2D projections
(radiographs). Unlike x-rays, neutrons interact with the atomic nuclei, and so ma-
terials with similar atomic numbers can have different attenuation cross sections.
The two techniques are therefore often complementary, giving different information
about the internal structure [19].

In this study we exploit the high attenuation of neutrons by hydrogen to locate
water rivulets within a rock volume (see Fig. 7). Aqueous fluids are very difficult to
observe using x-rays due to their low attenuation compared to rock, therefore nCT
can be helpful in this case, but because neutron fluxes are typically much lower than
x-ray fluxes neutron images of temporally varying systems are often very noisy.

Figure 7. left: basalt rock beads inside a neutron transparent
aluminium container, reconstructed using CGLS-PBS algorithm;
right: sandstone rock beads with finer porosity (10-20%) and a
different type of pore geometries to basalt.

The experiment was performed on the cold neutron imaging Beamline ICON
at SINQ spallation neutron source at Paul Scherrer Institute, Switzerland [20]. A
packed set of porous rock beads (see Fig. 7) (basalt with 4 mm diameter and
sandstone with 1mm in a middle section) was loaded into a 25 mm thin walled
aluminium tube, and the sample holder mounted in a gravity driven flow cell. The
flow cell was then mounted on a rotating stage in the essential parallel neutron
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beam. A CCD camera was used to acquire images at different rotation angles
according to the GR selection rule (20) with an exposure time of 20s per projection.

In nCT the spatial resolution available is generally worse than is possible with
x-ray systems, the flux lower and nCT projections are more strongly influenced
by a scattering contribution, making reconstructions significantly noisier than for
xCT [20]. In this experiment, the signal to noise ratios are reduced by the short
acquisition times for each frame and the reduced number of projections employed
to try and capture the dynamic process. Therefore the measured data is ideally
suited for the proposed spatial-temporal technique.

In this study we present reconstructions of rock samples in the absence (dry)
and presence (wet) of aqueous flow though pore structures in the rocks (basalt and
sandstone). In order to capture the dynamic propagation of water through the
pores, it is necessary to use a limited number of projections and the use of iterative
techniques for data reconstruction is essential. We employ FBP, CGLS, PB-S and
PB-ST-MRF algorithms to reconstruct the data. The algorithm PB-ST is not used
here.

To reconstruct basalt rock, only 80 projections per time frame were used with
1000 × 1000 pixels image size. The part of image which shows the dynamic fluid
flow through basalt beads for different time frames is demonstrated on Fig. 8.

The proposed method provides a significant enhancement of SNR and resolution
in reconstructed images while showing dynamic water ingress in time. The streak
artifacts (due to damaged pixels in the projection data) are completly alleviated
with the PB-ST-MRF method (see Fig. 8 (time step 2)). The improved quality of
reconstructed images makes further quantitative analysis of geological features and
water dynamics possible. We also present a few rendered images of the reconstructed
sandstone sample (see Fig. 9) where changes in water distribution within the rock
are clearly visible.

4. DISCUSSION. Dynamic processes that require fast tomographic imaging [32],
such as aqueous flow through geological samples, require the use of as few projections
as possible per frame and a mechanism for dealing with low signal to noise ratio.
Using adjacent time frames leads to better bias-noise characteristics, however, for
certain experiments the use of all time frames can be more beneficial.

Normally, the static structures are not the main object of interest for the exper-
imentalist, therefore inducing strong artifacts in the temporal domain can lead to
biased quantifications. Even using non-linear measures, such as non-local weights,
to penalize differences in-between time frames can lead to bias resolving spatial and
temporal resolution.

Exploiting all time frames in the MRF based structural map (see section 2.4) can
lead to oversmoothing effects in the dynamic regions. There are possible solutions to
overcome this drawback of the method and this is the subject of our future research.
One possible approach consists of reducing the weights or completely restrict the
temporal PB averaging in the dynamic regions. To implement this approach, the
static and dynamic parts of the object (e.g., rock and water, respectively) should be
identified prior to the actual reconstruction. This identification can, for example,
be achieved by acquiring a priori projections from the static object (i.e. before the
dynamics initiated) and extracting the static/dynamic part from the corresponding
static reconstruction. Furthermore, the dynamic event location can be identified
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Figure 8. 2D slices of reconstructed 3D basalt sample using FBP,
CGLS, PB-S, PB-ST-MRF methods. Each time frame (here k=1-
5) was reconstructed from only 80 projections. Note the improved
spatial resolution without loss of the temporal resolution and the
absence of streak artifacts with PB-ST-MRF method. The parame-
ters used were (see Algorithm 1): N = 10, β = 0.023,Ns = 5,Np =
3, hfixed = 0.11, hfac = 0.03, n0 = 3, S = 3.

Figure 9. The reconstructed and rendered volumes of the sand-
stone sample (see Fig. 7, right) related to the different time states,
the dry state (k = 1) is a reconstruction using 150 projections and
subsequent 3 reconstructions of a wet stages are reconstructed from
subsequent 100 projections.
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automatically and this information can be exploited to apply some extra constraints,
e.g. for restricting the set of time frames that is used in the temporal averaging.

Additionally, different weighting factors can be assigned to different time frames,
based on a priori knowledge of the dynamic, resolution and noise characteristics of
each specific frame (e.g., the number of projections is higher in one frame than in
another frame).

Discontinuous scanning protocols, such as Golden ratio sampling is a sensible
option for dynamic experiments. This scanning technique allows flexibility to in-
vestigate a range of time frame/spatial resolution scenarios to determine the most
appropriate balance between temporal and spatial resolution [29].

For certain experimental problems the identification of the displacement field
can help to embed the motion model in reconstruction. Unfortunately for the fluid
flow problems the motion model is hard to describe due to its very random and
discontinuous behaviour.

Increasing the number of time frames gives better SNR for the proposed method
sacrificing the computational speed.

5. CONCLUSION. In this paper, we presented results of a spatial-temporal reg-
ularization technique which is based on non-local methods for image denoising. The
novelty of the proposed penalty is in the unified and global nature of treating spatial
and temporal information. Additionally, a new optimization strategy in the tem-
poral domain is proposed, leading to a reduction of computation time and better
resolution and noise characteristics of the reconstructed images.

Applying the proposed method to different synthetic phantoms resulted in better
resolution and reduced noise in the reconstructed images. Additionally, the method
was successfully applied to a 3D neutron tomography data set which has a limited
amount of noisy projections. Obtained reconstructions showed good SNR and res-
olution characteristics. As such, this method has potential for application in the
visualisation and quantification of dynamic processes.
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