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We address a long-standing problem of describing the thermodynamics of an accelerating black hole. We
derive a standard first law of black hole thermodynamics, with the usual identification of entropy
proportional to the area of the event horizon—even though the event horizon contains a conical singularity.
This result not only extends the applicability of black hole thermodynamics to realms previously not
anticipated, it also opens a possibility for studying novel properties of an important class of exact radiative
solutions of Einstein equations describing accelerated objects. We discuss the thermodynamic volume,
stability, and phase structure of these black holes.
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Black holes are possibly themost fascinating objects in our
Universe. They provide a practical environment for testing
strong gravity and are also incredibly important theoretical
tools for exploring Einstein’s general relativity (GR) and
beyond. In spite of their central importance, the number of
exact solutions describing a black hole is incredibly small; the
Kerr-Newman family give us our prototypical black hole in
four dimensions, and these are parametrized simply by mass,
charge, and angular momentum. There is, however, another
exact solution for a black hole, less well known: the Cmetric
[1–4] that represents an accelerating black hole, a conical
deficit angle along one polar axis attached to the black hole
providing the force driving the acceleration. Although this
exact solution is idealized, the conical singularity pulling the
blackhole canbe replacedbya finite-width cosmic string core
[5] or a magnetic flux tube [6], and one can imagine that
something like the C metric with its distorted horizon could
describe a black hole that has been accelerated by an
interaction with a local cosmological medium.
The C metric also has applications beyond pure classical

GR. It describes the pair creation of black holes, in either a
magnetic or an electric field [6], and also the splitting of a
cosmic string [5,7]. Its most important theoretical appli-
cation was probably in the construction of the black ring
solution in 5D gravity [8]. The C metric has also served as a
testing ground for the study of gravitational radiation (see,
e.g., [9]). Yet, in spite of this, it has remained a somewhat
esoteric solution, not fully integrated into the arsenal of
tools for the black hole practitioner. This is partly because
the accelerating black hole is not so well understood
theoretically, a glaring hole being the lack of a prescription
for defining the thermodynamics of these solutions.

Blackhole thermodynamics [10–12] has been an important
and fascinating topic providing key insights into the nature of
black holes and classical gravitational theory and also open-
ing a window to quantum gravity. This is especially true for
black holes in anti–de Sitter (AdS) space, where thermal
equilibrium is straightforwardly defined [13] and physical
processes correspond via a gauge-gravity duality to a strongly
coupled dual thermal field theory [14]. To a large extent, the
thermodynamic properties of black holes have been mapped
out, with a good understanding of the role of various
asymptotic properties, horizon topologies, and charges, yet
to our knowledge there has been no critical discussion in the
literature of the thermodynamics of accelerating black holes.
In this Letter, we seek to address this problem, by

presenting a consistent description of the thermodynamics
of an accelerating black hole. Not only will this bring the C
metric onto a more even footing with other exact solutions
commonly used to model black holes but may also allow for
an investigation of new and interesting phenomena in the
arena of holography, where it will correspond to a finite-
temperature highly nontrivial systemwith boundary physics.
One feature of the accelerating black hole is that it

generically has an acceleration horizon due to the fact that a
uniformly accelerating observer asymptotically approaches
the speed of light and, hence, can never see anything
beyond this asymptotic light cone. The existence of this
second horizon raises the problem of thermodynamic
equilibrium, as one would expect the local temperatures
associated to each horizon to be different. One way around
this problem is to consider a negative cosmological
constant that can negate this effect and “remove” the
acceleration horizon. Such a black hole is said to be slowly
accelerating and is displaced from the center of the
negatively curved space-time at the cost of applying a
force in the form of a cosmic string ending on the black
hole horizon [15]. Figure 1 shows a representation of the
black hole horizon with a cosmic string.
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One advantage of having no additional horizon is that the
temperature of the black hole can now be uniquely defined;
yet the existence of the cosmic string pulling the black hole
off center means that the black hole is not isolated, and
therefore one should be careful when considering thermo-
dynamic variations. Furthermore, although the C metric
does not appear to be time dependent, an accelerating
object carries with it the notion of some form of time
variance, and there is nonzero radiation at infinity [9],
which raises the question: How can a system be in
equilibrium if it is accelerating?
Here we will answer these questions, formulating and

investigating the thermodynamics of these slowly accel-
erating black holes. We begin by discussing the physics of
the accelerating black hole, explaining the relation between
physical quantities and the parameters in the mathematical
solution. By considering the black hole plus string system
as a unit, allowing only physically consistent variations, we
derive a standard first law of thermodynamics and a Smarr
formula. We will see that the accelerating black hole throws
up a few new surprises in terms of the dynamical processes
that are allowed. Finally, we discuss the thermodynamical
properties of our black holes and the existence of a
Hawking-Page transition [13].
A charged accelerating AdS black hole is represented by

the metric and gauge potential [4]:

ds2 ¼ 1

Ω2

�
fðrÞdt2 − dr2

fðrÞ − r2
�
dθ2

gðθÞ þ gðθÞsin2θ dϕ
2

K2

��
;

F ¼ dB; B ¼ −
e
r
dt; ð1Þ

where

fðrÞ ¼ ð1 − A2r2Þ
�
1 −

2m
r

þ e2

r2

�
þ r2

l2
;

gðθÞ ¼ 1þ 2mA cos θ þ e2A2cos2θ; ð2Þ
and the conformal factor

Ω ¼ 1þ Ar cos θ ð3Þ
determines the conformal infinity, or boundary, of the AdS
space-time. The parameters m and e are related to the black
hole mass and electric charge, respectively, A > 0 is related

to the magnitude of acceleration of the black hole, and
l ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

−Λ=3
p

is the AdS radius.
This particular way of writing the metric gives trans-

parent continuity to the AdS black hole and shows how the
acceleration distorts the spherical surfaces (including the
horizon) represented by the polar θ, ϕ angles (see [16]
for a discussion of various coordinates for the C metric).
Looking at (2), we see that the acceleration parameter
competes with the cosmological constant “r2=l2” term in
the Newtonian potential; alternatively, the negative curva-
ture of AdS space negates the effect of acceleration. It is
easy to see from the form of f that A < 1=l describes a
single black hole suspended in AdS space with the only
horizon being that of the black hole [15]. For A > 1=l, two
(oppositely charged) black holes are present and separated
by the acceleration horizon [3,17]; the case of A ¼ 1=l is
special and was discussed in Ref. [18]. We further restrict
mA < 1=2 so that our angular coordinates correspond to
the usual coordinates on the two-sphere. For a discussion of
general C metrics in AdS space and their holographic
implications, see [19].
The presence of the cosmic string is discovered by

looking at the angular part of the metric and the behavior of
gðθÞ at the poles, θþ ¼ 0 and θ− ¼ π. Regularity of the
metric at a pole demands

K� ¼ gðθ�Þ ¼ 1� 2mAþ e2A2: ð4Þ
Clearly, for mA ≠ 0, it is not possible to fix K such that we
have regularity at both poles, and the lack of regularity at an
axis is precisely the definition of a conical singularity.
Typically,K is chosen to regularize one pole, leaving either a
conical deficit or a conical excess along the other pole. Since
a conical excess would be sourced by a negative energy
object, we suppose that our black hole is regular on the north
pole (θ ¼ 0), fixing K ¼ Kþ ¼ 1þ 2mAþ e2A2, and then
on the south pole axis, θ ¼ π, there is a conical deficit:

δ ¼ 2π

�
1 −

g−
Kþ

�
¼ 8πmA

1þ 2mAþ e2A2
; ð5Þ

that corresponds to a cosmic string with tension μ ¼ δ=8π.
In summary, there are five physical parameters in the

C-metric solution: the mass m, the charge e, the accel-
eration A, the cosmological constant represented by l, and
the tension of the cosmic strings on each axis, encoded by
the periodicity of the angular coordinate. It would seem,
therefore, that a first law of thermodynamics could relate
variations in the mass of the black hole to variations in
charge, pressure (Λ), entropy, and acceleration; however,
this is not the case.
When considering thermodynamical properties of the

black hole, we must consider physically reasonable varia-
tions we can make on the system that now consists of the
black hole plus a cosmic string. Intuitively, if we add mass
to the black hole, this will have a consequence: A more

FIG. 1. A cartoon of the slowly accelerating black hole in the
Poincaré disk of AdS space: The horizon has a conical shape at
one pole where the cosmic string (indicated by a wiggly line)
attaches and pulls on the black hole, suspending it away from the
center of AdS space, here shown by a gray cross.
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massive object will accelerate more slowly; thus, changing
“M” in the system will also change acceleration. If the
black hole is charged, then changing Q will likewise alter
the acceleration. Given that the cosmic string pulling the
black hole cannot instantaneously change its tension
(indeed, if it is a vortex solution to some field theory
model, it cannot change its tension at all), this means that
our thermodynamic variations will be constrained by the
physics of the system.
We start by identifying the relevant thermodynamic

quantities. For the black hole mass, we used the method
of conformal completion [20–22]. This takes the electric
part of the Weyl tensor projected along the timelike
conformal Killing vector, ∂t, and integrates over a sphere
at conformal infinity. The calculation gives

M ¼ m
K
; ð6Þ

and, thus, m gives the mass of the black hole. Note that,
unlike the rapidly accelerating black hole, this is a genuine
Arnowitt-Deser-Misner–style mass and not a “rearrange-
ment of dipoles” as discussed in Ref. [23], where a boost
mass was introduced. Similarly, the electric charge Q and
the electrostatic potential Φ evaluated on the horizon are,
respectively,

Q ¼ 1

4π

Z
Ω¼0

�F ¼ e
K
;

Φ ¼ e
rþ

: ð7Þ

Meanwhile, we identify the entropy with a quarter of the
horizon area

S ¼ A
4
¼ πr2þ

Kð1 − A2r2þÞ
ð8Þ

and calculate the temperature via the usual Euclidean
method to obtain

T ¼ f0ðrþÞ
4π

¼ m
2πr2þ

−
e2

2πr3þ
þ A2m

2π
−
A2rþ
2π

þ rþ
2πl2

; ð9Þ

using fðrþÞ ¼ 0 to collect terms together. We now identify
P with the pressure associated to the cosmological constant
according to

P ¼ −
Λ
8π

¼ 3

8πl2
; ð10Þ

which allows us to rewrite the temperature equation (9) as

TS ¼ M
2
−
ΦQ
2

þ P
4π

3K
r3þ

ð1 − A2r2þÞ2
; ð11Þ

which is nothing other than a Smarr formula [24,25]:

M ¼ 2ðTS − PVÞ þ ΦQ; ð12Þ
provided we identify the black hole thermodynamic
volume as

V ¼ ∂M
∂P

����
S;Q

¼ 4π

3K
r3þ

ð1 − A2r2þÞ2
: ð13Þ

So far, this is a rewriting of a relation for the temperature,
having identified standard thermodynamic variables or
charges for the solution. Now consider the first law.
Typically, one derives this by observing the change in
the horizon radius during a physical process. The horizon
radius is given by a root of fðrþÞ ¼ 0 and thus depends on
m, e, A, and l. The specific form of this algebraic root is
not vital; what matters is how the mass varies in terms of
the change in horizon area, thermodynamic volume, and
charge.
During this process, any conical deficit cannot change, as

it corresponds to the physical object causing acceleration.
Thus, we must consider a variation of m, e, and A that
preserves the cosmic string(s), and it turns out that it is
precisely this physical restriction that allows us to derive
the first law.
To obtain the first law, we typically consider a pertur-

bation of the equation that determines the location of
the event horizon of the black hole: fðrþÞ ¼ 0. If we
allow our parameters to vary, this will typically result in a
perturbation also of rþ; hence, we can write

∂f
∂rþ δrþ þ ∂f

∂m δmþ ∂f
∂e δeþ

∂f
∂A δAþ ∂f

∂l δl ¼ 0; ð14Þ

where everything is evaluated at fðrþ; m; e; A;lÞ ¼ 0.
Clearly, we can replace δm, δe, and δl by variations of
the thermodynamic parameters M, Q, and P, and δrþ is
expressible in terms of δS and δA using (8). Finally, we
replace ∂f=∂rþ ¼ 4πT and use fðrþÞ ¼ 0 to simplify the
terms multiplying δA to obtain

ð1−A2r2þÞðTδSþVδPÞ−δMþΦδQ−
r2þA
K

δAðm−eΦÞ¼0:

ð15Þ

At the moment, it seems as if we have an extra thermo-
dynamic quantity; however, we now use the physical input
from the cosmic string that the conical deficits on each axis
must not change. This means that δKþðm; e; AÞ ¼ 0,
so that our north pole axis remains smooth, and
δμðm; e; AÞ ¼ 0, so that our cosmic string tension is
unchanged. These two conditions imply that mA and eA
are unchanged; hence, mδA ¼ −Aδm and eδA ¼ −Aδe.
Replacing δA in (15) and rearranging gives the first law:

δM ¼ TδSþ ΦδQþ VδP: ð16Þ

Now that we have unambiguous thermodynamical var-
iables for our accelerating black hole, we can explore its
properties. One simple consequence is that the black hole
satisfies the reverse isoperimetric inequality, conjectured
for nonaccelerating black holes [26]. The isoperimetric
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inequality states that the volume enclosed within a given
area is maximized for a spherical surface; this is the reason
soap bubbles are spherical. For black holes, surface area
corresponds to entropy, so from thermodynamical consid-
erations, we would expect that spherical black holes would
maximize entropy; otherwise, our black holes would have a
different shape. It was precisely this reverse inequality that
was conjectured and explored in Ref. [26].
For the slowly accelerating black hole, we therefore want

to compare the volume dependence on rþ to the area
dependence via the isoperimetric ratio

R ¼
�
3V
ω2

�
1=3

�
ω2

A

�
1=2

; ð17Þ

where V is the thermodynamic volume, A is the horizon
area, and ω2 ¼ 4π=K is the area of a unit “sphere.” Using
the above formulas for V and A, we find

R ¼ 1

ð1 − A2r2þÞ1=6
≥ 1: ð18Þ

Thus, these slowly accelerating black holes do indeed
satisfy the reverse isoperimetric inequality.
Another fascinating aspect of black holes in AdS space

is that, unlike asymptotically flat black holes, they are
not always thermodynamically unstable. A Schwarzschild
black hole loses mass through Hawking radiation, becom-
ing hotter and eventually evaporating away. In AdS space,
however, black holes larger than of order the AdS radius
instead become cooler as they lose mass and indeed are
thermodynamically stable as demonstrated by the form of
their Gibbs free energy.
Focusing on the uncharged slowly accelerating black

hole and constructing the associated Gibbs free energy,

G ¼ GðP; TÞ ¼ M − TS; ð19Þ
we display the behavior of G ¼ GðP; TÞ in Fig. 2, showing
how it depends on the tension of the cosmic string encoded
by mA. The behavior of G is reminiscent of the Hawking-
Page phase transition [13]; however, in this space-time we
have a conical singularity (with a fixed deficit angle) that
extends to the AdS boundary. It is therefore not possible to
have a phase transition between a pure radiation AdS
space-time to the accelerating black hole. We also empha-
size that different points on the curve correspond not only
to different size but also differently accelerated black holes.
As expected, the black holes on the upper branch of the
curve have negative specific heat and those on the lower
branch positive specific heat.
Slowly accelerating black holes are, therefore, very

similar to their nonaccelerating cousins from a thermody-
namical perspective. One interesting difference lies in the
constraint coming from the cosmic string suspending the
black hole. By taking this string to be an approximation to a
physical object, we conclude that it cannot change tension,

and this translates into constraints on the allowed variations
of the black hole. Both the mass and charge can vary,
but they must vary in the same way, keeping mA and eA
constant. In the absence of charge, this makes perfect sense
from Newton’s first law: If an object gets heavier but is
subject to the same force, then it will accelerate more
slowly. However, the behavior of the charged accelerating
black hole is far more interesting; it would seem that we
cannot throw an uncharged mass into the black hole. Once
an accelerating black hole has charge, the Maxwell field no
longer vanishes on the boundary Ar cos θ ¼ −1:

F ¼ d½eA cos θdt� ¼ eA sin θdt∧dθ; ð20Þ

thus, if the acceleration of the black hole were to change
without changing its charge, the electric field on the
boundary would also have to change.
It is worth noting that this situation is remarkably similar

to the thermodynamics of (charged) Taub–Newman-Unti-
Tamburino–(NUT) AdS space-times studied in, e.g.,
Refs. [27,28]. There, AdS space-times with a NUT charge
were considered, and a constraint on the periodicity of
Euclidean time, similar to the imposition of the constant
deficit in our accelerating black hole, has to be imposed
in order that a Misner string is not observable in the space-
time. This is then used to confirm the usual “first law.” Even
more remarkably, again similar to our situation, in the
presence of charge the regularity of the charged NUT-AdS
solution requires two conditions, one imposed on the
temperature, the other on the charge, so that the first law

T

G

A 1

mA 0.1

mA 0.3

mA 0.45

FIG. 2. Plots of the Gibbs function as a function of T at fixed P.
We explore varying the cosmic string tension, represented bymA.
The solid lines represent the slowly accelerating black holes. The
dot is the point Al ¼ 1, although we have continued the plot for
A > 1=l shown by the dashed lines.
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can hold [28]. However, there is one crucial difference:
In the Taub-NUT case, the entropy is not given by the
Bekenstein-Hawking area law but, rather, is derived from
demanding the first law. Further similarities and differences
between these two classes of geometries will be studied
elsewhere.
Finally, it is interesting to consider possible extensions of

these results. Here, we fixed the conical deficits, motivated
by the physical assumption that they were representative
of a physical source, such as a cosmic string. However, in
principle, one could vary tension—metrics with multiple
accelerating black holes and tensions are known [29].
Generalizing our results to this more interesting and
complex case is underway. It is also worth remarking that
our discussion here is restricted to four dimensions, as a
C metric in general dimensions has so far proven to be
elusive. However, if one considers accelerating black
branes (rather than holes), then presumably the methods
here could be applied to a wider family of black branes in
arbitrary dimensions.
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