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Abstract

The Sakai-Sugimoto model is the most pre-eminent model of holographic QCD,
in which baryons correspond to topological solitons in a five-dimensional bulk space-
time. Recently it has been shown that a single soliton in this model can be well
approximated by a flat-space self-dual Yang-Mills instanton with a small size, al-
though studies of multi-solitons and solitons at finite density are currently beyond
numerical computations. A lower-dimensional analogue of the model has also been
studied in which the Sakai-Sugimoto soliton is replaced by a baby Skyrmion in three
spacetime dimensions with a warped metric. The lower dimensionality of this model
means that full numerical field calculations are possible, and static multi-solitons
and solitons at finite density were both investigated, in particular the baryonic
popcorn phase transitions at high densities. Here we present and investigate an
alternative lower-dimensional analogue of the Sakai-Sugimoto model in which the
Sakai-Sugimoto soliton is replaced by an O(3)-sigma model instanton in a warped
three-dimensional spacetime stabilised by a massive vector meson. A more detailed
range of baryonic popcorn phase transitions are found, and the low-dimensional
model is used as a testing ground to check the validity of common approximations
made in the full five-dimensional model, namely approximating fields using their
flat-space equations of motion, and performing a leading order expansion in the
metric.

1

ar
X

iv
:1

50
3.

08
75

5v
2 

 [
he

p-
th

] 
 2

3 
Ju

l 2
01

5



1 Introduction

The most pre-eminent model of holographic QCD is the Sakai-Sugimoto model [1], [2].
The model is a top-down string embedding, which can be reduced to a five-dimensional
Yang-Mills-Chern-Simons theory in the holographic limit (in which the number of quark
colours is large). As in other holographic QCD models, topological solitons in the bulk,
namely Yang-Mills instantons modified by a Chern-Simons term, are dual to (extended)
Skyrmions on the boundary. The topological charge shared by these configurations is
identified with baryon number.

At large t’Hooft coupling the size of the bulk instantons becomes small compared to
the curvature scale of the spacetime, and the charge-1 instanton of the Sakai-Sugimoto
model can be well approximated by a flat-space self-dual Yang-Mills instanton [3], [4].
This fact was recently confirmed by numerical computations [5] by exploiting extra sym-
metries of the charge-1 instanton, thus reducing the dimensionality of the problem to
a 2-dimensional one. However, solitons in the Sakai-Sugimoto model of higher charges
do not possess such exploitable symmetries, and such solutions are not well understood,
neither analytically nor numerically.

Also beyond the realm of current numerical study are finite density soliton configu-
rations of the Sakai-Sugimoto model. Finite density solitons correspond to cold, dense
QCD and it is expected that, in the holographic limit, cold nuclear matter should become
a crystalline solid. Two competing theories of what happens to Sakai-Sugimoto solitons
at finite density have been proposed, namely the dyon salt [6] and baryonic popcorn [7],
[8]. The main focus of this paper will be the popcorn model, in which a lattice of solitons
with a finite number of layers in the holographic direction undergoes a series of first-
order phase transitions, called popcorn transitions, with increasing density. Each of these
transitions results in a new lattice with additional layers in the holographic direction.
However, studying the dyon salt and popcorn phases is complicated both analytically
and numerically.

To try to gain some further insight into the behaviour of the Sakai-Sugimoto solitons,
a lower-dimensional analogue of the model was recently studied [9]. Since instantons of
O(3)-sigma models in two space dimensions are well known natural analogues of Yang-
Mills instantons in four space dimensions an O(3)-sigma model was studied, coupled to
a baby Skyrme term in order to stabilise the solitons against the shrinking due to the
curvature of space (a role played by the Chern-Simons term in the full Sakai-Sugimoto
model). The advantage of the low-dimensional theory is that numerical computations
become more viable, and both isolated soliton solutions and finite-density configurations
were found. It was found that the dyon salt phase was not energetically favourable,
and that beyond a critical density the system undergoes a first-order popcorn transition
(albeit one qualitatively different to that predicted in [7], [8]) in which a single chain of
solitons splits suddenly into two aligned chains separated in the holographic direction. At
even higher densities another popcorn transition was found where the double chain splits
into a triple chain, and it was conjectured that this procedure would continue so that
at higher densities the configuration begins to resemble a portion of a two-dimensional
crystal. It was also shown that these chain solutions could be well approximated by
periodic chains of flat-space instantons.

However, an alternative low-dimensional analogue of the Sakai-Sugimoto model can

2



be obtained by replacing the baby Skyrme term with a vector meson term in which a
new vector field couples to the topological current of the O(3)-sigma fields. This would
be a closer analogue to the full Sakai-Sugimoto model with the vector field playing the
role of the U(1) gauge field that couples to the topological current through the Chern-
Simons term. Such a model was studied in flat space in [10], and found to be closely
related to the baby Skyrme model. In this paper we will study the effect of replacing
the baby Skyrme term with a vector meson term in a curved background, and see how
the isolated solitons and popcorn transitions of finite-density configurations are affected.
In addition, since full numerical field simulations are viable in two dimensions, we will
use the low-dimensional vector meson model as a testing ground to check the validity of
some common approximations used when studying the full Sakai-Sugimoto model.

2 The holographic baby Skyrme and vector meson

models

We consider a (D + 2)-dimensional spacetime with a warped metric

ds2 = H(z)(−dt2 + dx21 + ...+ dx2D) +
1

H(z)
dz2 (1)

with

H(z) =

(
1 +

z2

L2

)p
. (2)

The warp factor, H(z) depends only on the holographic coordinate z, and L determines
some curvature length scale which we will set to unity. We will choose the constant p
later.

The metric of the Sakai-Sugimoto model is recovered by choosing D = 3 and p = 2
3
,

which ensures that the spacetime has a conformal boundary as z → ∞, and that the
scalar curvature is negative and finite everywhere.

Following [9], we investigate a lower-dimensional toy model of the Sakai-Sugimoto
model with D = 1. To ensure a negative and finite scalar curvature we take p to lie in
the range 2

5
≤ p ≤ 1, and for flat-space instanton approximations of the solitons to have

finite energy we require the further restriction p < 2
3
. It is therefore convenient to make

the choice p = 1
2
.

In [9] solitons in the baby Skyrme model in the spacetime (1) were studied. The
action for this baby Skyrme (BS) model is

SBS =

∫ (
−1

2
∂µφφφ · ∂µφφφ−

κ2

4
(∂µφφφ× ∂νφφφ) · (∂µφφφ× ∂νφφφ)

)√
H dxdz dt (3)

where the first term is that of the O(3)-sigma model, and the second term is the baby
Skyrme term with constant coefficient κ2. Greek indices run over the bulk spactime
coordinates t, x and z. The field φφφ = (φ1, φ2, φ3) is a three component unit vector. We
will refer to φφφ as the pion field since the baby Skyrme model can be seen as a 2-dimensional
analogue of the Skyrme model where the corresponding φφφ field plays the role of pions.
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The associated static energy of this model is

EBS =
1

2

∫ (
1√
H
|∂xφφφ|2 +H3/2|∂zφφφ|2 + κ2

√
H|∂xφφφ× ∂zφφφ|2

)
dx dz . (4)

Here we will instead investigate solitons of an O(3)-sigma model coupled to a massive
vector meson. The action for this vector meson (VM) model is given by

SVM =

∫ (
− 1

2
∂µφφφ · ∂µφφφ−

1

4
(∂µων − ∂νωµ)(∂µων − ∂νωµ)

− 1

2
M2ωµω

µ + gωµB
µ

)√
H dxdz dt (5)

where the pion field φφφ = (φ1, φ2, φ3) is again a three component unit vector and ωµ is a
spacetime vector field with mass M . The fourth term, parametrised by the constant g,
is a coupling between the ωµ field and the topological current

Bµ = − 1

8π
√
H
εµαβφφφ · (∂αφφφ× ∂βφφφ) . (6)

We argue that this model is a low-dimensional analogue of the Sakai-Sugimoto model.
The full model is written in terms of a U(2) gauge field which can be decomposed into an
abelian U(1) and an SU(2) field. Written in this way, the Chern-Simons term is a coupling
between the U(1) field and the topological current associated with the SU(2) field. Noting
that both pure SU(2) theory in (4 + 1) dimensions and the O(3)-sigma model in (2 + 1)
dimensions are both scale invariant, we can take φφφ and ωµ to be the low-dimensional
analogues of the SU(2) and U(1) fields respectively. With this correspondence we see
that the fourth term in (5) is a low-dimensional analogue of the Chern-Simons term.

In this paper we will be concerned with static soliton solutions in this model. Looking
at (6) it is easy to see that for static solutions the spatial components of the topological
current vanish (Bi = 0), where the index i runs over the spatial coordinates x and z.
These currents provide a source for the omega field, so we see that ωi = 0 for static
solutions. For notational convenience we will write ω ≡ ω0 for the remainder of this
paper. We will refer to ω as the vector meson field.

The associated static energy of this model is

EVM = Eφφφ + Eω (7)

with

Eφφφ =
1

2

∫ (
1√
H
|∂xφφφ|2 +H3/2|∂zφφφ|2

)
dx dz (8)

Eω =
1

2

∫ [
− 1

H3/2
(∂xω)2 −

√
H(∂zω)2 − M2ω2

√
H

+
gω

2π
φφφ · (∂xφφφ× ∂zφφφ)

]
dx dz . (9)

For finite energy we then require φφφ → (0, 0, 1) and ω → 0 as x2 + z2 → ∞. This allows
us to compactify space from R2 to S2, meaning the pion field is now a map φφφ : S2 → S2

with an associated winding number and topological charge

B =

∫
B0
√
H dxdz = − 1

4π

∫
φφφ · (∂xφφφ× ∂zφφφ) dx dz (10)
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which defines the instanton number of the planar O(3)-sigma model. This topological
charge we identify with the baryon number of the configuration.

By calculating the variation of the action (5) with respect to the vector meson field
we obtain the Euler-Lagrange equation

δEVM
δω

=

(
1

H3/2
∂xx +

√
H∂zz +

1

2

H ′√
H
∂z −

1√
H
M2

)
ω +

g

4π
φφφ · (∂xφφφ× ∂zφφφ) = 0 . (11)

Multiplying this equation by ω and integrating by parts in (9) allows us to write

Eω =
1

2

∫
g

4π
ωφφφ · (∂xφφφ× ∂zφφφ) dx dz (12)

=
1

2

∫ (
1

H3/2
(∂xω)2 +

√
H(∂zω)2 +

M2ω2

√
H

)
dx dz . (13)

We then see that Eω ≥ 0 whenever the equation of motion for ω is satisfied and this,
together with the inequality ∣∣∣∣ 1√

H
∂xφφφ±

√
Hφφφ× ∂zφφφ

∣∣∣∣2 ≥ 0 , (14)

yields the Bogomolny bound EVM ≥ 4π|B|.
By approximating the solution to (11) using a leading order derivative expansion, we

can see how the BS and VM models are related [10]. Neglecting derivatives of ω in (11)
yields the approximation

ω ≈ g
√
H

4πM2
φφφ · (∂xφφφ× ∂zφφφ) (15)

which can be substituted into (12) to obtain

Eω =
1

2

∫
g2
√
H

16π2M2
|∂xφφφ× ∂zφφφ|2 dx dz (16)

⇒EVM =
1

2

∫ (
1√
H
|∂xφφφ|2 +H3/2|∂zφφφ|2 +

g2
√
H

16π2M2
|∂xφφφ× ∂zφφφ|2

)
dx dz . (17)

This is precisely the static energy of the BS model (4) upon identifying

κ =
g

4πM
. (18)

Note that the approximation used above becomes more accurate as M and g increase
i.e. as the vector meson field becomes infinitely massive and its interaction becomes
point-like. We recover the exact BS model in the limit

M, g →∞ , κ =
g

4πM
= constant . (19)

We will justify this approximation and discuss its validity in the following section.
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3 Solitons in the vector meson model

In flat space (H = 1) and in the absence of a vector meson (ωµ ≡ 0) the Bogomolny bound
(14) is attained by the scale-invariant instanton solutions of the O(3)-sigma model. To
write explicit solutions to this model it is convenient to consider Riemann sphere coor-
dinates W = φ1+iφ2

1−φ3 , obtained by stereographic projection of the pion field φφφ. Instanton

solutions with finite B > 0 are then given by rational functions W (ζ) of a complex coor-
dinate ζ = x + iz, where the required boundary conditions, W →∞ as |ζ| → ∞, imply
the degree of the numerator of W must be greater than the degree of the denominator.
This leaves us with an instanton moduli spaceMB of dimension 4B−1, after considering
the U(1) symmetry associated with the phase of W .

The radially symmetric sigma-model instanton with topological charge B centred at
the origin is given by W = (ζ/µ)B where µ is a positive real constant which determines
the arbitrary scale of the instanton. The associated pion field for this solution is given
by

φφφ = (sin f cos (Bθ), sin f sin (Bθ), cos f) (20)

where (r, θ) are polar coordinates in the (x, z)-plane and f(r) is the radial profile function

f(r) = cos −1
(
r2B − µ2B

r2B + µ2B

)
. (21)

In the Sakai-Sugimoto model the ’t Hooft coupling is taken to be large, which results
in a small size for the Sakai-Sugimoto soliton compared to the length scale set by the
curvature of spacetime. The analogous regime in the BS model is to take κ small and
positive, and it was shown that in this regime the soliton can be well approximated
by a sigma model instanton. These instantons have an arbitrary size in flat space, but
a preferred size can be obtained by considering the leading order contributions to the
energy from the spacetime curvature and the baby Skyrme term interaction. Here we
shall search for some parameter regime in (g,M)-space in the VM model analogous to
this situation, and demonstrate that this regime is consistent with the approximations
discussed above, and with the established relation between the VM and BS models.

Taking a flat-space (H = 1) radial ansatz for the vector meson field, and a flat-space
sigma instanton ansatz (20) for the pion field, we first find a parameter regime in which
the approximation (15) is valid. With these assumptions, the equation of motion (11) for
ω becomes

1

r
∂r(r∂rω) = M2ω +

gB2µ2B

π

r2B−2

(r2B + µ2B)2
(22)

where B is the topological charge of the solution and µ is the size of the sigma instanton.
Assuming that |1

r
∂r(r∂rω)| � |M2ω| yields the approximation

ω ≈ −gB
2µ2B

M2π

r2B−2

(r2B + µ2B)2
. (23)

We then find ∣∣M2ω
∣∣ =

gB2µ2B

π

r2B−2

(r2B + µ2B)2
, (24)∣∣∣∣1r∂r(r∂rω)

∣∣∣∣ =
4gB2µ2B

M2π

r2B−4

(r2B + µ2B)4
Γ , (25)
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where Γ =
∣∣(B + 1)2r4B − 2(2B2 − 1)µ2Br2B + (B − 1)2µ4B

∣∣. Therefore the inequality
above is consistent if

4

M2(r2B + µ2B)2

∣∣∣∣(B + 1)2r4B−2 − 2(2B2 − 1)µ2Br2B−2 + (B − 1)2
µ4B

r2

∣∣∣∣� 1 , (26)

For B = 1 the approximation (23) has a local minimum at the origin, and evaluating the
above expression there yields the condition

M � 2
√

2

µ
. (27)

For other topological charges we can find a similar condition by evaluating the above
expression at the extrema of the radial ansatz. We have therefore found that if we seek
a regime in which the soliton size is small compared to the curvature scale, and in which
derivatives of ω are small, we require a large mass for the vector meson field.

We will now insert this approximation into the curved-space static energy and look
at the terms coming from the first-order expansion of the warp factor, H(z). We shall
also re-insert the explicit dependence of H on p so that we can clearly see which terms
arise from the curvature of spacetime and which terms arise from interactions between
the pion and vector meson fields.

Expanding in the curvature, we have

Eφφφ =
1

2

∫ (
|∂xφφφ|2 + |∂zφφφ|2

)
dx dz +

p

2

∫ (
−|∂xφφφ|2 + 3|∂zφφφ|2

)
z2 dx dz + · · · (28)

The first term in this expansion is the usual flat-space sigma instanton energy, which has
the well-known value of 4πB. The second term is some contribution arising from the
curvature of spacetime and, after changing to polar coordinates and making the change
of variable y = (r/µ)2, its leading order contribution can be calculated as

Eφφφ = 4πB + pπB2µ2

∫ ∞
0

yB

(yB + 1)2
dy + · · · (29)

We see that the influence of the curvature term, therefore, is to reduce the size of the
instanton.

Using a similar expansion, the leading order contribution from the vector meson part
of the energy can be calculated as

Eω =
g2B4

2πM2µ2

∫ ∞
0

y2(B−1)

(yB + 1)4
dy + · · · (30)

In contrast to the curvature term, we see that the interaction with the vector meson field
resists the shrinking of the instanton.

For B = 2 we can evaluate these integrals explicitly and obtain the leading order
correction to the energy as

EVM = 8π + pπ2µ2 +
g2

4M2µ2
+ · · · (31)
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Figure 1: A plot of the size µ against the model parameters g and M ∈ [10g, 100g] for
the B = 1 soliton within the instanton approximation. The red lines give the numerical
data, and the blue surface is a numerical fit to the data of the form µ = c

√
g/(4πM)

with constant c = 0.92. The contour plot at the base gives the difference between these
two surfaces, and is seen to be small.

which is minimised when

µ =

(
g

2πM
√
p

)1/2

. (32)

We see that, as claimed, the radial flat-space approximations are valid for large g and
large M , and in this regime the instanton solutions in the VM model closely resemble
those in the BS model. In fact, substituting the expression for κ in (18) we find the
preferred instanton size is µ =

√
2κ/p1/4, which is in exact agreement with the analysis

performed in [9] for the BS model.
A similar calculation can be performed for all B ≥ 2 to show that the preferred

instanton size is proportional to
√
g/M in the regime of large g and large M . However,

the integral expressions in (29) and (30) do not converge for B = 1. A similar problem
was encountered in [9] when studying the BS model, which arises since the quadratic
approximation for H(z) does not capture the slow decay behaviour of the B = 1 solution
accurately enough. In analogy with this previous paper, we can insert the instanton
ansatz of size µ into the expression for the energy (7) and minimise this numerically to
find µ as a function of g and M . The result for p = 1

2
is displayed in Figure 1 for g ∈ [5, 50]

and M ∈ [10g, 100g] (roughly corresponding to κ ∈ [0.01, 0.001] after the identification
(18)), where the red lines represent the numerical results and the blue surface is a fit
to the data of the form c

√
g/(4πM) with constant c = 0.92. The computation suggests

that, in this regime, the size of the B = 1 soliton still has an approximate size O(
√
g/M),

in agreement with the analytic calculation for the B = 2 above.
In this two-dimensional model it is possible to obtain full numerical static solutions

to the non-linear field equations. All of the computations performed here are with p = 1
2

and with the ratio g
M

= 0.1 kept constant, so that in the large g, large M limit we
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expect solutions to look like those of the BS model with parameter κ = g
4πM
≈ 0.01. In

this limit the size of the soliton should be small compared to the curvature scale set by
the metric. Numerical computations have been performed by minimising the energy (7)
using second-order accurate finite difference approximations for spatial derivatives on a
lattice with spacings ∆x = 0.005, ∆z = 0.005 and 2000 × 2000 numerical grid points.
The energy minimisation algorithm is a modified gradient flow mechanism.

The results of our field theory computations for the B = 1 soliton are shown in
Figure 2. The left image shows the φ3 component of the pion field, as a pictorial repre-
sentation of the soliton, for parameter values M = 50 and g = 5. The right image shows
the corresponding vector meson field ω. The left image is almost indistinguishable from
the numerical calculation of the B = 1 soliton in the BS model with parameter value
κ = 0.1/(4π) ≈ 0.008. This is confirmed by looking at the energies of each solution:
the energy of the B = 1 VM soliton with M = 50 is given as E = 4π × 1.0107, while
the corresponding BS soliton has energy E = 4π × 1.0115. Numerical computations for
smaller M and g show that, as the parameter values decrease, the size of the VM soliton
appears to decrease.

The numerical results for charge B = 2 are shown in Figure 3. For large parameter
values we again find that the solitons of the VM and BS model are almost indistin-
guishable: an energy comparison yields E = 8π × 1.0072 for the VM model soliton with
M = 50, and E = 8π×1.0075 for the corresponding BS soliton. In these cases the B = 2
soliton resembles two B = 1 solitons separated by a small amount in the non-holographic
direction. However, as we approach the region in which the approximation (28) breaks
down we find qualitatively different behaviour, in which the B = 1 components of the
B = 2 soliton begin to separate. For M < 20 the apparent separation between these
components increases dramatically, as shown in the final image in Figure 3. We also see
that as the parameters in the model decrease, the ω fields become more sharply localised
around their centres. This is consistent with the analysis above where we found small
derivatives in ω implied a large value of M .

Solitons with higher topological charge have also been numerically computed, and are
found to resemble chains of solitons separated in the non-holographic direction. This is
to be expected due to the presence of the curvature in the holographic direction.

In [7] a zigzag arrangement of holographic baryons was predicted in finite density
configurations in the Sakai-Sugimoto model, and in [9] it was argued that, for the low-
dimensional BS analogue of the Sakai-Sugimoto model, a zigzag arrangement could only
be found if the preferred separation between pairs of solitons was much greater than the
size of a single soliton. We have seen that, at low parameter values, the B = 1 VM solitons
decrease in size and the B = 2 solitons resemble more widely separated B = 1 solitons,
so it would be interesting to explore finite density chains of solitons in the VM model for
small values of g and M . However, at these parameter values numerical solutions become
more difficult to obtain (due to large derivatives of the ω field), so we will instead study
a regime in which the parameters are “small, but not too small”.

9



Figure 2: Plots of the numerically calculated 1-soliton fields for the M = 50 VM model.
φ3 is shown on the left and ω is shown on the right.

Figure 3: Plots of the numerically calculated 2-soliton fields for the M = 50 (top) and
M = 15 (bottom) VM model. φ3 is shown in the left column and ω is shown in the right
column.
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4 Finite density chains: New phases of popcorn

As explained in[9], analytical and numerical solutions of solitons at finite density in the
Sakai-Sugimoto model are currently unavailable. Despite various levels of approxima-
tion being applied, even the relevant flat-space instanton approximations are not known
explicitly after imposing periodic boundary conditions in multiple directions. However,
the lower-dimensional analogue we have been studying so far gives us the advantage of
being able to numerically compute soliton solutions, and we shall compare our field the-
ory simulations to the numerical and analytical results in [9]. In particular, we will find
the appropriate popcorn phase transition in the VM model, and compare it both to the
BS model, and to predictions made in [7] and [8] about finite-density baryons in the full
Sakai-Sugimoto model.

In order to numerically compute solitons at finite density we restrict our numerical
grid in the non-holographic direction to the range −L ≤ x ≤ L and impose suitable
boundary conditions for the fields at x = ±L. In the following simulations we will always
place periodic boundary conditions on φ3 and ω, but may place periodic or anti-periodic
boundary conditions on φ1 and φ2. There is still an integer topological charge, B, defined
by integrating the µ = 0 component of (6) in the range (x, z) ∈ [−L,L]× (−∞,∞), and
this allows us to define a finite baryon density ρ = B/2L.

Initial conditions for numerical simulations are constructed as follows. First, by writ-
ing the flat-space instanton of charge B = 1 using Riemann sphere coordinates, we can
superpose a number of instanton solutions together using the product ansatz:

(W1(ζ),W2(ζ))→ W (ζ) =
W1W2

W1 +W2

. (33)

This has the property that W vanishes wherever W1 or W2 vanishes, and that far away
from W2 the solution looks like W ≈ W1 (and vice-versa). Therefore this product ansatz
gives us a field configuration with the correct topological properties as a superposition of
solitons at the positions of W1 and W2. Superposing a large number of such solitons with
positions in the range x ∈ [−nL, nL] for some n ∈ Z using the flat-space instanton ansatz
from (20) and (21) can then give us an approximation to a periodic chain of solitons in
the range x ∈ [−L,L]. An initial condition for the ω field can then be generated using
(15). It should be noted that with this construction each soliton in the chain can be given
an independent phase shift χ corresponding to a shift θ → θ + χ in the ansatz (20).

Inspired by the results found in [9], we will begin our investigation by searching for
two specific forms of finite-density chains by imposing certain symmetries, before going
on to find the global energy minima for periodic solutions in the VM model.

The first chain to consider is a straight, single chain of solitons. Flat-space instantons
of equal size separated in the non-holographic direction can be shown to be in the most
attractive channel when they are exactly out of phase (i.e. when the solitons have a
relative phase shift of π), so we numerically seek these solutions by placing a single
B = 1 ansatz on our numerical grid and imposing anti-periodic boundary conditions on
φ1 and φ2. The datapoints in Figure 4 marked with a + represent the energy per soliton
for numerical solutions of this type.

Secondly, we consider a two-layer square chain by placing a pair of solitons (with
a relative phase shift of π) separated in the holographic direction, with anti-periodic
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boundary conditions imposed on φ1 and φ2 at x = ±L. Symmetry constraints can force
the resultant energy minima to form a regular square configuration of solitons (as observed
in the BS model in [9]), although it can also allow configurations that resemble zig-zags
or single chains of 2-solitons. The data points in Figure 4 marked with a × represent the
energy per soliton for numerical solutions of this type.

Finally we consider initial conditions with four solitons placed in our grid in a line in
the non-holographic direction, with periodic boundary conditions on φ1 and φ2. By itself
there would be a reflection symmetry z → −z which could force solutions to resemble
those of the straight chains above, so we perturb the fourth soliton in the chain by a small
amount in the holographic direction to break the symmetry. The symmetries of the grid
here allow the potential for the initial conditions to relax to configurations resembling
either the straight chains or the square chains, while also providing an opportunity to relax
to other configurations with less symmetry. Figure 5 shows φ3 and ω for different densities
with M = 50, and the data points in Figure 4 marked with a � represent the energy per
soliton for the numerical solutions. We see that at low and high densities respectively we
can recreate the straight and square configurations described above, lending confidence
that those are indeed the energy minima at these densities.

More interestingly we find that there exist configurations of solitons in the VM model
that were not found in [9]. For densities ρ ∈ [6.3, 7.6] (i.e. around the transition from
the chain to the square solutions) we first observe a second-order transition from a chain
to a period-4 wave. This is followed by a first-order transition to a wiggle, which then
undergoes a second-order transition to the two-layered square configuration. This is in
contrast with the results anticipated in [7] and [8], the former predicting a first-order pop-
corn transition from a chain to a two-layered zig-zag, and the latter suggesting a second-
order transition from a chain to a period-3 wave followed by a first-order transition to
the square configuration. Imposing period-3 boundary conditions in this low-dimensional
model yielded solutions that were not energetically favourable to the period-4 waves,
suggesting that the anticipated period-3 waves are not global energy minima. While the
numerical investigations performed here are not definitive, the evidence suggests that
popcorn transitions in these models may be more subtle than previously anticipated.

The results in both studies are, nonetheless, similar, and the differences could be due
to the lower dimensionality of the VM model studied here: in [8] chain solutions were
generated in the 4-dimensional space by imposing artificial curvature in the other spatial
directions, whereas in the 2-dimensional VM model studied here there are no extra spatial
dimensions.

Numerical field calculations for finite-density solitons were also performed for M = 20
and g = 2. These parameter values are very close to limits of the bounds implied by (27)
and (32). Qualitatively similar results were obtained to the solutions with parameter
values M = 50 and g = 5, although investigation of smaller parameter values beyond
those bounds proved numerically difficult due to the presence of large derivatives in the
ω field.

The numerical differences in energy between the wave and wiggle configurations com-
pared to the chain and square configurations are incredibly close, differing by roughly
O(10−5). In light of this, it was instructive to return to the BS model and see if these
configurations did, in fact, occur but were missed due to this similarity. After investiga-
tion it was found that the BS model does, indeed, exhibit these configurations around

12



the transition from the chain to the square.

5 Semi-analytical methods of baryonic popcorn

Another advantage of the VM model over the BS model is that the ω field provides a
low-dimensional analogue of the U(1) gauge field in the full Sakai-Sugimoto model. This
means we can use the VM model to test the validity of certain assumptions that are
often made to simplify calculations in the full model. In [8] a number of assumptions
regarding the fields in the Sakai-Sugimoto model are made in order to make analytical
progress. These assumptions all rely on the solitons of the model being much smaller
than the length scale set by the spacetime curvature, in which case it is argued that we
can approximate spacetime as flat, and the fields by their flat-space counterparts. The
SU(2) gauge field is approximated by a flat-space self-dual Yang-Mills instanton, allowing
techniques using ADHM constructions to be used to generate solutions. The U(1) gauge
field is approximated by constraining it to satisfy its flat-space equations of motion. In
addition, the metric factors due to the curvature of spacetime are expanded as a leading
order Taylor series.

Since we have been able to obtain full numerical solutions in our low-dimensional
model, we can apply analogues of these approximations to test their validity in the VM
model. Focussing on the forced chain and square configurations allows us to obtain
analytical approximations for the pion fields, and perform numerical minimisations to
obtain the corresponding ω fields.

For the chain configurations we can write a flat-space instanton solution (in Riemann
sphere coordinates) as

W (ζ) =
sin (πρζ)

µπρ
. (34)

This has zeroes whenever x = n
ρ
, n ∈ Z and obeys the symmetry relation W (ζ + ρ−1) =

−W (ζ), so describes a chain of instantons at density ρ where neighbouring instantons are
exactly out of phase with each other. To obtain the square configurations we can simply
take a product ansatz of the form (33) with the choice

W1 =
sin (πρ(ζ − iδ)/2)

µπρ
, W2 =

− sin (πρ(ζ + iδ)/2)

µπρ
(35)

to obtain a a pair of chains separated by a distance δ in the holographic direction.
Requiring that the ω field satisfies its flat-space equation of motion is equivalent to

setting H(z) = 1 in (11):

(∇2 −M2)ω = − g

4π
φφφ · (∂xφφφ× ∂zφφφ) . (36)

Combining this equation with the instanton approximation above allows us to perform nu-
merical minimisation of the energy (7) over the parameters µ and/or δ for a large number
of densities, where at each value of {ρ, µ, δ} we solve (36) numerically using a successive
over-relaxation method with red-black ordering. The minimisation in parameter space
was performed with a golden section search method (in the 1-parameter case) and a
Nelder-Mead algorithm (in the 2-parameter case). The results of these investigations are
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Figure 4: A plot of E/(4πB) against density ρ for the forced chain and square con-
figurations, as well as the energy minimising solutions, for M = 50. The data points
represent the results of numerical simulations, whereas the curves represent the results of
applying various semi-analytical approximations. The dotted lines are the results from
approximating spacetime as flat, and the solid curves are the results from performing a
first-order expansion of the metric factor H(z).

Figure 5: The top row shows plots of φ3 for the energy minima of the VM model finite
density chains with M = 50 for densities ρ = 6.3 (chain), 6.6 (wave), 7 (wiggle) and 7.6
(square), with density increasing from left to right. The bottom row shows the associated
ω fields.
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shown by the curves in Figure 4. As can clearly be seen, the energies associated with
these approximations are very close to the full numerical values, lending confidence to the
credibility of these assumptions. In addition, the effect of Taylor-expanding the metric
factor H(z) to leading order in the energy density was also investigated. The curves
produced are also shown in Figure 4, although it is difficult to see them since they es-
sentially overlap with the flat-space approximation. This suggests that Taylor-expanding
the metric is also a reasonable assumption in this regime of the model.

6 Conclusions

In this paper we have investigated an alternative low-dimensional analogue of the Sakai-
Sugimoto model to describe holographic baryons, namely an O(3)-sigma model stabilised
by vector mesons in a warped spacetime. We have found solitons, multi-solitons and
finite density solitons in this model and compared them to solitons in the baby Skyrme
model and to instanton approximations, and found all three to be similar given certain
parameter constraints. We have also shown that solitons in the vector meson model can
differ qualitatively when these parameters are allowed to violate such constraints.

In addition, we have used the vector meson model to investigate the low-dimensional
analogue of the baryonic popcorn phenomenon, and found a set of new phase transitions
(although such phase transitions are present in the baby Skyrme model, but were previ-
ously overlooked). We have used the vector meson model to test common approximations
for the low-dimensional analogue of the U(1) gauge field of the Sakai-Sugimoto model,
and found that approximating the pion and vector meson fields by flat-space solutions
and using a leading-order expansion of the metric are both good approximations.

When analysing the instanton approximations for finite-density solitons, only a very
restricted set of instanton configurations were considered. It might be of interest to
explore this area more fully to investigate the baryonic popcorn phase transition, by
numerically minimising the energy of solutions where more instanton moduli (i.e. their
positions and phases) are also allowed to vary. It may also be of interest to apply the
various approximations tested here to high-density lattices of solitons in the full Sakai-
Sugimoto model. Finally, although it is computationally much more difficult, it would be
interesting to see how the phenomena observed in the vector meson model change for very
small parameter values, since in this regime the model is no longer well-approximated by
the baby Skyrme model.
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