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Abstract

In this paper, we propose a method to model the shear wave propagation in transversely isotropic, 

viscoelastic and incompressible media. The targeted application is ultrasound-based shear wave 

elastography for viscoelasticity measurements in anisotropic tissues such as the kidney and 

skeletal muscles. The proposed model predicts that if the viscoelastic parameters both across and 

along fiber directions can be characterized as a Voigt material, then the spatial phase velocity at 

any angle is also governed by a Voigt material model. Further, with the aid of Taylor expansions, 

it is shown that the spatial group velocity at any angle is close to a Voigt type for weakly 

attenuative materials within a certain bandwidth. The model is implemented in a finite element 

code by a time domain explicit integration scheme and shear wave simulations are conducted. The 

results of the simulations are analyzed to extract the shear wave elasticity and viscosity for both 

the spatial phase and group velocities. The estimated values match well with theoretical 

predictions. The proposed theory is further verified by an ex vivo tissue experiment measured in a 

porcine skeletal muscle by an ultrasound shear wave elastography method. The applicability of the 

Taylor expansion to analyze the spatial velocities is also discussed. We demonstrate that the 

approximations from the Taylor expansions are subject to errors when the viscosities across or 

along the fiber directions are large or the maximum frequency considered is beyond the bandwidth 

defined by radii of convergence of the Taylor expansions.
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1. Background and Motivation

There are a number of soft tissues that are anisotropic including skeletal muscle [1], cardiac 

muscle [2], kidneys [3], tendons [4], arteries [5], and skin [6]. In particular, many tissues 

such as kidneys [3] and skeletal muscles [7, 8] have been modeled as transversely isotropic. 

Ultrasound shear wave elastography has been used to investigate the shear wave propagation 
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in some of these anisotropic tissues. One consistent finding that has been reported is that a 

higher shear wave speed is observed when the wave propagates along the fibers in 

comparison to across the fibers or tissue structures, indicating a higher shear modulus along 

that parallel direction [8].

It is also known that soft tissues are viscoelastic [9]. As a result, their mechanical responses 

are time dependent [10, 11] and shear waves propagating in soft tissues experience velocity 

dispersion [12, 13]. Therefore, although a linear elastic model is simple and usually assumed 

in elastography, it may be inaccurate because the inherent viscosity is ignored [14].

The tissues’ transversely isotropic and viscoelastic characteristics are rooted in their 

structural composition, which is closely related to an organ's physiological functions. For 

example, skeletal muscles consist of cylindrical fibers organized parallel to each other in 

clusters called fasciculi. The muscle fibers stabilize the stretch or contraction movements by 

their intrinsic viscoelastic properties [15, 16]. The structure of muscle bundles causes 

directional and attenuative wave propagation, as well as its wave velocity dispersion 

behaviors related to tissue viscoelasticity [16-18]. The kidney has nephrons that are radially 

oriented in the cortex, filtering the blood, and emptying into the renal pelvis.

Because of the specialized structure of these organs, a variation with direction, or 

anisotropy, in the shear wave propagation occurs depending on the polarization of the wave 

with respect to these structures such as the muscle fibers in a skeletal muscle.

For shear wave-based elastography imaging methods, such as shearwave dispersion 

ultrasound vibrometry (SDUV) [13] and magnetic resonance elastography (MRE) [19], it is 

important to apply a proper constitutive model for the tissue under study. Yet, for tissue 

types that are transversely isotropic and viscoelastic, a model that accounts for both 

properties have been rarely studied. Table 1 lists the reported shear elasticities and 

viscosities measured along (μ∥
1 and μ∥

2) and across (μ⊥ and μ⊥
2) the muscle fibers from 6 

selected reports. Among these studies, [12], [8], [20], [21] measured both shear wave 

elasticity and viscosity while [7] and [22] only considered an elastic model. They show that 

both the shear wave speed and the shear wave attenuation in muscles are transversely 

isotropic.

Besides biomedical applications, there are a number of studies related to wave propagation 

in anisotropic media from the seismology community, such as [23], but they are usually 

more focused in modeling longitudinal waves than shear waves and the materials are 

compressible compared to nearly incompressible for soft tissues. In this paper, we propose a 

model that applies to transversely isotropic, viscoelastic and incompressible media and 

verify it with numerically simulated results and an ex vivo tissue experiment.

There are a number of constitutive models for viscoelasticity. For example, Voigt and 

Maxwell models are rheological models that use parallel or serial connected spring and 

dashpot elements to model elasticity and viscosity [12], respectively. The generalized 

Maxwell model takes into account multiple relaxation times by including a number of 

Maxwell elements [24]. More recently, fractional models were proposed to better fit 

experimental data with a smaller number of parameters [25, 26]. In this paper, we limit the 
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viscoelastic behaviors to the dynamic responses of a Voigt material because it has been 

proven to be effective in modeling tissue dynamic behaviors [12] while maintaining a 

relatively simple form.

Because the scope of this paper is to facilitate the reconstruction of material properties in 

ultrasound shear wave elastography, we limit our study to shear wave propagations in the 

plane of symmetry. As shown in Fig. 1, a transversely isotropic tissue sample is positioned 

in a Cartesian coordinate system, so that its fibers are aligned with the z axis. In this setup, 

the x-y plane is defined as the plane of isotropy because the material is isotropic in the 

plane. The x-z and y-z planes are defined as the planes of symmetry because material 

properties are symmetric about the z axis in both planes. We further define two principle 

shear moduli G∥ and G⊥. The subscripts ’∥’ and ’⊥’ represent along and across fiber 

direction, respectively. Additionally, note that G∥ and G⊥ will be replaced by G*∥ and G*⊥ 

to represent complex viscoelastic shear moduli in the following sections.

In this paper, we will discuss two different velocities of shear wave propagation: group 

velocity and phase velocity. The direction of the group velocity is the direction of energy 

transport while the direction of phase velocity is always perpendicular to the wave front. In 

Fig. 1, the group velocity is always aligned along the line defined by connecting the source 

incidence point to the point of measurement on the wave front. For a transversely isotropic 

medium, group and phase velocities generally do not have the same directions and 

amplitudes. They are identical only if the material is nondispersive and isotropic or if the 

wave is a pure plane wave. Please refer to [7] for a schematic description of the differences 

between the spatial group and phase velocity. A mathematical description of the differences 

between the two physical variables are given in [27] in the context of electromagnetic wave 

propagation. In experimental studies shown in Fig. 1, where the excitation is a line source 

along the y axis, the group velocity is much easier to measure compared to the phase 

velocity, which requires the exact wave front to be estimated. To make a distinction from the 

wave speed dispersion as a function of frequency, from this point on, we will refer the phase 

and group velocities as spatial phase and group velocities.

For acoustic radiation force induced shear waves, such as in many shear wave elastography 

methods, because the acoustic radiation force is distributed along and near the push axis, in 

the lateral plane where the material receives the greatest radiation force, the shear waves can 

be approximated by cylindrical waves [28, 29]. When the material is transversely isotropic, 

the direct shear wave speed measurement corresponds to the spatial group velocity instead 

of spatial phase velocity. As shown in Table 1, in transversely isotropic and viscoelastic 

materials such as skeletal muscles, most studies focus on measuring the material properties 

in the two principle directions: along and across the fiber directions. In this paper, we 

propose a theory that models the angular dependency of shear wave viscoelasticity in the 

plane of symmetry. The theory and numerical simulations presented in this study can help 

improve understanding and interpretation of ultrasound elastography measurements in 

transversely isotropic tissues.
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2. Theory

Based on the theory of elastodynamics, a propagating plane wave in a source-free, 

homogeneous and anisotropic medium can be described by the Christoffel equation [23, 30],

(1)

where ρ is the mass density, Vw is the spatial phase velocity at which the wave front of a 

plane wave travels. The vector  represents the direction of particle motion, which defines 

the polarization of the plane wave, Wiknjnl is a 3 × 3 Christoffel matrix in Einstein notation, 

where cijkl is the fourth-order stiffness matrix of the material, and  is a unit vector that 

defines the propagation direction of the phase velocity.

Equation (1) can be solved by finding the eigenvalues and eigenvectors of the matrix Wik. Its 

eigenvalues and eigenvectors give the magnitude of the spatial phase velocity and its 

polarization direction, respectively. The direction of the wave propagation is set by choosing 

the  vector in the expression of Wik.

For a transversely isotropic material, its Christoffel matrix is symmetric, so there are 6 

independent variables. But to study the shear waves that propagate in the plane of symmetry 

as shown in Fig. 1, only the two principle shear moduli, G∥ and G⊥, are needed. Then the 

eigenproblem of the Christoffel matrix can be reduced to the following equations [7].

(2)

(3)

We can use Equation (2) to calculate the shear velocity at a given phase angle 

 Equation (3) shows that the particle motion polarizes in the y direction. The 

vector  is an eigenvector to Wik, so the variable γ is an arbitrary constant and its value 

does not influence the solution. Besides this particular solution, there are two other 

solutions. One solution corresponds to the compressional wave, which is too fast for the 

ultrasound shear wave elastography to capture; the other is so called “quasi-” shear or 

longitudinal wave, whose particle movements are in the x-z plane. To measure these waves, 

it would require placing a probe on the y-z surface, along the z axis. The study of these two 

modes is outside of the scope of this paper. The analytical solution of the quasi-shear wave 

is rather complicated; but fortunately if the excitation force is perpendicular to the plane of 

symmetry, such as that are generated using acoustic radiation force in many shear wave 

elastography methods, the quasi-shear wave will be minimized [7]. For details about solving 

the complete solutions to the Christoffel equation in anisotropic material, please refer to 

[30].

When a material is linear viscoelastic, the Christoffel matrix becomes a complex matrix and 

G∥ and G⊥ in Equation (2) should be substituted with their corresponding complex shear 
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moduli G*∥ and G*⊥ [23]. When both moduli are Voigt types, their complex moduli can be 

expressed as functions of the angular frequency ω,

(4)

(5)

where μ∥
1, μ∥

2, μ⊥
1 and μ⊥

2 are the shear elasticities and viscosities along and across the 

fiber directions, respectively. From Equations (2), (4) and (5) the complex phase modulus 

Gw* can be derived,

(6)

where  and  and they are defined as the 

apparent shear elasticity and viscosity of spatial phase velocity for a given phase angle θw, at 

a frequency . The details about the derivation are included in Appendix A. The 

complex wave number of the spatial phase velocity, , is related to the spatial phase 

velocity by . We can see if G*∥ and G*⊥ are Voigt types of materials, the shear 

wave behaviors for any phase angle θw will be Voigt types as well.

Note that in ultrasound shear wave elastography, the shear waves induced by acoustic 

radiation force are generally not plane waves, so Equation (6) cannot be applied directly. 

Instead, because the spatial group velocity can be measured more easily than the spatial 

phase velocity, we also would like to derive the complex modulus for the spatial group 

velocity. For elastic media, applying the conversion between the spatial phase and group 

velocities, the spatial group velocity, Vr, has the following relation to group angle θr [7].

(7)

When the media is viscoelastic, G⊥ and G∥ are substituted by their complex counterparts 

(Equation (4) and (5)), then the complex group modulus G*r can be expressed as,

(8)

where k*r is the complex wave number for spatial group velocity. The real and imaginary 

parts of Equation (8) are:

(9)

Qiang et al. Page 5

Phys Med Biol. Author manuscript; available in PMC 2016 February 07.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



(10)

(11)

We can see that unlike G*r, the real part of G*r is not a constant and its imaginary part is not 

a linear function of ω. Therefore strictly speaking, for any angles other than 0° and 90°, G*r 

does not exhibit Voigt types of shear wave behaviors.

Applying Taylor expansions to Equations (9) and (10) around ω = 0 and keeping their first 

terms lead to,

(12)

(13)

It can be shown that Equation (12) only has even terms and its first term is a constant. 

Equation (13) only has odd terms and its first term is a linear function of ω. If the higher 

order terms of the Taylor expansions are truncated, we can define the apparent shear 

elasticity μr
1 and viscosity μr

2 of complex spatial group modulus G*r as:

(14)

(15)

(16)

We can see by truncating the Taylor expansions, group velocity measurements may obey the 

properties of a Voigt material. It would be valuable to investigate under what conditions the 

approximation in Equation (14) is valid. To analyze the convergence of the Taylor 

expansions, we can estimate the radius of convergence ω by finding the following limit [31],

(17)
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where dn and dn+2 are the two adjacent nonzero coefficients of a Taylor expansion. The 

radius of convergence r needs to be squared so both sides of Equation (17) have the same 

unit. Solving Equation (17) analytically is rather complex so a numerical approximation was 

carried out instead. Practically, we can calculate the ratio for a number of terms and then 

estimate the limit by extrapolating the curve to infinity. As an example, when we use the 

material properties: , at θr = 45° 

the value of  for both elasticity and viscosity stabilize around 3.21 × 107 for n ≤ 31. It 

is reasonable to approximate the radii of convergence for both elasticity and viscosity as 

. Then the upper limit of the frequency bandwidth is 

. This set of material parameters is in the normal range of muscles as 

listed in Table 1.

Note that the radius of convergence is subject to the material properties and the angle θr. 

Numerical tests suggest that increasing the viscosity will decrease the radius of convergence. 

For example if  is increased to 5 Pa·s, the radii of convergence of the shear elasticity and 

viscosity decrease to 3.40 × 103 rad·s−1 with an upper frequency limit of 541.13 Hz We can 

also find that as long as the values of  and  stay within the normal range of biological 

tissues such as 10 Pa·s, the radius of convergence is on the order of 103~104 rad·s−1. More 

analyses on this topic are included in the discussion section.

The radius of convergence represents a region beyond which something dramatic may 

happen. Indeed it is determined by the first pole of a power series. It is more a safety 

measure than a guarantee of accuracy. Within the radius of convergence, a power series can 

converge but it does not necessarily imply Equations (15) and (16) are accurate.

Equations (14), (15) and (16) provide a way to estimate the shear elasticity and viscosity 

using the spatial group velocity. However, it requires the complex moduli to be measured, 

which need both shear wave speed and attenuation. While both can be experimentally 

acquired, the attenuation measurements are challenging because of the degraded signal-to-

noise ratio (SNR) in tissues and the need for a geometric compensation [28, 29]. In this 

paper, we rely on the spatial group velocity Vr and fit it with a Voigt model dispersion curve 

to estimate the shear viscoelastic parameters [12].

(18)

Fig. 2 shows a comparison between the μr
1 and μr

2 estimated from Equation (18) and those 

obtained from Equations (14), (15) and (16). We can see they match well. We define the 

mean percentage of error e as,

(19)
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Then the mean percentage of error for μr
1 and μr

2 are 0.16% and 0.11%, respectively. The 

material properties in Fig. 2 are μ⊥
1 = 9 kPa, μ⊥

2 = 1 Pa·s, μ∥
1 = 25 kPa, μ∥

2 = 5 Pa·s. 

measurements θr in degrees. The value of 0° corresponds to along the fiber direction. The 

frequency range of the curve fitting is 200-800 Hz.

3. Numerical Modeling

Setting up solver

In order to simulate three-dimensional wave propagation problems, a full stiffness matrix 

was implemented. For a transversely isotropic, viscoelastic and incompressible material, its 

stiffness matrix can be defined by three independent material properties [32]. In this paper, 

the three given parameters are ,  and , where E⊥ and E∥ are the Young's moduli 

along and across the fiber direction, respectively. Following Chadwick's method [33], the 

stiffness matrix can be given by as,

(20)

where  and the values of λ and ξ are related by,

(21)

(22)

where k is the bulk modulus. By adjusting the bulk modulus k and keeping the shear moduli 

fixed, we can adjust the compressibility of the material. As k → ∞, the material approaches 

incompressible. In this paper, k is set to a number so that vtp = −[c−1]1,3Et < 0.499, where 

[c−1]1,3 denotes the (1,3) element of the matrix inverse of c and Et = 1/[c−1]3,3. There are 

other proposed methods for setting up the stiffness matrix for transversely isotropic, 

incompressible materials [22, 34].

The stiffness matrix defined by Equation (20) only considers the shear components to be 

viscoelastic. Therefore, the compressional wave is elastic. This is adequate for this paper 

since we are focusing on the shear wave propagation. To model the viscoelasticity for both 

shear and compressional waves, all the elements in Equation (20) need to be set to be 

complex.
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A Voigt material has an infinite instantaneous stiffness response to a strain step function. 

Numerically, this is not feasible. In this paper, instead of implementing a Voigt model 

directly, we approximated a Voigt model with a one-branch generalized Maxwell model as 

shown in Fig. 3. Appendix B shows that as , the complex modulus of the model 

approaches that of an equivalent Voigt material. In practice, we set q to a large number 

between 100 to 1000, for both numerical stability and efficiency. This approximation is 

applied to implement both G*⊥ and G*∥.

The governing one-dimensional partial differential equation for the generalized Maxwell 

model in Fig. 3 is,

(23)

where σ and ε are the stress and strain, respectively and the time constant is . To 

step forward in time explicitly, a midpoint rule of differentiation was applied to Equation 

(23) to estimate the stress increment from the current time step to the next [35]. The material 

was implemented in the finite element (FE) software package Abaqus/Explicit (version 

6.12-1, Dassault Systems, Waltham, MA) with a user defined material subroutine VUMAT 

[35].

Shear Wave Simulations

Shear wave simulations were carried out in a cylindrical model as shown in Fig. 4. Taking 

advantage of the symmetry, only a quarter of the domain was modeled. The radius of the 

cylinder was 50 mm and the height of the cylinder was 50 mm. An impulse traction force 

was applied along the center of the cylinder, and the duration of the step impulse was 400 

μs. The radius of the rod-shaped source was 0.5 mm. The size of the source is small enough 

so the generated wave can be regarded as a cylindrical wave. The particle velocity in the y 

direction was extracted and analyzed. The model was meshed with 267,840 8-node elements 

(C3D8R) with enhanced hourglass control and reduced integration, to minimize shear 

locking and hourglass effects [36]. The mesh density was finer for the region near the 

source. Mesh convergence tests were carried out so that maximum of 2% difference in the 

displacement in +y was achieved.

In the finite element simulations, we used μ∥
1 = 25 kPa, μ∥

2 = 8 Pa·s, μ⊥
1 = 9 kPa, μ⊥

2 = 3 

Pa·s. This set of parameters is in the range of an ex vivo tissue experiment that will be 

discussed in the next section.

Data processing and results

Two data processing methods were performed. In the first method, the dispersion of the 

shear wave spatial group velocity Vr was estimated by a k-space method [37] for group 

angles θr from 0-360°, with 5° increments. Then Vr was converted to the spatial phase 

velocity Vw as a function of the phase angle θw by,
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(24)

(25)

Then the apparent shear elasticity and viscosity for the spatial phase velocity were estimated 

from a nonlinear curve fit as shown in Equation (18). In Fig. 5, the estimated apparent shear 

elasticity μw
1 and shear viscosity μw

2 for the spatial phase velocity are plotted with their 

theoretical values as defined in Equation (6). The frequency range of the curve fitting is 

100-480 Hz. The mean percentage of error are 0.30% and 0.36% for μw
1 and μw

2, 

respectively.

For the second method, the apparent shear elasticity μr
1 and viscosity μr

2 of the spatial group 

velocity were estimated directly from the spatial group velocity Vr by curve fittings. The 

same frequency range (100-480 Hz) was used as in the first method. Then the fitted values 

were compared with the first terms of the Taylor expansions in Equation (14). The mean 

percentage of errors are 0.64% and 0.78% for μr
1 and μr

2, respectively. The results are 

plotted in Fig. 6.

To clarify any potential confusions, the results of the first data processing method shown in 

Fig. 5 are the apparent elasticity and viscosity if the shear wave is a plane wave. Because the 

excited waves are cylindrical waves, equations 24 and 25 are therefore necessary to convert 

the measured group velocities to the equivalent phase velocities. This is not needed in the 

second data processing method, because the Voigt model fit was applied directly to the 

group velocities.

4 Tissue Experiment Validation

An ex vivo tissue experiment was carried out to validate the model as described by 

Aristizabal, et al [38]. A porcine tenderloin muscle sample was tested with ultrasound shear 

wave elastography on a research ultrasound scanner (Verasonics, Inc., Redmond, WA). The 

ultrasound system was equipped with a linear array transducer (L7-4, Philips Healthcare, 

Andover, MA) transmitting at 4.1 MHz center frequency. A focused radiation push of 

duration of 400 μs and focused at 28 mm away from the transducer was was used to induce 

shear wave, which was measured by a compounded plane-wave imaging method [39]. The 

tissue was mounted on a rotating stage with a rotation angle ranging between 0-360° every 

10° steps so that shear wave propagation can be measured at multiple angles. The spatial 

group velocity was estimated from the distribution of particle displacement, which was 

estimated by a two-dimensional in-phase/quadrature auto-correlation method [40] with 

spatial and temporal averaging of the compounded echoes from three different angled plane 

waves detected at an effective frame rate of 4.16 kHz.
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To estimate the apparent shear elasticity, μr
1, and viscosity, μr

2, for group velocity, the shear 

wave dispersion curves of the temporal phase velocity were fitted with a Voigt dispersion 

model at every angle in a frequency range 200-500 Hz. By nonlinear fittings, the shear 

viscoelastic parameters are estimated at 0° and 90°: μ∥
1 = 26.54 kPa, μ∥

2 = 8.21 Pa·s, μ⊥
1 = 

8.31 kPa, μ⊥
2 = 2.73 Pa·s, respectively. Fig. 7 shows the estimated shear elasticities and 

viscosities compared to the truncated Taylor expansions in equation 14. The error bars 

represent the standard deviations of 3 independent measurements at each angle. The mean 

percentage errors between the experimental result and the theory for μr
1 and μr

2 are 0.96% 

and 2.98%, respectively. Fig. 7 also plots the results generated from a FEM simulation using 

the same material properties. The same data processing procedures are applied to the FEM 

data set as in experiment data set. The mean percentage errors between the FEM result and 

the theory for μr
1 and μr

2 are 0.47% and 0.24%, respectively.

Discussion

The Taylor expansions for approximating the shear group elasticity μr
1 and viscosity μr

2 are 

particularly useful when processing experimental data sets, because the spatial group 

velocity can be used directly in curve fittings, without converting to the spatial phase 

velocity. Note that there are derivatives taken with respect to the group angle θr in Equations 

(24) and (25). While this works fine for simulated data, it might be difficult for experimental 

results, because the angular resolution could be coarser than needed. However, we should 

also bear in mind that how well the Taylor expansions perform relies on the material 

properties and the bandwidth.

Fig. 8 shows the maximum percentage of errors for different μ⊥
2, μ∥

2, fmax and μ∥
1. From 

Figs. 8A and 8B, we can see that the error is particularly sensitive to the shear viscosities. 

As the shear viscosity across (Fig. 8A) or along (Fig. 8B) the fiber direction increases, the 

Taylor expansion becomes increasingly more inaccurate. From Fig. 8C, it is shown that the 

error is also influenced by the maximum frequency. As the bandwidth broadens, the Taylor 

expansion is more and more subject to error. Indeed, as the bandwidth deviates from the 

expansion point (f = 0 Hz), the first terms in the Taylor series become less dominant. In this 

particular case, even when the maximum frequency is beyond the radius of convergence, the 

impact from the bandwidth is not as severe as the shear viscosity as shown in Figs. 8A and 

8B. Additionally, for ultrasound based shear wave elastography, which can be limited by 

SNR, the maximum reliable frequency is usually less than 1000 Hz. Therefore, the error 

associated with bandwidth broadening may not be an issue. Fig. 8D studies the effects of 

shear elasticity. It shows that as μ∥
1 increases, the maximum percentage difference drops 

quickly to a small value. The same trend is found for μ∥
2. This implies that the model is 

more accurate when the shear elasticity is large and the shear viscosity is low. Another 

observation from Fig. 8 is that μr
1 is always better estimated than μr

2. In Equations (15) and 

(16), we can see μr
1 is only determined by the shear elasticities while μr

2 is determined by 

both shear elasticities and viscosities. The estimation for μr
2 tends to deteriorate faster than 

μr
1 when the shear viscosities increase. For future work, a more rigorous error analysis is 

needed for studying the applicability of the Taylor expansions.
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As was discussed, in ultrasound shear wave elastography, shear wave attenuation 

measurement is more challenging than the speed measurement. This is because of the 

existence of noise and the fact that the generated shear wave is not a plane wave. Instead, the 

shear wave behaves more like a cylindrical wave near the focal depth. Thereby, geometric 

correction might need to be included [8]. A number of papers have discussed how to recover 

the shear wave attenuation. For example, attenuation can be estimated by an algebraic 

inversion of the Helmholtz equation [41]. Attenuation can also be estimated by fitting the 

shear wave amplitude and propagation distance with an exponential decaying function [8, 

42]. More recently, we discovered that shear wave attenuation can be estimated from a k-

space analysis directly [43]. Knowing the shear wave attenuation, the complex modulus of 

the group velocity can be calculated and the complex modulus for the spatial phase velocity 

might be found by a conversion similar to Equations (24) and (25). This way, the shear wave 

elasticity μw
1 and viscosity μw

2 for the spatial phase velocity can be extracted directly from 

it complex modulus without curve fitting. This topic is reserved for future studies.

Even though for simplicity and relevance to realistic tissues, in this work, we only 

considered implementing Voigt material properties in across and along the fiber directions. 

The same approach can be easily extended to simulate other viscoelastic models that can be 

expressed analytically cin a partial differential equation form. Actually, the generalized 

Maxwell model is already implemented if  is not set to a large number.

This simulation framework provides a very flexible platform to explore the behavior of 

viscoelastic, transversely isotropic media. Simulations of these materials can assist in 

designing and optimizing techniques for measuring these parameters in ex vivo and in vivo 

soft tissues. A feedback loop between the simulations and measurements can be used to 

inform the choice of rheological models to be used for implementation in the FE 

simulations.

A limitation of the proposed model is that it ignores the influences from the theoretically 

possible quasi-shear wave. Experimentally, it requires the excitation beam perpendicular to 

the tissue fiber direction. In our ex vivo tissue experiment, this is ensured by positioning the 

probe at a right angle with regard to the plane of symmetry at all times. This condition might 

be challenging when taking an in vivo measurement in muscles. In such cases, the measured 

wave motion becomes a superposition of the shear and quasi-shear waves. In [22], the 

authors showed that the quasi-shear wave speed should be well-separated from shear wave 

and faster than that of the shear wave. However, the relative amplitudes between the two 

modes remain unknown. Empirical results suggest that the energy of the shear wave mode 

might dominate [7]. This topic should be reserved for future studies.

The ex vivo tissue experiment was conducted with a linear array probe and for each different 

angle the probe or the tissue sample has to be rotated. This procedure works well for ex vivo 

setups but would not be practical because of the long time needed to adjust the angle. This 

problem can be solved by using 2D ultrasound imaging probes with adequate angular 

resolutions and SNRs [7]. Another potential advantage of using 2D probes is that plane 

waves might be able to generated and monitored by careful beamforming and sequence 
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design [44]. In this case, at any wave propagation angle, a Voigt model can be applied 

directly (Equation (6)) without using the Taylor approximation.

6. Conclusion

In this paper, we proposed a transversely isotropic, viscoelastic model for modeling shear 

wave propagations in incompressible materials. Such a model is useful when applying 

ultrasound based shear wave elastography in fibrous soft tissues such as skeletal muscles. 

The theory is based on extending the transversely isotropic, elastic model to cover 

viscoelasticity by substituting elastic shear moduli with their complex counterparts. The 

proposed model was implemented with a commercially available finite element package and 

validated. Then shear wave propagations were simulated and analyzed to find the shear 

elasticity and viscosity predictions for both the spatial phase and group velocities. An ex 

vivo tissue experiment was also conducted to validate the proposed model. In both the 

numerical simulations and the tissue experiment, the estimated shear elasticity and viscosity 

values matched well with theory.
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Appendix A

Equation (A1) shows the derivation of Equation (6).

(A1)

Appendix B

This appendix proves that a one-branch generalized Maxwell model approaches a Voigt 

model as . For the one-branch generalized Maxwell model shown in Fig. 3, the 

storage modulus GS and loss modulus GL are:

(B1)
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(B2)

Taking the limit as q → ∞ and applying L'Hopital's rule,

B3)

(B4)

Comparing to the complex modulus of a Voigt material, as q → ∞, the one-branch 

generalized Maxwell model converges to a Voigt model with μg
∞ → μ1 and μg

2 → μ2, 

where μ1 and μ2 are the shear elasticity and viscosity of the Voigt model, respectively.

For validation, a single-element creep test was carried out. The size of the element was 1 × 1 

× 1 m3. Boundary conditions and appropriate loading were applied to the element so the 

element was subject to a shear loading of 1 Pa. The resulting strain was extracted from the 

model and compared to the theoretical responses as shown in Fig. B1. We can see the 

simulated creep responses match with theory well. In Fig. B1, the material properties are 

μ⊥
1 = 9 kPa, μ⊥

2 = 1 Pa·s, μ∥
1 = 25 kPa, μ∥

2 = 5 Pa·s. To minimize the influences from 

inertia, the mass density is set to a small number p = 1×10−10 kg/m3. For the shear wave 

simulations in section 3, the mass density is set to 1000 kg/m3. The theoretical creep curves 

of a Voigt material are calculated by: .
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Figure 1. 
(A): A transversely isotropic muscle-like medium in a Cartesian coordinate system. Tissue 

fibers are aligned with the z axis. The wave front of the shear wave being studied in this 

paper is annotated. The excitation is applied along a vertical line, so the induced shear wave 

is a cylindrical wave. (B): x-y plane is the plane of isotropy (Pi) and x-z and y-z planes are 

the planes of symmetry (Ps). Such materials have two principle shear moduli: G∥ and G⊥ 

and they determine the shear wave speed along and across the tissue fibers, respectively.
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Figure 2. 
Apparent shear elasticity μr

1 and viscosity μr
2 estimated from fitting the spatial group 

velocity with a Voigt model (Equation (18)) are compared to theoretical values obtained 

from the Taylor expansions in Equations (14), (15) and (16). The horizontal axes are the 

angle for spatial group velocity
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Figure 3. 
The Voigt model is approximated by a one-branch generalized Maxwell model. As θ → ∞, 

the complex modulus of a one-branch generalized Maxwell model approaches that of a 

Voigt model. Typically q = [100, 1000] for numerical stability and efficiency.
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Figure 4. 
Finite element model of the shear wave propagation simulations. A traction force in -y 

direction is applied along the center line of the model. The resulting shear waves propagate 

from the center to the perimeter of the cylinder.
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Figure 5. 
The estimated values of μw

1 and μw
1 from FEM (circles) are compared to the theoretical 

predictions in Equation (6) (solid lines). The material properties are μ∥
1 = 25 kPa, μ∥

2 = 8 

Pa·s, μ⊥
1 = 9 kPa, μ⊥

2 = 3 Pa·s.
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Figure 6. 
The estimated values of μr

1 and μr
2 from FEM (circles) are compared to the approximated 

predictions in Equation (14) (solid lines). The material properties are μ∥
1 = 25 kPa, μ⊥

2 = 8 

Pa·s, μ⊥
1 = 9kPa, μ⊥

2 = 3 Pa·s.
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Figure 7. 
The estimated values of μr

1 and μr
2 from a tissue experiment (dashed line) are compared to 

the approximated predictions in Equation (14) (solid lines). The results of a FEM simulation 

of the same parameters are also included (dotted line). The error bars in the experimental 

results represent the standard deviations of 3 independent measurements.
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Figure 8. 
Maximum percentage errors between the shear group elasticity and viscosity estimated by 

fitting a Voigt model and the theoretical values defined by the first term of Taylor 

expansions (Equation (14)). A: μ⊥
1 =9 kPa, μ⊥

2 = 1-10 Pa·s, μ∥
1 = 25 Kpa, μ∥

2 = 5 Pa·s, fmax 

= 800 Hz. B: μ⊥
1 = 9 Kpa, μ⊥

2 = 1 Pa·s, μ∥
1 = 25 Kpa, μ∥

2 = 1-10 Pa·s fmax = 800 Hz. C: 

μ⊥
1 = 9 Kpa, μ⊥

2 = 25 Kpa, μ∥
2 = 5 Pa·s, fmax = 500-3000 Hz. D: μ⊥

1 = 9 Kpa, μ⊥
2 = 1 Pa·s, 

μ∥
1 = 5-25 Kpa, μ∥

2 = 5 Pa·s, fmax = 800 Hz. In all plots, the minimum frequency is 200 Hz.
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Figure B1. 
Validation results of the single-element creep tests. Dimension of the element is 1 × 1 × 1 

m3. A: y-z surface is subjected to a 1 Pa shear stress in +y direction. B: y-z surface is 

subjected to a 1 Pa shear stress in +z direction. The material properties are μ⊥
1 = 9 Kpa, 

μ⊥
2, = 1 Pa·s, μ∥

1 = 25 Kpa, μ∥
2 = 5 Pa·s.
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Table 1

Reported shear elasticity and viscosity measured along and across the muscle fibers.

Muscle μ1
⊥ (kPa) μ2

⊥ (Pa·s) μ2
∥ (kPa) μ2

∥ (Pa·s) Reference Ex vivo /In vivo

Beef 25 3.3 49 15 [12] Ex vivo

Porcine 5.12 0.98 12.84 2.73 [8] Ex vivo

Porcine 4.99-5.11 1.26-1.57 11.98-12.50 2.92-3.51 [20] Ex vivo

Canine ~9 - ~25 - [7] Ex vivo

Human 5.5 - 29.3 - [22] In vivo

Human 1.58-1.97 0.92-2.89 5.86-100.80 0.65-6.72 [21] In vivo
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