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Abstract. The distributed dislocation technique proved to be in the past an effective approach in 

studying crack problems within classical elasticity. The present work aims at extending this 

technique in studying crack problems within couple-stress elasticity, i.e. within a theory accounting 

for effects of microstructure. As a first step, the technique is introduced to study finite-length cracks 

under remotely applied shear loadings (mode II and mode III cases). The mode II and mode III 

cracks are modeled by a continuous distribution of glide and screw dislocations, respectively, that 

create both standard stresses and couple stresses in the body. In particular, it is shown that the mode 

II case is governed by a singular integral equation with a more complicated kernel than that in 

classical elasticity. The numerical solution of this equation shows that a cracked material governed 

by couple-stress elasticity behaves in a more rigid way (having increased stiffness) as compared to a 

material governed by classical elasticity. Also, the stress level at the crack-tip region is appreciably 

higher than the one predicted by classical elasticity. Finally, in the mode III case the corresponding 

governing integral equation is hypersingular with a cubic singularity. A new mechanical quadrature 

is introduced here for the numerical solution of this equation. The results in the mode III case for the 

crack-face displacement and the near-tip stress show significant departure from the predictions of 

classical fracture mechanics.  
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1.  Introduction 

 

The present work is concerned with the study of mode II and mode III finite-length cracks in 

a material with microstructure. We assume that the response of the material is governed by couple-

stress elasticity. This theory falls into the category of generalized continuum theories and is a 

particular case of the general approaches of Toupin (1962), Mindlin (1964), and Green and Rivlin 

(1964). As is well-known, ideas underlying couple-stress elasticity were advanced first by Voigt 

(1887) and the Cosserat brothers (1909), but the subject was generalized and reached maturity only 

with the works of Toupin (1962), Mindlin and Tiersten (1962), Mindlin (1964), and Koiter (1964). 

Earlier application of the couple-stress elasticity, mainly on stress-concentration problems, 

met with some success providing solutions physically more adequate than solutions based on 

classical elasticity (see e.g. Mindlin & Tiersten, 1962; Weitsman, 1965; Bogy and Sternberg, 1967a, 

b). Work employing couple-stress theories on elasticity and plasticity problems is also continued in 

recent years (see e.g. Vardoulakis and Sulem, 1995; Huang et al., 1997; Chen et al., 1998; Anthoine, 

2000; Lubarda and Markenscoff, 2000; Bardet and Vardoulakis, 2001; Georgiadis and Velgaki, 

2003; Grentzelou and Georgiadis, 2005).  

Nevertheless, there is only a limited number of studies concerning the effects of couple-

stresses in crack problems. One of the earlier works in this subject is that of Sternberg and Muki 

(1967) who considered the mode I finite-length crack by employing the method of dual integral 

equations. They provided only asymptotic results and showed that both the stress and couple-stress 

fields exhibit a square-root singularity while the rotation field is bounded at the crack-tip. The same 

method was adopted by Ejike (1969) for a circular (penny-shaped) crack in couple-stress elasticity 

and by Paul and Sridharan (1980, 1981) for a finite-length crack in micropolar elasticity. Using the 

Wiener-Hopf technique, Atkinson and Leppington (1977) studied the problem of a semi-infinite 

crack with exponentially decayed normal tractions on the crack faces. More recently, Huang et al. 

(1997) provided near-tip asymptotic fields for the mode I and mode II crack problems, in couple-

stress elasticity, by using the method of eigenfunction expansions. Also, Zhang et al. (1998) by 

employing the Wiener-Hopf technique investigated the mode III semi-infinite crack in couple-stress 

elasticity in the special case where the second couple-stress moduli is set equal to zero. Moreover, 

using a similar approach, Huang et al. (1999) obtained full-field solutions for semi-infinite cracks 

under mode I and mode II loadings in elastic-plastic materials with strain-gradient effects. 

Here, we aim at providing full-field solutions to the mode II and mode III finite-length crack 

problems within couple-stress elasticity by introducing an approach based on distributed 
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dislocations. Since the pioneering work of Bilby et al. (1963, 1968) the distributed-dislocation 

technique has been employed to analyze various crack problems in classical elasticity. A thorough 

exposition of the technique can be found in the treatise by Hills et al. (1996). The strength of this 

analytical/numerical technique lies in the fact that it gives detailed full-field solutions for crack 

problems at the expense of relatively little analytical demands as compared to the elaborate 

technique of dual integral equations and, also, of relatively little computational demands as 

compared to the Finite Element and Boundary Element methods. Although the technique has proven 

to be very successful in studying crack problems within classical elasticity, it appears that there is no 

work at all in modeling cracks with distribution of dislocations in materials with microstructure. 

Therefore, the present work aims at extending the technique in couple-stress elasticity. In another 

recent work by the present authors (Gourgiotis and Georgiadis, 2007) the mode I crack problem was 

also considered within the same framework. A comparison between the mode II case studied here 

and the mode I case leads to the conclusion that the opening mode is mathematically more involved 

than the shear mode. This is in some contrast with situations of classical elasticity where the two 

plane-strain crack modes involve equivalent mathematical effort. 

As in analogous situations of classical elasticity, a superposition scheme will be followed. 

Thus, the solution to the basic problem (body with a traction-free crack under remote shear field) 

will be obtained by the superposition of the stress field arising in the un-cracked body (of the same 

geometry) to the ‘corrective’ stresses and couple-stresses induced by a continuous distribution of 

dislocations chosen so that the crack-faces become traction-free. The stress field for a discrete glide 

and screw dislocation in couple-stress elasticity will serve, respectively, as the Green’s function for 

the mode II and mode III problem. However, we note that deriving the stress field of a discrete 

dislocation within generalized continua is by no means a straightforward task. Within the framework 

of couple-stress elasticity a lot of research has been devoted to dislocations. Representative 

references include work by Kröner (1963), Misicu (1965), Teodosiu (1965), Cohen (1966), Anthony 

(1970), Knesl and Semela (1972) and Nowacki (1974). Finally, it is shown that due to the nature of 

the above Green’s functions and the boundary conditions that arise in couple-stress elasticity, the 

aforementioned procedure results for the mode II case in a singular integral equation (SIE), whereas 

for the mode III case in a hypersingular integral equation (IE) with a cubic singularity. In order to 

solve this hypersingular IE, a new mechanical quadrature is constructed. 
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2.  Basic concepts and equations of couple-stress elasticity 

 

In this Section, we briefly present the basic ideas and equations of couple-stress elasticity. 

The theory employed here is a particular case of form III in the general Mindlin’s (1964) approach. 

Nevertheless, we chose to present an alternative approach to Mindlin’s variational approach. Indeed, 

our derivation of basic results relies on the momentum balance laws, which - in our opinion - provide 

more physical insight. It should also be mentioned that versions of the quasi-static couple-stress 

theory were given by, among others, Aero and Kuvshinskii (1960), Mindlin and Tiersten (1962), 

Koiter (1964), Palmov (1964), and Muki and Sternberg (1965). The basic equations of dynamical 

couple-stress theory (including the effects of micro-inertia) were given by Georgiadis and Velgaki 

(2003). 

In the absence of inertia effects, for a control volume CV with bounding surface S , the 

balance laws for the linear and angular momentum read 

 
    0 CV iS

n
i CVdFdST  ,                                                     (1) 

         0 CVdCeFxdSMeTx CV iijkkjS
n

iijk
n

kj  ,                                                         (2) 

 

where  n
iT  is the surface force per unit area (force traction), iF  is the body force per unit volume, 

 n
iM  is the surface moment per unit area (couple traction), and iC  is the body moment per unit 

volume. 

Next, pertinent force-stress and couple-stress tensors are introduced by considering the 

equilibrium of the elementary material tetrahedron and enforcing (1) and (2), respectively. The force-

stress tensor ijσ  (which is asymmetric) is defined by 

 

 
jji

n
i nσT   ,                                 (3) 

 

and the couple-stress tensor ijμ  (which is also asymmetric) by 

 

 
jji

n
i nμM   ,                                 (4) 
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where jn  are the direction cosines of the outward unit vector n , which is normal to the surface. In 

addition just like the third Newton’s law    -nn TT   is proved to hold by considering the 

equilibrium of a material ‘slice’, it can also be proved that    -nn MM  . The couple-stresses ij  

are expressed in dimensions of [force][length]-1. Further, ijσ  can be decomposed into a symmetric 

and anti-symmetric part 

 

ijijij ατσ   ,                                            (5) 

 

with jiij ττ   and jiij αα  , whereas it is advantageous to decompose ijμ  into its deviatoric  D
ijμ  

and spherical  S
ijμ  part in the following manner 

 

kkijijij μδmμ
3

1
  ,                                                                 (6) 

 

where  D
ijij μm  ,     kkij

S
ij μδμ 31  and ijδ  is the Kronecker delta. Now, with the above definitions 

in hand and with the help of the divergence theorem, one may obtain the equations of equilibrium. 

Thus, Eq. (2) leads to the following moment equation 

 

0 jijkkiiji Ceσμ  ,                               (7) 

 

which can also be written as  

 

0
2

1

2

1
 jklljkjklili eCαeμ  ,                              (8) 

 

since by its definition the anti-symmetric part of stress is written as    IσIα  21 , where I  is 

the idemfactor. Also, Eq. (1) leads to the following force equation 

 

0 kjkj Fσ  ,                                           (9) 

 

or, by virtue of  (5), to the equation  
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0 kjkjjkj Fατ  .                                        (10) 

 

Further, combining (8) and (10) yields the single equation  

 

0
2

1

2

1
 jklljkjklilijjkj eCFeμτ  .                           (11) 

 

Finally, in view of Eq.(6) and by taking into account that     031divcurl kkij μδ , we write (11) as  

 

0
2

1

2

1
 jklljkjklilijjkj eCFemτ  .                           (12) 

 

Equation (12) is therefore the single equation of equilibrium.  

As for the kinematical description of the continuum, the following quantities are defined 

within the geometrically linear theory 

 

 jiijij uuε 
2

1
 ,                                         (13) 

 jiijij uuω 
2

1
 ,                                                               (14) 

kjijki ueω 
2

1
 ,                              (15) 

jiij ωκ   ,                               (16) 

 

where ijε  is the strain tensor, ijω  is the rotation tensor, iω  is the rotation vector, and ijκ  is the 

curvature tensor (i.e. the gradient of rotation or the curl of the strain) expressed in dimensions of 

[length]-1. Notice also that Eq. (16) can alternatively be written as 

 

ilkjkllkijklij εeueκ 
2

1
 .                              (17) 
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Equation (17) expresses compatibility for curvature and strain fields. In addition, there is an 

identity, i.e. kjijkijikijk   , which expresses compatibility for the curvature 

components. The compatibility equations for the strain components are the usual Saint Venant’s 

compatibility equations. We notice also that 0iiκ  because   021 ,  jikijkiiii ueωκ  and, 

therefore, that ijκ  has only eight independent components. The tensor ijκ  is obviously an asymmetric 

tensor. 

Now, regarding the traction boundary conditions, we note that at first sight, it might seem 

plausible that the surface tractions (i.e. the force-traction and the couple-traction) can be prescribed 

arbitrarily on the external surface of the body through relations (3) and (4), which stem from the 

equilibrium of the material tetrahedron. However, as Koiter (1964) pointed out, the resulting number 

of six traction boundary conditions (three force-tractions and three couple-tractions) would be in 

contrast with the five geometric boundary conditions that can be imposed. Indeed, since the rotation 

vector iω  in couple-stress elasticity is not independent of the displacement vector iu  (cf. (15)), the 

normal component of the rotation is fully specified by the distribution of tangential displacements 

over the boundary. Therefore, only the three displacement and the two tangential rotation 

components can be prescribed independently. As a consequence, only five surface tractions (i.e. the 

work conjugates of the above five independent kinematical quantities) can be specified at a point of 

the bounding surface of the body. These are three reduced force-tractions and two tangential couple-

tractions (Mindlin and Tiersten, 1962; Koiter, 1964) 

 

 
 nnkjijkjji

n
i mnenσP 

2

1
 ,                 (18) 

 
  innjji

n
i nmnmR   ,                                        (19) 

 

where   ijjinn mnnm   is the normal component of the deviatoric couple-stress tensor ijm . Finally, it 

is worth noting that in the micropolar (Cosserat) theory of elasticity (see e.g. Nowacki, 1972), the 

traction boundary conditions are six since the rotation is fully independent of the displacement 

vector. In this case the tractions can directly be derived from the equilibrium of the material 

tetrahedron, i.e. the relations between tractions and stresses are given by (3) and (4). 

Introducing the constitutive equations of the theory is now in order. We assume a linear and 

isotropic material response, in which case the potential-energy density takes the form 
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  jiijijijijijjjiiijij κκηκηκεμεελεκεWW  22
2

1
,  ,                         (20) 

 

where  ηημλ ,,,  are material constants. Then, Eq. (20) leads, through the standard variational 

manner, to the following constitutive equations  

 

  ijkkij
ij

ijij μεελδ
ε

W
στ 2




  ,                                       (21) 

jiij
ij

ij κηηκ
κ

W
m 




 44  .                             (22) 

 

In view of (21) and (22), the moduli  μλ,  have the same meaning as the Lamé constants of classical 

elasticity theory, whereas the moduli  ηη ,  account for couple-stress effects. 

Finally, the following points are of notice: (i) The couple-stress moduli  ηη ,  are expressed 

in dimensions of [force]. (ii) Since 0iiκ , 0iim  is also valid and therefore the tensor ijm  has only 

eight independent components. (iii) The scalar   kkμ31  of the couple-stress tensor does not appear in 

the final equation of equilibrium, nor in the reduced boundary conditions and the constitutive 

equations. Consequently,   kkμ31  is left indeterminate within the couple-stress theory. (iv) The 

following restrictions for the material constants should prevail on the basis of a positive definite 

potential-energy density (Mindlin and Tiersten, 1962) 

 

023  μλ  ,    0μ  ,    0η  ,    11 



η

η
 .                                                       (23a,b,c,d) 

 

 

3.  Plane problems of couple-stress elasticity 

 

The cases of plane strain and anti-plane strain are examined here and the basic equations are 

given. In what follows, vanishing body forces and body couples are assumed. 

 

3.1 Plane-strain  
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For a body that occupies a domain in the  yx, -plane under conditions of plane strain, the 

displacement field takes the general form 

 

  0,  yxuu xx  ,          0,  yxuu yy  ,        0zu  .                              (24a,b,c) 

 

By virtue of (13)-(16), the non-vanishing components of strain, rotation and curvature are given as 

 

x

u
ε x

xx 


  ,    
y

u
ε y

yy 


  ,    

















y

u

x

u
εε xy

yxxy 2

1
 ,                               (25a,b,c) 


















y

u

x

u
xy

xyz 2

1
ωω  ,                             (26) 

x

ω
κ z

xz 


  ,    
y

z
yz 



ω

κ  .                                    (27a,b)

  

Also, from the constitutive equations (21) and (22), the following relations are derived 

between stress and strain and between couple-stress and curvature  

 

  yyxxxx λεελμτ  2  ,      xxyyyy λεελμτ  2  ,    xyxy μετ 2  ,                            (28a,b,c)  

xzxz ηκm 4  ,   yzyz ηκm 4  ,                                                          (29a,b)    

  

whereas, the remaining components are given by 

 

   yyxxzz ττ
μλ

λ
τ 




2
 ,    xzzx m

η

η
m


  ,    yzzy m

η

η
m


  .                                       (30a,b,c) 

 

Next, the non-vanishing components of the anti-symmetric part of the force-stress tensor are 

obtained from (8) as 

 

z
yzxz

yxxy y

m

x

m
ωηαα 22

2

1

















  .                          (31) 
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It should be noticed that the independence upon the coordinate z  of all components of the force-

stress and couple-stress tensors, under the assumption (24c), was proved by Muki and Sternberg 

(1965). Indeed, it is noteworthy that, contrary to the respective plane-strain case in the conventional 

theory, this independence is not obvious within the couple-stress theory.  

 

Mindlin’s stress functions 

 

As Mindlin (1963) indicated, the equations of equilibrium in (7) and (9), in a plane-strain 

state, are identically satisfied when the stresses are derived from two stress functions  yx,  and 

 yx,  in the following manner  

 

xyy
σ xx 








ΨΦ 2

2

2

 ,    
yxx

σ yy 







ΨΦ 2

2

2

 ,                                               (32a,b) 

2

22 ΨΦ

yxy
σ xy 







  ,    
2

22 ΨΦ

xxy
σ yx 







  ,                                 (33a,b) 

x
mxz 




Ψ
 ,    

y
myz 




Ψ
 .                                                          (34a,b) 

 

where the functions Φ  and Ψ  satisfy the following PDEs 

 

0Φ4   ,      0Ψ1222    .                                   (35a,b) 

 

According to the compatibility equations between curvature and strain in (17), the stress functions 

are related through the following equations 

 

     Φ12ΨΨ 2222 







y
ν

x
  ,                                                   (36) 

     Φ12ΨΨ 2222 







x
ν

y
  ,                           (37) 

 

where v  is the Poisson’s ratio and   21  is a characteristic material length. 
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3.2 Anti-plane strain  

 

For a body occupying a domain in the  yx, -plane under conditions of anti-plane strain, the 

displacement field takes the general form 

 

0xu  ,     0yu  ,        0,  yxwuz  .                                          (38a,b,c) 

 

Again, by virtue of (13)-(16), the non-vanishing components of strain, rotation and curvature are 

given as 

 

x

w
εε zxxz 




2

1
 ,    

y

w
εε zyyz 




2

1
 ,                                                        (39a,b) 

y

w
ωω yzx 




2

1
 ,    

x

w
xzy 




2

1
ωω  ,                                     (40a,b) 

yx

w
κκ yyxx 




2

2

1
 ,    

2

2

2

1

x

w
κ xy 


  ,    

2

2

2

1

y

w
κ yx 


  .                                          (41a,b,c) 

 

Then, the constitutive equations in (21) and (22) provide 

 

x

w
μμετ xzxz 


 2  ,    
y

w
μμετ yzyz 


 2  ,                                  (42a,b) 

   
yx

w
ηηκηηm xxxx 


2

24  ,                                         (43a) 

    xxyyyy m
yx

w
ηηκηηm 




2

24  ,                                                                   (43b) 

2

2

2

2

2244
y

w
η

x

w
ηκηκηm yxxyxy 





  ,              (43c) 

2

2

2

2

2244
x

w
η

y

w
ηκηκηm xyyxyx 





  .                         (43d) 

 

Further, the non-vanishing components of the anti-symmetric part of the force-stress tensor are 

obtained from (8) 
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 w
x

η
y

m

x

m
αα yyxy

xzzx
2

2

1





















  ,                                    (44a) 

 w
y

η
y

m

x

m
αα yxxx

yzzy
2

2

1





















  .                                                                 (44b) 

 

Finally, by taking into account (5) and (44), the components of the force-stress tensor can be 

written as 

 

 ww
x

μσ xz
22




   ,     ww
x

μσ zx
22




   ,                                 (45a,b) 

 ww
y

μσ yz
22




   ,     ww
y

μσ zy
22




   .                                 (46a,b) 

 

In view of the above and by enforcing equilibrium, a single PDE of the fourth order for the 

displacement component is obtained 

 

0422  ww   .                                         (47) 

 
 

 
4.  Discrete dislocations in couple-stress elasticity 
 

4.1 Glide dislocation 
 

Consider a glide dislocation with Burgers vector  0,0,bb  imposed in an infinite medium 

along the plane 0x , 0y . The appropriate Mindlin’s stress functions for this problem were given 

by Cohen (1966), Knesl and Semela (1972), and Nowacki (1974) 

 

    θ
νπ

μ
sin1ln2

14



 r

rb
Φ  ,                                       (48) 

   θ
π

μ
cos

2
1 rrK

b 
Ψ  ,                                       (49) 
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where   2122 yxr  ,  xyθ 1tan   and  rKi  is the thi -order modified Bessel function of the 

second kind. Further, the stresses induced at a point  yx,  may be found from the above stress 

functions by using Eqs. (32)-(34)  

 

      θrK
rrπ

bμ
θθ

rνπ

bμ
σ xx 3sin

22
3sinsin3

14 22

2












 

 

                            θθrKrKr
π

bμ
3sinsin

4 022
 


 ,            (50) 

      θrK
rrπ

bμ
θθ

rνπ

bμ
σ yy 3sin

22
sin3sin

14 22

2












 

 

                            θθrKrKr
π

bμ
3sinsin

4 022
 


 ,                              (51) 

 

      θrK
rrπ

bμ
θθ

rνπ

bμ
σ xy 3cos

22
3coscos

14 22

2












 

 

                             θθrKrKr
π

bμ
3coscos

4 022
 


 ,            (52) 

 

      θ
π

μ
θθ

νπ

μ
σ 3cos

22
3coscos

14 22

2












 

rK
rr

b

r

b
yx  

                             θθ
π

μ
3coscos3

4 022
 


rKrKr

b
 ,                       (53) 

 

   
rK

π

bμ
θrK

rπ

bμ
mxz 022

2

2cos
2









  ,                          (54) 

 

  θrK
rπ

bμ
m yz 2sin

2
22

2









 

 .                                       (55) 

 

Examining now the asymptotic behavior of the above stress field (to determine the possibility 

of singularities), we note that as 0r  the following asymptotic relations hold (see e.g. Abramowitz 

and Stegun, 1964)  
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   1
22

221 







 rOrK

rr


 ,         1
02

 rOrKrKr   ,      rOrK ln0   .   (56a,b,c)     

  

In view of (56), as the dislocation core ( 0r ) is approached, the components of the force-stress 

tensor  yxxyyyxx σσσσ ,,,  exhibit a Cauchy singularity (just as in classical elasticity), the couple-stress 

xzm  becomes logarithmically unbounded, while yzm  remains bounded. Finally, when 0  the 

stress field of classical elasticity for a discrete glide dislocation is recovered.  

 

4.2 Screw dislocation 
 

For a screw dislocation with strength b  the displacement field in couple-stress elasticity is 

given as (see our derivation in Appendix A) 

 

    θrK
r

β
π

b
θ

π

b
w 2sin

2
1

42 22

2









 

 ,                          (57) 

 

where the ratio    should satisfy the following inequality 11  β . The stress and couple-

stress fields corresponding to (57) are obtained from Eqs. (42)-(46) as 

 

θ
rπ

bμ
τ xz sin

2
  ,    θ

rπ

bμ
τ yz cos

2
  ,                                  (58a,b) 

 

 
θ

rπ

βbμ
θ

rπ

bμ
σ xz 3sin

1
sin

2 3

2 



 ,  

 
θ

rπ

βbμ
θ

rπ

bμ
σ yz 3cos

1
cos

2 3

2 



 ,               (59a,b) 

 

      θrK
rrπ

βbμ
θ

rπ

bβμ
mm xxyy 4cos

213
4cos

1
22

2

2

22

2

2















 

  

                                    
        14cos3

8

1
4cos

2

1
0

2

2

2







 θrK
π

βbμ
θrK

π

βbμ   ,  (60a,b) 
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        θθrK
π

βbμ
θrK

rrπ

βbμ
myx 2sin4sin2

4

1
4sin

213
2

2
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2

2
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
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


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





 

 

                                                
        θrK

rπ

βbμ
θrK

π

βbμ
2sin

21
4sin

8

13
22

2

0

2















   ,   (61) 

 

  wmm yxxy
22 12    ,                            (62) 

  

The following points are of notice now: (i) Using the well known asymptotic properties of the 

modified Bessel functions, we conclude that as 0r  the asymmetric and the symmetric shear 

stresses behave as 3~ r  and 1~ r , respectively, whereas the couple-stresses behave as 2~ r .        

(ii) When 1β  (i.e. when ηη  ), the above stress field degenerates into the respective one in 

classical elasticity for a screw dislocation. 

 
 

5  Formulation of crack problems by a distribution of dislocations 
 

5.1 Mode II crack 
 

Consider a straight crack of length 2a  embedded in the xy -plane of infinite extend in a field 

of pure shear (Fig.1). The crack faces are traction free and the body is considered to be in plane-

strain conditions. The crack faces are defined by  1,0 n . Then, according to (18) and (19), the 

boundary conditions along the crack faces are written as 

 

0yxσ  ,    0yyσ  ,   0yzm               for ax   ,                                                     (63a,b,c) 

 

whereas the regularity conditions at infinity are 

 

0στσσ xyxyyx    ,   0, 
xxyy σσ  ,   0, 

yzxz mm     as  r   ,                      (64a,b,c) 

 

where   2122 yxr   now is the distance from the origin and the constant 0σ  denotes the remotely 

applied shear loading. 
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Fig. 1  Cracked body under remote shear in plane strain. 

 

 

Then, the crack problem is decomposed into the following two auxiliary problems. 

 

The un-cracked body 

 It can readily be verified that the appropriate Mindlin’s stress functions for the un-cracked 

body of infinite extent subjected to boundary conditions (64a,b,c) are as follows 

 

xyσ 0Φ   ,   0Ψ   .                                                (65a,b) 

 

The stress field that corresponds to the above stress functions can be found from (32)-(34) as 

 

    0,, σyxσyxσ xyyx   ,   0 yyxx σσ  ,   0 yzxz mm  .                                       (66a,b,c) 

 

Notice, that there are no couple-stresses induced in the un-cracked body, the body being in a state of 

pure shear. 

 

The corrective solution 

Consider a body geometrically identical to the initial cracked body (Fig. 1) but with no 

remote loading now. The only loading applied is along the crack faces. This consists of equal and 
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opposite tractions to those generated in the un-cracked body. The boundary conditions along the 

faces of the crack are written as 

 

0σσ yx   ,  0yyσ  ,  0yzm               for  ax   .                                                   (67a,b,c) 

 

The corrective stresses (67a,b,c) may be generated by a continuous distribution of discrete glide 

dislocations along the crack faces. The stresses and couple-stresses induced by the continuous 

distribution of dislocations can be derived by integrating the effect of a discrete glide dislocation (i.e. 

by the use of Eqs. (50)-(55)). We note that (67b,c) are automatically satisfied since a discrete glide 

dislocation does not produce normal stresses yyσ  or couple-stresses yzm  along the crack-line. Then, 

satisfaction of the boundary condition (67a) leads to a single IE. Separating the singular part from the 

regular part of the kernels, we obtain the governing SIE of the mode II problem in couple-stress 

elasticity as 

 

 
 

      ξξξ
π

μ
ξ

ξ

ξ

νπ

νμ
σ dxkBd

x

B a

a

a

a

,
12

23
0 









  ,              ax   ,                               (68)     

 

where  signifies Cauchy principal value integration and    ddbB   is the dislocation density at 

a point ξ  ( aξ  ),  this density being defined in the same way as in classical elasticity (see e.g. Hills 

et al., 1996).  

The kernel  ξ,xk  is defined as  

 

 
 

  












2

122
, 22

2


ξ

ξξ
ξ xK

xx
xk  

                   
 

 
   













 


ξξ
ξ

ξ
xKxK

x

x
022

2

2

2
 .              (69)         

                                                    

To show that  ξ,xk  is regular, we expand the latter in series as ξx   (see e.g. Abramowitz and 

Stegun, 1964) and obtain 
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       ξξξξξ  xxOxxaaxk lnln, 3
21  ,                                                      (70) 

 

where ia  are constants depending on the characteristic material length  . Since 

  0lnlim 


ξxξx n

ξx
 for 0n , we conclude that  ξxk ,  is regular in the closed domain 

  axa  ξ, . 

The solution  ξB  in (68) is determined in the class of Hoelder continuous functions and may 

be written as a product of a regular bounded function and a fundamental solution. Asymptotic 

analysis, within the framework of the couple-stress elasticity, showed that the displacement xu  

behaves as 21~ r  in the crack tip region, where r  denotes now the polar distance from the crack tip 

(Huang et al., 1997). Consequently, the dislocation density is expressed in the form  

 

      2122 
  fB  ,                                                                                                     (71) 

 

where  ξf  is bounded and continuous in the interval αξ  . Further, in order to render the problem 

determinate, the dislocation density should also satisfy an auxiliary condition expressing the 

requirement that there be no net relative tangential displacement between one end of the crack and 

the other, i.e. 

 

  0 ξdξB
a

a
 .                                                                                     (72)

                                                             

Before proceeding with the solution of the governing integral equation, it is interesting to 

consider two limit cases concerning the behavior of (68) w.r.t.  . By letting 0  and noting that 

   ξξ 


xxk 1,lim
0

, Eq. (68) degenerates into the counterpart equation governing the mode II 

problem in classical elasticity, i.e. 

 

 
 









a

a

ξd
ξx

ξB

νπ

μ
σ

120  ,              ax   .                          (73) 

 

On the other hand, by letting   and noting that   0,lim 


ξxk


, (68) takes the form  
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 
 

 









a

a

ξd
ξx

ξB

νπ

νμ
σ

12

23
0  ,             ax   .                                     (74) 

 

It can readily be shown, that the ratio of the crack-face displacements obtained by the solution of 

(74) and (73), respectively, is  ν231  . Equation (74) shows mathematically that there is a lower 

bound for the crack-face displacement xu  when  . The same ratio of displacements was also 

obtained by Sternberg and Muki (1967) for a mode I crack in couple-stress elasticity. 

For the numerical solution of the SIE in (68), the Gauss-Chebyshev quadrature developed by 

Erdogan and Gupta (1972) is used. After the appropriate normalization over the interval  1,1 , the 

integral equation takes the discretized form       
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      
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where 
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


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





 ikik

ik
ik stpKstpK

stp
stp 0222

2 2
 ,           (76) 

 

with ap  , axt  , and aξs  . The integration and collocation points are given, respectively, 

as 

 

  0in sT  ,     nπisi 212cos   ,      ni ,...,1  ,                                                          (77a)      

  01  kn tU  ,    nπktk cos  ,      1,...,1  nk  ,                                                           (77b)  

 

where  xTn  and  xU n  are the Chebyshev polynomials of the first and second kind, respectively. 

Formula (75) is a standard Gauss-Chebyshev quadrature with the requirement that the collocation 
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points kt  must satisfy (77b), i.e. that kt  be the roots of 1nU . The auxiliary condition in (72) can be 

written in discretized form as 

 

 



n

i
isf

n

π

1

0  .                                                                          (78) 

 

Equations (75) and (78) provide an algebraic system of n  equations in the n  unknown functions 

 isf . A computer program was written that solves the above system of equations.  

Some numerical results are presented now. In Fig. 2 the dependence of the tangential crack-

face displacement on the ratio a  in couple-stress elasticity is depicted. It is noteworthy that as the 

crack length becomes comparable to the characteristic length  , the material exhibits a more stiff 

behavior, i.e. the tangential crack-face displacements become smaller and smaller in magnitude. 

Finally, we note that the displacements obtained within the classical theory of elasticity serve as an 

upper bound of couple-stress elasticity.  

 

 

 

 

 

 

 

 

 

 

 
 
 
 

                        
 
 

Fig. 2  Normalized upper-half tangential crack displacement profile ( 3.0ν ). 
 

 

Next, the near-tip behavior of the shear stress yxσ  given as the expression in the RHS of (68) 

plus 0σ , is determined. Due to the symmetry of the problem (in geometry and loading) with respect 
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to y -axis we confine attention only to the right crack tip. Now, as  ax  the following asymptotic 

relations hold  

 

    21







axd

x

Ba

a

Οξ
ξ

ξ
 ,           1, ΟξdξxkξB

α

α
  ,              ax   ,                  (79a,b) 

 

where the dislocation density is defined in (71). Thus, we conclude that yxσ  exhibits a square root 

singularity at the crack tip. In light of the above, we define the stress intensity factor in couple-stress 

elasticity as     0,2lim 21 


yxaxK yx
ax

II   for the right crack tip ( ax  ). The dependence of 

the ratio of the stress intensity factor in couple-stress elasticity IIK  to the one in classical elasticity 

upon a  is given in Fig. 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3  Variation of the ratio of stress intensity factors in couple-stress elasticity and 

in classical elasticity. 
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discontinuity at 0a ; the ratio at the tip of the crack rises abruptly as a  departures from zero. 

The same discontinuity was observed by Sternberg and Muki (1967), who attributed that kind of 

behavior to the severe boundary-layer effects predicted by the couple-stress elasticity in stress-

concentration problems. Finally, it can be shown that the ratio decreases monotonically with 

increasing values of a  and tends to unity as a . The case a  is rather impractical 

since generally the relation between lengths in a usual crack problem will be a , i.e. the crack 

length will be much greater than the material length. However, in an attempt to explain the latter 

finding, we note that the case  , with 0a , resembles a situation where, in a sense, there is no 

microstructure in the body, since the ‘building blocks’ of the material are of infinite size. Of course, 

this case has an obscure physical meaning, but, as far as stresses are concerned, the solution shows 

that the material exhibits a behavior similar to the one for a material governed by the classical theory. 

Further, the distribution of the shear stress yxσ  ahead of the crack tip (see Fig. 4) shows that 

the couple-stress effects are dominant for x , whereas outside this zone yxσ  gradually approaches 

the distribution of the classical solution. For convenience, a new variable axx   is introduced 

measuring now distance from the crack tip in the RHS of Fig. 1. 

 

 

 

 

 

 

 

 

 

 

 

         

 

                      

                           

                          Fig. 4  Distribution of the shear stress ahead of the crack tip. 
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Finally, taking into account that xzm  exhibits a logarithmic singularity in the case of a glide 

dislocation and that 

 

   1ln OdBxα

α ξξξ               as    ax  ,                                                                      (80) 

 

we conclude that xzm  given as the integral of (54) is bounded at the crack tip. This observation is in 

agreement with the asymptotic results of Huang et al. (1997) for a mode II crack. Figure 5 depicts the 

distribution of the couple-stress xzm  ahead of the crack tip. In particular, we observe that xzm  takes 

finite negative values immediately ahead of the crack tip in the RHS. Then, as the position 

(observation point) moves away from the crack tip, xzm  changes sign and gradually reaches zero for 

10x . It should be noted, though, that xzm  exhibits the property of anti-symmetry w.r.t. the y - 

axis (see Fig. 1): Therefore, xzm  is positive immediately ahead of the LHS crack tip. An anti-

symmetric distribution of the couple-stress is required for the moment equation in (7) to be satisfied.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    Fig. 5  Distribution of the couple-stress ahead of the crack tip. 
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0σ

0σ

a a x

y

Finally, as we show in Appendix C, the orders of singularities of the above stress and couple-

stress fields lead to an integrable strain-energy density in the vicinity of crack tips and also lead to a 

bounded value of the J -integral. 

 

5.2 Mode III crack 
 

Consider a straight crack of length 2a  embedded in the  yx, -plane of infinite extent under 

a remotely applied anti-plane shear loading (see Fig. 6). The crack faces are assumed to be traction 

free. The boundary conditions along the crack faces are written as (cf. (18) and (19)) 

 

0
2

1
 yyxyz mσ  ,   0yxm        for  ax   ,                                                               (81a,b)  

 

whereas the regularity conditions at infinity are given as 

 

0στσ yzyz    ,   0
xzσ  ,   0,,, 

xyyxyyxx mmmm     as   r  ,                       (82a,b,c) 

 

 

 

 

 

 

 

 

 

 

 

    Fig. 6  Cracked body under remote shear in anti-plane strain. 

 

 

The ‘reduced’ boundary condition in (81a) is also justified physically from the fact that the 

displacement w  and the rotation   xwωy  21  cannot be prescribed independently on the 

crack faces. This situation is analogous to the one in Kirchhoff’s plate theory regarding the effective 

shear force.  
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Again, the crack problem is decomposed into the following two auxiliary problems. 

 

The un-cracked body 

It can be readily shown that the un-cracked body subjected to the boundary conditions 

(82a,b,c) is in a state of pure anti-plane shear. The only non-zero stresses are  

 

    0,, σyxτyxσ yzyz   .                                                                                                     (83) 

 

Note that there are no couple-stresses induced in the un-cracked body. 

 

The corrective solution 

Consider a body geometrically identical to the initial cracked body in Fig. 6 but with no 

remote loading now. The applied loading along the crack faces consists of equal and opposite 

tractions to those generated in the un-cracked body, i.e.  

 

02

1
σσ  yyxyz m  ,    0yxm       for  ax     and    0y   .                                    (84a,b)                   

 

The corrective stresses in (84a,b) may be generated by a continuous distribution of discrete screw 

dislocations along the crack faces. The stresses induced by the continuous distribution of dislocations 

are obtained as integrals of Eqs. (59)-(62). Note that (84b) is automatically satisfied since a discrete 

screw dislocation does not give rise to couple-stresses yxm  along the crack line. Then, satisfaction of 

the boundary condition (84a) leads, after lengthy calculations, to the governing hypersingular IE of 

the mode III problem in couple-stress elasticity  ax   
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σ ,33

2
21

0


                                                         (85) 

 

where  signifies Hadamard’s finite-part integration (see e.g. Kutt, 1975; Paget, 1981),  ξB  is the 

dislocation density function at the point ξ  ( aξ  ), and 
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 
π

ββμ
c

16

922

1


  ,  

  
π

ββμ

2
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π

βμ 2

3

1
c  .                                           (86) 

 

Further, the kernel  ξxk ,  is defined as 
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Expanding  ξxk ,  in series as ξx   and using the asymptotic properties of the modified Bessel 

functions, it can be readily shown that  ξxk ,  is regular in the closed domain   aξxa  , . We 

also note that when 1β  (i.e. when ηη  ), Eq. (85) degenerates into the SIE that governs the 

counterpart problem in classical elasticity. 

In addition, Zhang et al. (1998) showed, by using the Williams eigenfunction asymptotic 

analysis, that the crack face displacement behaves as 23~ r  in the crack tip region, where r  denotes 

the polar distance from the crack tip. Thus, the dislocation density  ξB  can be expressed as 

 

      2122   afB  ,                                                              (88)

                                                        

where  ξf  is a continuous bounded function in aξ  . Finally, to ensure uniqueness the dislocation 

density must satisfy the following auxiliary condition stemming from the requirement of single-

valuedness of the displacement along a closed loop around the crack 

 

  0 dxxB
a

a
 .                                                                                                                     (89) 

 

Now, the near-tip behavior of the stress and couple-stress field for the mode III problem can 

be determined from the singular nature of the respective stress and couple-stress field of a discrete 

screw dislocation. Again, confining our attention to the RHS crack tip and taking into account the 

following result (Chan et al., 2003) 
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21ξ
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ξ
 ,    for 0n        as  ax  ,   ax                            (90) 

 

with the dislocation density being given by (88), we conclude that  yzyz στ ,  given as the integrals of 

(58b) and (59b) behave as 23~ x  and 21~ x , respectively, whereas the couple-stresses  yyxx mm ,  

given by the integration of (60a,b) exhibit a square root singularity at the crack tip. Again, axx   

is the distance from the RHS crack tip along the crack line. Finally, in light of the above, the total 

shear stress defined as   yyxyzyz mt  21σ  has the following asymptotic behavior 23~ xt yz  near 

the crack tip. Such a behavior was detected before in the mode III crack problem of gradient 

elasticity (Georgiadis, 2003). The two problems present similarities in their mathematical analysis. 

Finally, as we show in Appendix C, despite the hypersingular nature of the above stress field, the 

strain-energy density is integrable in the vicinity of crack tips and, also, the J -integral takes a 

bounded value. 

For the numerical solution of the hypersingular integral equation in (85), the appropriate 

quadrature is constructed here by taking into account the cubic singularity of the integral equation 

and the endpoint behavior of the dislocation density (details are given in Appendix B). Equation (85) 

after the appropriate normalization over the interval  1,1  takes the discretized form 

 

   
  

  


























n

i
kik

ii

ikk

kki

tst

ssf

stt

t

p

cπ
σ

1
212

2

22
2

0

1

11

12
1                                                                     

                                        
    2

332

21

1

1,
1 iiik

ikik

n

i

ssfstkc
stp

c

st

c

n























π
 ,        (91) 
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with ap  , and the set of the n  discrete integration points are given by   
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  0: ini sUs  ,   1cos  nisi π  ,  ni ,...,1  ,                                                                (93a) 

 

while the 1n  collocation points are given by 

 

  0: 1  knk tTt  ,     1212cos  nktk π  ,  1,...,1  nk  .                                           (93b) 

 

The auxiliary condition in (89) can be written in discretized form as 
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Then, Eqs. (91) and (94) provide a system of 2n  algebraic equations. The system is solved in the 

least-squares sense.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7  Normalized upper and lower crack displacement profiles under remote mode III loading  ( 0β ). 

 

In Fig. 7, the crack-face displacements are shown for the special case 0β  (i.e. 0η ). It is 

observed that in the crack-tip vicinity, the crack closes more smoothly as compared to the classical 
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result. Further, it is also noted that when the characteristic material length   becomes comparable to 

the crack length the material behaves in a more rigid way (having increased stiffness). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                       

            

         Fig. 8  Distribution of the total shear stress ahead of the crack tip. 

 

  

Both couple-stress and classical elasticity ( .clas
IIIK  field) distributions ahead of the right crack 

tip are shown in Fig. 8. The total shear stress yzt  is employed to depict the couple-stress elasticity 

solution. As in the analogous gradient elasticity solution (Georgiadis, 2003), we observe that for a 

very small zone in the crack-tip region ( 5.0x ) the total stress yzt  takes on negative values 

exhibiting therefore a cohesive-traction character along the prospective fracture zone. Also, yzt  

exhibits a bounded maximum. As 1β , the cohesive zone becomes significantly smaller whereas 

the maximum value of the total shear stress increases. The behavior of yzt  reminds typical boundary-

layer behavior as, e.g., that found for the surface pressure near the leading edge of Joukowski airfoil 

(Van Dyke, 1964). Finally, we note that at points lying outside the domain where the effects of 

microstructure are pronounced (i.e. for x ) the total shear stress tends to the classical .clas
IIIK  shear 

stress. 
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6.  Concluding remarks 

 

In this paper, the technique of the distributed dislocations was used in order to solve finite-

length shear crack problems in couple-stress elasticity. The technique provides an alternative 

approach to the elaborate analytical method of dual integral equations used before to attack 

asymptotically the mode I crack problem. Moreover, the present approach is capable to provide a 

full-field solution. In fact, we have obtained here the stress distribution ahead of the crack tips and 

the crack-face displacements (i.e. our results are not restricted to the crack-tip region). Also, our 

solution to the finite-length crack in mode III is quite novel in the literature. 

The governing integral equations are derived using the discrete-dislocation stress fields in 

couple-stress elasticity, as the Green’s functions of crack problems. In particular, it is shown that the 

mode II problem is governed by a single singular integral equation. In the mode III case, the 

governing integral equation is found to be hypersingular with a cubic singularity. For the solution of 

the latter equation, a new efficient quadrature is constructed. 

The results of our analysis indicate that when the microstructure of the material is taken into 

account the material behaves in a more rigid way. In particular, in the mode II problem, the crack 

face displacements become significantly smaller than their counterparts in classical elasticity, when 

the length of the crack is comparable to the characteristic length   of the material. Further, stresses 

retain the same order of singularity as in the classical theory, while the couple-stress field is found to 

be bounded in the crack-tip region. In the mode III problem, the results for the near-tip field show 

significant departure from the predictions of classical fracture mechanics. It is shown that cohesive 

stresses develop in the immediate vicinity of the crack-tip and that, ahead of the small cohesive zone, 

the stress distribution exhibits a local maximum that is bounded. This maximum value may serve, 

therefore, as a measure of the critical stress level at which further advancement of the crack may 

occur. In addition, in the vicinity of the crack-tip, the crack-face displacement closes more smoothly 

as compared to the classical result.  
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Appendix A:  The screw dislocation in couple-stress elasticity 

Let the direct Fourier transform and its inverse be defined as 
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 ,                                                                                 (A1b) 

 

where   211i . Transforming the field equation (47) with (A1a) gives the following ODE 

 

    012 *242
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22
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ξξξ   ,                                               (A2) 

 

and, further, the general transformed solution for 0y  
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21221
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Now, we impose at the origin of the infinite  yx, -plane a single screw dislocation with Burger’s 

vector  b,0,0b . In the upper half-plane, the screw dislocation gives rise to the following 

boundary value problem 

 

   xH
b

xw
2

0,   ,                                                             (A4a) 

  00, xmyx  ,                                                                                                                  (A4b) 

 

where  xH  is the Heaviside step function and the minus sign in (A4a) is justified from the sign 

convention that is adopted in dislocation theory. In view now of the constitutive equation (43d) and 

the properties of the Fourier transform, the boundary conditions (A4a,b) furnish in the transform 

domain 

 

     ξδπbξw 
  21* 20,  ,                                                                      (A5a) 
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  0220, *2
2

*2
*  wξη
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ηξmyx  ,                                                                               (A5b) 

 

where     πξξδξδ i 21  is the Heisenberg delta function (Roos, 1969) and  ξδ  is the Dirac 

distribution. The constants  ξA1  and  ξA2  are now computed using the transformed boundary 

conditions i.e. 
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2 12   ,               (A6a,b) 

 

where ηηβ  . With the aid of the inversion formula in (A1b), we obtain the integral representation 

for the displacement field due to a screw dislocation  
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Using the properties of the Heisenberg delta function and the Dirac distribution, we finally obtain 
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The above integrals can be determined in closed form. In particular, we have 
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In light of the above results, the displacement can be written as 
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Appendix B:  Construction of numerical quadrature 
 
The problem of finding a numerical quadrature for integrals with order of singularity greater 

than two ( 2a ) arises naturally in generalized continuum theories where the field equations and the 

boundary conditions are of higher order than the respective ones in classical elasticity. Although a lot 

of work has been done in the literature for Hadamard type integrals ( 2a  ) (see e.g. Kutt, 1975; 

Paget, 1981; Ioakimidis, 1983, 1995; Kaya and Erdogan, 1987; Monegato, 1987, 1994; 

Tsamasphyros and Dimou, 1990; Korsunsky, 1998; Kabir et al., 1998; Hui and Shia, 1999), only a 

few papers have been published concerning integrals with 2a . In a recent work by Chan et al. 

(2003), a systematic treatment of hypersingular integrals was presented based on the Kaya / Erdogan 

approach. This approach leads to very good results, with the only caveat that when the kernel cannot 

be explicitly given in terms of a sum of the hypersingular part and a remainder, the extraction of a 

strong singularity may lead to a loss of accuracy. Our intention here is to derive a numerical 

quadrature for the hypersingular integral  
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where  sf  is a bounded and continuous function in the interval  1,1 , and     2121 ssw   is the 

weight function corresponding to the second-kind Chebyshev polynomials jU . The integral in (B.1) 

is to be understood in the Hadamard finite-part sense (Kutt, 1975; Paget, 1981). The basic steps in 

the development of the quadrature follow the strategy introduced by Korsunsky (1998).  

The unknown function can be approximated with a sufficient degree of accuracy by a 

truncated series of second-kind Chebyshev polynomials  
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Making use of the relation for the Cauchy principal-value integral (Abramowitz and Stegun 1964)  
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(B.1) can be rewritten as 
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where the prime denotes differentiation with respect to t . We note that the interchange of the order 

of differentiation and integration in (B.4) is valid in view of results by Monegato (1994).  

Next, we establish the following identity  
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where the partial-fraction expansion above is possible because the degree of the numerator in the left 

hand side of (B.5) is less than that of the denominator. It can easily be found (Korsunsky, 1998) that 

the coefficients ia  in (B.5) are given by the relation 
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Equation (B.5) takes now the form 
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Differentiating (B.7) twice with respect to t  and selecting a discrete set of points kt , 1,...,1  nk  

such that   01  tTn , we obtain                      
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Further, employing the well known identities about the derivatives of Chebyshev polynomials  
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we write (B.8), after some lengthy algebra, under the form 
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Using (B.2), multiplying (B.9) by jB
π

2
 and summing over j  from 0  to p , we then get  
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One further step is needed now that would lead to the evaluation of the right hand side of 

(B.12) only at n  points   0: ini sUs . This can be done with the aid of the Lagrange interpolation 

formula, which will be exact within the class of polynomials chosen to represent  tf  

 

   
    

 


n

i
i

iin

n sf
stsU

tU
tf

1

 .                                                          (B.13) 

 

Differentiating (B.13) with respect to t  and then substituting t  with   0: 1   tTtt nk , we get  
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In light of the above analysis, (B.12) can be written as 
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where    
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  Finally, taking into account that 
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we write the resulting formula under the form  
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It is noteworthy, that formula (B.17) also holds in precisely the same form for the more general case 

when the integral kernel is split up into a hypersingular part of order 3a   and a remainder  
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where the remainder may consist of Cauchy type and regular kernels. In that case, (B.17) takes the 

form 
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To check the validity of the proposed quadrature, we solve the hypersingular integral 

equation in (B.1) for two cases, i.e. for the loading function  tS  being defined as: (i)   tetS  , and 

(ii)   2sin ttS  . For single-valuedness, the following auxiliary condition should also be taken into 

account 
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Then, (B.17) and (B.20) form a system of 2n  equations in n  unknowns which is solved in the 

least-squares sense. It is shown (see Fig. B1) that our results are in excellent agreement with the ones 

obtained by using the semi-analytical method of Chan et al. (2003).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. B1  Solution of the hypersingular integral equation (B.1) using the proposed quadrature and comparison 
with the semi-analytical method of Chan et al. (2003). 
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Appendix C: Evaluation of the strain-energy density at crack tips and the J -integral  

 

Our aim here is to show the orders of singularities of the stress and couple-stress fields 

obtained in the main body of the paper lead to an integrable strain-energy density in the vicinity of 

crack tips and also lead to a bounded value of the J -integral. The procedure followed is analogous in 

many respects with the one adopted in the work by Georgiadis (2003). 

The strain-energy density function in (20) reads, in terms of stresses  
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where β  is the ratio of the couple-stress moduli defined as ηηβ  .  

Further, the path-independent J -integral within the couple-stress theory is given by 

(Atkinson and Leppington, 1974; Lubarda and Markenskoff, 2000) 
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where a Cartesian rectangular coordinate system is attached to the RHS crack tip with the distance x  

measured now from the tip, Γ  is a piece-wise smooth simple two-dimensional contour surrounding 

the crack-tip, W  is the strain-energy density, qu  is the displacement, qω  is the rotation, qP  is the 

force-traction defined in (18), and qR  is the couple-traction defined in (19).  

For the evaluation of the J -integral, we consider the rectangular-shaped contour Γ  in Fig. 

C1 with vanishing “height” along the y - direction and with 0ε . This type of contour permits 

using solely the asymptotic near-tip stress and displacement fields. It is noted that upon this choice of 

contour, the integral  Γ
dyW  in (C2) becomes zero if we allow the ‘height’ of the rectangle to 

vanish. In this way, the expression for the J -integral becomes  
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Fig. C1 Rectangular-shaped contour surrounding the crack tip. 

 

 

The cases of mode II and mode III cracks are examined in what follows. 

 

Mode II  

In the case of plane-strain, the strain-energy density reads 
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As shown before, the couple-stresses  yzxz mm ,  are bounded (non-singular) in the crack-tip vicinity 

in the mode II case, whereas both the asymmetric and symmetric stresses exhibit a square root 

singularity (see also Huang et al., 1997). Now, the term in square brackets in (C4) is the same as in 

classical elasticity and behaves in exactly the same way, while the second term (the one involving 

couple-stresses) is bounded in the crack-tip vicinity. Therefore, by following the standard procedure 

to check upon the integrability of the strain-energy density around a singularity (see e.g. Barber, 

1992), we conclude that the strain-energy density is integrable indeed in the crack-tip vicinity. 

Further, taking into account that in the mode II case both the normal stress yyσ  and the 

couple-stress yzm  are zero along the crack line   0y  and that the crack-faces are defined by 

 1,0 n , the J -integral in (C3) finally takes the form 
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Now, in view of the asymptotic behavior of the fields entering (C5), we obtain 
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where the product of distributions inside the integral was obtained by the use of Fisher’s theorem 

(see e.g. Georgiadis, 2003), i.e. the operational relation          11 sin2 
  πλδπλλ xxx  with 

...,3,2,1 λ  and  xδ  being the Dirac delta distribution. Finally, we note that the amplitude 

factor IIA  is connected with the asymptotic results of Huang et al. (1997), in the mode II case, 

through the relation     IIII BA 2121 1232 νν  .  

 

Mode III 

In this case, the strain-energy density is given by 
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Based on the results of our analysis for the mode III case, we notice that the couple-stresses behave 

as 21~ r  around the crack tip, while the symmetric stresses behave as 21~ r . Thus, by invoking 

again the standard procedure involving the evaluation of a volume integral around the singularity 

(see e.g. Barber, 1992), we conclude that the strain-energy density in (C7) is integrable in the crack-

tip vicinity and the strain energy itself is bounded. 

Next, taking into account that the couple-stress yxm  is identically zero along the crack line in 

the mode III problem, the J -integral takes the following form 
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where   yyxyzyz mt  21σ  is the total shear stress which, as shown before, exhibits a near-tip 

behavior as )( 23 r . In light of the above, we obtain 
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where IIIA  is an amplitude factor (constant) dependent upon both couple-stress moduli and the 

remote loading. The above result shows that the J -integral is also bounded in the mode III case 

(despite the hypersingular nature of the near-tip total shear stress). Finally, we note that in the special 

case where the second couple-stress modulus is set equal to zero (i.e. 0β ), IIIA  above is 

connected with the amplitude factor B  in the work by Zhang et al. (1998) through the relation 

BAIII 2 .  
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