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Abstract. The problem of sharp notch in couple-stress elasticity is considered in this paper. The 

problem involves a sharp notch in a body of infinite extent. The body has microstructural properties, 

which are assumed to be characterized by couple-stress effects. Both symmetric and anti-symmetric 

loadings at remote regions are considered under plane-strain conditions. The faces of the notch are 

considered traction free. To determine the field around the tip of the notch, a boundary-layer 

approach is followed by considering an expansion of the displacements in a form of separated 

variables in a polar coordinate system. Our analysis is in the spirit of the Knein-Williams and Karp-

Karal asymptotic techniques but it is much more involved than its corresponding analysis of standard 

elasticity due to the complicated boundary value problem (higher-order system of governing PDEs 

and additional boundary conditions as compared to the standard theory). Eventually, an eigenvalue 

problem is formulated and this, along with the restriction of a bounded potential energy, provides the 

asymptotic fields. The cases of a crack and a half-space are analyzed as limit cases of the general 

notch problem. Certain deviations from the standard classical elasticity results are noted. 
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1. Introduction 

 

The present work is concerned with the determination of the asymptotic displacement, 

rotation, strain and stress fields in the vicinity of the tip of a notch within the framework of couple-

stress elasticity. This theory assumes that, within an elastic body, the surfaces of each material 

element are subjected not only to normal and tangential forces but also to moments per unit area. 

The latter are called couple-stresses. Such an assumption is appropriate for materials with granular 

structure, where the interaction between adjacent elements may introduce internal moments. In this 

way, characteristic material lengths appear representing the microstructure. As is well-known, the 

fundamental concepts of the couple-stress theory were first introduced by Voigt (1887) and the 

Cosserat brothers (1909), but the subject was generalized and reached maturity only in the 1960s 

with the studies of Toupin (1962), Mindlin and Tiersten (1962), and Koiter (1964). 

The theory of couple-stress elasticity assumes that: (i) each material particle has three 

degrees of freedom, (ii) an augmented form of the Euler-Cauchy principle with a non-vanishing 

couple traction prevails, and (iii) the strain-energy density depends upon both the strain and the 

gradient of rotation. The theory is different from the general Cosserat (or micropolar) theory that 

takes material particles with six independent degrees of freedom (three displacement components 

and three rotation components, the latter involving rotation of a micro-medium w.r.t. its surrounding 

medium). Sometimes, the name ‘restricted Cosserat theory’ appears in the literature for the couple-

stress theory. 

Couple-stress elasticity had already some successful applications in the 1960s and 1970s 

mainly on stress-concentration problems concerning holes and inclusions (see e.g. Mindlin, 1963; 

Weitsman, 1965; Bogy and Sternberg, 1967; Hsu et al., 1972; Takeuti et al., 1973; Itou, 1976). In 

recent years, the couple-stress theory (and related generalized continuum theories) attracted a 

renewed and growing interest in dealing with problems of microstructured materials. For instance, 

problems of dislocations, plasticity, fracture and wave propagation have been analyzed within the 

framework of couple-stress theory. This is due to the inability of the classical theory to predict the 

experimentally observed size effect and also due to the increasing demand to study problems at very 

small scales. Work along these lines was done by, among others, Fleck et al. (1994), Vardoulakis 

and Sulem (1995), Lakes (1995), Huang et al. (1997; 1999), Lubarda and Markenscoff (2000), 
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Bardet and Vardoulakis (2001), Georgiadis and Velgaki (2003), Lubarda (2003), Radi (2007; 2008), 

Gourgiotis and Georgiadis (2007; 2008). 

For materials with microstructure, the characteristic material length mentioned before may 

be on the same order as the length of the microstructure. For instance, Chen et al. (1998) developed a 

continuum model for cellular materials and found that the continuum description of these materials 

obey a gradient elasticity theory of the couple-stress type. In the latter study, the intrinsic material 

length was naturally identified with the cell size. Also, Chang et al. (2003) associated the 

microstructural material constants of the couple-stress theory with the particle size and the inter-

particle stiffness in a granular material. In addition, couple-stress theory was successfully utilized in 

the past to model some materials with microstructure like foams (Lakes, 1993) and porous solids 

(Lakes, 1983). On the other hand, Maranganti and Sharma (2007), employing a technique based on 

molecular dynamics, showed that gradient effects are unimportant for most crystalline metals and 

ceramics. Generally, the couple-stress theory is intended to model situations where a material with 

microstructure is deformed in very small volumes, such as in the immediate vicinity of crack tips, 

notches, small holes and inclusions, and in micrometer indentations. A recent study by Bigoni and 

Drugan (2007) provides additional references and an interesting account of the determination of 

couple-stress moduli via homogenization of heterogeneous materials.  

Focusing attention now to the notch problem, we should mention that this problem has been 

extensively studied in the context of classical elasticity since it is a fundamental stress concentration 

problem (see e.g. Barber, 1992). Asymptotic techniques have mainly been proposed to explore the 

nature of the solution around the sharp corner of notches. Some of the earlier contributions on the 

subject were those of Knein (1927), Brahtz (1933), and Williams (1952), treating the plane problem 

of a sharp notch under various combinations of homogeneous boundary conditions. Other important 

works on classical elasticity problems of notches and wedges involving distributed tractions and 

concentrated loads (along the notch faces) are due to Sternberg and Koiter (1958), Karp and Karal 

(1962), Neuber (1963), Harrington and Ting (1971), Gregory (1979), Leguillon (1988), Dundurs and 

Markenscoff (1989). A thorough overview of the subject and an extensive list of references can be 

found in the review article by Sinclair (2004).  

However, there are no analytical or numerical results in the literature regarding the general 

plane-strain problem of a sharp notch (or wedge) in couple-stress elasticity. Indeed, Bogy and 

Sternberg (1968) studied the particular case of an orthogonal wedge subjected to a distribution of 

shear tractions only along the one face to show that the indeterminacy of the counterpart problem of 
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classical elasticity does not carry over to the problem treated by couple-stress elasticity (this 

‘resolution’ is due to the fact that the couple-stress theory allows for an asymmetric stress tensor). 

Also, a few results concern the limit cases of a crack (Sternberg and Muki, 1967; Ejike, 1969; 

Atkinson and Leppington, 1977; Huang et al., 1997, 1999; Zhang et al., 1998; Grentzelou and 

Georgiadis, 2005; Gourgiotis and Georgiadis, 2007, 2008; Radi, 2007; 2008), and a half-space (Muki 

and Sternberg, 1965).  

Here, we aim at studying the general plane-strain problem of an atomistically sharp notch in 

couple-stress elasticity. The problem represents a convenient idealization of certain more practical 

situations, such as a notch with a very small fillet radius (much smaller than the intrinsic material 

length in couple-stress elasticity). In general, few notches are likely to be atomistically sharp and the 

finite radius at the tip of most real notches will lead to only large but finite plastic strains at the apex. 

However, atomistically sharp notches may occur in fracture of micro-machined silicon structures in 

the process of wet etching. Indeed, measurements of the notch radius in etched silicon have been 

reported to be as small as 10 nm (Suwito et al., 1999).  

Our analysis is based on the Knein-Williams technique (Knein, 1927; Williams, 1952; Karp 

and Karal, 1962; Barber, 1992). According to this technique, a set of  ,r  polar coordinates is 

attached to the tip of the notch and the displacement field is expanded as an asymptotic series of 

separated variable terms, each satisfying the field equations and the traction-free boundary 

conditions on the faces of the notch. This procedure leads to an eigenvalue problem, which, along 

with the restriction of a bounded potential energy, provides the asymptotic fields. Our results differ 

in several important respects from the predictions of standard classical elasticity. In particular, our 

results indicate that: (i) The rotation is always bounded at the vicinity of the tip of the notch. 

However, the strain field remains singular. (ii) The stress singularity depends not only upon the angle 

of the notch but also upon the Poisson’s ratio  . (iii) Contrary to the classical case, the strength of 

the singularity associated with the antisymmetric loading is always stronger than that for the 

symmetric loading. This finding corroborates the fact that shear effects are more pronounced when 

couple-stresses are taken into account.  
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2. Fundamentals of couple-stress elasticity 

 

In this Section we recall briefly certain pertinent elements of the theory of couple-stress 

elasticity. A detailed exposition of the theory can be found in Mindlin and Tiersten (1962) and Koiter 

(1964). Also, interesting presentations of the theory are contained in the works by Aero and 

Kuvshinskii (1960), Palmov (1964), and Muki and Sternberg (1965). The basic equations of 

dynamical couple-stress theory (including the effects of micro-inertia) were given by Georgiadis and 

Velgaki (2003). 

As mentioned before, couple-stress elasticity assumes that: (i) each material particle has three 

degrees of freedom, (ii) an augmented form of the Euler-Cauchy principle with a non-vanishing 

couple traction prevails, and (iii) the strain-energy density depends upon both strain and the gradient 

of rotation. 

In the absence of inertia effects, for a control volume CV with bounding surface S , the 

balance laws for the linear and angular momentum read 

 

 ( ) 0n
q qS CV

T dS F d CV        ,                                                                                (1)                    

     ( ) ( ) 0n n
qpk p k q qpk p k qS CV

e x T M dS e x F C d CV          ,                                    (2) 

 

where a Cartesian rectangular coordinate system 321 xxOx  is used along with the indicial notation and 

the summation convention (the Latin indices span the range (1,2,3)), pqke  is the Levi-Civita 

alternating symbol, n  is the outward unit vector normal to the surface with direction cosines qn , 

( )n
pt  is the surface force per unit area, pF  is the body force per unit volume, ( )n

pM  is the surface 

moment per unit area, pC  is the body moment per unit volume, and qx  are the components of the 

position vector of each material particle with elementary volume  CVd .  

The pertinent force-stress and couple-stress tensors are introduced by considering the 

equilibrium of the elementary material tetrahedron and enforcing (1) and (2), respectively. The force 

stress tensor pq  (which is asymmetric) is defined by 

 

( )n
q pq pT n   ,                                 (3) 
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and the couple-stress tensor pq  (which is also asymmetric) by 

 

( )n
q pq pM n   .                                           (4) 

 

Moreover, just like the third Newton’s law ( ) ( n n)T T  is proved to hold by considering the 

equilibrium of a material ‘slice’, it can also be proved that ( ) ( ) n nM M  (see e.g. Jaunzemis, 1967). 

The couple-stresses pq  are expressed in dimensions of [force][length]-1. Further, pq  can be 

decomposed into a symmetric and anti-symmetric part 

 

pqpqpq     ,                                                      (5) 

 

with qppq    and qppq   , whereas it is advantageous to decompose pq  into its deviatoric  D
pq  

and spherical  S
pq  part in the following manner 

 

kkpqpqpq m 
3

1
   ,                                                     (6) 

 

where  D
pq pqm  ,    1 3S

pq pq kk   , and pq  is the Kronecker delta.  

Now, with the above definitions and the help of the Green-Gauss theorem, one may obtain 

the stress equations of motion. Equation (2) leads to the following moment equation 

          

 0p pq pqk kp qe C      ,                                                                                                      (7) 

 

which can also be written as 

 

1 1
0

2 2pqk l lk pq pqk ke e C       .                                                    (8) 
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where    p px    . Note from Eqs. (7) and (8) that the stress tensor pq  is symmetric in the 

absence of couple-stresses and body couples.  

Further, Eq. (1) leads to the following force equation 

 

0p pq qF     ,                                           (9) 

 

or, by virtue of  (5), to the equation  

 

0p pq p pq qF        .                                        (10) 

 

Moreover, combining (8) and (10) yields the single equation  

 

1 1
0

2 2p pq pqk p l lk q pqk p ke F e C           .                                                 (11) 

 

Finally, in view of Eq.(6) and by taking into account that     031divcurl kkpq , we write (11) as  

 

1 1
0

2 2p pq pqk p l lk q pqk p ke m F e C          ,                           (12) 

 

which is the final equation of equilibrium.  

For the kinematical (linear) description of the continuum now, the following quantities are 

defined  

 

 pqqppq uu 
2

1   ,                             (13) 

 pqqppq uu 
2

1   ,                                                   (14) 

1

2q pqk k pe u     ,                              (15) 

qppq     ,                               (16) 
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where pq  is the strain tensor, pq  is the rotation tensor, q  is the rotation vector, and pq  is the 

curvature tensor (i.e. the gradient of rotation or the curl of the strain) expressed in dimensions of 

[length]-1. Notice also that Eq. (16) can alternatively be written as 

 

1

2pq qlk p l k qlk l pke u e        .                                       (17) 

 

Equation (17) expresses compatibility for curvature and strain fields. The compatibility equations for 

the strain components are the usual Saint Venant’s compatibility equations (see e.g. Jaunzemis, 

1967). Further, the identity k pq p k q p kq         defines the compatibility equations for the 

curvature components. We notice also that 0pp  because   ,1 2 0pp p p pqk q kpe u      and, 

therefore, pq  has only eight independent components. The tensor pq  is obviously an asymmetric 

tensor. 

Regarding traction boundary conditions, at any point on a smooth boundary or section, the 

following three reduced force-tractions and two tangential couple-tractions should be specified 

(Mindlin and Tiersten, 1962; Koiter, 1964) 

 

 
( ) 1

2
n

q pq p qpk p k nnP n e n m    ,                      (18) 

 
( )n
q pq p qnnR m n m n   ,                                        (19) 

 

where   pqqpnn mnnm   is the normal component of the deviatoric couple-stress tensor pqm . The 

modifications of the boundary conditions in the case where corners appear along the boundary can be 

found in Koiter (1964).  

It is worth noticing that at first sight, it might seem plausible that the surface tractions (i.e. the 

force-traction and the couple-traction) can be prescribed arbitrarily on the external surface of the 

body through relations (3) and (4), which stem from the equilibrium of the material tetrahedron. 

However, as Koiter (1964) pointed out, the resulting number of six traction boundary conditions 

(three force-tractions and three couple-tractions) would be in contrast with the five geometric 

boundary conditions that can be imposed. Indeed, since the rotation vector q  in couple-stress 
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elasticity is not independent of the displacement vector qu  (as (15) suggests), the normal component 

of the rotation is fully specified by the distribution of tangential displacements over the boundary. 

Therefore, only the three displacement and the two tangential rotation components can be prescribed 

independently. As a consequence, only five surface tractions (i.e. the work conjugates of the above 

five independent kinematical quantities) can be specified at a point of the bounding surface of the 

body, i.e. Eqs. (18) and (19). On the contrary, in the Cosserat (micropolar) theory, the traction 

boundary conditions are six since the rotation is fully independent of the displacement vector (see 

e.g. Nowacki, 1972). In the latter case, the tractions can directly be derived from the equilibrium of 

the material tetrahedron, so (3) and (4) are the pertinent traction boundary conditions. 

Introducing the constitutive equations of the theory is now in order. We assume a linear and 

isotropic material response, in which case the strain-energy density takes the form 

 

  qppqpqpqpqpqqqpppqpqWW   22
2

1
,  ,                        (20) 

 

where  ηημλ ,,,  are material constants. Then, Eq. (20) leads, through the standard variational 

manner, to the following constitutive equations  

 

  pqkkpq
pq

pqpq

W 


 2



  ,                           (21) 

4 4pq pq qp
pq

W
m   


   


 .                                       (22) 

 

In view of (21) and (22), the moduli  μλ,  have the same meaning as the Lamé constants of classical 

elasticity theory and are expressed in dimensions of [force][length]-2, whereas the moduli  ηη ,  

account for couple-stress effects and are expressed in dimensions of [force]. 

Next, incorporating the constitutive relations (21) and (22) into the equation of equilibrium 

(12) and using the geometric relations (13)-(16), one may obtain the displacement equations of 

equilibrium (Koiter, 1964)  

 

     12 2 4 2 21 2ν 0
           u u u u      ,                                                       (23) 



 10

 

where 2  is the Laplace operator, v  is Poisson’s ratio,   21  is a characteristic material 

length, and the absence of body forces and couples is assumed. In the limit 0 , the Navier-

Cauchy equations of classical linear isotropic elasticity are recovered from (23). Indeed, the fact that 

Eqs. (23) have an increased order w.r.t. their limit case (recall that the Navier-Cauchy equations are 

PDEs of the second order) and the coefficient   multiplies the higher-order term reveals the 

singular-perturbation character of the couple-stress theory and the emergence of associated 

boundary-layer effects. Moreover, applying the gradient and the curl operator to Eq. (23), we obtain 

the following relations for the dilatation and the rotation, respectively 

 

2 0e   ,   2 2 21 0      ,                                                                                             (24) 

 

where e  u  is the dilatation (volumetric strain). Thus, we observe that the dilatation is governed 

by the same equation as in classical elasticity without couple-stresses. We also note that (24a) is of 

the second order, whereas each equation (23) is of the fourth order. As Koiter (1964) pointed out, 

this fact reconciles the order of the elliptic system (23) with the number of five boundary conditions. 

Finally, the following points are of notice: (i) Since 0pp , 0ppm  is also valid and 

therefore the tensor pqm  has only eight independent components. (ii) The scalar   kk31  of the 

couple-stress tensor does not appear in the final equation of equilibrium, nor in the reduced boundary 

conditions and the constitutive equations. Consequently, the spherical part of the couple-stress tensor 

is left indeterminate within the couple-stress theory. (iii) The following restrictions for the material 

constants should prevail on the basis of a positive definite strain-energy density (Mindlin and 

Tiersten, 1962) 

 

023    ,    0  ,    0  ,    11 






 .                                                                (25) 
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3. The notch under plane strain conditions 

 

A body occupying a domain in the  ,r - plane is considered with the z -axis being normal 

to this plane. All tractions are assumed to act ‘inside’ the plane and are independent upon z . The 

following displacement field is then generated 

 

  0,  ruu rr  ,          0,   ruu  ,        0zu  .                                     (26) 

 

It is worth noting that the independence upon the coordinate z  of all components of the 

force-stress and couple-stress tensors, under the assumption (26c), was proved by Muki and 

Sternberg (1965). Indeed, contrary to the respective plane-strain case in the conventional theory, this 

independence is not obvious within the couple-stress theory. Notice further that except for  z  

and  zrz  ,  all others components of the rotation vector and the curvature tensor vanish identically 

in the particular case of plane-strain considered here. Thus, according to Eqs. (13)-(16), we may 

write 

 

rr r ru    ,    1
rr u u       ,      1

2r r rr r u u u          ,                                (27) 

    1
2z r rr ru u 

       ,    rrz   ,      1rz  .                                        (28) 

 

The non-vanishing components  , ,rr r     and  ,rz zm m  follow directly from (21) and 

(22), respectively. Then, the antisymmetric stresses  rr   ,  are found from (8). Vanishing body 

forces and body couples are assumed in what follows. In view of the above, the following 

expressions are written 

)()2( 1
 uuru rrrrr    ,                                                                               (29a) 

rrr uuur     )()2( 1  ,                                                                                (29b) 

 1( )r r r rr u u u              ,                                                                                  (29c) 

 rrzm  24   ,     124 rm z    ,                                                                        (30) 

2 22r      , r r    , 0  rr   .                                                                  (31) 
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where        2 2 1 2 2
r rr r 

        is the 2D Laplace operator. 

Further, the stresses are provided by (5) 

 

)()2( 1
 uuru rrrrrrr     ,                                                          (32a) 

rrr uuur     )()2( 1   ,                         (32b) 

 1 2 2( ) 2r r r r rr u u u                     ,                                                     (32c) 

 1 2 2( ) 2r r r r rr u u u                     ,                                                    (32d) 

 

Also, Eq. (24a) now becomes  

 

 2 2 1 1 0r r re u r u r u 
         .                                                                                  (33) 

 

Finally, taking into account Eq. (33), the equations of equilibrium in (23) take the following form  

 

 
2 2 2

1 1 12 2

1 2 1
0

1 2

b e
b b b

r r r 
           

  ,                                                                (34a) 

 
2 2 1

2 2 22 2

1 2 1 1
0

1 2

b e
b b b

r r r  
           

  ,                                                           (34b) 

 

where the quantities 1b  and 2b  are defined as 

 

2
1 2 2

1 2
r r

u
b u u

r r





   


 ,                                                                                            (35a) 

2
2 2 2

1 2 ru
b u u

r r  


   


 .                                                                                         (35b) 

 

Our aim now is to determine the displacement and stress fields near the apex of the notch. 

Here we deal with the idealized problem of an atomistically sharp notch, where it is assumed that the 

notch radius is much smaller than the intrinsic material length   in couple-stress elasticity. We focus 

our attention on the immediate vicinity of the corner and consider, thus, the notch under remotely 
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a

a


r

a

a

r



applied plane loading. The faces of the notch are taken along the planes a  (  n e ) and are 

assumed to be traction-free (Fig. 1).  

In analogy with the asymptotic method of Knein (1927), Williams (1952), and Karp and 

Karal (1962), we assume that for sufficiently small r  the leading terms of the displacement 

components may be represented in the following separated variable form 

 

     2
0 1, p p

ru r r U r U    ,         2
0 1, p pu r r V r V      ,                         (36) 

 

where p  is (in general) a complex constant and     ,b bU V   with  0,1b  are angular functions 

to be determined.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1  Geometry of the elastic notch under plane-strain conditions: (a) Symmetric loading  

(b) Antisymmetric loading. 

 

 

It should be noticed that for the notch problem, a displacement based formulation is more 

advantageous than a direct stress formulation, since, as we shall have occasion to see shortly, the 

singularities of the stress and couple-stress fields vary differently with respect to the angle of the 

notch. Moreover, we note that due to the singular perturbation character of the constitutive equations 
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(32c,d) and the field equations (34), the higher order terms 2~ pr   must also be taken into account in 

the displacement asymptotic expansion. In particular, contrary to the classical elasticity case, the 

form of the normal and shear stresses is different in couple-stress elasticity. Indeed, according to Eqs. 

(32), it is readily seen that the normal stresses depend only on the first gradient of displacement, 

while the shear stresses depend on both the first and the third gradient of displacement. Therefore, as 

will become apparent later in this section, these higher order terms are coupled with the dominant 

terms pr~ , to satisfy the boundary condition of vanishing shear stresses at the faces of the notch. 

Neglecting these terms leads to the erroneous conclusion that the antisymmetric part of the stress 

field pq  has no contribution to the dominant part of the (asymmetric) stress field pq . This, in turn, 

would imply that the stress tensor is symmetric in the vicinity of the notch tip. However, this finding 

is in contrast with previous results concerning the limit case of a crack (Sternberg and Muki, 1967; 

Huang et al., 1997; Gourgiotis and Georgiadis, 2007; 2008), where it was shown that the 

antisymmetric part of the stress tensor is not zero, and thus the stress tensor is asymmetric at the 

crack-tip. The particular form of expansion in (36) is therefore necessary, in our boundary layer 

analyses, towards the understanding of the structure of the near-tip fields. Finally, it is worth noting 

that in dipolar gradient elasticity considering these higher-order terms is not necessary in the 

asymptotic solution of the respective notch problem due to the nature of the field equations and the 

boundary conditions of the theory (Gourgiotis and Georgiadis, 2010).  

Now, (33) and (34) are the governing equations of our problem. Substituting Eqs. (36) in the 

field equations (34) and equating coefficients of like powers of r , we obtain the following 

homogeneous coupled system of ordinary differential equations for the angular functions  0U   and 

 0V  : 

 

        

        

2 2iv 2
0 0 0 0 0

2 2iv 2
0 0 0 0 0

2 2 1 1 3 1 4 4 1 0

2 2 1 1 3 1 4 4 1 0

U p p U p p p U V p V

V p p V p p p V U p U

             


             

     ,                (37) 

 

where primes denote differentiation with respect to  . 

The homogeneous system (37) admits the following general solution:  
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       0 1 2 4cos 1 cos 1 cos 3U A p A p A p          

     1 2 4sin 1 sin 1 sin 3B p B p B p         ,                                  (38a) 

 

           0 1 2 3 4

1
sin 1 sin 1 sin 1 sin 3

1

p
V A p A p A p A p

p
    


        


 

         1 2 3 4

1
cos 1 cos 1 cos 1 cos 3

1

p
B p B p B p B p

p
   


       


,  

                                                                                                                                             (38b) 

 

where the unknown constants bA  and bB  (with 4,3,2,1b ) correspond to symmetric and 

antisymmetric loadings, respectively. Moreover, according to the above procedure, the angular 

functions  1U   and  1V   are determined from the solution of a system of non-homogeneous 

differential equations given in Appendix. Finally, it is noted that the solution in (38) should also 

satisfy Eq. (33), which, in turn, implies that 4 4 0A B   (see Appendix). 

In light of the above, the displacement field takes the following form 

 

Symmetric loading 

 

   1 2cos 1 cos 1p
ru r A p A p 

 
    

 
 

 
   

 
 

   2
1 32

1 1 3 4
cos 1

4 1 2 1 1 8
p p p

r A A p
p p p

 




              

  

   1 2cos 1 cos 3C p C p 


    


 ,                                   (39a) 

 

       1 2 3

1
sin 1 sin 1 sin 1

1
p p

u r A p A p A p
p   
 

        
 

 
   

 
 

   2
1 32

3 1 3 4
sin 1

4 1 2 1 1 8
p p p

r A A p
p p p

 




               
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   2 3sin 3 sin 1C p C p 


    


 ,                                  (39b) 

 

Antisymmetric loading 

 

   1 2sin 1 sin 1p
ru r B p B p 

 
    

 
 

 
   

 
 

   2
1 32

1 1 3 4
sin 1

4 1 2 1 1 8
p p p

r B B p
p p p

 




              

 

   1 2sin 1 sin 3D p D p 


    


 ,                      (40a) 

       1 2 3

1
cos 1 cos 1 cos 1

1
p p

u r B p B p B p
p   
 

       
 

 
   

 
 

   2
1 32

3 1 3 4
cos 1

4 1 2 1 1 8
p p p

r B B p
p p p

 




              

 

   2 3cos 3 cos 1D p D p 


    


 .                      (40b) 

 

where  ,b bC D  with  1, 2,3b   are unknown constants corresponding to symmetric and 

antisymmetric loadings, respectively.    

 Further, according to Eqs. (27) and (28), the dominant asymptotic fields for the strain, 

rotation and curvature become 

 

   1
1 2cos 1 cos 1p

rr r p A p A p    
    

 
 

     1 1
1 2sin 1 sin 1p pr p B p B p O r   

     
 

 ,                              (41a) 

 

 
         1

1 2 3

3
cos 1 cos 1 1 cos 1

1
p p p

r A p A p p A p p
p                

 

 
         1

1 2 3

3
sin 1 sin 1 1 sin 1

1
p p p

r B p B p p B p p
p

              
 1pO r              
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                                                                                                                                  (41b) 
 

 
         1

1 2 3

1 1
sin 1 sin 1 sin 1

1 2
p

r

p p p
r A p A p p A p

p                
 

 
         1

1 2 3

1 1
cos 1 cos 1 cos 1

1 2
p p p p

r B p B p p B p
p

              
 1pO r   , 

                                                                                                                                     (41c) 

 

         1 1 1
3 3

1 1
1 sin 1 1 cos 1

2 2
p p pr A p p r B p p O r            ,                          (42) 

 

         2 2 2 2
3 3

1 1
1 sin 1 1 cos 1

2 2
p p p

rz r A p p r B p p O r           ,                     (43a) 

         2 2 2 2
3 3

1 1
1 cos 1 1 sin 1

2 2
p p p

z r A p p r B p p O r           .                    (43b) 

 

Similarly, (29)-(32) provide the dominant asymptotic fields for the stress and couple stress 

components 

 

 
         1

1 2 3

2 1
sin 1 2 sin 1 1 sin 1

1
p

r r

p p
r A p A p p A p p

p      
             

 
           1 1

1 2 3

2 1
cos 1 2 cos 1 1 cos 1

1
p pp p

r B p B p p B p p O r
p

    
            

                                                                                                                                   (44) 
        

 
 

       1
1 3

8 1
sin 1 4 3 sin 1

1 2 1
p

r r

p
r A p A p p

p 

    


              
      

 
 

         1 1
1 3

8 1
cos 1 4 3 cos 1

1 2 1
p pp

r B p B p p O r
p

   


             
 ,   (45) 

 
 

 
 

       1
1 2

2 2 12
cos 1 1 2 cos 1

1 2 1
p

rr rr

p p p
r A p A p p

p

     


           
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   3 1 cos 1A v p p 


   


 

 
 

       1
1 2

2 2 12
sin 1 1 2 sin 1

1 2 1
p p p p

r B p B p p
p

    


         
 

     1
3 1 sin 1 pB p p O r  

   


 ,                                      (46a) 

 

 
 

       1
1 2

2 2 32
cos 1 1 2 cos 1

1 2 1
p p p p

r A p A p p
p 

     


          
 

     3 1 1 cos 1A v p p 


    


 

 
 

       1
1 2

2 2 32
sin 1 1 2 sin 1

1 2 1
p p p p

r B p B p p
p

    


         
 

      1
3 1 1 sin 1 pB p p r   

    


 ,                            (46b)  

 

 
 

       1
1 2

2 5 62
sin 1 1 2 sin 1

1 2 1
p

r r r

p p p
r A p A p p

p  

      


           

   3 2 3 sin 1A p p p  


     


 

 
 

       1
1 2

2 5 62
cos 1 1 2 cos 1

1 2 1
p p p p

r B p B p p
p

    


         
 

     1
3 2 3 cos 1 pB p p p O r   

     


 ,           (46c) 

 

 
 

       1
1 2

2 3 22
sin 1 1 2 sin 1

1 2 1
p

r r r

p p p
r A p A p p

p  

      


           

   3 1 sin 1A p p  


    


 

 
 

       1
1 2

2 3 22
cos 1 1 2 cos 1

1 2 1
p p p p

r B p B p p
p

    


         
 

     1
3 1 cos 1 pB p p r    

    


 ,              (46d) 

 

         2 2 2 2 2 2
3 32 1 sin 1 2 1 cos 1p p p

rzm r A p p r B p p O r             ,          (47a) 
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         2 2 2 2 2 2
3 32 1 cos 1 2 1 sin 1p p p

zm r A p p r B p p O r              .          (47b) 

 
 

On examining the previous asymptotic solution, one observes that the antisymmetric part of 

stress r  exhibits an 1pr   behavior. However, the fact that both r  and r  have singularities of 

equal order is surprising in view of Eqs. (31) and (36): evidently, the higher-order singularities in 

r  generated through the differentiation of the dominant part of the displacement field pr  cancel 

out. Indeed, it can be readily shown that the dominant part of the displacement field satisfies the 

equation: 2 0  . Thus, according to (31), only the higher-order terms ( 2~ pr  ) in the displacement 

field contribute to the antisymmetric part of the stress tensor. As a consequence, both the symmetric 

and the antisymmetric part of stress behave as 1pr   in the vicinity of the apex of the notch (see Eqs. 

(44) and (45)). If this were not the case, the shear stresses (46c,d) would have been more singular 

than the normal stresses (46a,b), a result that is physically inadmissible for the notch problem. It is 

further noted that if the higher order terms, in the asymptotic expansion of the displacement field, 

were not taken into account the antisymmetric part of the stress field would have no contribution to 

the dominant part of the (asymmetric) stress field pq .  

Next, the strain energy density becomes  

 

      2 2 2 2 2 2 2
strain curv. 2 2 2rr rr r rz zW W W                             ,         (48) 

 

where strainW  is the part of the strain-energy density due to strains and curv.W  is the part due to 

curvatures. Substituting Eqs. (41) and (43) into (48) we obtain 

 

 2 2
strain ,pW r f p   ,                                                                                                        (49) 

 22 2 4 2 2 2
curv. 3 3

1
1

2
pW r p A B        ,                                                                                (50) 

 

where  ,f p   is a function of the exponent p  and the angular coordinate  . It is noted that curv.W  

depends only upon the amplitudes 3A  and 3B .  
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In our analysis we consider the body under remotely applied loading, without any 

concentrated load applied inside the body or on the boundary. Therefore, the total strain-energy U  in 

a small region surrounding the notch apex (as 0r ) should vanish. It can further be checked that 

the total strain-energy per unit length (along the z-axis) in a small circular area around the tip of the 

notch is given by 
0

0

a r

a
U W r dr d


    (Barber, 1992). The above requirements impose, according to 

(49) and (50), the following restrictions on the exponent p :  

 

1p      if  0       and    0p     if  0   .                  (51)       

 

The case 0   necessarily implies that curv. 0W  , and occurs either when 1p   or when 

3 3 0A B  .  

The boundary conditions for a traction-free notch at a    read  

 

 , 0r a    ,     , 0r r a    ,     , 0zm r a    .                                                    (52) 

 

In view of the above, the homogeneous system (52) takes the following form for the symmetric 

loading case 

 

              
              

   

2

2

2 2 3 cos 1 1 2 1 cos 1 1 1 cos 1 1
2 2 3 sin 1 1 2 1 sin 1 1 1 sin 1 02

0 0 1 cos 1 3

Ap p p p a p p p a p p a

p p p p a p p p a p p p a A

p p a A

   

    

          

             

 

  
  
  
  

      

 , 

                                                                                                                                                          (53) 

 

whereas for antisymmetric loading becomes  

 

              
              

   

2

2

2 2 3 sin 1 1 2 1 sin 1 1 1 sin 1 1
2 2 3 cos 1 1 2 1 cos 1 1 1 cos 1 02

0 0 1 sin 1 3

Bp p p p a p p p a p p a

p p p p a p p p a p p p a B

p p a B

   

    

           

            

 

  
  
  
  

      

 . 

                                                                                                                                                      (54) 
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We note that the first two elements of the last row in the above matrices are zero. This is due to the 

fact that the dominant part of the rotation in (42) and consequently the dominant part of couple 

stresses in (47), does not depend upon the amplitudes ( 1A , 2A ) and ( 1B , 2B ), respectively. 

Now, for the existence of a non-trivial solution, the determinants of the coefficients of 

( bb BA , ) should vanish and this gives the following characteristic equations for p : 

 

Symmetric loading 

 

       ( ) ( ) 2
33 33 1 cos 1 1 2 sin 2 3 2 sin 2 0s sa M p p a p a ap              ,                      (55) 

 

Antisymmetric loading 

 

       ( ) ( ) 2
33 33 1 sin 1 1 2 sin 2 3 2 sin 2 0a aa M p p a p a ap               ,                     (56) 

 

where ( )
33

sM  and ( )
33

aM  are the minor determinants of the elements ( )
33

sa  and ( )
33

aa  in the matrices (53) 

and (54), respectively. It is apparent that the eigenvalue 1p   satisfies the characteristic equations 

for all notch angles. The case 1p   requires separate treatment because the differential equations in 

(37) become degenerate, and thus admit a special solution. However, by enforcing the boundary 

conditions (52) in conjunction with Eq. (33), it can be shown that this special solution coincides with 

our general solution in (38) for 1p . The displacement field associated with this eigenvalue results 

to a constant strain field, and also it does not produce couple stresses (note, that in this case 0 ). 

Therefore, according to (51b), 1p  is a physically admissible eigenvalue since it leads, for all 

angles a , to bounded potential energy.  

The following cases are now considered for the symmetric and antisymmetric loadings: 

 

Symmetric loading 

 
S1.   ( )

33 0sM   and ( )
33 0sa   

S2.   ( )
33 0sM   and ( )

33 0sa   
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Antisymmetric loading 

 
A1.   ( )

33 0aM   and ( )
33 0aa   

A2.   ( )
33 0aM   and ( )

33 0aa   

 
 
Figure 2 depicts the locus of roots of the characteristic equation (55). The solid and dotted 

lines are the roots of the minor determinant ( )
33

sM  for Poisson’s ratios 0   and 0.5  , 

respectively. The dashed-dot lines correspond to the roots of the equation ( )
33 0sa  . It is observed that 

for notch angles 90 180o oa   the two transcendental equations: ( )
33 0sM   and ( )

33 0sa  , share no 

common roots. In this range, the singularity of the stress field is deduced from equation ( )
33 0sM  , 

whereas the singularity of the couple-stress field is determined by ( )
33 0sa  . Indeed, it can readily be 

shown that in S1 case the satisfaction of the boundary conditions in (52) necessarily implies that 

3 0A  . Therefore, according to (42) and (47), the dominant part of the displacement field is 

irrotational and it does not produce couple-stresses. Moreover, in this case, we also have curv. 0W   

and thus 0p  . In light of the above, we conclude that the variation of the stress singularity will be 

given from curves E  ( 0  ) and E  ( 0.5  ) in Figure 2. On the other hand, in S2 case we 

necessarily have 3 0A  . In addition, the satisfaction of the boundary conditions in (52) yields: 

2 0A   and  1 3A f A . Accordingly, the displacement field gives rise to couple stresses and 

therefore curv. 0W  . In this case, the exponent p  must satisfy the inequality: 1p  . Hence, the 

singularity of the couple stress field is determined from curve F  in Figure 2.  
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Fig. 2  Locus of roots: Symmetric loading. Solid ( 0  ) and dotted ( 0.5  ) lines represent  

the roots of ( )

33

sM . Dash-dot lines represent the roots of ( )
33

sa . 

 

 

Finally, we note that at points 180oa   (crack) and 90oa   (half-space), ( )
33

sM  and ( )
33

sa  have 

common roots (see Fig. 2). In particular, in the mode I crack case, the first common root is 1 2p  . 

In this case, the satisfaction of the boundary conditions in (52) along with the requirement of 

bounded potential energy at the tip of the notch, indicate that 3 0A  . Thus, the dominant 

displacement field in the mode I crack problem is irrotational (Huang et al., 1997). The second 

common eigenvalue is 1p  . This eigenvalue is associated with a constant stress field and does not 

produce couple-stresses. In light of the above, we gather that the eigenvalue 1 2p   characterizes 

the dominant singularity of the stress field, whereas 3 2p   (which is the third common eigenvalue) 

the dominant singularity of the couple stress field. 
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E
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Fig. 3  Locus of roots: Antisymmetric loading. Solid ( 0  ) and dotted ( 0.5  ) lines represent  

the roots of ( )

33

aM . Dash-dot lines represent the roots of ( )
33

aa . 

 

 

Similar results apply in the antisymmetric loading case. Figure 3 displays the roots of the 

characteristic equation (56). Again, in the range 90 180o oa  , the two transcendental equations 

( )
33 0aM   and ( )

33 0aa  , have no common roots. In this range, the singularity of the stress field is 

defined by ( )
33 0aM  , while the singularity of the couple-stress field is determined by ( )

33 0aa  . 

Indeed, in the case A1, the boundary conditions (52) furnish 3 0B  . Thus, according to (42), (43) 

and (47), the dominant part of the rotation, curvature and couple stress field is zero. Moreover, in this 

case we have 0p  , and therefore the variation of the singularity of the stress field is given by 

curves G  and G  (Fig. 3). In A2 case we have 3 0B  . Consequently, the exponent p  must satisfy 

the inequality: 1p  . The first curve that meets the above requirements is H  (Fig. 3), which, in turn, 

defines the singularity of the couple stress field. Finally, by arguments similar to those used in the 

symmetric case, it is readily shown that in the mode II crack problem the dominant stress and couple 

stress singularities are associated with the eigenvalues 1 2p   and 2p  , respectively.  

 

 

G

G

H

oooo o o o o oo

a
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Fig. 4  Variation of the stress singularity with respect to the angle of the notch a   

for symmetric (SL) and antisymmetric (AL) loadings. 

 

In Figure 4, the variation of the stress singularity ( 1p  ) is displayed. It is observed that as 

the angle of the notch decreases from 180  to 90 , the strength of the singularity falls monotonically 

from 0.5  to 0 , in both symmetric and antisymmetric cases. We recall that in classical elasticity, in 

the range 128.7 90o oa  , the antisymmetric field is not singular (see also Fig. 4). The most 

singular eigenvalue occurs in the crack problem ( 180a   ). However, contrary to the classical 

elasticity case, the singularity associated with the antisymmetric loading is always stronger than the 

respective one in the symmetric loading. Finally, it is noted that the singularity of the stress field 

depends not only upon the angle of the notch a  but also upon the Poisson’s ratio  . In the special 

case of an incompressible material ( 0.5  ), the variation of the stress singularity is the same for 

both symmetric and antisymmetric loadings.  

The variation of the singularity of the couple-stresses is depicted in Figure 5. The strength of 

the singularity depends only upon the angle of the notch. It is also seen that in the antisymmetric case 

the couple-stress field is not singular. Finally, Figure 6 shows the variation of the exponent of the 

dominant part of the rotation. We observe that in couple-stress elasticity the rotation is bounded for 

all notch angles. However, as in classical elasticity, the strain field remains unbounded at the tip of 
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the notch. This can be deduced from Figure 4, since the dominant part of the strain (41) and stress 

field (46) varies in the same manner. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5  Variation of the couple-stress singularity with respect to the angle of the notch a   

for symmetric (SL) and antisymmetric (AL) loadings. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6  Variation of the rotation singularity with respect to the angle of the notch a  for  

symmetric (SL) and antisymmetric (AL) loadings. 
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The mode I and mode II crack problems are now examined now as limit cases of the general 

notch problem. Plane-strain crack problems were first investigated, in the context of couple-stress 

elasticity, by Sternberg and Muki (1967), and more recently by Huang et al. (1997; 1999) and 

Gourgiotis and Georgiadis (2007; 2008). In particular, Huang et al. (1997) using the method of 

eigenfunction expansions, provided near-tip asymptotic fields for the mode I and mode II crack 

problems. In their analyses they adopted a direct formulation in terms of stresses and couple-stresses, 

assuming a priori that both fields had the same order of singularity near the crack-tip. However, in 

the general notch problem the singularities of the stress and couple-stress fields vary differently. 

Therefore, the displacement formulation employed in the present study is more appropriate.  

In the mode I case, the first admissible eigenvalue that defines the singularity of the stress 

field is 1 2p   (see Fig. 4). The second eigenvalue 1p   produces a constant strain field, while 

3 2p   characterizes the singularity of the couple-stress field. In light of the above, the 

displacement field in (38) takes now the following form 

 

   1 2 21
1

3
3 6 cos 7 6 cos 2 cos

3 2 2r

A
u r A r

                
 

     3 2
1

5
5 10 cos 9 10 cos

2 2
r A

          
 

 2
3

5
cos 5cos

2 2
A O r

        
 ,                            (57a) 

 

   1 21
1

3
1 2 sin 7 6 sin sin 2

3 2 2

A
u r A r

            
 

   3 2
1

5
1 2 sin 9 10 sin

2 2
r A

           
 

 2
3

5
5 sin sin

2 2
A O r

       
 ,                                (57b) 

 

where 1A , 1A  and  1 3,A A   are amplitude factors that correspond to the eigenvalues 1 2p  , 1p   

and 3 2p  , respectively. 

Further, the stress field becomes 
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     1 2 2 1 21
1

3
3 2 cos 7 6 cos 4 cos

3 2 2rr

A
r A O r

                
 ,                        (58a) 

     1 2 2 1 21
1

3
5 2 cos 7 6 cos 4 sin

3 2 2

A
r A O r

                
 ,                        (58b) 

     1 2 1 21
1

3
9 10 sin 7 6 sin 2 sin 2

3 2 2r

A
r A O r

                 
 ,                    (58c) 

     1 2 1 21
1

3
7 6 sin 7 6 sin 2 sin 2

3 2 2r

A
r A O r

                
 ,                         (58d) 

 

where the symmetric and antisymmetric parts of stress are given by 

 

     1 2 1 21
1

3
1 2 sin 7 6 sin 2 sin 2

3 2 2r r

A
r A O r 

                   
 ,                 (59) 

   1 2 1 218 1
sin

3 2r r

A
r O r 

    
      .                                                                  (60) 

 

Moreover, the leading order terms of the rotation and couple stresses assume the form 

 

 1 2 3 2
36 sin

2
A r O r

    ,                                                                                                 (61) 

 2 1 2 1 2
312 sin

2rzm A r O r
    ,                                                                                    (62a) 

 2 1 2 1 2
312 cos

2zm A r O r
    .                                                                                   (62b) 

 

Turning now to the mode II case, we note that the eigenvalue 1 2p   defines the singularity 

of the stress field (see Fig. 4). In addition, the second and third consecutive eigenvalues (i.e. 1p  , 

3 2p  ) contribute only to the stress field (Fig. 3), while the fourth eigenvalue 2p   characterizes 

the singularity of the couple-stress field. In this case the displacement field becomes 

 

     1 21
1

3
3 6 sin 5 2 sin 2 1 sin 2

3 2 2r

B
u r B r

              
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     3 2 2
1

5
5 10 sin 3 2 sin

2 2
B r O r

         
 ,                              (63a) 

 

     1 21
1

3
1 2 cos 5 2 cos 2 1 cos 2

3 2 2

B
u r B r

              
 

     3 2 2
1

5
1 2 cos 3 2 cos

2 2
B r O r

         
 ,                               (63b) 

 

where 1B , 1B  and 1B  are amplitude factors that correspond to the eigenvalues 1 2p  , 1p   and 

3 2p  , respectively. 

Further, the rotation, stress and couple-stress fields become 

 

 2
3

3
cos

2
B r O r    ,                                                                                                    (64) 

 

       1 2 1 21
1

3
3 2 sin 5 2 sin 4 1 sin 2

3 2 2rr

B
r B O r

                   
 ,            (65a) 

     1 1 2 1 2
1

5 2 3
sin sin 4 1 sin 2

3 2 2

B
r B O r

                
 ,                        (65b) 

       1 2 2 1 21
1

3
9 10 cos 5 2 cos 8 1 cos

3 2 2r

B
r B O r

                   
 ,         (65c) 

       1 2 2 1 21
1

3
7 6 cos 5 2 cos 8 1 sin

3 2 2r

B
r B O r

                  
 ,             (65d) 

 

       1 2 1 21
1

3
1 2 cos 5 2 cos 4 1 cos 2

3 2 2r r

B
r B O r 

                     
 ,    (66) 

     1 1 2 1 2
1

8 1
cos 4 1

3 2r r

B
r B O r 

     
        .                                          (67) 

 

 2 1 2
36 cosrzm B O r    ,                                                                                            (68a) 

 2 1 2
36 sinzm B O r      ,                                                                                          (68b) 
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where 3B  is the amplitude factor that corresponds to the eigenvalue 2p  .  

Regarding now the previous asymptotic results, we note the following points: (i) The stresses 

exhibit a square-root singularity as in the classical theory of elasticity. However, it is important to 

observe that while the order of the stress singularities is preserved their detailed structure is altered. 

Indeed, the singular terms in the stress field, though independent of the characteristic length  , 

involve the Poisson’s ratio  . (ii)  The constant (independent upon the radial distance r) terms in the 

asymptotic expansion for the stresses (see Eqs. (58) and (65)) correspond to the  -stress field of 

classical fracture mechanics. However, in contrast with what happens in classical elasticity, where 

the  -stress field appears only in the mode I crack problem (Anderson, 1995), it is observed here 

that a constant stress field exists in both plane-strain modes. This is justified from the fact that the 

 O r  terms (in the asymptotic expansions for the displacements in both mode I and II cases) are 

coupled, through the boundary conditions with the  3O r  terms. (iii) The rotation is bounded at the 

crack-tip vicinity and this concurs with the uniqueness theorem for plane-strain crack problems in 

couple-stress elasticity (Grentzelou and Georgiadis, 2005). (iv) The couple-stresses exhibit a square-

root singularity in the mode I case, whereas in the mode II case the couple-stress field is bounded in 

the vicinity of the crack-tip. These results are consistent with the behavior of the rotation   in (61) 

and (64), respectively. (v) Finally, it should be remarked that the above asymptotic results agree with 

the ones obtained by Huang et al. (1997). 

Next, we consider the special case of a half-space ( 90a   ). According to Figures 2 and 3, 

the first admissible eigenvalue for both symmetric and antisymmetric loadings is 1p  . This 

eigenvalue defines the singularity of the stress field. Further, the eigenvalues 2p   and 3p   

determine the singularity of the couple-stress field in the symmetric and the antisymmetric cases, 

respectively (see also Fig. 5).  

In the symmetric case the displacement field takes the following form 

 

     2 1
1 1 2 cos 2 5 6 cos3 3 6 cos

3r

A
u A r r     

            
 

   33 1 3 cos3
2

A
O r 

   


 ,                                   (69a) 
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   2 1
1 sin 2 5 6 sin 3 1 2 sin

3

A
u A r r     

       
 

     33 2 1 2 sin 1 3 sin 3
2

A
O r   

       
 ,       (69b) 

 

where 1A ,  1 3,A A   are the amplitude factors that correspond to the eigenvalues 1p   and 2p  , 

respectively. 

Further, the rotation, stresses and couple-stresses become 

 

 2
3

3
sin

2
A r O r    ,                                                                                                     (70) 

   12 1 cos 2A O r      ,                                                                                          (71a) 

   12 1 cos 2rr A O r     ,                                                                                           (71b) 

 12 sin 2r A O r     ,                                                                                                  (71c) 

 12 sin 2r A O r     .                                                                                                  (71d) 

 12 sin 2r r A O r        ,                                                                                            (72) 

 r r O r      .                                                                                                              (73) 

 2
36 sinrzm A O r    ,                                                                                                (74a) 

 2
36 coszm A O r     .                                                                                               (74b) 

 

It is worth noting that the dominant part of the stress tensor is symmetric and coincides with its 

classical counterpart. Similar results apply for the antisymmetric loading case. 

 

4. Conclusions 

 

In this work, the asymptotic near-tip fields of an elastic plane-strain notch are determined in 

a solid characterized by the theory of couple-stress elasticity. The boundary value problem was 

treated with the asymptotic Knein-Williams technique. Our analysis led to an eigenvalue problem, 

which, along with the restriction of a bounded potential energy, provided the asymptotic fields. The 
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results of the near-tip fields showed departure from the predictions of classical elasticity. In 

particular, it was found that the dominant displacement field at tip of the notch is always irrotational. 

In addition, the rotation is bounded for all notch angles, while the strain field remains singular as in 

the classical theory. The strength of the stress singularity depends not only upon the angle of the 

notch but also upon the Poisson’s ratio  . Moreover, it varies from 1 2  (crack case) to 0  (half-

space case) for both symmetric and antisymmetric loadings. Finally, unlike the classical elasticity 

case, the couple-stress theory predicts that the strength of the singularity associated with the 

antisymmetric loading is always stronger than the respective one in the symmetric loading. This 

finding corroborates the fact that shear effects are more pronounced when couple-stresses are taken 

into account (Huang et al. 1999; Gourgiotis and Georgiadis, 2007; 2008).  
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Appendix:  Derivation of the higher-order terms in the near-tip asymptotic expansion 

 

Substituting Eqs. (36) in the field equations (34), and equating coefficients of like powers of 

r , we obtain the following non-homogeneous system of coupled ordinary differential equations for 

the angular functions  1U   and  1V  : 

 

        

        

        

        

22 iv 2
1 1 1

2 2
1 1 0 0 0

22 iv 2
1 1 1

2 2
1 1 0 0 0

1 2 2 2 1 1 3 1

4 4 1 1 2 4 3 2 1 1 0

1 2 2 2 1 1 3 1

4 4 1 2 1 4 3 1 2 1 0

U p p U p p p U

V p V U p V p U

V p p V p p p V

U p U V p U p V



  



  

         
                


          


               





     ,       (A1) 

 

where  0U   and  0V   are defined in Eqs. (38).  
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The general solution of the system (A1) is   

 

   
 
 

   1 1 32

1 3 41
cos 1

1 2 2 1 16

p
U A A p

p p

 
 



            
  

 
       4 1 22

12 91
cos 3 cos 1 cos 3

48 1 2

p
A p C p C p

p


  


 

     
 

 

 4 cos 1C p 


  


 

 
 
 

   1 32

1 3 41
sin 1

1 2 2 1 16

p
B B p

p p

 




            
 

 
       4 1 22

12 91
sin 3 sin 1 sin 3

48 1 2

p
B p D p D p

p


  


 

     
 

 

 4 sin 1D p 


  


 ,                                                 (A2a) 

 

   
       1 4 2 32

12 91
sin 3 sin 3 sin 1

48 1 2

p
V A p C p C p

p


   


          

  

 4 sin 1C p 


  


 

 
       4 2 32

12 91
cos 3 cos 3 cos 1

48 1 2

p
B p D p D p

p


  


         

 

 4 cos 1D p 


  


 ,                                                  (A2b) 

  

Moreover, the displacement field should also satisfy Eq. (33) (i.e. 2 0e  ).  Accordingly, we obtain 

the following uncoupled differential equations for the angular functions     0 0,U V   and 

    1 1,U V   

 

               2 2

0 0 0 01 1 1 1 0V p V p U p p U              ,                                   (A3) 

 

               2 2

1 1 1 11 3 1 3 0            V p V p U p p U  .                                  (A4) 
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Substituting Eqs. (A2) into (A3) and (A4), we get the following relations between the amplitudes: 

 

4 4 0A B  ,                                                                                                                         (A5) 

 

and 

 
   

 
 

 
4 1 32

3 1 4 3

4 1 1 2 1 8

p p
C A A

p p p

 


    
      

 , 

 
   

 
 

 
4 1 32

3 1 4 3

4 1 1 2 1 8

p p
D B B

p p p

 


    
     

 .                                                     (A6) 

 

Incorporating the above results we finally obtain Eqs. (39) and (40) for the displacement field. 
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