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Skyrmions are topological solitons that describe baryons within a nonlinear theory of
pions. In holographic QCD, baryons correspond to topological solitons in a bulk theory

with an extra spatial dimension: thus the three-dimensional Skyrmion lifts to a four-

dimensional holographic Skyrmion in the bulk. We begin this review with a description
of the simplest example of this correspondence, where the holographic Skyrmion is ex-

actly the self-dual Yang-Mills instanton in flat space. This places an old result of Atiyah

and Manton within a holographic framework and reveals that the associated Skyrme
model extends the nonlinear pion theory to include an infinite tower of vector mesons,

with specific couplings for a BPS theory. We then describe the more complicated curved
space version that arises from the string theory construction of Sakai and Sugimoto.

The basic concepts remain the same but the technical difficulty increases as the holo-

graphic Skyrmion is a curved space version of the Yang-Mills instanton, so self-duality
and integrability are lost. Finally, we turn to a low-dimensional analogue of holographic

Skyrmions, where aspects such as multi-baryons and finite baryon density are amenable

to both numerical computation and an approximate analytic treatment.

1. Introduction

Skyrmions1 are topological solitons2 that describe baryons within an effective non-

linear theory of pions, obtained from QCD in the limit of a large number of colours3.

It is an ambitious goal to accurately capture the properties of nuclei in terms of

Skyrmions, given that the energy and length units are the only free parameters of

the theory. There are several aspects of nuclei that are reproduced remarkably well

by the Skyrme model (for a review see Ref. 4), but there is only limited success re-

garding the important subject of nuclear masses. The main issue is that Skyrmions

are too tightly bound in comparison to the experimental data for nuclei. The bind-

ing energy of nuclei are typically of the order of 1% of the nucleon mass, however,

in the Skyrme model binding energies are an order of magnitude greater than this5.

Pions, being the lightest mesons, are the basic fields in the Skyrme model. Re-

stricting to a theory of pions and ignoring all other mesons is one possible reason

why Skyrmions are too tightly bound and one might hope that a more comprehen-

sive treatment could resolve this problem. Skyrme models including the ρ meson

have been the subject of considerable study in the past6,7,8,9,10 but there are difficul-

ties because of the large number of coupling constants that need to be determined.

In addition, the introduction of a number of extra unknown parameters reduces the
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predictability of the Skyrme model and is contrary to the central philosophy of the

Skyrmion approach to nuclei.

Holographic Skyrmions provide a new and elegant way to incorporate additional

mesons without the introduction of new parameters, by packaging all the mesons

together into a gauge potential in a theory with one extra space dimension. This

holographic formalism can be used in two ways. The first is by unpacking the mesons

through dimensional deconstruction and studying the three-dimensional Skyrmion

in the theory of pions with vector mesons. The second approach is to work directly

with the four-dimensional holographic Skyrmion and calculate its properties within

the bulk theory. In this review we shall describe both approaches, the first for a

simple flat space holographic theory and the second for the more complicated curved

space holographic theory derived by Sakai and Sugimoto11 via a string theory D-

brane construction.

In the simple flat space theory the holographic Skyrmion is exactly the self-

dual Yang-Mills instanton, setting an old result of Atiyah and Manton12 within a

holographic framework. Unpacking the Yang-Mills theory generates a BPS Skyrme

model in which the pions are coupled to an infinite tower of vector mesons. All

binding energies vanish in the BPS Skyrme model, so we see that the introduction

of the vector mesons has indeed reduced the Skyrmion binding energies. In fact,

the infinite tower of vector mesons has done the job too well and has completely

eliminated all binding energies. By truncating to a finite tower of vector mesons,

small binding energies can be retained, but at a much lower level than in the theory

with pions alone. This is precisely the situation that is required to improve the

comparison with experimental binding energies and we shall discuss the progress

made so far in this direction.

Computing four-dimensional holographic Skyrmions in curved space is a signif-

icant numerical challenge and only recently has this been achieved13 for the case of

a single holographic Skyrmion in the model derived by Sakai and Sugimoto. This

numerical result is presented together with a comparison to earlier analytic approx-

imations. It turns out that even the tail behaviour of the holographic Skyrmion

is subtle and yields an unexpected result that can be understood analytically and

confirmed numerically. Multi-baryons and the system at finite baryon density are

currently beyond numerical field theory computations. Various approximations have

been applied to investigate these important issues and have led to proposals for fi-

nite density configurations that include dyonic salt14 and baryonic popcorn15,16.

It is possible to get an improved understanding of these aspects by studying a

low-dimensional toy version of this problem17, where the holographic Skyrmion is

two-dimensional. This toy model will be reviewed, together with the analytic and

numerical results that, in particular, reveal analogues of both dyonic salt and bary-

onic popcorn.

Finally, in the conclusion we discuss some open problems and directions for

future research within the topic of holographic Skyrmions.
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2. Skyrmions and instantons

In the Skyrme model1 the pion degrees of freedom are encoded into an SU(2)-valued

Skyrme field U, and the static energy can be written in terms of the su(2)−valued

current Ri = ∂iU U
−1, where i = 1, 2, 3 runs over the three spatial dimensions of

R3. In the massless pion approximation, the static energy of the Skyrme model is

ES =

∫ (
− c1

2
Tr(RiRi)−

c2
16

Tr([Ri, Rj ]
2)

)
d3x, (1)

where we use dimensionless units and the constants c1 and c2 simply set the energy

and length scales. The physical energy and length units are to be fixed by comparison

with experimental data. As the Skyrme model is an approximate effective theory

with only two parameters, there are a variety of ways in which to fit these two

parameters to the wealth of experimental results. These include fitting to meson

properties, such as the pion decay constant, or properties of a single nucleon and its

excited states, or to nuclei with baryon number greater than one. These different

approaches yield slightly different physical energy and length units, but most of the

issues discussed in this review are independent of the choice of these physical units,

so we shall not need to address this aspect.

The Skyrme field is required to tend to the identity matrix at spatial infinity

and this compactifies space to S3. A given Skyrme field therefore has an associated

integer topological charge B ∈ Z = π3(SU(2)) given explicitly by

B = − 1

24π2

∫
εijkTr(RiRjRk) d3x. (2)

It is this topological charge that is to be identified with baryon number3. The

Skyrmion of charge B is the global minimum of the energy (1) for all fields in the

given topological charge sector.

Skyrme units are often used, which corresponds to setting c1 = c2 = 1, but in

the general form (1) the Faddeev-Bogomolny energy bound18 reads

ES ≥ 12π2√c1c2 |B|. (3)

It is easy to prove that this bound cannot be attained for non-zero B and there-

fore, in this sense, Skyrmions are not BPS solitons. The 1-Skyrmion is spherically

symmetric and the Skyrme field has the hedgehog form

U = exp(if(r)σixi/r), (4)

where σi are the Pauli matrices and f(r) is a real radial profile with the boundary

conditions f(0) = π and f(∞) = 0. This profile function can only be obtained

numerically, for example by substituting the ansatz (4) into the energy (1) and

performing a minimization computation. This yields the result that the 1-Skyrmion

energy exceeds the above bound by 23%.

Numerical Skyrmion solutions have been obtained up to reasonably large baryon

numbers5 and baryon density isosurfaces for Skyrmions with baryon numbers one to
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Fig. 1. Baryon density isosurfaces for Skyrmions with baryon number one to four.

Fig. 2. The energy per baryon, in units of the single baryon energy, for baryon numbers one to

four. Squares are the experimental data for nuclei and circles are Skyrmion energies.

four are displayed in Figure 1. Only the 1-Skyrmion is spherically symmetric, with

the 2-Skyrmion having an axial symmetry. The 3-Skyrmion and 4-Skyrmion have

only discrete symmetries, being tetrahedrally and cubically symmetric respectively.

The circles in Figure 2 denote the energy per Skyrmion of these four Skyrmions,

in units of the 1-Skyrmion energy to make this plot independent of the choice of

units. For comparison, the squares in Figure 2 represent the experimental ground

state energies per baryon for the deuteron 2H, the isospin doublet 3H/3He and the

α-particle 4He, in units of the nucleon mass.

This figure provides a clear illustration of the Skyrmion binding energy problem

mentioned in the introduction. As the baryon number increases there is a significant

decrease in the Skyrmion energy per baryon, compared to the experimental data,

reflecting the fact that Skyrmions are too tightly bound. The heart of the problem

lies in the fact that the single Skyrmion exceeds the energy bound by the consid-

erable amount of 23%, which leaves plenty of room for significant binding energies

for Skyrmions with larger baryon numbers.

The solution of the Skyrme model that gets closest to the bound (3) is the infinite

triply periodic Skyrme crystal19,20, which exceeds the bound by less than 4%. This
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is a crystal of half-Skyrmions and may be thought of as formed by a cubic stacking

of the cubic 4-Skyrmion displayed in the final image of Figure 1. The half-Skyrmion

structure is already apparent in the 4-Skyrmion, with the baryon density localized

around the eight vertices of the cube. The difference between the 23% excess of the

single Skyrmion and the 4% excess of the Skyrme crystal demonstrates the scale

of the binding energy problem. It is expected that Skyrmions with large baryon

numbers resemble finite chunks of the Skyrme crystal and this has been studied in

some detail recently for the case of massive pions21.

The antecedent to a holographic description of Skyrmions is the work of Atiyah

and Manton12, who introduced a procedure to construct Skyrme fields from the

holonomy of an SU(2) Yang-Mills instanton in R4. In the remainder of this section,

we briefly review this construction.

Consider an SU(2) Yang-Mills theory in four-dimensional Euclidean space. Our

notation is that uppercase latin indices run over all four space coordinates xI , with

I = 1, 2, 3, 4. To make contact with the holographic formalism used later, we shall

single out the fourth spatial direction and write x4 = z. The Cartesian coordinates

in the remaining R3 ⊂ R4 are denoted by x = (x1, x2, x3), and we use lowercase

latin indices (excluding z) for these components, that is, xi with i = 1, 2, 3.

Let AI be the su(2)-valued components of the gauge potential of the Yang-Mills

theory defined by the energy

EYM = −1

8

∫
Tr(FIJFIJ) d3x dz, (5)

where FIJ = ∂IAJ−∂JAI +[AI , AJ ] and the factor of 1
8 is due to the normalization

of the su(2) generators as −Tr(TaTb) = 2δab. There is a lower bound on the energy

EYM ≥ 2π2 |N |, (6)

in terms of the instanton number of the gauge field

N = − 1

16π2

∫
Tr(FIJ

?FIJ) d3x dz, (7)

where ?FIJ = 1
2εIJKLFKL is the dual field strength.

Unlike the Skyrme model, this is a BPS theory, in that the lower bound is at-

tained by self-dual instantons that satisfy ?FIJ = FIJ . There is an 8N -dimensional

moduli space of self-dual N -instantons and, roughly speaking, the 8N parame-

ters correspond to each of the N instantons having an arbitrary position in R4,

an arbitrary SU(2) global phase and an arbitrary size associated with the confor-

mal invariance of the theory. The integrability of the self-dual Yang-Mills equation

provides a mechanism, the ADHM construction22, that transforms the problem of

calculating instanton solutions into a purely algebraic problem. In principle this

provides a method to obtain the arbitrary 8N -parameter instanton solution for all

N and in practice it allows the explicit construction of a large class of instantons.
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The simplest example of a self-dual instanton is the SO(4) symmetric 1-instanton

positioned at the origin. It is given by the simple explicit solution

AI = − iσIJxJ
ρ2 + µ2

, (8)

where µ is the arbitrary size of the instanton, ρ is the four-dimensional radius

ρ =
√
x2

1 + x2
2 + x2

3 + z2, (9)

and σIJ is the anti-symmetric ’t Hooft tensor, defined in terms of the Paul matrices

by

σij = εijkσk, σzi = σi. (10)

The Atiyah-Manton prescription to obtain a Skyrme field from an instanton is to

compute the holonomy of the instanton along lines parallel to the z-axis. Explicitly,

U(x) = P exp

∫ ∞
−∞

Az(x, z) dz, (11)

where P denotes path ordering. As Az takes values in the Lie algebra su(2) its

exponential is group-valued, so that U(x) : R3 7→ SU(2), as required for a static

Skyrme field. As shown by Atiyah and Manton12, the baryon number of this Skyrme

field is equal to the instanton number of the gauge field, that is, B = N , where these

two quantities are given by (2) and (7).

This construction does not provide any exact solutions of the Skyrme model, but

for each N a suitable choice of instanton, including its size, provides a remarkably

good approximation to the static Skyrmion with baryon number N. The energy of

the best instanton generated Skyrme field is typically around a percent higher than

that of the true Skyrmion solution and correctly reproduces the symmetry of the

Skyrmion for a range of highly symmetric cases studied to date.

An elementary example is provided by considering the case N = 1. Computing

the holonomy (11) of the 1-instanton (8) generates a Skyrme field of the hedgehog

form (4) with the explicit profile function

f(r) = π

[
1− r√

r2 + µ2

]
. (12)

The Skyrme energy (1) of this field depends on the instanton size µ, and is minimal

for a particular finite size at which the energy is 24% above the bound (3), hence

only 1% greater than the true 1-Skyrmion energy.

Instantons have been constructed with holonomies that provide good approxi-

mations to the Skyrmions displayed in Figure 1 with spherical, axial, tetrahedral

and cubic symmetry12,23. A detailed study of the imposition of instanton symme-

tries within the ADHM construction has been performed and symmetric instantons

obtained that describe Skyrmions with larger baryon numbers24,25. The Skyrmions

from instantons scheme also gives an approximation to the Skyrme crystal, as the

holonomy of an instanton on the four-torus26. Unfortunately there is no known
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explicit expression for the relevant periodic instanton or Skyrme field, despite the

integrability of the self-dual Yang-Mills equation.

In the following section we place the Atiyah-Manton construction of Skyrme

fields from self-dual instanton holonomies within the framework of flat space holog-

raphy.

3. Skyrme models from flat space holography

In holographic approaches, a QCD-like theory has a dual description as a boundary

theory of an effective Yang-Mills bulk system in a curved space with an additional

holographic space dimension. The meson content of the boundary theory is obtained

by expanding the gauge potential in terms of Kaluza-Klein modes in the holographic

direction. In flat Euclidean space a similar approach is possible27 by replacing the

Kaluza-Klein modes by Hermite functions, as we now review.

For non-negative integer n, the Hermite functions are given by

ψn(z) =
(−1)n√
n! 2n

√
π
e

1
2 z

2 dn

dzn
e−z

2

, (13)

and satisfy the decay conditions ψn(±∞) = 0, together with the orthonormality

relation ∫ ∞
−∞

ψm(z)ψn(z) dz = δmn. (14)

Denoting differentiation with respect to z by a prime, then

ψ′n(z) =

√
n

2
ψn−1(z)−

√
n+ 1

2
ψn+1(z), (15)

which implies that∫ z

−∞
ψ2p+1(ξ) dξ =

p∑
m=0

γm2p+1 ψ2m(z), (16)

∫ z

−∞
ψ2p(ξ) dξ = γ+

2p ψ+(z) +

p−1∑
m=0

γm2p ψ2m+1(z), (17)

where γ+
2p and γmn are non-zero constants.

The additional kink function ψ+(z) that appears above is defined by

ψ+(z) =
1√
2π

1
4

∫ z

−∞
ψ0(ξ) dξ =

1

2
+

1

2
erf(z/

√
2), (18)

with erf(z) the usual error function

erf(z) =
2√
π

∫ z

0

e−ξ
2

dξ. (19)

The normalization of ψ+(z) has been chosen so that ψ+(−∞) = 0 and ψ+(∞) = 1.
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The starting point for the flat space holographic formalism is to consider the

Yang-Mills energy (5) in flat four-dimensional Eucliden space. In a gauge in which

AI → 0 as |z| → ∞, the components of the gauge potential can be expanded in

terms of the Hermite functions ψn(z). The gauge Az = 0 is obtained by applying

the gauge transformation

AI 7→ GAIG
−1 − ∂IGG−1 with G(x, z) = P exp

∫ z

−∞
Az(x, ξ) dξ. (20)

The Skyrme field that describes the pion degrees of freedom is again given by the

holonomy (11), and hence U(x) = G(x,∞). In the gauge Az = 0 this holonomy

appears in the boundary condition for Ai, since now Ai → −∂iU U−1 as z →∞.
The integral relations (16) and (17) imply that in the gauge Az = 0 the remain-

ing non-zero components of the gauge field can be expanded in terms of Hermite

functions and the kink function in the form

Ai = −∂iU U−1 ψ+(z) +

∞∑
n=0

Qni (x)ψn(z), (21)

where the Qni (x) represent an infinite tower of vector mesons in the three-

dimensional theory. The parity of the Hermite functions, ψn(−z) = (−1)nψ(z),

implies that for n odd the fields Qni describe axial vector mesons.

The emergence of the Skyrme model of pions can be seen by neglecting all the

vector fields Qni . With this truncation the components of the field strength are

Fzi = −∂iU U−1 ψ′+ = −Ri
ψ0√
2π

1
4

, Fij = [Ri, Rj ]ψ+(ψ+ − 1). (22)

Substituting these expressions into the Yang-Mills energy EYM given by (5), and

performing the integration over z, yields precisely the Skyrme energy ES in the form

(1) where

c1 =
1

4
√
π

= 0.141, c2 =

∫ ∞
−∞

2ψ2
+(ψ+ − 1)2 dz = 0.198. (23)

With these constants the Faddeev-Bogomolny energy bound (3) becomes

ES ≥ 2.005π2 |B|, (24)

which is to be compared with the energy bound (6) from the full Yang-Mills theory

with N = B. This shows that the two bounds are remarkably close, but that the

Faddeev-Bogomolny bound is stricter by 1
4%. Of course, the Faddeev-Bogomolny

bound only applies to the Skyrme model energy ES, whereas the bound (6) is equally

valid if some, or indeed all, of the vector mesons are included.

The Skyrme model is not scale invariant, in contrast to the Yang-Mills theory,

and hence the scale of the Skyrme model has emerged within this approach because

of the truncation that ignores the tower of vector mesons.

The vector meson terms in the expansion (21) have trivial topology and therefore

the holonomy term captures all the topological features of the instanton and hence
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the Skyrmion. Including the infinite tower of vector mesons produces a BPS Skyrme

model, with vanishing binding energies, since the model is simply equivalent to the

Yang-Mills theory with its self-dual instanton solutions. In other words, the theory

flows to a conformal theory as the truncation level tends to infinity.

By varying the number of vector mesons included in the truncation, an infinite

sequence of Skyrme models can be generated that interpolate between the Skyrme

model containing only pions and the BPS Skyrme model containing an infinite

tower of mesons. By an appropriate choice of the level of the truncation it should

therefore be possible to obtain a Skyrme model with binding energies of the order

of 1%, as required to match to experimental data. This holographic approach to

generating a Skyrme model has the significant advantage that all coupling and

interaction constants are automatically determined, and in such a way that the

topological energy bound given by the right hand side of (6) not only remains valid

but becomes an increasingly more accurate measure of the actual Skyrmion energy.

The remainder of this section is devoted to an analysis of the extended Skyrme

model obtained by the truncation that retains only the first vector meson together

with the first axial vector meson. We shall see that this indeed leads to a significant

reduction in Skyrmion binding energies, in comparison to the Skyrme model of pions

alone. Before this, it is perhaps worth making a comment regarding the difference

between the above flat space holographic approach and the more common techniques

of holographic QCD, such as those described in the next section on the Sakai-

Sugimoto model. In holographic QCD the curvature of the extra dimension induces

a discrete spectrum and fields are then expanded in terms of the associated Kaluza-

Klein modes. In flat space holography the lack of curvature means that the spectrum

is continuous. The above level truncation selects a discrete spectrum without the

need for curvature, and the continuous spectrum is recovered in the limit as the

truncation level tends to infinity. The truncation level is therefore a surrogate for

the bulk curvature in traditional holographic theories.

To generate the extended Skyrme model with a single vector meson and a single

axial vector meson we truncate the expansion (21) by including only the vector

fields Q0
i and Q1

i and neglecting all Qni for n ≥ 2. For notational convenience we

write Q0
i = Vi, which represents the lightest vector meson, namely the ρ meson, and

write Q1
i = Wi for the lightest axial vector meson, to be identified physically with

the a1 meson. This truncation of the expansion (21) therefore reads

Ai = −∂iU U−1 ψ+(z) + Vi(x)ψ0(z) +Wi(x)ψ1(z). (25)

Substituting (25) into the Yang-Mills energy (5) and performing the integration over

z yields an extension of the standard Skyrme model to a static energy describing

the interaction of pions with ρ and a1 mesons. Explicitly, this energy has the form

Eπρa1 = ES + EV + EW + ESV + ESW + EVW + ESVW. (26)
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Here ES is the Skyrme model pion energy (1), EV is the vector meson energy

EV =

∫
−Tr

{
1

8
(∂iVj −∂jVi)2 +

1

4
m2V 2

i + c3(∂iVj −∂jVi)[Vi, Vj ] + c4[Vi, Vj ]
2

}
d3x,

(27)

and EW is the axial vector meson energy

EW =

∫
−Tr

{
1

8
(∂iWj − ∂jWi)

2 +
1

4
M2W 2

i +
3

4
c4[Wi,Wj ]

2

}
d3x. (28)

A crucial feature of the holographic construction of extended Skyrme models is the

fact that no additional free parameters are introduced. All the new constants that

appear in the energy Eπρa1 have specific values determined by the integration over

z. This includes the dimensionless ρ meson mass m = 1/
√

2 in (27) and the dimen-

sionless a1 meson mass M =
√

3/2 in (28). The dimensionful masses of the particles

in the theory depend upon the choice of energy and length units, as discussed ear-

lier. However, the ratio of the mass of the lightest axial vector meson to the mass

of the lightest vector meson is independent of the choice of units. From the values

given above this mass ratio is

M

m
=
√

3 = 1.73, (29)

to be compared with the experimental result

ma1

mρ
=

1230 MeV

776 MeV
= 1.59, (30)

for the ratio of the a1 to ρ mass. Given that this ratio is completely determined in

the extended theory, with no adjustable parameters, then an error of less than 9%

is remarkable.

The two constants c3 and c4 in (27) and (28) are

c3 =

∫ ∞
−∞

1

4
ψ3

0 dz =
1

2
√

6π
1
4

= 0.153, c4 =

∫ ∞
−∞

1

8
ψ4

0 dz =
1

8

√
1

2π
= 0.050.

(31)

The remaining terms in the energy expression (26) describe the interactions between

the pions and the vector mesons. They are rather cumbersome, containing many

terms, and are given by

ESV =

∫
−Tr

{
c5([Ri, Vj ]− [Rj , Vi])

2 − c6[Ri, Rj ](∂iVj − ∂jVi)− c7[Ri, Rj ][Vi, Vj ]

+
1

2
c6[Ri, Rj ]([Ri, Vj ]− [Rj , Vi])−

1

8
([Ri, Vj ]− [Rj , Vi])(∂iVj − ∂jVi)

−1

2
c3([Ri, Vj ]− [Rj , Vi])[Vi, Vj ]

}
d3x, (32)
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ESW =

∫
−Tr

{
c8([Ri,Wj ]− [Rj ,Wi])

2 − c9[Ri, Rj ][Wi,Wj ]

+c10[Ri, Rj ]([Ri,Wj ]− [Rj ,Wi])−
1

8
([Ri,Wj ]− [Rj ,Wi])(∂iWj − ∂jWi)

−c11([Ri,Wj ]− [Rj ,Wi])[Wi,Wj ]− c12RiWi

}
d3x, (33)

EVW =

∫
−Tr

{
1

2
c4([Vi,Wj ]− [Vj ,Wi])

2 + c4[Vi, Vj ][Wi,Wj ]

+
2

3
c3([Vi,Wj ]− [Vj ,Wi])(∂iWj − ∂jWi) (34)

+
2

3
c3([Wi,Wj ]− [Wj ,Wi])(∂iVj − ∂jVi)

}
d3x,

and finally

ESVW =

∫
−Tr

{
− 6

11
c11[Vi, Vj ]([Ri,Wj ]− [Rj ,Wi])

−c13([Ri, Vj ]− [Rj , Vi])(∂iWj − ∂jWi)

−c13([Ri,Wj ]− [Rj ,Wi])(∂iVj − ∂jVi)−
1

3
c3[Wi,Wj ]([Ri, Vj ]− [Rj , Vi])

+c13([Ri, Vj ]− [Rj , Vi])([Ri,Wj ]− [Rj ,Wi])

− 6

11
c11([Ri, Vj ]− [Rj , Vi])([Vi,Wj ]− [Vj ,Wi])

−1

3
c3([Ri,Wj ]− [Rj ,Wi])([Vi,Wj ]− [Vj ,Wi])

}
d3x. (35)

These lengthy expressions illustrate the inherent difficulty in extending the Skyrme

model of pions to include other mesons. Even at this order, there are a large number

of interaction terms with coupling constants that must be determined. The beauty

of a holographic approach to this problem is that all the coupling constants are

fixed without the introduction of any new parameters. In particular, the constants

c5, . . . , c13 that appear in the above interaction terms are given by

c5 =

∫ ∞
−∞

1

8
ψ2

+ψ
2
0 dz = 0.038, c6 =

∫ ∞
−∞

1

4
ψ+(1− ψ+)ψ0 dz =

π1/4

12
√

2
= 0.078,

c7 =

∫ ∞
−∞

1

4
ψ+(1− ψ+)ψ2

0 dz = 0.049, c8 =

∫ ∞
−∞

1

8
ψ2

+ψ
2
1 dz = 0.047,

c9 =

∫ ∞
−∞

1

4
ψ+(1− ψ+)ψ2

1 dz = 0.030, c10 =

∫ ∞
−∞

1

4
ψ+(1− ψ+)ψ1 dz = 0.016,

c11 =

∫ ∞
−∞

1

4
ψ+ψ

3
1 dz =

11
√

2

144π3/4
= 0.046, c12 =

1

4π1/4
= 0.188,

c13 =

∫ ∞
−∞

1

4
ψ+ψ0ψ1 dz =

1

4
√

6π
= 0.058. (36)
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As a field of the form (25) is simply a particular subclass of field configurations

with instanton number N = B then the Yang-Mills energy bound (6) is applicable

and provides the lower bound

Eπρa1 ≥ 2π2B. (37)

The holographically generated coupling constants are delicately balanced to yield

this energy bound and it is difficult to see how one might derive this bound directly

from the energy expression (26), if the holographic origin of this model was unknown.

Imposing spherical symmetry allows a numerical computation of the 1-Skyrmion

solution in the extended model, with the result27 that the energy Eπρa1 exceeds the

bound (37) by less than 5%. Thus, as anticipated, this extension of the Skyrme

model moves the theory closer to a BPS theory and places a more significant re-

striction on the magnitude of multi-Skyrmion binding energies.

It is possible to extend the Atiyah-Manton holonomy construction to approx-

imate static multi-Skyrmions in the extended model, as follows. Given the fields

Ai(x, z) of an appropriate self-dual instanton in the gauge Az = 0, a compari-

son with the expansion (25) allows the extraction of the Skyrme field currents via

Ri(x) = −Ai(x,∞). The orthogonality of the Hermite functions then provides the

following integral expressions for the vector meson fields

Vi(x) =

∫ ∞
−∞

(
Ai(x, z) +Ri(x)ψ+(z)

)
ψ0(z) dz

Wi(x) =

∫ ∞
−∞

(
Ai(x, z) +Ri(x)ψ+(z)

)
ψ1(z) dz. (38)

Under the assumption that the symmetry of the charge B Skyrmion in the ex-

tended theory is the same as in the Skyrme model with only pions (which seems

reasonable for B ≤ 4), then the same four instantons with spherical, axial, tetra-

hedral and cubic symmetry are the appropriate instantons for charges one to four.

Note, however, that the instanton sizes that minimize the energy Eπρa1 will be dif-

ferent from those that minimized the energy ES in the Skyrme model with pions

alone. Using each of these instantons and performing the integrals (38) numerically,

together with a minimization over the instanton size, produces the Skyrmion energy

results displayed as the diamonds in Figure 3.

The results28 displayed in this figure show that the Skyrmion energies in the ex-

tended theory are much closer to the BPS bound and hence this significantly reduces

Skyrmion binding energies. Although the Skyrmions are still too tightly bound in

comparison to the experimental data on nuclei, there is a significant improvement

on the Skyrme model with only pions. In particular, this extended theory is able

to provide a reasonable approximation to the masses of nuclei with B = 2, 3, 4, at

the expense of overestimating the energy of the single baryon. As an illustration, if

the physical energy unit is fixed by matching the energy of the B = 4 Skyrmion to

the mass of 4He then this produces the data presented in Table 1, where the exper-

imental values measured for nuclei are also shown for comparison. It can be seen
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Fig. 3. The energy per baryon, in units of the single baryon energy, for baryon numbers one to
four. Squares are the experimental data for nuclei, circles are the Skyrmion energies in the theory

with only pions, and diamonds are the Skyrmion energies in the extended theory with pions, ρ
and a1 mesons.

that this gives a reasonable approximation to the experimental data, particularly

for baryon numbers greater than one. Even the single baryon mass is only 20 MeV

above the true value, whereas a similar calculation in the Skyrme model of pions

gives an energy excess which is more than four times greater than this.

Table 1. For 1 ≤ B ≤ 4
the experimental values of the

masses of nuclei are compared

with the predictions in the ex-
tended Skyrme model.

Mass in MeV

B Experiment Theory

1 939 959

2 1876 1887
3 2809 2806

4 3727 3727

It is clear from these results that extending the Skyrme model of pions to in-

clude additional mesons via a holographic approach yields encouraging signs, with

binding energies dramatically reduced. Including only the lightest vector and axial

vector meson already decreases the discrepencies between the values for nuclei and

Skyrmions to around one quarter of those found in the Skyrme model of pions alone.

By including additional vector mesons, there is hope that an accurate match to ex-

perimental data could be achieved, though this has not yet been studied due to the

computational challenges induced by the large number of terms that are generated

by the inclusion of each extra vector meson.
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In this flat space holography approach to Skyrmions, the truncation process is

vital. This is because the bulk holographic Skyrmion is simply the self-dual Yang-

Mills instanton, which is BPS, and hence all binding energies vanish in the full bulk

theory. For a bulk theory in a curved space the holographic Skyrmion can be similar

to the Yang-Mills instanton, but self-duality and hence the BPS aspect is lost due

to the curvature (and other modifications) so no truncation is required and it is

possible to study the holographic Skyrmion directly in the bulk theory. This is the

subject of the following section, where the bulk theory is the holographic theory of

Sakai and Sugimoto11.

4. The holographic Skyrmion in the Sakai-Sugimoto model

The Sakai-Sugimoto model11 is a well-known example of a string theory descrip-

tion of holographic QCD. It is obtained by considering D8-brane probes in a back-

ground of D4-branes compactified on a circle. Here we are interested in the effective

Yang-Mills-Chern-Simons theory that this generates in five-dimensional spacetime.

Although the term Sakai-Sugimoto model is often used to refer to the full string

theory construction, we shall continue to use this nomenclature for the effective

theory too.

The cornerstone of all models of baryons in holographic QCD is that Skyrmions

on the boundary correspond to solitons in the bulk, that is, to holographic

Skyrmions. The Sakai-Sugimoto model differs from the flat space holographic ap-

proach of the previous section in that spacetime is curved with AdS-like behaviour

and a five-dimensional Chern-Simons term is included that generates an abelian

electric charge for the holographic Skyrmion. Here AdS-like means that the curva-

ture is negative and there is a conformal boundary. Although the main contribution

to the action is simply the Yang-Mills term, the combination of the curvature of

spacetime and the electromagnetic repulsion provides a stability that fixes the size

of the holographic Skyrmion.

In the Sakai-Sugimoto model, the validity of the supergravity approximation

requires working with a large number of colours Nc and a large value of the ’t Hooft

coupling λ, which controls the ratio between the Yang-Mills and Chern-Simons

terms. As λ is large, the holographic Skyrmion is small with respect to the curvature

scale and this leads to the expectation29,30 that the holographic Skyrmion will be

well-approximated by the flat space self-dual Yang-Mills instanton with a specific

small size.

In this section we first review the recent numerical results13 that put this as-

sumption to the test by numerically computing the holographic Skyrmion and com-

paring it to the self-dual instanton. We then discuss the large distance properties of

the holographic Skyrmion that follow from an analysis of the fields in the tail, and

reveal how this leads to the emergence of a new large scale, despite the fact that

the holographic Skyrmion is considered to be small.
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Consider a (D + 2)-dimensional spacetime with a warped metric of the form

ds2 = H(−dt2 + dx2
1 + . . .+ dx2

D) +
1

H
dz2, (39)

where

H(z) =

(
1 +

z2

L2

)(D+1)/(D+3)

(40)

The warp factor H(z), multiplying the (D+1)-dimensional Minkowski spacetime of

the dual boundary theory, depends only on the additional holographic coordinate

z. The parameter L determines the curvature length scale and can be set to unity

by an appropriate choice of units (although occasionally we will reintroduce L to

indicate the general dependence).

The effective five-dimensional metric of the Sakai-Sugimoto model11,31 corre-

sponds to the choice D = 3, which we take for the rest of this section. In this case

the spacetime has a conformal boundary as z →∞ and the scalar curvature is

R = − 16(4z2 + 3)

9(1 + z2)4/3
, (41)

with the properties that R ≤ 0 and R is finite (in fact zero) as z →∞. This metric

is therefore AdS-like.

As in the previous section, the index notation used in this section is that upper-

case indices include the holographic direction whilst lowercase indices exclude this

additional dimension. Furthermore, greek indices include the time coordinate whilst

latin indices (excluding z) run over the spatial coordinates. Thus, for example,

Γ,∆, . . . = 0, 1, 2, 3, z, I, J, . . . = 1, 2, 3, z, i, j, . . . = 1, 2, 3. (42)

The Sakai-Sugimoto model11,31 is a U(2) gauge theory, with anti-hermitian gauge

potential AΓ ∈ u(2), defined in the five-dimensional spacetime introduced above,

where we denote this metric by gΓ∆. The action is the sum of a Yang-Mills term

and a U(2) Chern-Simons term

S =
Ncλ

54π3

∫ √
−g 1

8
Tr
(
FΓ∆FΓ∆

)
d4x dz +

Nc
24π2

∫
ω5(A) d4x dz. (43)

Note that the number of colours,Nc, is simply a multiplicative factor and is therefore

unimportant for the classical bulk theory.

We split the U(2) gauge theory into an SU(2) component and an abelian U(1)

component by writing

AΓ = AΓ +
i

2
ÂΓ, (44)

and similarly for the gauge field. Then the U(2) Chern-Simons term in (43) is (up

to a total derivative) given by

− Nc
24π2

∫ (
3

8
ÂΓTr (F∆ΣFΞΥ) +

1

16
ÂΓ F̂∆ΣF̂ΞΥ

)
εΓ∆ΣΞΥ d4x dz. (45)
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In this review we are concerned with the static solutions of the theory, hence we

shall now restrict to time independent fields with A0 = ÂI = 0. In this case the

abelian potential Â0 generates the electric field F̂I0 = ∂IÂ0. It is convenient to

write the action in units of Ncλ/(54π3), which upon restriction to the above static

fields becomes

S =
1

8

∫ {
1

H1/2
Tr(F 2

ij) + 2H3/2Tr(F 2
iz) +

1

H1/2
(∂iÂ0)2 +H3/2(∂zÂ0)2

− 2

Λ
Â0 Tr (FIJFKL) εIJKL

}
d4x dz, (46)

where we have introduced the rescaled ’t Hooft coupling

Λ =
8λ

27π
. (47)

To extract the meson physics from this theory a Kaluza-Klein expansion is

performed11, in a similar way to that described in the flat space case of the previ-

ous section, but this time using the appropriate basis functions for curved space.

To obtain the basis functions we begin with the eigenfunctions ψ±(k)(z), defined as

the solutions to the linear equation

H1/2∂z(H
3/2∂zψ

±
(k)) + k2ψ±(k) = 0, (48)

where the superscript ± refers to even and odd parity with respect to z → −z. The

boundary conditions for ψ±(k)(z) are

ψ+
(k)(0) = 1, ∂zψ

+
(k)(0) = 0, ψ−(k)(0) = 0, ∂zψ

−
(k)(0) = 1. (49)

In holographic QCD, the correct holographic prescription at the conformal boundary

is that there are no sources for the operators in the dual theory. This corresponds

to the requirement that the parallel components the field strength vanish at the

boundary z = ±∞. In terms of an eigenfunction expansion, this condition translates

to the boundary condition

ψ±(k)(∞) = 0, (50)

which selects only a discrete set of momenta, kn with n = 1, 2, . . . and k1 > 0. The

momenta associated with the even and odd eigenfunctions interlace and we impose

the ordering kn+1 > kn.

The odd (even) values of n correspond to even (odd) functions with respect to

z → −z, so a more convenient notation is to label the eigenfunctions by an integer

by defining

ψ2n−1(z) ≡ ψ+
(k2n−1)(z) , ψ2n(z) ≡ ψ−(k2n)(z) , n = 1, 2, . . . (51)

so that the information about the parity of the eigenfunction is encoded in the parity

of the integer index. These eigenfunctions are orthogonal, that is, (ψm, ψn) ∝ δmn,
with respect to the inner product

(ψ, ψ̃) =

∫ ∞
−∞

1

H1/2
ψψ̃ dz. (52)
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The gauge potential components Ai(xj , z) can be written as an expansion in terms

of the basis functions ψn(z), with coefficients that correspond to vector meson fields

in the dimensionally reduced theory. The orthogonality condition with respect to

the inner product (52) ensures that when this expansion is substituted into the

action (46) the resulting integration over z yields the correct Yang-Mills form of the

action for each member of the infinite tower of vector mesons. The factor of H−1/2

in the inner product (52) matches the same factor in front of the term Tr(F 2
ij) in

the action (46) in order to achieve this result.

The mass of each vector meson is proportional to the associated discrete mo-

mentum kn, and in particular the masses of the lightest vector and axial vector

mesons are calculated from k1 = 0.82 and k2 = 1.26. This gives11 a ratio for the a1

to ρ meson mass of

k2

k1
=

1.26

0.82
= 1.54, (53)

in excellent agreement with the experimental result (30).

The component of the gauge potential Az(xj , z) is not written as an expansion

in terms of the eigenfunctions ψn(z), but rather in terms of the basis functions φn(z)

defined by φn(z) = ∂zψn(z). These functions are orthogonal, that is, 〈φm, φn〉 ∝ δmn
with respect to the inner product

〈φ, φ̃〉 =

∫ ∞
−∞

H3/2φφ̃ dz, (54)

that contains the appropriate factor of H3/2, in agreement with the same factor

that appears in front of the term Tr(F 2
iz) in the action (46), in order to produce the

correct form for the dimensionally reduced action.

This set of functions includes an additional mode, φ0(z) = ∂zψ0(z), obtained

from the zero mode (k0 = 0)

ψ0(z) =

∫ z

0

1

H(ζ)3/2
dζ = tan−1 z. (55)

Note that ψ0(∞) = π
2 6= 0, hence this mode was excluded from the earlier consid-

erations as it does not satisfy the boundary conditions at infinity. However,

φ0(z) =
1

H(z)3/2
=

1

1 + z2
, (56)

and hence this does satisfy the boundary condition as φ0(±∞) = 0.

The zero mode is associated with the massless pion and, as in the flat space

holographic theory of the previous section, the Skyrme field describing pions is

again given by the holonomy (11), with the baryon number B equal to the instan-

ton number N calculated via the formula (7). In detail, in the gauge Az = 0 the

holonomy U appears in the boundary condition for the gauge potential Ai. In this

gauge the expansion of Ai includes the current −∂iU U−1 multiplying the function
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ψ+(z) constructed from the zero mode as

ψ+(z) =
(2ψ0(z) + π)

2π
. (57)

This function satisfies the boundary conditions ψ+(−∞) = 0 and ψ+(∞) = 1 and

is the curved space analogue of the flat space kink function of the previous section

denoted by the same symbol. The derivation of the nonlinear meson theory works in

a similar manner to the flat space holographic theory described earlier. In particular,

neglecting the infinite tower of vector mesons again yields exactly the Skyrme model

of pions (1), although the normalization constants c1 and c2 take different values.

In the baryon sector, the holographic 1-Skyrmion is the solution with N = B = 1

of the static field equations that follow from the variation of the action (46). These

equations are given by

1

H1/2
DjFji +Dz(H

3/2Fzi) =
1

Λ
εiJKLFKL∂J Â0 (58)

H3/2DjFjz =
1

Λ
εijkFjk∂iÂ0 (59)

1

H1/2
∂i∂iÂ0 + ∂z(H

3/2∂zÂ0) = − 1

Λ
Tr (FIJFKL) εIJKL. (60)

Note that the Chern-Simons coupling in (46) implies that the instanton charge den-

sity sources the abelian electric field. It is this electric field that provides a counter-

balance to the spacetime curvature that acts to shrink the size of the holographic

Skyrmion.

The above set of coupled nonlinear partial differential equations are difficult

to solve, even numerically. However, in the large Λ limit the Chern-Simons term

is small and hence it resists the shrinking of the holographic Skyrmion only at a

size that is smaller than the curvature scale (order one in our units). One therefore

expects that, at least in the core of the holographic Skyrmion, the curvature of the

metric does not have a significant influence on the fields and a flat space self-dual

instanton may provide a good approximation to the holographic Skyrmion.

To address this issue in detail, consider the following rescaling29,30,

x̃I =
√

ΛxI , t̃ = t, ÃI = AI/
√

Λ,
˜̂
A0 = Â0, (61)

and define H̃ = H(z̃/
√

Λ). Using these rescaled variables and expanding the action

(46) in powers of Λ−1 yields

S =

∫ {
1

8
Tr
(
F̃ 2
IJ

)
+

1

8Λ

(
z̃2Tr

(
F̃ 2
IJ

)
− 4

3
z̃2tr

(
F̃ 2
ij

)
+ (∂̃I

˜̂
A0)2 − 2

˜̂
A0 Tr (F̃IJ F̃KL) εIJKL

)
+O

(
1

Λ2

) }
d4x̃ dz̃. (62)

The leading order term is scale invariant and is simply the Yang-Mills action in flat

space, which is minimized by the self-dual instanton. The next term is of order 1/Λ
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and contains the size stabilizing contributions from both the abelian field and the

curvature. This term defines an action on the self-dual instanton moduli space and

can be used to determine the size of the instanton within this approximation.

Assuming the self-dual 1-instanton form (8) for AI and taking the variation

of the second term in (62) yields (after converting back to the original unscaled

variables) a linear equation for Â0 with solution

Â0 =
8(ρ2 + 2µ2)

Λ(ρ2 + µ2)2
. (63)

Substituting this field and the self-dual expression (8) into the static action and

performing the integration produces the associated static energy

E = 2π2

(
1 +

1

6
µ2 +

64

5Λ2µ2

)
+O

(
1

Λ2

)
. (64)

The instanton size µ is obtained by minimization of this energy, which to leading

order in the large Λ limit gives the small instanton size

µ =
4√
Λ

(
3

10

)1/4

. (65)

We now see the various contributions to the energy and their role in determining

the size of the instanton. The first term in (64) is independent of the instanton size

and is simply the flat space self-dual Yang-Mills result of 2π2. The second term is

O(µ2) and derives from the Yang-Mills term as the leading order correction from the

metric expansion about flat space. This contribution drives the instanton towards

zero size. The third term in (64) is the leading contribution from the electrostatic

abelian field and being of order O(1/µ2) it resists the shrinking of the instanton

size. These competing effects combine to produce the finite size (65), which is small

for large Λ, with the energy dominated by the flat space self-dual contribution.

To confirm the validity of the above self-dual instanton approximation requires

a numerical solution of the full nonlinear curved space partial differential equa-

tions (58)–(60), to compute the holographic 1-Skyrmion. This has recently been

performed13 and we now review this computation and the results.

Unlike the self-dual Yang-Mills 1-instanton in flat space, the fields of a static

holographic 1-Skyrmion are not compatible with an SO(4) spherically symmetric

ansatz. However, the problem can be reduced to an effective two-dimensional com-

putation by employing an SO(3) symmetric ansatz of the form32,33

Aj = − i
2

(
1 + Φ2

r2
εjakxk+

Φ1

r
(δja−

xjxa
r2

)+ar
xjxa
r2

)
σa, Az = − i

2r
azxaσa, (66)

where the fields Φ1,Φ2, ar, az and Â0 are functions of the holographic coordinate z

and the three-dimensional radius r =
√
x2

1 + x2
2 + x2

3.

Writing Φ = Φ1 + iΦ2, frz = ∂raz−∂zar and DrΦ = ∂rΦ− iarΦ, together with

DzΦ = ∂zΦ− iazΦ, the expression for the baryon number becomes

B = −
∫ ∞

0

dr

∫ ∞
−∞

dz
1

2π

{
frz(1− |Φ|2) + i(DrΦDzΦ−DrΦDzΦ)

}
. (67)
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In terms of these variables, the energy obtained from the action (46) has three

terms, E = π(ESU(2) + EU(1) + ECS), where

ESU(2) =

∫ ∞
0

dr

∫ ∞
−∞

dz

{
H−

1
2 |DrΦ|2 +H

3
2 |DzΦ|2 +

r2H
3
2

2
f2
rz+

H−
1
2

2r2
(1−|Φ|2)2

}
,

(68)

EU(1) = −
∫ ∞

0

dr

∫ ∞
−∞

dz

{
1

2
r2

(
H−

1
2 (∂rÂ0)2 +H

3
2 (∂zÂ0)2

)}
, (69)

ECS = − 1

Λ

∫ ∞
0

dr

∫ ∞
−∞

dz

{
4Â0

(
frz(1−|Φ|2)+ i(DrΦDzΦ−DrΦDzΦ)

)}
. (70)

For reference, in this formalism the flat space self-dual instanton is given by

Φ =
2rz + i(r2 − z2 − µ2)

ρ2 + µ2
, ar =

2z

ρ2 + µ2
, az =

−2r

ρ2 + µ2
, (71)

where, as earlier, ρ2 = r2 +z2. The required soliton has B = 1 and is a vortex in the

reduced theory on the half-plane r ≥ 0. On the boundary {r = 0} ∪ {ρ = ∞} the

complex field Φ has unit modulus and its phase varies by 2π around the boundary.

Setting µ = 0 in (71) gives the fields

Φ =
2rz + i(r2 − z2)

ρ2
, ar =

2z

ρ2
, az =

−2r

ρ2
, (72)

which are pure gauge but have a singularity at the point ρ = 0. These fields satisfy

|Φ| = 1 and DrΦ = DzΦ = frz = 0, which together with Â0 = 0 constitute the

boundary conditions as ρ → ∞. In particular, the phase of Φ varies by 2π along

this boundary. The boundary conditions along the line r = 0 are given by ∂rÂ0 = 0

and Φ = −i, DrΦ = DzΦ = 0, which are those of the finite size self-dual instanton.

The field equations that follow from the variation of the energy E can be solved

using a heat flow method that corresponds to a constrained energy minimization,

where the energy ESU(2) + ECS is minimized subject to the constraint that Â0

satisfies the field equation

1

r2H1/2
∂r(r

2∂rÂ0)+∂z(H
3/2∂zÂ0) =

4

Λr2

{
frz(1−|Φ|2)+i(DrΦDzΦ−DrΦDzΦ)

}
,

(73)

which is a curved space Poisson equation sourced by the instanton charge density.

It turns out to be computationally efficient to perform the change of vari-

able z = tanw, so that the infinite domain of z transforms to the finite interval

w ∈ [−π2 ,
π
2 ]. At the boundaries w = ±π2 the fields (72) now give the boundary

conditions Φ = −i, ar = az = Â0 = 0. The numerical solution is computed on a

grid with a boundary at a finite value r = r?. The boundary conditions applied at

this simulation boundary are that the fields are given by the pure gauge fields (72)

together with Â0 = 0, that is,

Φ =
2r? tanw + i(r2

? − tan2 w)

r2
? + tan2 w

, ar =
2 tanw

r2
? + tan2 w

, az = − 2r?
r2
? + tan2 w

. (74)
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Note that the 2π phase winding of Φ now takes place along the single boundary

r = r?. The solutions are insensitive to the choice of this finite boundary, providing

r? is taken to be sufficiently large.

To display the results of the numerical computations it is convenient to plot the

abelian potential Â0, and to compare this with the simple explicit expression (63)

for Â0 within the flat space self-dual approximation.

Fig. 4. The abelian potential Â0 for the holographic Skyrmion with Λ = 200. The left image dis-

plays plots of Â0 along the r-axis (black curve) and the z-axis (red curve). The flat space self-dual
approximation (blue curve) is included for comparison. All three curves are almost indistinguish-

able as the self-dual field provides a good approximation in this range, apart from a very slight

overshoot at the origin. The right image is a plot of Â0 in the plane x2 = x3 = 0 and demonstrates
the approximate SO(4) symmetry in this region.

Figure 4 displays a plot of Â0 for the value Λ = 200. The plot in the left image

presents Â0 along the r and z axes, together with the SO(4) symmetric self-dual

instanton approximation (63) with the instanton size given by (65). All three curves

are almost indistinguishable, which confirms that the self-dual instanton provides

a good approximation in this range, for this large value of Λ. The plot in the right

image presents Â0 in the plane x2 = x3 = 0, and demonstrates the approximate

SO(4) symmetry for ρ . L = 1.

To see a deviation from the self-dual approximation requires an examination of

the region ρ > L = 1. As Â0 is small in this region then the appropriate quantity

to plot is log Â0, which is presented in Figure 5 for 0 ≤ ρ ≤ 3. The lack of SO(4)

symmetry is now more apparent, with a slower decay along the z-axis than along the

r-axis. We now review an analytic derivation of the tail behaviour of the holographic

Skyrmion13, that explains this numerical result.

It is important to note that the self-dual instanton approximation has nothing

to say about the asymptotic fields of the holographic Skyrmion at large distance,

because the rescaling performed in (61) involves zooming in to a scale of order

1/
√

Λ.
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Fig. 5. For the holographic Skyrmion with Λ = 200, the plot displays log Â0 against ρ along the

r-axis (black curve) and the z-axis (red curve). The flat space self-dual approximation (blue curve)
is included for comparison. There is a faster decay along the r-axis than along the z-axis.

We begin by considering a linear expansion that is valid for L/
√

Λ . ρ . L,

where we recall that we have set L = 1. This region is far enough from the core of

the holographic Skyrmion that a linear expansion is possible but is close enough to

the origin that the curvature of the metric can be neglected by setting H = 1.

We still use 1/Λ as the small parameter of the expansion, but now we keep the

length scale fixed rather than zooming in to the core. We write the expansion as

AI = A
(1)
I +A

(2)
I + . . . , Â0 = Â

(1)
0 + Â

(2)
0 + . . . (75)

in which

A
(n)
I , Â

(n)
0 ∝ 1

Λn
. (76)

As the space is taken to be flat in this region, we can expand the self-dual instanton

(8) to provide the leading order contribution. Given that µ2 = O(1/Λ) then the

first term in the expansion is

A
(1)
I = − i

2
µ2σIJ∂J

1

ρ2
∝ 1

Λ
, (77)

which satisfies the field equations ((58) and (59) with H = 1) at the linear level.

From (63) the abelian gauge potential at linear order is

Â
(1)
0 =

8

Λρ2
, (78)

which satisfies the final field equation ((60) with H = 1) at linear order.

This linear expansion is extended beyond the region ρ . L = 1 by taking into

account the curvature of the metric. As the first order terms A
(1)
I and Â

(1)
0 satisfy the

linearised field equations, the approach13 is to perform a separation of variables in xi
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and z, expand in eigenfunctions of the linear operator in flat space, and then extend

each eigenfunction separately into the curved region beyond ρ . 1. The existence

of an overlap region 1/
√

Λ . ρ . 1, in which the linear flat space approximation

and the linear curved space approximation are both valid, allows the computation

of the coefficients of the eigenfunction expansion in curved space.

The abelian potential Â
(1)
0 satisfies the linearized field equation (60) given by

∂i∂iÂ
(1)
0 +H1/2∂z(H

3/2∂zÂ
(1)
0 ) = 0. (79)

We can therefore extend (78) to the curved regime by writing

Â
(1)
0 =

8

Λ
ξ(xI) (80)

where ξ(xI) is a harmonic function in the four-dimensional curved space, such that

in the flat regime it is given by

ξ ' 1

ρ2
for ρ . 1. (81)

By separating variables this harmonic function can be expanded in a Laplace-Fourier

expansion (Laplace expansion in r, Fourier expansion in z). In flat space there is

the exact identity

1

ρ2
=

1

r2 + z2
=

∫ ∞
0

e−kr

r
cos (kz) dk, (82)

where all the momentum modes k appear in this expansion to reconstruct the

function 1/ρ2 exactly. We can extend this expansion into the curved region by

replacing it with

ξ =

∫ ∞
0

e−kr

r
ψ+

(k)(z) dk, (83)

where ψ±(k)(z) are the eigenfunctions defined earlier that solve (48).

The expression (80) with ξ defined in (83) gives the exact extension of Â
(1)
0 in

the curved region and reduces to (81) in the almost flat region since, for every value

of k,

ψ+
(k)(z) ' cos (kz) for z � 1, (84)

as H ' 1 in this region.

A similar analysis for the gauge potential A
(1)
I yields the result

A
(1)
i = − i

2
µ2

(
εijkσk∂jξ + σi

∫ ∞
0

e−kr

r
k2ψ−(k)(z) dk

)
, (85)

A(1)
z = − i

2
µ2σi

∫ ∞
0

∂i
e−kr

r
φ+

(k)(z) dk, (86)

where we have defined the functions

φ+
(k)(z) = ∂zψ

−
(k)(z). (87)
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The expressions (80), (85) and (86) are exact identities, but only if all the mo-

mentum modes k are included. However, as we have already seen, the conformal

boundary restricts the allowed momenta k to discrete values kn. To make sense of

these expressions we must therefore project to the subspace of allowed eigenfunc-

tions to obtain

ξ =

∞∑
n=1

ξ2n−1
e−k2n−1r

r
ψ2n−1(z), (88)

A
(1)
i = − i

2
µ2

(
εijkσk∂jξ + σi

∞∑
n=1

ξ2n
e−k2nr

r
k2

2nψ2n(z)

)
, (89)

A(1)
z = − i

2
µ2σi

∞∑
n=0

ξ2n∂i
e−k2nr

r
φ2n(z), (90)

where the projection coefficients ξn are defined by

ξ2n−1 =
1

(ψ2n−1, ψ2n−1)

∫ ∞
0

(ψ+
(k), ψ2n−1) dk, (91)

ξ2n =
1

〈φ2n, φ2n〉

∫ ∞
0

〈φ+
(k), φ2n〉 dk, (92)

using the inner products (52) and (54) introduced earlier.

The discretization (88) has the following important consequence. Within the

linear approximation, the large distance decay of ξ is now exponential in r rather

than algebraic, because k1 > 0. Thus the conclusion from the linear analysis in

curved space is that at large three-dimensional distance, r & 1, all terms decay

exponentially, except the algebraic decay associated with the pion field. Explicitly,

A(1)
z =

iξ0µ
2

2

σixi
r3

φ0(z) +O
(
e−k2r

r

)
,

A
(1)
i = O

(
e−k1r

r

)
, Â

(1)
0 = O

(
e−k1r

r

)
, (93)

where we recall that k1 and k2 are the masses of the lightest vector meson and the

lightest axial vector meson respectively. This linear result was first obtained using

a slightly different, though equivalent, analysis34.

As Â0 is the field dual to the baryon current of the boundary theory, the conclu-

sion from this linear analysis is that the baryon form factors decay exponentially.

However, this conclusion is incorrect because the above linear result cannot be ex-

tended to arbitrarily large values of the radius r. The linear results do have a region

of validity, but this region does not include arbitrarily large r, since nonlinear terms

dominant over the linear result (93). This has been the source of several erroneous

calculations and conclusions in the literature.

To derive the correct large r behaviour of the fields requires a nonlinear

analysis13. For this, we can ignore all terms that decay exponentially with r, as we

are interested in the details of the algebraic decay. Thus we may set A
(1)
i = Â

(1)
0 = 0,
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upon neglecting the exponential terms. To proceed, we keep the leading order terms

in a 1/r expansion at each order in a 1/Λ expansion.

Starting with the linear terms in 1/Λ

A(1)
z =

iξ0µ
2

2

σixi
r3

φ0, A
(1)
i = 0, Â

(1)
0 = 0, (94)

we solve the field equations at each order in 1/Λ. The first non-zero term in Ai
occurs at second order and is found to be

A
(2)
i = − i

16
ξ2
0µ

4εijk
xj
r6
σk(4ψ2

0 − π2), (95)

whereas the first non-zero term in Â0 occurs at fourth order and is given by

Â
(4)
0 = −2ξ3

0µ
6

Λr9

(
ψ4

0 − 6

(
π

2

)2

ψ2
0 + 5

(
π

2

)4)
. (96)

These expressions provide the leading order large r behaviour of all the fields and

their relation to the small self-dual instanton approximation. Note the significant

difference in the rate of decay of the field Â0 in the r and z directions, as it decays

as O(1/r9) for large r but decays only as O(1/z) for large z. Recall that the faster

decay along the r-axis compared to the z-axis was already noted in the earlier

numerical results.

The above results imply the existence of a new large scale, at which the be-

haviour of the Ai and Â0 components are dominated by nonlinear terms. The new

scale is where the linear terms in the 1/Λ expansion of Ai and Â0 (including the

exponentially decaying terms) are comparable to the higher order terms, that is,

A
(1)
i ∼ A

(2)
i , Â

(1)
0 ∼ Â(4)

0 . From above this is equivalent to

e−k1r

Λr
∼ 1

Λ2r5
,

1

Λ4r9
, (97)

so a new length scale appears at r ∼ log Λ, or more generally r ∼ L log Λ, if we

reinstate the scale L. Note that this is a large scale for large Λ. It is the scale beyond

which the asymptotic fields with algebraic decay are applicable to describe the tail

of the holographic Skyrmion. The size of the holographic Skyrmion is therefore a

complicated issue, even though the size of the approximating self-dual instanton is

a known small value.

In summary, there are three important scales for the holographic Skyrmion.

The scale of the self-dual instanton, L/
√

Λ, the radius of curvature L, and the

new scale of order L log Λ. The various approximations discussed above are valid

in different regions, some of which are contiguous and therefore allow the different

approximations to be related. These different regions correspond to the treatment

of space as flat or curved and the analysis of the partial differential equations at
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the linear or nonlinear level. Schematically, we may summarise the situation as:

0 < ρ . L/
√

Λ, flat and nonlinear

L/
√

Λ . ρ . L, flat and linear

L . ρ . L log Λ, curved and linear

L log Λ . ρ curved and nonlinear. (98)

The appearance of the final region is a slightly unusual feature that is a consequence

of the fact that the nonlinear terms dominate over the linear terms at large radius.

Fig. 6. For the holographic Skyrmion with Λ = 2, the plot displays log Â0 against r along the

r-axis (black curve). The red curve is the exponential decay predicted by the linear approximation
in curved space and the blue curve is the algebraic decay predicted by the nonlinear approximation

in curved space. Exponential decay is a good approximation in the region 1 . r . 15 and algebraic

decay is a good approximation in the region r & 8

To provide numerical evidence to support the above analytic calculations, con-

cerning the applicability of the linear and nonlinear descriptions of the holographic

Skyrmion tail in different regions, requires a value of Λ that is of order one. The

relevant regime from the physical point of view is large Λ, but as the three length

scales involved are of order 1/
√

Λ, 1, log Λ, this gives a separation of scales that is

difficult to encompass within a single numerical simulation. By considering param-

eter values of Λ that are of order one, we can bring these three length scales closer

together, so that all three are simultaneously accessible within a feasible simulation.

Applying the numerical scheme described earlier, the holographic Skyrmion is

computed for Λ = 2. To examine the soliton tail, we plot log Â0 against r (along

the r-axis) in Figure 6. Also included in this plot is the leading order exponential

decay predicted by the linear analysis, namely Â0 = α1e
−k1r/r, and the leading

order algebraic decay predicted by the nonlinear analysis, Â0 = α2/r
9, where α1,2
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are constants. It can be seen that exponential decay is a good approximation in

the region 1 . r . 15, where the linear regime is valid, and algebraic decay is a

good approximation in the region r & 8, which is the nonlinear regime. The slight

discrepancy between the algebraic form and the numerical result at large r is due to

the finite boundary at r = r? = 40, which is not far beyond the range plotted in this

figure. This numerical result is in good agreement with the analytic calculations.

The nonlinear tail fields with algebraic decay satisfy some model independent

form factor relations35, resolving an earlier puzzle that the linear tail fields with ex-

ponential decay violate these universal relations. Once the correct algebraic decay

is recognized the puzzle evaporates, as it was simply a consequence of applying a

linear result beyond its region of validity. The algebraic decay of the holographic

Skyrmion fields was first discovered by Cherman and Ishii36, who performed a large

r expansion to obtain the asymptotic fields. However, they were only able to im-

plement their approach by introducing a UV cutoff, with an associated singularity

in the limit as this cutoff is removed: prompting them to speculate on possible

resolutions that included holographic renormalization and boundary counterterms.

In fact, their required UV cutoff is merely a gauge artifact that is a consequence

of a gauge choice that is incompatible with the holographic boundary conditions.

This issue arose because that they were unable to relate their asymptotic expansion

directly to the flat space self-dual instanton approximation, and hence a vital piece

of information was absent and led to the introduction of the spurious UV cutoff.

The numerical computation of the holographic 1-Skyrmion in the Sakai-

Sugimoto model is possible because the SO(3) symmetry of this solution reduces the

calculation to an effective two-dimensional problem. However, holographic multi-

Skyrmions and solutions with finite density are unlikely to have any continuous

symmetries, so numerical field theory computations would require a fully four-

dimensional computation that is beyond current capabilities.

The construction of holographic Skyrmions at finite density is a crucial aspect

for understanding the important issue of dense QCD. In the limit of a large number

of colours, which is the regime of holographic QCD, cold nuclear matter becomes a

crystalline solid, although the details of this are still to be understood. It should be

possible to capture this behaviour via a holographic Skyrmion description within

the Sakai-Sugimoto model. However, the lack of numerical computations has led to

various approximate methods being employed to describe this phase, as follows.

Calorons, which are flat space self-dual Yang-Mills instantons with a periodic

direction, can split into monopole constituents if the period is smaller than the

instanton size. This fact, together with a point particle approximation, has led

to the suggestion14 that the appropriate holographic Skyrmion crystal consists of

pairs of dyons with opposite charges arranged in a salt-like configuration. It is

argued that, with increasing density, this dyonic salt arrangement turns into a cubic

crystal of half-instantons that is dual to the Skyrme crystal described earlier. In a

different study, making use of approximations involving flat space calorons and

dilute instantons, it has been proposed15,16 that with increasing density a series
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of transitions takes place, dubbed baryonic popcorn, where the three-dimensional

crystal develops additional layers in the holographic direction. Unfortunately, even

classical field theory computations are not yet available to test these ideas in the

Sakai-Sugimoto model. In the following section we review holographic Skyrmions

within a low-dimensional analogue17 of the Sakai-Sugimoto model, where analogues

of these issues can be studied both analytically and numerically.

5. A low-dimensional analogue of holographic Skyrmions

The bulk theory of interest in this section is defined in a three-dimensional spacetime

with negative curvature, and is an O(3) sigma model with a baby Skyrme term

that plays the role of the Chern-Simons term in the Sakai-Sugimoto model. It is

well-known that instantons in planar sigma models are natural low-dimensional

analogues of Yang-Mills instantons. If the coefficient of the baby Skyrme term is

small then the holographic Skyrmion in this low-dimensional theory has a small

size and may be approximated by an instanton of the flat space sigma model.

The advantage of the lower-dimensional theory is that numerical simulations of

holographic multi-Skyrmions and finite density solutions can be performed and

compared with predictions using flat space instanton approximations. In particular,

analogues of dyonic salt and baryonic popcorn configurations have been found and

analysed17 and the results provide evidence to support the validity of these ideas

within the Sakai-Sugimoto model.

The bulk spacetime for the low-dimensional theory is given by the three-

dimensional metric (39) and (40) with D = 1. We apply the same index nota-

tion as in the previous section, so that gΓ∆ denotes the components of this three-

dimensional metric with spacetime coordinates t, x, z. The scalar curvature is

R = − (z2 + 4)

2(1 + z2)3/2
, (99)

so again the spacetime has finite negative curvature.

The action of the massless O(3) baby Skyrme model in the above spacetime is

S =

∫ (
1

2
gΓ∆∂Γφ · ∂∆φ +

1

4Λ2
gΓ∆gΣΞ(∂Γφ× ∂Σφ) · (∂∆φ× ∂Ξφ)

)√
−g dx dz dt,

(100)

where φ = (φ1, φ2, φ3) is a three-component unit vector. The first term in the above

action is that of the O(3) sigma model and the second term is the baby Skyrme

term37, with a constant coefficient 1/Λ2. We shall be interested in the regime of

large Λ, this constant playing the role of the ’t Hooft coupling in the Sakai-Sugimoto

model, hence the use of the same symbol to denote it.

The associated static energy is

E =
1

2

∫ (
1

H
|∂xφ|2 +H |∂zφ|2 +

1

Λ2
|∂xφ× ∂zφ|2

)√
H dxdz, (101)
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and the boundary condition is that φ → (0, 0, 1) as x2 + z2 → ∞. This theory

has holographic Skyrmions that share many analogous features to those in the

Sakai-Sugimoto model. The analogue of the baryon number is the integer-valued

topological charge

B = − 1

4π

∫
φ · (∂xφ× ∂zφ) dx dz, (102)

which defines the instanton number of the planar sigma model.

The simple inequality

∣∣∣∣ 1√
H
∂xφ±

√
Hφ× ∂zφ

∣∣∣∣2 ≥ 0, (103)

combined with the fact that H ≥ 1, yields the energy bound E ≥ 4π|B|.
In flat space without a baby Skyrme term, that is, in the Λ → ∞ limit with

H = 1, this inequality is attained by the instanton solutions of the O(3) sigma

model38. To write these instanton solutions explicitly it is convenient to use the

equivalent formulation of the O(3) sigma model in terms of the CP1 sigma model,

by defining the Riemann sphere coordinate W = (φ1 + iφ2)/(1 − φ3), obtained

by stereographic projection of φ. In terms of this variable, instanton solutions are

given by W a holomorphic function of ζ = x + iz. The instanton solutions with

finite B > 0 are given by W (ζ) a rational function of degree B, where the degree of

the numerator is larger than that of the denominator in order to satisfy the above

boundary condition. Taking into account the global U(1) symmetry associated with

the phase of W , this leaves an instanton moduli space of dimension 4B − 1.

The radially symmetric sigma model instanton with topological charge B and

centre at the origin is given by W = (ζ/µ)B , where the positive real constant µ is

the arbitrary size of the instanton.

In the large Λ regime the sigma model term dominates over the baby Skyrme

term and it is reasonable to approximate the holographic Skyrmion by a sigma model

instanton: imitating the similar instanton approximation in the Sakai-Sugimoto

model. Here too, the curvature acts to shrink the instanton size whereas the baby

Skyrme term produces a contribution to the energy that increases with decreasing

instanton size and balances the curvature contribution to yield a preferred small

size for the instanton.

Again, this can be made explicit by introducing the rescaled variables x̃ = x
√

Λ

and z̃ = z
√

Λ, with H̃ denoting H(z̃/
√

Λ). In terms of these variables the energy

(101) becomes

E =
1

2

∫ (
H̃−1/2 |∂x̃φ|2 + H̃3/2 |∂z̃φ|2 +

1

Λ
H̃1/2|∂x̃φ× ∂z̃φ|2

)
dx̃ dz̃. (104)
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Expanding this energy as a series in 1/Λ yields

E =
1

2

∫ {
|∂x̃φ|2 + |∂z̃φ|2 +

1

Λ

(
1

4
z̃2(3|∂z̃φ|2 − |∂x̃φ|2) + |∂x̃φ× ∂z̃φ|2

)
+O

(
1

Λ2

)}
dx̃ dz̃. (105)

The leading order term in this static energy is that of the planar flat space O(3)

sigma model, in rescaled variables. Instantons minimize this contribution, which

is given by 4πB. The remaining terms provide an energy function on the instan-

ton moduli space and in each topological sector the holographic Skyrmion is best

approximated by the charge B instanton that minimizes this energy. Both the cur-

vature and the baby Skyrme term contributions can already be seen at the O(1/Λ)

level in (105). Balancing these contributions yields a preferred instanton size that

is propotional to 1/
√

Λ in unscaled coordinates.

The holographic 2-Skyrmion can be studied within the instanton approxima-

tion by considering a two-dimensional subset of the 2-instanton moduli space that

includes radial 2-instantons. Explicitly, the relevant charge 2 instantons have the

form

W =
ζ2 − a2

µ2
, (106)

where µ and a are real parameters. This describes two instantons separated along

the non-holographic direction with positions (x, z) = (±a, 0) and µ determines their

equal size. Radial solutions correspond to the choice a = 0. Calculating the energy

(101) of this field reveals that it has minimum at a non-zero value of a that is

O(1/
√

Λ). Furthermore, this calculation reveals that the separation 2a between the

two instantons is approximately equal to the size µ of the 2-instanton. In other

words, it predicts that the holographic 2-Skyrmion should closely resemble two

touching holographic single Skyrmions.

The main advantage of the low-dimensional model is that it is possible to obtain

full numerical solutions of the nonlinear field theory, because the static problem is

only two-dimensional and is therefore within the reach of modest computational

resources. The results17 of field theory computations are reproduced in Figure 7,

for the parameter value Λ = 100. The B = 1 holographic Skyrmion is displayed

in the left image and the B = 2 holographic Skyrmion in the right image. The

plot shows φ3, as this gives a good pictorial representation of these low-dimensional

holographic Skyrmions.

It can be seen that the B = 1 solution has an approximate radial symmetry and

a size that is roughly 1/
√

Λ = 0.1, in agreement with the instanton approximation.

The accuracy of the instanton approximation is confirmed by an energy comparison,

as the numerical field theory computation yields a value E = 4π × 1.0148 to be

compared with the energy of the instanton approximation E = 4π × 1.0154.

The B = 2 solution has an energy E = 8π × 1.0105, so this is a bound state

of two holographic 1-Skyrmions. Note that the binding energy per Skyrmion is
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Fig. 7. A plot of φ3 for the holographic 1-Skyrmion (left image) and the holographic 2-Skyrmion
(right image).

less than 0.5% of the single Skyrmion energy, illustrating the fact that holographic

models based on perturbations around BPS systems can yield the kind of small

binding energies found in real nuclei. As predicted by the instanton approximation,

the holographic 2-Skyrmion does not have (even approximate) radial symmetry but

resembles two single holographic Skyrmions separated along the non-holographic

direction, with a separation that is close to the diameter of a single holographic

Skyrmion.

The energy of the 2-instanton approximation (106) is minimized for the instanton

parameters a = 0.095 and µ = 0.18 with an energy that is only 0.03% above the field

theory computation. As expected from this result, a plot of φ3 using this instanton

approximation produces an image that is essentially identical to the right image

displayed in Figure 7.

The validity of the 2-instanton approximation (106) also reveals that the most

attractive arrangement of two holographic Skyrmions corresponds to a relative in-

ternal phase of π between the two constituent Skyrmions. The argument for this

follows from the product ansatz for two fields W1 and W2, given by

W =
W1W2

W1 +W2
. (107)

Consider the above product ansatz for two instantons of equal size, with a relative

phase χ and positions ±a along the x-axis. Explicitly,

W1 =
ζ − a
ν

, W2 = eiχ
ζ + a

ν
, producing W =

eiχ(ζ2 − a2)

ν(ζ(eiχ + 1) + a(eiχ − 1))
.

(108)

This field matches the 2-instanton expression (106) if eiχ = −1 and ν = µ2/(2a),

hence the relative internal phase is χ = π. Thus two holographic Skyrmions are in

the attractive channel if they are exactly out of phase.

Numerical field theory computations for holographic Skyrmions with larger val-

ues of B yield a string of B single holographic Skyrmions that are touching and



June 1, 2015

32

aligned along the non-holographic direction with alternating internal phases, so that

all neighbouring pairs are exactly out of phase. This is the expected result given

the structure of the holographic 2-Skyrmion and the fact that the curvature favours

holographic Skyrmions located along the line z = 0.

Finally, we turn our attention to low-dimensional holographic Skyrmions with

finite density. As mentioned earlier, in the Sakai-Sugimoto model the study of holo-

graphic Skyrmions at finite density has attracted some recent attention in attempts

to understand dense QCD within a holographic setting. As numerical field theory

simulations are currently not tractable, various approximations have been applied

to make progress on this topic. However, even the flat space self-dual Yang-Mills

instanton approximation is difficult to apply to this situation because the relevant

self-dual instanton is not available in explicit form for periodic boundary conditions

in multiple dimensions. The low-dimensional theory is a more tractable proposition,

not only because numerical field theory computations can be performed, but also

because there are simple explicit formulae for the relevant flat space sigma model

periodic instantons.

To numerically compute holographic Skyrmions at finite density, the non-

holographic direction is restricted to the range −l ≤ x ≤ l and periodic boundary

conditions are imposed. The integral expression (102) for the baryon number, with

the range of integration now restricted to the strip (x, z) ∈ [−l, l]× (−∞,∞), is still

integer-valued and defines the finite density ρ = B/(2l).

Computing the energy per baryon E/B as a function of the density ρ for a chain

of holographic Skyrmions with alternating internal phases yields an optimal density

of ρ = 2.8, at which the energy per baryon is E/B = 4π × 1.0097. The left image

in Figure 8 displays φ3 for this optimal density chain.

Fig. 8. A plot of φ3 for a chain with the optimal density ρ = 2.8 (left image) and the density
ρ = 10 (right image).

The chain solution at high density is displayed in the right image in Figure 8,
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which corresponds to a density ρ = 10: more than three times the optimal density.

At such a high density each holographic Skyrmion splits into a kink anti-kink pair

separated along the holographic direction and the holographic Skyrmions lose their

individual identities. The formation of this almost homogeneous structure in the

non-holographic direction is the lower-dimensional analogue of the appearance of

monopole constituents for calorons and has been discussed previously for instantons

of the O(3) sigma model in flat space39,40,41. A configuration of this type is therefore

a low-dimensional analogue of the dyonic salt arrangement14.

Beyond the optimal density, the energy per baryon of the chain grows rapidy

with increasing density. The baryonic popcorn idea15,16 suggests that there will be

a critical density beyond which it is energetically preferable for the single chain to

split into a pair of chains via a pop into the holographic direction. Such double

chains can also be computed numerically and an example with density ρ = 10 is

displayed in the left image in Figure 9. The phase of the holographic Skyrmions

alternates within each chain and two holographic Skyrmions that lie above each

other in different chains are also exactly out of phase, to produce maximal attraction

between all neighbouring pairs. The obvious generalization to multiple chains is also

realized and a triple chain example with density ρ = 20 is shown in the right image

in Figure 9.

Fig. 9. A plot of φ3 for the double chain with density ρ = 10 (left image) and the triple chain

with density ρ = 20 (right image).

Flat space sigma model periodic instanton solutions can be used to study the

above finite density configurations. The starting point is the periodic sigma model

solution39

W = ν sin(πρζ), (109)

that describes an instanton chain in which there are instantons located along the

x-axis with a distance 1/ρ between neighbouring instantons that are exactly out

of phase. The real parameter ν controls the size of each instanton, which is given
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by 1/(νπρ) in the dilute regime where the instanton size is small compared to 1/ρ.

Once the instanton size is comparable to 1/ρ the instantons lose their individual

identities and as the size increases further they split into kink anti-kink constituents

and the configuration tends towards the homogeneous state. This instanton chain

can be used to approximate the holographic Skyrmion chain by minimizing the

energy (101) of the field (109) over the parameter ν for each fixed density ρ.

Multiple chains of instantons can be constructed by using the product ansatz

(107) with constituent fields obtained by translation of the single chain (109). For

example, a double instanton chain is produced from the constituents

W1 = ν sin(πρ(ζ − iδ)/2), W2 = −ν sin(πρ(ζ + iδ)/2). (110)

The energy (101) can then be minimized over the scale ν and the distance 2δ between

the chains in the holographic direction, to yield the instanton approximation to the

double chain of holographic Skyrmions.

Fig. 10. A plot of E/(4πB) against density ρ for the single chain, double chain and triple chain.

Data points are the numerical solutions from field theory simulations and curves are sigma model

instanton approximations.

In Figure 10 the data points represent E/B, in units of 4π, against the density

ρ for the numerical field theory single, double and triple chain solutions (marked by

+,×, ◦ respectively). The curves show the corresponding instanton chain approxi-

mations (black, red and blue curves for single, double and triple chains respectively)

and are in excellent agreement with the field theory computations.

The optimal density corresponds to the critical value of the chemical potential

at which there is a first order phase transition to an equilibrium density of holo-

graphic Skyrmions, this being the analogue of the nuclear matter phase transition in

QCD. Once the density is greater than about twice the optimal density, the double
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chain has a lower energy than the single chain. This confirms the analogue of bary-

onic popcorn in the low-dimensional model. In particular, in the low-dimensional

theory the popcorn phenomenon takes place at a density below that at which the

holographic Skyrmions split into constituents, so this popcorn is not salted. As

expected from the popcorn phenomenon, a triple chain is energetically preferred

over a double chain for sufficiently high density. These results suggest that as the

density is increased further then the number of chains increases and eventually the

configuration begins to resemble a portion of a two-dimensional lattice rather than

the one-dimensional chain that arises at the optimal density. This is exactly the

phenomenon predicted by the baryonic popcorn idea15,16.

The results in the low-dimensional theory confirm that instantons can provide

good approximations to holographic Skyrmions, multi-Skyrmions and finite den-

sity solutions. This provides further support for the use of self-dual Yang-Mills

instantons in approximating holographic Skyrmions in the Sakai-Sugimoto model.

Furthermore, analogues of dyonic salt and baryonic popcorn configurations provide

further evidence for their relevance in the study of holographic Skyrmions at finite

density.

6. Conclusion

Ideas from holography and string theory have produced some interesting new twists

regarding the traditional description of baryons in terms of Skyrmions. One new

avenue for future research that follows from a holographic approach is the extension

of the Skyrme model of pions to include other vector mesons in a way that improves

the comparison with nuclear binding energies without introducing any additional

free parameters into the theory. In Section 3 we reviewed a simple version of this

technique, based on flat space holography, that yields some encouraging imitial

results. To date, multi-Skyrmions in the extended theory have only been studied

for low baryon numbers using the instanton approximation. To extend these results

to higher baryon numbers, and also to check the assumed symmetries and accuracy

of the instanton approximation, it will be necessary to perform full field numerical

simulations of the extended theory. This is a computational challenge because of

the significant increase in both the number of degrees of freedom and the number

of terms in the energy, in comparison to the standard Skyrme model of pions alone.

The second avenue for future research is the computation of holographic multi-

Skyrmions in the bulk Sakai-Sugimoto model, together with finite density solutions.

In section 4 we reviewed the computation of the single holographic Skyrmion within

this model, but this relies on the SO(3) symmetry of this solution. Extending this

computation beyond the single baryon sector, where a fully four-dimensional nu-

merical calculation is required, is a major task. However, the results from such an

investigation would certainly be of significant interest.

In the study of baryonic popcorn in the Sakai-Sugimoto model it has been pro-

posed that multiple chains have a zig-zag structure15,16. This requires that the
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optimal separation for two holographic Skyrmions is much greater than the size of

a single holographic Skyrmion. In the low-dimensional analogue theory reviewed in

section 5, this is not the case, so it is not surprising that zig-zag patterns fail to

emerge in that theory. The baby Skyrme term provides a low-dimensional analogue

of the Chern-Simons term in the Sakai-Sugimoto model, but an alternative is to

couple a vector meson to the sigma model topological current, as studied in flat

space42. It might be of interest to investigate this possibility and, in particular,

to see if a zig-zag structure appears in this alternative version of low-dimensional

holographic Skyrmions.

Finally, the issue of quantization of holographic Skyrmions must be addressed,

once the classical solutions are available for multi-baryons. Even within a zero mode

quantization, the quantum contributions to the energy from spin and isospin are

likely to be sensitive to the method used to fix the energy and length units. How-

ever, these quantum corrections must be small if an accurate fit to nuclear binding

energies is to be achieved, because these contributions vanish for the ground state

of 4He, which is a spin zero and isospin zero state.
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